
Some Thoughts on Benford’s Law

Steven J. Miller∗

November 11, 2004

Abstract
For many systems, there is a bias in the distribution of the first digits. For example, if one looks at the

first digit of 2n in base 10, asn ranges over the positive integers, one observes 1 about30% of the time
(and not19 ≈ .11% of the time as one might expect). This bias is known as Benford’s Law, and occurs in a
variety of phenomena. In fact, the IRS uses Benford’s Law to check the tax returns of large corporations!

We will show that if yn = logb xn is equidistributed mod1, thenxn is Benford baseb. This is
sufficient to prove that Recurrence Relations (with distinct rootsλ1, . . . , λk such that|λ1| ≥ · · · ≥ |λk|
and |λ1| 6= 1) are Benford. In particular, this will imply that the Fibonacci numbers, which satisfy the
Recurrence Relationan = an−1 + an−2, are Benford.

In these notes we develop most of the techniques needed to prove these results. The only fact which
we must assume is that ifα 6∈ Q, thennα mod 1 is equidistributed.

The first section introduces Benford’s Law, and highlights the method of proof. The second section
investigates Recurrence Relations. The final section is drawn fromAn Invitation to Modern Number
Theory, by Steven J. Miller and Ramin Takloo-Bighash, and connects Benford’s Law to the3x + 1
problem (as well as providing some numerical investigations and explanation of statistical inference).
The material in this section assumes prior knowledge of probability theory.

For a nice introduction to Benford’s Law, the reader should see [Hi1]; for an exposition on Benford’s
Law and Recurrence Relations, see [BrDu, NS].
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1 Benford’s Law

While looking through tables of logarithms in the late 1800s, Newcomb noticed a surprising fact: certain
pages were significantly more worn out than others. People were looking up numbers whose logarithm
started with 1 significantly more frequently than other digits. In 1938, Benford observed the same digit bias
in a variety of phenomenon. See [Hi1] for a description and history, [Hi2, BBH, KonMi] for recent results,
and [Knu] for connections between Benford’s law and rounding errors in computer calculations.

We say a sequence of positive numbers{xn} is Benford (baseb) if the probability of observing the first

digit of xn (in baseb) is j is logb

(
1 + 1

j

)
.

More precisely, we would have

lim
N→∞

#{n ≤ N : first digit of xn is j}
N

= logb

(
1 +

1
j

)
. (1)

Note thatj ∈ {1, . . . , b− 1}. This is a division of probability, as one of theb− 1 events must occur, and the
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total probability is

b−1∑

j=1

logb

(
1 +

1
j

)
= logb

b−1∏

j=1

(
1 +

1
j

)

= logb

b−1∏

j=1

j + 1
j

= 1

= logb b = 1. (2)

Note it is possible to be Benford to some bases but not others. Aslog10 2 ≈ .3, this means that about30%
of the time the first digit is a 1. This is a very strong digit bias; if all digits (1 through 9) were equally likely,
than the probability of the first digit being 1 would be1

9 ≈ .11.
A common way to prove a sequence is Benford is to show its logarithms (modulo 1) are equidistributed.

Recall

Definition 1.1 (Equidistributed). A sequence{yn}∞n=1, yn ∈ [0, 1], is equidistributed in[0, 1] if

lim
N→∞

#{n : |n| ≤ N, yn ∈ [a, b]}
2N + 1

= lim
N→∞

∑N
n=−N χ(a,b)(yn)

2N + 1
= b− a (3)

for all (a, b) ⊂ [0, 1].

The following theorem will be central to our presentation, and will be proved in §1.2:

Theorem 1.2. If yn = logb xn equidistributed modb, thenxn is Benford (baseb).

1.1 Preliminaries

We need the following simple fact:

Lemma 1.3. If u ≡ v mod1, then the first digits ofbu andbv are the same in baseb.

Proof. (of Lemma 1.3): Asu ≡ v mod1, without loss of generality we may writev = u + m, m ∈ Z. If

bu = ukb
k + uk−1b

k−1 + · · ·+ u0, (4)

then

bv = bu+m

= bu · bm

= (ukb
k + uk−1b

k−1 + · · ·+ u0)bm

= ukb
k+m + · · ·+ u0b

m. (5)

Thus, the first digits of each areu0, proving the claim.

The utility of the above lemma is that it in order to study the first digit ofby (in baseb), it suffices to study
y mod 1.
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1.2 Equidistribution and Benford

Proof (of Theorem 1.2): Assumeyn = logb xn is equidistributed mod1. Consider the unit interval[0, 1). For
j ∈ {1, . . . , b}, definepj by

bpj = j; (6)

equivalently, we have
pj = logb j. (7)

For j ∈ {1, . . . , b− 1}, let
Ij = [pj , pj+1) ⊂ [0, 1). (8)

Claim 1.4. If y mod1 ∈ Ij , thenby has first digitj.

The proof is immediate. By Lemma 1.3, it is sufficient to prove this fory ∈ Ij , which we now assume.
Then

y ∈ [pj , pj+1) implies that bpj ≤ y < bpj+1 . (9)

From the definitions of thepj , it follows that

j ≤ y < j + 1, (10)

proving the claim.
Thus, the measure of the subset of[0, 1) which, when we exponentiate byb has first digitj, is simply the

length ofIj . This is

|Ij | = pj+1 − pj = logb

j + 1
j

= logb

(
1 +

1
j

)
, (11)

the Benford (baseb) probabilities.

Returning to the proof of Theorem 1.2, we see that the intervalsIj have lengthlogb

(
1 + 1

j

)
. As yn is

equidistributed mod1, in the limit the percent of timeyn ∈ Ij is equal to|Ij |, ie, log bb

(
1 + 1

j

)
.

Now xn = byn . Eachyn is equivalent to somẽyn mod1, and by Lemma 1.3,byn andbfyn have the same
first digit.

Thus, in the limit, the probability that the first digit ofxn is j (baseb) is just logb

(
1 + 1

j

)
, proving the

theorem.2

2 Recurrence Relations and Benford’s Law

2.1 Recurrence Preliminaries

We consider Recurrence Relations of the following form:

an = c1an−1 + · · ·+ ckan−k, (12)
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wherec1, . . . , ck, k are fixed integers. It is well known that we may explicitly writean in Binet form:

an = u1λ
n
1 + · · ·+ unλn

k , (13)

where we have ordered the eigenvalues such that|λ1| ≥ · · · ≥ |λk|.
We give a quick sketch in a special case whenk = 2; the reader can generalize the arguments. Assume

an = c1an−1 + c2an−2. Let us guess thatan = rn for somer. If this were true, then

rn = c1r
n−1 + c2r

n−2. (14)

After a little algebra, this leads us to the equation

r2 − c1r − c2 = 0. (15)

There are two solutions to that, sayr1 andr2. A little algebra shows that any solutionan is of the form

an = u1r
n
1 + u2r

n
2 , (16)

for someu1, u2 ∈ C. If we are given initial conditions (say the values ofa0 anda1), we can then solve for
α1, α2; if the two roots are the same.

Remark 2.1. We call the equationr2 − c1r − c2 the characteristic polynomial. Technically, we need to
assume its roots are distinct; if there are repeated roots, the solution must be modified. Below, we always
assume we have Recurrence Relations where the roots are distinct.

For example, for the Fibonacci numbersk = 2, c1 = c2 = 1, u1 = −u2 = 1√
5
, andλ1 = 1+

√
5

2 ,

λ2 = 1−√5
2 .

If |λ1| = 1, we do not expect the first digit ofan to be Benford (baseb). For example, if we consider

an = 2an−1 − an−2 (17)

with initial valuesa0 = a1 = 1, everyan = 1! If we instead takea0 = 0, a1 = 1, we getan = n.

2.2 Geometric Series are Benford

Let {x} = x− [x] denote the fractional part ofx, where[x] as always is the greatest integer at mostx. Recall
the following:

Theorem 2.2. Letα 6∈ Q. Then the fractional parts ofnα are equidistributed mod1.

For a proof, see [HW].
From this and Theorem 1.2, it immediately follows that Geometric Series (series wherexn = rn) are

Benford (modulo a certain irrationality condition onr):

Theorem 2.3. Letxn = arn, logb r 6∈ Q. Thenxn is Benford (baseb).

Proof: Letyn = logb xn = n logb r+logb a. As logb r 6∈ Q, the fractional parts ofyn are equidistributed.
Exponentiating byb, we obtain thatxn is Benford (baseb) by Theorem 1.2.
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2.3 Recurrence Relations are Benford

We first introduce some notation, and then show recurrence relations are Benford.

Definition 2.4 (Big-Oh, Little-Oh). If F andG are two real functions withG(x) > 0 for x large, we write

F (x) = O(G(x)) (18)

if there existM, x0 > 0 such that|F (x)| ≤ MG(x) for all x > x0. If

lim
x→+∞

F (x)
G(x)

= 0, (19)

we writeF (x) = o(G(x)) and sayF is little-oh ofG.

An alternative notation forF (x) = O(g(x)) is F (x) ¿ G(x). If the constant depends on parameters
α, β but not on parametersa, b, we sometimes writeF (x) ¿α,β G(x).

Exercise 2.5.Prove for anyr, ε > 0, asx →∞ we havexr = O(ex) andlog x = O(xε).

Theorem 2.6. Let an be a Recurrence Relation as before, with|λ1| 6= 1 (note |λ1| is the largest absolute
value of the eigenvalues). Iflogb |λ1| 6∈ Q, thenan is Benford (baseb).

Proof: for notational simplicity, we assumeλ1 > 0, λ1 > |λ2|, andu1 > 0. We will comment at the end
on how to handle the more general case.

As always, letyn = logb xn. By Theorem 1.2, it is sufficient to showyn is equidistributed mod1. We
have

xn = u1λ
n
1 + · · ·+ unλn

k

xn = u1λ
n
1

[
1 + O

(
kuλn

2

λn
1

)]
, (20)

whereu = maxi |ui|+ 1 (soku > 1 and the big-Oh constant is1). Choose a smallε and ann0 such that

1. |λ2| < λ1−ε
1 ;

2. for all n > n0, (ku)
1
n

λε
1

< 1, and noteku
λnε
1

=
(

(ku)
1
n

λε
1

)n

.

As ku > 1, (ku)
1
n is monotonically decreasing to1. Noteε > 0 if λ1 > 1 andε < 0 if λ1 < 1. Letting

β =
(ku)

1
n0

λε
1

|λ2|
λ1−ε

1

< 1, (21)
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we find that the error term above is bounded byβn for n > n0, which tends to0. Therefore

yn = logb xn

= logb(u1λ
n
1 ) + O (logb(1 + βn))

= n logb λ1 + logb u1 + O(βn), (22)

where the big-Oh constant is1 (actually, the constant is slightly greater than1, but for notational ease we will
use1 below). Aslogb λ1 6∈ Q, the fractional parts ofn logb λ1 are equidistributed mod1. Therefore, so are
the shifts obtained by adding the fixed constantlogb u1.

We need only show that the error termO(βn) is negligible. It is possible for the error term to change the
first digit; for example, if we had999999999999999 (or 10000000000), then if the error term contributes2
(or−2), we would change the first digit (base10).

However, forn sufficiently large, the error term will change a vanishingly small number of first digits.
Sayn logb λ1 + logb u1 exponentiates (baseb) to first digit j, j ∈ {1, . . . , b− 1}. This means

n logb λ1 + logb u1 ∈ Ij = [pj−1, pj). (23)

The error term is at mostβn. Thus,yn will have exponentiate to a different first digit thann logb λ1 +logb u1

only if one of the following holds:

1. n logb λ1 + logb u1 is within βn of pj , and adding the error term pushes us to or pastpj ;

2. n logb λ1 + logb u1 is within βn of pj−1, and adding the error term pushes us beforepj−1.

The first set is contained in[pj − βn, pj), of lengthβn. The second is contained in[pj−1, pj−1 + βn),
also of lengthβn.

Thus, the length of the interval wheren logb λ1 + logb u1 andyn could exponentiate (baseb) to different
first digits is of size2βn. If we chooseN sufficiently large, than for alln > N , we can make these lengths
arbitrarily small.

Thus, asn logb λ1 + logb u1 is equidistributed mod1, we can control the size of the subsets of[0, 1)
wheren logb λ1 + logb u1 andyn disagree. The Benford behavior (baseb) of xn now follows (in the limit, of
course).

2.4 Weakening of Recurrence Constraints (Sketch)

We now show that we can weaken most of the Recurrence Relation assumptions, namely

1. λ1 > 0,

2. λ1 > |λ2|,
3. u1 > 0.
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It is possible that|λ1| = |λ2| = · · · = |λi|. If so (including signs), we can combine these terms to give

u1λ
n
1 + · · ·+ uiλ

n
i = u∗λn

1 + u#(−λ1)n. (24)

Of course, if the different eigenvalues of modulusλ1 range over more than±λ1, one replaces the sum
above with the obvious generalization.

The proof will proceed similarly if theλ1, . . . , λi are real-valued (simply split into even and odd powers
of n, and2 logb λ1 6∈ Q (in the odd case, we get an extra translation by a multiple oflogb λ1). Note this shows
how to handle the negative sign constraint (for we do not want to take logarithms of negative numbers, hence
we break our sequence into two sequences). Similarly, ifu1 (or the net effect from eigenvalues of modulus
|λ1|) is negative, we consider−xn, and show that satisfies Benford (baseb).

3 Applications of Probability: Benford’s Law and Hypothesis Testing

The Gauss-Kuzmin Theorem tells us that the probability that the millionth digit of a randomly chosen con-

tinued fraction expansion isk is approximatelyqk = log2

(
1 + 1

k(k+2)

)
. What if we chooseN algebraic

numbers, say the cube roots ofN consecutive primes: how often do we expect to observe the millionth digit
equal tok? If we believe that algebraic numbers (other than rationals and quadratic irrationals) satisfy the
Gauss-Kuzmin Theorem, we expect to observeqkN digits equal tok, and probably fluctuations on the order
of
√

N . If we observeM digits equal tok, how confident are we (as a function ofM andN , of course) that
the digits are distributed according to the Gauss-Kuzmin Theorem? This leads us to the subject ofhypothesis
testing: if we assume some process has probabilityp of success, and we observeM successes inN trials,
does this provide support for or against the hypothesis that the probability of success isp?

We develop some of the theory of hypothesis testing by studying a concrete problem, the distribution of
the first digit of certain sequences. In many problems (for example,2n base 10), the distribution of the first
digit is given by Benford’s Law, described below. We first investigate situations where we can easily prove
the sequences are Benford, and then discuss how to analyze data in harder cases where the proofs aren’t as
clear. The error analysis is, of course, the same we would use to investigate whether or not the digits of
the continued fraction expansions of algebraic numbers satisfy the Gauss-Kuzmin Theorem. In the process
of investigating Benford’s Law, we encounter equidistributed sequences, logarithmic probabilities (similar
to the Gauss-Kuzmin probabilities), and Poisson Summation, as well as many of the common problems in
statistical testing (such as non-independent events and multiple comparisons).

3.1 Benford’s Law

While looking through tables of logarithms in the late 1800s, Newcomb noticed a surprising fact: certain
pages were significantly more worn out than others. People were looking up numbers whose logarithm
started with 1 significantly more frequently than other digits. In 1938, Benford observed the same digit bias
in a variety of phenomenon. See [Hi1] for a description and history, [Hi2, BBH, KonMi] for recent results,
and [Knu] for connections between Benford’s law and rounding errors in computer calculations.
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A sequence of positive numbers{xn} is Benford (baseb) if the probability of observing the first digit of

xn in baseb is j is logb

(
1 + 1

j

)
. More precisely,

lim
N→∞

#{n ≤ N : first digit of xn in baseb is j}
N

= logb

(
1 +

1
j

)
. (25)

Note thatj ∈ {1, . . . , b− 1}. This is a probability distribution as one of theb− 1 events must occur, and the
total probability is

b−1∑

j=1

logb

(
1 +

1
j

)
= logb

b−1∏

j=1

(
1 +

1
j

)
= logb

b−1∏

j=1

j + 1
j

= logb b = 1. (26)

It is possible to be Benford to some bases but not others; we show the first digit of2n is Benford base 10,
but clearly it is not Benford base 2 as the first digit is always 1. For many processes, we obtain a sequence of
points, and the distribution of the first digits are Benford. For example, consider the3x + 1 problem. Let a0

be any positive integer, and consider the sequence where

an+1 =

{
3an + 1 if an is odd

an/2 if an is even.
(27)

For example, ifa0 = 13, we have

13 −→ 40 −→ 20 −→ 10 −→ 5 −→ 16 −→ 8 −→ 4 −→ 2 −→ 1
−→ 4 −→ 2 −→ 1 −→ 4 −→ 2 −→ 1 · · · (28)

An alternate definition is to remove as many powers of two as possible in one step. Thus,

an+1 =
3an + 1

2k
, (29)

wherek is the largest power of 2 dividing3an + 1. It is conjectured that foranya0, eventually the sequence
becomes4 → 2 → 1 → 4 · · · (or in the alternate definition1 → 1 → 1 · · · ). While this is known for
all a0 ≤ 260, the problem has resisted numerous attempts at proofs (Kakutani has described the problem
as a conspiracy to slow down mathematical research because of all the time spent on it). See [Lag] for an
excellent survey of the problem. How do the first digits behave (fora0 large)? Do numerical simulations
support the claim that this process is Benford? Does it matter which definition we use?

3.2 Benford’s Law and Equidistributed Sequences

As we can write any positivex asbu for someu, the following lemma shows that it suffices to investigate
u mod 1:
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Lemma 3.1. The first digits ofbu andbv are the same in baseb if and only ifu ≡ v mod1.

Proof. We prove one direction as the other is similar. Ifu ≡ v mod1, we may writev = u + m, m ∈ Z. If

bu = ukb
k + uk−1b

k−1 + · · ·+ u0, (30)

then

bv = bu+m

= bu · bm

= (ukb
k + uk−1b

k−1 + · · ·+ u0)bm

= ukb
k+m + · · ·+ u0b

m. (31)

Thus the first digits of each areuk, proving the claim.

Exercise 3.2.Prove the other direction of the if and only if.

Consider the unit interval[0, 1). Forj ∈ {1, . . . , b}, definepj by

bpj = j or equivalently pj = logb j. (32)

For j ∈ {1, . . . , b− 1}, let

I
(b)
j = [pj , pj+1) ⊂ [0, 1). (33)

Lemma 3.3. The first digit ofby baseb is j if and only ify mod1 ∈ I
(b)
j .

Proof. By Lemma 3.1, we may assumey ∈ [0, 1). Theny ∈ I
(b)
j = [pj , pj+1) if and only if bpj ≤ y < bpj+1 ,

which from the definition ofpj is equivalent toj ≤ by < j + 1, proving the claim.

The following theorem shows that the exponentials of equidistributed sequences (see definition 1.1) are
Benford.

Theorem 3.4. If yn = logb xn is equidistributed mod1 thenxn is Benford (baseb).

Proof. By Lemma 3.3,

{n ≤ N : yn mod 1 ∈ [logb j, logb(j + 1))} = {n ≤ N : first digit of xn in baseb is j} . (34)

Therefore

lim
N→∞

# {n ≤ N : yn mod 1 ∈ [logb j, logb(j + 1))}
N

= lim
N→∞

# {n ≤ N : first digit of xn in baseb is j}
N

.

(35)

If yn is equidistributed, then the left side of (35) islogb

(
1 + 1

j

)
which impliesxn is Benford baseb.
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Remark 3.5. One can extend the definition of Benford from statements concerning the distribution of the first
digit to the distribution of the firstk digits. With such an extension, Theorem 3.4 becomesyn = logb xn mod
1 is equidistributed if and only ifxn is Benford baseb. For details, see [KonMi].

Let {x} = x− [x] denote the fractional part ofx, where[x] as always is the greatest integer at mostx. It
is known that forα 6∈ Q the fractional parts ofnα are equidistributed mod1 (for a proof, see [HW]). From
this and Theorem 3.4, it immediately follows that geometric series are Benford (modulo the irrationality
condition):

Theorem 3.6. Letxn = arn, logb r 6∈ Q. Thenxn is Benford (baseb).

Proof. Let yn = logb xn = n logb r + logb a. As logb r 6∈ Q, the fractional parts ofyn are equidistributed.
Exponentiating byb, we obtain thatxn is Benford (baseb) by Theorem 3.4.

Theorem 3.6 implies that2n is Benford base 10, but not surprisingly that it is not Benford base2.

Exercise 3.7.Do the first digits ofen follow Benford’s Law? What abouten + e−n?

3.3 Recurrence Relations and Benford’s Law

We show many recurrence relations are Benford. The interested reader should see [BD, NS] for more on the
subject.

Exercise 3.8(Recurrence Relations). Letα0, . . . , αk−1 be fixed integers and consider the recurrence relation
(of orderk)

xn+k = αk−1xn+k−1 + αk−2xn+k−2 + · · ·+ α1xn+1 + α0xn. (36)

Show oncek values ofxm are specified, all values ofx are determined. Let

f(r) = rk+1 − αk−1r
k−1 − · · · − α0; (37)

we call this the characteristic polynomial of the recurrence relation. Show iff(ρ) = 0, thenxn = cρn

satisfies the recurrence relation for anyc ∈ C. If f(r) hask distinct rootsr1, . . . , rk, show that any solution
of the recurrence equation can be represented as

xn = c1r
n
1 + · · ·+ ckr

n
k (38)

for someci ∈ C. The Initial Value Problem is whenk values ofxn are specified; using linear algebra, this
determines the values ofc1, . . . , ck. Investigate the cases where the characteristic polynomial has repeated
roots. For more on recursive relations, see §3.3 and [GKP], §7.3.

Exercise 3.9.Solve the Fibonacci recurrence relationFn+2 = Fn+1 + Fn, givenF0 = F1 = 1. ShowFn

grows exponentially, i.e.Fn is of sizern for somer > 1. What isr? Letrn = Fn+1

Fn
. Show that the even

termsr2m are increasing and the odd termsr2m+1 are decreasing. Investigatelimn→∞ rn for the Fibonacci

numbers. Showrn converges to the golden mean,1+
√

5
2 .
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Exercise 3.10(Binet’s Formula). For Fn as in the previous exercise, prove

Fn−1 =
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5
2

)n]
. (39)

This formula should be surprising at first:Fn is an integer, but the expression on the right involves irrational
numbers and division by2. More generally, for which positive integersm is

1√
m

[(
1 +

√
m

2

)n

−
(

1−√m

2

)n]
(40)

an integer for any positive integern?

Exercise 3.11.Letx = [a0, . . . , an] be a simple continued fraction. Form ≥ 1, showqm ≥ Fm; therefore,
theqms grow exponentially. Find a numberc > 1 such that foranysimple continued fraction,qn ≥ cn.

3.3.1 Recurrence Preliminaries

We consider recurrence relations of lengthk:

an+k = c1an+k−1 + · · ·+ ckan, (41)

wherec1, . . . , ck are fixed real numbers. If the equation

rk − c1r
k−1 − c2r

k−2 − · · · − ck−1r − ck = 0 (42)

hask distinct rootsλ1, . . . , λk, there existk numbersu1, . . . , uk such that

an = u1λ
n
1 + · · ·+ ukλ

n
k , (43)

where we have ordered the roots such that|λ1| ≥ · · · ≥ |λk|.
For the Fibonacci numbersk = 2, c1 = c2 = 1, u1 = −u2 = 1√

5
, andλ1 = 1+

√
5

2 , λ2 = 1−√5
2 (see

exercise 3.10). If|λ1| = 1, we do not expect the first digit ofan to be Benford (baseb). For example, if we
consider

an = 2an−1 − an−2 (44)

with initial valuesa0 = a1 = 1, everyan = 1! If we instead takea0 = 0, a1 = 1, we getan = n.

3.3.2 Recurrence Relations are Benford

Theorem 3.12.Let an satisfy a recurrence relation of lengthk with k distinct real roots. Assume|λ1| 6= 1
with |λ1| the largest absolute value of the roots. Iflogb |λ1| 6∈ Q, thenan is Benford (baseb).
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Proof. For simplicity we assumeλ1 > 0, λ1 > |λ2|, andu1 > 0. Again letyn = logb xn. By Theorem 3.4,
it suffices to showyn is equidistributed mod1. We have

xn = u1λ
n
1 + · · ·+ unλn

k

xn = u1λ
n
1

[
1 + O

(
kuλn

2

λn
1

)]
, (45)

whereu = maxi |ui|+ 1 (soku > 1 and the big-Oh constant is1). As λ1 > |λ2|, we “borrow” some of the
growth fromλn

1 ; this is a very common technique. Choose a smallε and ann0 such that

1. |λ2| < λ1−ε
1 ;

2. for all n > n0, (ku)1/n

λε
1

< 1, which then impliesku
λnε
1

=
(

(ku)1/n

λε
1

)n
.

As ku > 1, (ku)1/n is decreasing to1 asn tends to infinity. Noteε > 0 if λ1 > 1 andε < 0 if λ1 < 1.
Letting

β =
(ku)1/n0

λε
1

|λ2|
λ1−ε

1

< 1, (46)

we find that the error term above is bounded byβn for n > n0, which tends to0. Therefore

yn = logb xn

= logb(u1λ
n
1 ) + O (logb(1 + βn))

= n logb λ1 + logb u1 + O(βn), (47)

where the big-Oh constant is bounded byC say. Aslogb λ1 6∈ Q, the fractional parts ofn logb λ1 are
equidistributed mod1, and hence so are the shifts obtained by adding the fixed constantlogb u1.

We need only show that the error termO(βn) is negligible. It is possible for the error term to change the
first digit; for example, if we had999999 (or 1000000), then if the error term contributes2 (or−2), we would
change the first digit (base10). However, forn sufficiently large, the error term will change a vanishingly
small number of first digits. Sayn logb λ1 +logb u1 exponentiates (baseb) to first digitj, j ∈ {1, . . . , b−1}.
This means

n logb λ1 + logb u1 ∈ I
(b)
j = [pj−1, pj). (48)

The error term is at mostCβn andyn exponentiates to a different first digit thann logb λ1 + logb u1 only if
one of the following holds:

1. n logb λ1 + logb u1 is within Cβn of pj , and adding the error term pushes us to or pastpj ;

2. n logb λ1 + logb u1 is within Cβn of pj−1, and adding the error term pushes us beforepj−1.
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The first set is contained in[pj−Cβn, pj), of lengthCβn. The second is contained in[pj−1, pj−1+Cβn),
also of lengthCβn. Thus the length of the interval wheren logb λ1 + logb u1 andyn could exponentiate base
b to different first digits is of size2Cβn. If we chooseN sufficiently large, than for alln > N , we can make
these lengths arbitrarily small. Asn logb λ1 + logb u1 is equidistributed mod1, we can control the size of the
subsets of[0, 1) wheren logb λ1 +logb u1 andyn disagree. The Benford behavior (baseb) of xn now follows
(in the limit, of course).

Exercise 3.13.Weaken the conditions of Theorem 3.12 as much as possible. What if several eigenvalues
equalλ1? What does a general solution to(41) look like now? What ifλ1 is negative? Can anything be said
if there are complex roots?

3.4 Random Walks and Benford

Consider the following (colorful) problem: A drunk starts off at time zero at a lamppost. Each minute he
stumbles with probabilityp one unit to the right and with probabilityq = 1−p one unit to the left. Where do
we expect the drunk to be afterN tosses? This is known as aRandom Walk. By the Central Limit Theorem,
his distribution afterN tosses is well approximated by a Gaussian with mean1 · p + (−1) · (1− p) = 2p− 1
and variancep(1− p)N . For more details on Random Walks, see [Re].

For us, aGeometric Brownian Motion is a process such that its logarithm is a Random Walk. We show
below that the first digits of Geometric Brownian Motions are Benford. In [KonSi] the3x + 1 problem is
shown to be an example of Geometric Brownian Motion. For heuristic purposes we use the first definition
of the3x + 1 map, though the proof is for the alternate definition. We have two operators:T3 andT2, with
T3(x) = 3x + 1 andT2(x) = x

2 . If an is odd,3an + 1 is even, soT3 must always be followed byT2. Thus,
we have really have two operatorsT2 andT3/2, with T3/2(x) = 3x+1

2 . If we assume each operator is equally
likely, half the time we go fromx → 3

2x + 1, and half the time to12x.
If we take logarithms,log x goes tolog 3

2x = log x + log 3
2 half the time andlog 1

2x = log x + log 1
2 the

other half. Hence on average we sendlog x → log x + 1
2 log 3

4 . As log 3
4 < 0, on average our sequence is

decreasing (which agrees with the conjecture that eventually we reach4 → 2 → 1). Thus we might expect
our sequence to look likelog xk = log x + k

2 log 3
4 . As log 3

4 6∈ Q, its multiples are equidistributed mod
1, and thus when we exponentiate we expect to see Benford behavior. Note, of course, that this is simply a
heuristic, suggesting we might see Benford’s Law.

While we can consider Random Walks or Brownian Motion with non-zero means, for simplicity below
we assume the means are zero. Thus, in the example above,p = 1

2 .

3.4.1 Needed Gaussian Integral

Consider a sequence of Gaussians with mean 0 and varianceσ2, with σ2 →∞. The following lemma shows
that for anyδ > 0, asσ →∞ almost all of the probability is in the interval[−σ1+δ, σ1+δ]. We will use this
lemma to show that it is enough to investigate Gaussians in the range[−σ1+δ, σ1+δ].
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Lemma 3.14.
2√

2πσ2

∫ ∞

σ1+δ

e−x2/2σ2
dx ¿ e−σ2δ/2. (49)

Proof. Change the variable of integration tow = x
σ
√

2
. Denoting the above integral byI, we find

I =
2√

2πσ2

∫ ∞

σδ/
√

2
e−w2 · σ

√
2dw =

2√
π

∫ ∞

σδ/
√

2
e−w2

dw. (50)

The integrand is monotonically decreasing. Forw ∈
[

σδ√
2
, σδ√

2
+ 1

]
, the integrand is bounded by substituting

in the left endpoint, and the region of integration is of length1. Thus,

I < 1 · 2√
π

e−σ2δ/2 +
2√
π

∫ ∞

σδ√
2
+1

e−w2
dw

=
2√
π

e−σ2δ/2 +
2√
π

∫ ∞

σδ√
2

e−(u+1)2du

=
2√
π

e−σ2δ/2 +
2√
π

∫ ∞

σδ√
2

e−u2
e−2ue−1du

<
2√
π

e−σ2δ/2 +
2

e
√

π
e−σ2δ/2

∫ ∞

σδ√
2

e−2udu

<
2(e + 1)√

π
e−σ2δ/2

< 4e−σ2δ/2. (51)

3.4.2 Geometric Brownian Motions are Benford

We investigate the distribution of digits of processes that are Geometric Brownian Motions. By Theorem 3.4,
it suffices to show that the Geometric Brownian Motion converges to being equidistributed mod1. Explicitly,
we have the following: afterN iterations, by the Central Limit Theorem the expected value converges to
a Gaussian with mean0 and variance proportional to

√
N . We must show that the Gaussian with growing

variance is equidistributed mod1.
For convenience we assume the mean is0 and the variance isN/2π. This corresponds to a fair coin where

for each head (tail) we move1√
4π

units to the right (left). By the Central Limit Theorem the probability of
beingx units to the right of the origin afterN tosses is asymptotic to

pN (x) =
e−πx2/N

√
N

. (52)
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For ease of exposition, we assume that rather than being asymptotic to a Gaussian, the distribution is a
Gaussian. For our example of flipping a coin, this cannot be true. If every minute we flip a coin and record
the outcome, afterN minutes there are2N possible outcomes, a finite number. To each of these we attach
a a number equal to the excess of heads to tails. There are technical difficulties in working with discrete
probability distributions; thus we study instead continuous processes such that at timeN the probability of
observingx is given by a Gaussian with mean0 and varianceN/2π. For complete details see [KonMi].

Theorem 3.15.AsN →∞, pN (x) = e−πx2/N√
N

becomes equidistributed mod1.

Proof. We want the probability that forx ∈ R, x mod 1 ∈ [a, b] ⊂ [0, 1). This is

1√
N

∑

n∈Z

∫ b

x=a
e−π(x+n)2/Ndx. (53)

We need to show the above converges tob − a asN → ∞. Forx ∈ [a, b], standard calculus (Taylor series
expansions) gives

e−π(x+n)2/N = e−πn2/N + O

(
max(1, |n|)

N
e−n2/N

)
. (54)

We claim that in (53), it is sufficient to restrict the summation to|n| ≤ N5/4. The proof is immediate
from Lemma 3.14: we increase the integration by expanding tox ∈ [0, 1], and then trivially estimate. Thus,
up to negligible terms, all the contribution is from|n| ≤ N5/4.

The Poisson Summation formula states that
1√
N

∑

n∈Z
e−πn2/N =

∑

n∈Z
e−πn2N . (55)

The beauty of this formula is it converts one infinite sum withslowdecay to another sum withrapid decay.
The exponential terms on the left of (55) are all of size 1 forn ≤ √

N , and don’t become small untiln À √
N

(for instance, oncen >
√

N log N , the exponential terms are small for largeN ); however, almost all of the
contribution on the right comes fromn = 0. The power of Poisson Summation is it often allows us to
approximate well long sums with short sums. We therefore have

1√
N

∑

|n|≤N5/4

∫ b

x=a
e−π(x+n)2/Ndx =

1√
N

∑

|n|≤N5/4

∫ b

x=a

[
e−πn2/N + O

(
max(1, |n|)

N
e−n2/N

)]

=
b− a√

N

∑

|n|≤N5/4

e−πn2/N + O


 1

N

N5/4∑

n=0

n + 1√
N

e−π(n/
√

N)2




=
b− a√

N

∑

|n|≤N5/4

e−πn2/N + O

(
1
N

∫ N3/4

w=0
(w + 1)e−πw2√

Ndw

)

=
b− a√

N

∑

|n|≤N5/4

e−πn2/N + O
(
N−1/2

)
. (56)
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By Lemma 3.14 we can expand all sums ton ∈ Z in (56) with negligible error. We now apply Poisson
Summation and find that up to lower order terms,

1√
N

∑

n∈Z

∫ b

x=a
e−π(x+n)2/Ndx ≈ (b− a) ·

∑

n∈Z
e−πn2N . (57)

Forn = 0 the right hand side of (57) isb− a. For all othern, we trivially estimate the sum:

∑

n 6=0

e−πn2N ≤ 2
∑

n≥1

e−πnN ≤ 2e−πN

1− e−πN
, (58)

which is less than4e−πN for N sufficiently large.

We can interpret the above arguments as follows: for eachN , consider a GaussianpN (x) with mean0
and varianceN/2π. As N → ∞ for eachx (which occurs with probabilitypN (x)) the first digit of10x

converges to the Benford base 10 probabilities.

Remark 3.16. The above framework is very general and applicable to a variety of problems. In [KonMi]
it is shown that these arguments can be used to prove Benford behavior in discrete systems such as the
3x+1 problem as well as continuous systems such as the absolute values of the Riemann Zeta Function (and
any “good” L-function) near the critical line! For these number theory results, the crucial ingredients are
Selberg’s result (near the critical line,log |ζ(s + it)| for t ∈ [T, 2T ] converges to a Gaussian with variance
tending to infinity inT ) and estimates by Hejhal on the rate of convergence.

3.5 Statistical Inference

Often we have reason to believe that some process occurs with probabilityp of success andq = 1 − p of
failure. For example, consider the3x + 1 problem. Choose a largea0 and look at the first digit of the
ans. There is reason to believe the distribution of the first digits is given by Benford’s Law for mosta0 as
a0 → ∞. We describe how to test this and similar hypotheses. We content ourselves with describing one
simple test; the interested reader should consult a statistics textbook (for example, [BD, LF, MoMc]) for the
general theory and additional applications.

3.5.1 Null and Alternative Hypotheses

Suppose we think some population has a parameter with a certain value. If the population is small, it is
possible to investigate every element; in general this is not possible.

For example, say the parameter is how often the millionth decimal or continued fraction digit is 1 in two
populations: all rational numbers in[0, 1) with denominator at most5, and all real numbers in[0, 1). In
the first, there are only 10 numbers, and it is easy to check them all. In the second, as there are infinitely
many numbers, it is impossible to numerically investigate each. What we do in practice is we sample a large
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number of elements (sayN elements) in[0, 1), and calculate the average value of the parameter for this
sample.

We thus have twopopulations, theunderlying population (in the second case, all numbers in[0, 1)),
and thesample population(in this case, theN sampled elements).

Our goal is to test whether or not the underlying population’s parameter has a given value, sayp. To this
end, we want to compare the sample population’s value top. Thenull hypothesis, denotedH0, is the claim
that there is no difference between the sample population’s value and the underlying population’s value; the
alternative hypothesis, denotedHa, is the claim that there is a difference between the sample population’s
value and the underlying population’s value.

When we analyze the data from the sample population, either we reject the null hypothesis, or we fail to
reject the null hypothesis. It is important to note that weneverprove the null or alternative hypothesis is true
or false. We are always rejecting or failing to reject the null hypothesis, we are never accepting it. If we flip
a coin 100 times and observe all heads, this does not mean the coin isn’t fair: it is possible the coin is fair but
we had a very unusual sample (though, of course, it is extremely unlikely).

We now discuss how to test the null hypothesis. Our main tool is the Central Limit Theorem.

3.5.2 Bernoulli Trials and the Central Limit Theorem

Assume we have some process where we expect a probabilityp of observing a given value. For example, if
we choose numbers uniformly in[0, 1) and look at the millionth decimal digit, we believe that the probability
this digit is 1 is 1

10 . If we look at the continued fraction expansion, by the Gauss-Kuzmin Theorem the
probability that the millionth digit is 1 is approximatelylog2

4
3 . What if we restrict to algebraic numbers?

What is the probability the millionth digit (decimal or continued fraction expansion) equals 1?
In general, once we formalize our conjecture, we test it by choosingN elements from the population

independently at random. Consider the claim that a process has probabilityp of success. We haveN inde-
pendent Bernoulli trials. The null hypothesis is the claim thatp percent of the sample are a success. LetsN

be the number of successes; if the null hypothesis is correct, by the Central Limit Theorem we expectsN to
have a Gaussian distribution with meanpN and variancepqN . This means that if we were to look at many
samples withN elements, on average each sample would havepN ±O(

√
pqN) successes. We calculate the

probability of observing a difference|sN − pN | as large or larger thana. This is given by the area under the
Gaussian with meanpN and variancepqN :

1√
2πpqN

∫

|s−pN |≥a
e−(s−pN)2/2pqNds. (59)

If this integral is small, it is extremely unlikely that we chooseN independent trials from a process with
probabilityp of success and we reject the null hypothesis; if the integral is large, we do not reject the null
hypothesis, and we have support for our claim that the underlying process does have probabilityp of success.

Unfortunately, the Gaussian is a difficult function to integrate, and we would need to tabulate these
integrals foreverydifferent pair of mean and variance. It is easier, therefore, to renormalize and look at a
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new statistic which should also be Gaussian, but with mean 0 and variance 1. The advantage is that we need
only tabulateonespecial Gaussian, the standard normal.

Let z = sN−pN√
pqN

. This is known as thez-statistic. If sN ’s distribution is a Gaussian with meanpN and
variancepqN , notez will be a Gaussian with mean 0 and variance 1.

Exercise 3.17.Prove the above statement about the distribution ofz.

Let

I(a) =
1√
2π

∫

|z|≥a
e−z2/2dz, (60)

the area under the standard normal (mean 0, standard deviation 1) that is at leasta units from the mean. We
consider differentconfidence intervals. If we were to randomly choose a numberz from such a Gaussian,
what is the probability (as a function ofa) thatz is at mosta units from the mean? Approximately68% of the
time |z| ≤ 1 (I(1) ≈ .32), approximately95% of the timez ≤ 1.96 (I(1.96) ≈ .05), and approximately99%
of the time|z| ≤ 2.57 (I(2.57) = .01). In other words, there is only about a1% probability of observing
|z| ≥ 2.57. If |z| ≥ 2.57, we have strong evidence against the hypothesis that the process occurs with
probabilityp, and we would be reasonably confident in rejecting the null hypothesis; of course, it is possible
we were unlucky and obtained an unrepresentative set of data (but it is extremely unlikely that this occurred;
in fact, the probability is at most 1%).

Remark 3.18. For a Gaussian with meanµ and standard deviationσ, the probability|x − µ| ≤ σ is
approximately.68, and so on.

To test the claim that some process occurs with probabilityp, we observeN independent trials, calculate
thez-statistic, and see how likely it is to observe|z| that large or larger. We give two examples below.

3.5.3 Digits of the3x + 1 Problem

Consider again the3x + 1 problem. Choose a large integera0, and look at the iterates:a1, a2, a3, . . . . We
study how often the first digit of terms in the sequence equald ∈ {1, . . . , 9}. We can regard the first digit
of a term as a Bernoulli trial with a success (or1) if the first digit isd and a failure (or0) otherwise. If the
distribution of digits is governed by Benford’s Law, the theoretical prediction is that the percent of the first
digits that equald is p = log10(

d+1
d ). Assume there areN terms in our sequence (before we hit the pattern

4 → 2 → 1 → 4 · · · ), and sayM of them have first digitd. For whatM does this experiment provide
support that the digits follow Benford’s Law?

Exercise 3.19.The terms in the sequence generated bya0 are not independent, asan+1 is determined byan.
Show that if the first digit ofan is 2, the first digit ofan+1 cannot be a2.

The above exercise shows that the first digit of the termscannotbe considered independent Bernoulli
trials. As the sequence is completely determined by the first term, this is not surprising. If we look at an
enormous number of terms, however, these effects “should” average out. Another possible experiment is to
look at the first digit of the millionth term forN differenta0s.
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Let a0 = 333 . . . 333 be the integer that is 10,000 threes. There are 177,857 terms in the sequence before
we hit 4 → 2 → 1. The following data comparing the number of first digits equal tod to the Benford
predictions is from [Min]:

digit observed predicted variance z-statistic I(z)
1 53425 53540 193.45 -0.596 0.45
2 31256 31310 160.64 -0.393 0.31
3 22257 22220 139.45 0.257 0.21
4 17294 17230 124.76 0.464 0.36
5 14187 14080 113.88 0.914 0.63
6 11957 11900 105.40 0.475 0.36
7 10267 10310 98.57 -0.480 0.37
8 9117 9090 92.91 0.206 0.16
9 8097 8130 88.12 -0.469 0.36

As the values of thez-statistics are all small (well below1.96 and2.57), the above table provides evidence
that the first digits in the3x + 1 problem follow Benford’s Law, and we would not reject the null hypothesis
for any of the digits. If we had obtained largez-statistics, say 4, we would reject the null hypothesis and
doubt that the distribution of digits follow Benford’s Law.

Remark 3.20(Important). One must be very careful when analyzing all the digits. Once we know how many
digits are1, . . . , 8, then the number of 9s is forced: these are not 9 independent tests. Our point here is not
to write a treatise on statistical inference, but merely highlight some of the tools and concepts.

Additionally, if we have many different experiments, then “unlikely” events should happen. For example,
if we have 100 different experiments we would not be surprised to see an outcome which only has a 1%
chance of occurring (see exercise 3.21). Thus, if there are many experiments, the confidence intervals need
to be adjusted. One common method is the Bonferroni adjustment method for multiple comparisons. See
[BD, MoMc].

Exercise 3.21.Assume for each trial there is a 95% chance of observing the percent of first digits equal to 1
is in [log10 2− σ, log10 2 + σ] (for someσ). If we have 10 independent trials, what is the probability thatall
the observed percents are in this interval? If we have 14 independent trials?

Remark 3.22. How does one calculate with 10,000 digit numbers? Such large numbers are greater than the
standard number classes (int, long, double) of many computer programming languages. The solution is to
represent numbers as arrays. To go froman to 3an + 1, we multiply the array by 3, carrying as needed, and
then add 1; we leave space-holding zeros at the start of the array. For example,

3 · [0, . . . , 0, 0, 5, 6, 7] = [0, . . . , 0, 1, 7, 0, 1]. (61)

We need only do simple operations on the array. For example,3 · 7 = 21, so the first entry of the product
array is1 and we carry the 2 for the next multiplication. We must also computean/2 if an is even. Note this
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is the same as5an divided by 10. The advantage of this approach is that it is easy to calculate5an, and as
an is even, the last digit of5an is zero, hence array division by 10 is trivial.

Exercise 3.23.Consider the first digits of the3x + 1 problem in base 6. Choose a large integera0, and look
at the iteratesa1, a2, a3, . . . . Show that asa0 →∞, the distribution of digits is Benford base 6.

Exercise 3.24(Recommended). Here is another variant of the3x + 1 problem:

an+1 =

{
3an + 1 if an is odd

an/2k if an is even and2k||an.
(62)

By2k||an we mean2k dividesan, but2k+1 does not. Consider the distribution of first digits of this sequence.
What is the null hypothesis? Do the data support the null hypothesis, or the alternative hypothesis? Do you
think these numbers also satisfy Benford’s Law? What if instead we define

an+1 =
3an + 1

2k
, 2k||an. (63)

3.5.4 Digits of Continued Fractions

Let us test the hypothesis that the digits of algebraic numbers are given by the Gauss-Kuzmin Theorem. Let
us look at how often the1000th digit equals 1. By Kuzmin, this should be approximatelylog2

4
3 . Let pn

be thenth prime. In the continued fraction expansions of3
√

pn for n ∈ {100000, 199999}, exactly 41,565
have1000th digit equal to 1. Assuming we have a Bernoulli process with probability of success (a digit of
1) of p = log2

4
3 , thez-statistic is.393. As thez-statistic is small (95% of the time we expect to observe

|z| ≤ 1.96), we do not reject the null hypothesis, and we have obtained evidence supporting the claim that
the probability that the1000th digit is 1 is given by the Gauss-Kuzmin Theorem.

3.6 Summary

We have chosen to motivate our presentation of statistical inference by investigating the first digits of the
3x+1 problem, but of course the methods apply to a variety of problems. Our main tool is the Central Limit
Theorem: if we have a process with probabilityp (q = 1 − p) of success (failure), then inN independent
trials we expect aboutpN successes, with fluctuations of size

√
pqN . To test whether or not the underlying

probability isp we formed thez-statistic: #S−pN√
pqN

, where #S is the number of successes observed in theN

trials.
If the process really does have probabilityp of success, then by the Central Limit Theorem the distribution

of #S is Gaussian with meanpN and standard deviation
√

pqN , and we then expect thez-statistic to be of
size 1. If, however, the underlying process occurs not with probabilityp but p′, then we expect #S to be a
Gaussian with meanp′N and standard deviation

√
p′q′N . We now expect thez-statistic to be of size(p

′−p)N√
p′q′N .

This is of size
√

N , much larger than 1.
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We see thez-statistic is very sensitive top′ − p: if p′ is differs fromp, for largeN we quickly observe
large values ofz. Note, of course, that statistical tests can only provide compelling evidence in favor or
against a hypothesis, never a proof.

A Probability Review

A.1 Bernoulli Distribution

Recall the binomial coefficient
(
N
r

)
= N !

r!(N−r)! is the number of ways to chooser objects fromN ob-
jects when order does not matter. Considern independent repetitions of a process with only two possible
outcomes. We typically call one outcomesuccessand the otherfailure , the event aBernoulli trial , and a
collection of independent Bernoulli trials aBernoulli process. In each Bernoulli trial, let there be probability
p of success andq = 1− p of failure. Often, we represent a success with1 and a failure with0.

Exercise A.1. Consider a Bernoulli trial with random variablex equal to 1 for a success and 0 for a failure.
Showx = p, σ2

x = pq, andσx =
√

pq. Notex is also an indicator random variable.

Let yN be the number of successes inN trials. Clearly the possible values ofyN are{0, 1, . . . , N}. We
analyzepN (k) = Prob(yN (ω) = k). Here the sample spaceΩ is all possible sequences ofN trials, and the
random variableyN : Ω → R is given byyN (ω) equals the number of successes inω.

If k ∈ {0, 1, . . . , N}, we needk successes andN − k failures. We don’t care what order we have them
(i.e., if k = 4 andN = 6 thenSSFSSF andFSSSSF both contribute equally). Each such string ofk
successes andN − k failures has probability ofpk · (1− p)N−k. There are

(
N
k

)
such strings, which implies

pN (k) =
(
N
k

)
pk · (1− p)N−k if k ∈ {0, 1, . . . , N} and0 otherwise.

By clever algebraic manipulations, one can directly evaluate the meanyN and the varianceσ2
yN

; however,
standard lemmas allow one to calculate both quantities immediately, once one knows the mean and variance
for a single occurrence (see Exercise A.1).

Lemma A.2. For a Bernoulli process withN trials, each having probabilityp of success, the expected
number of successes isyN = Np, and the variance isσ2

yN
= Npq.

Lemma A.2 states the expected number of successes is of sizeNp, and the fluctuations aboutNp are of
sizeσ2

yN
=
√

Npq. Thus, ifp = 1
2 andN = 106, we expect 500,000 successes, with fluctuations on the

order of 500. Note how much smaller the fluctuations about the mean are than the mean itself (the mean is
of sizeN , the fluctuations of size

√
N ). This is an example of a general phenomenon, which we describe in

greater detail in §A.3.

Exercise A.3. Prove Lemma A.2. Prove the variance is largest whenp = q = 1
2 .

Consider the following problem: LetΩ = {S, FS, FFS, . . . } and letz be the number of trials before
the first success. What isz andσ2

z?
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First we determine theBernoulli distribution p(k) = Prob(z(ω) = k), the probability that the first
success occurs afterk trials. Clearly this probability is non-zero only fork a positive integer, in which case
the string of results must bek − 1 failures followed by1 success. Therefore

p(k) =

{
(1− p)k−1 · p if k ∈ {1, 2, . . . }
0 otherwise

(64)

To determine the meanz we must evaluate

z =
∞∑

k=1

k(1− p)k−1p = p
∞∑

k=1

kqk−1, 0 < q = 1− p < 1. (65)

Consider the geometric series

f(q) =
∞∑

k=0

qk =
1

1− q
. (66)

A careful analysis shows we can differentiate term by term if−1 ≤ q < 1. Then

f ′(q) =
∞∑

k=0

kqk−1 =
1

(1− q)2
. (67)

Recallingq = 1− p and substituting yields

z = p
∞∑

k=1

kqk−1 =
p

(1− (1− p))2
=

1
p
. (68)

Remark A.4. Differentiating under the summation sign is a powerful tool in Probability Theory, and is a
common technique for proving such identities.

Exercise A.5. Calculateσ2
z . Hint: differentiatef(q) twice.

A.2 Random Sampling

We introduce the notion ofrandom sampling. Consider a countable setΩ ⊂ R and a probability function
p on Ω; we can extendp to all of R by settingp(r) = 0 if r 6∈ Ω. Using the probability functionp, we can
choose elements fromR at random. Explicitly, the probability that we chooseω ∈ Ω is p(ω).

For example, letΩ = {1, 2, 3, 4, 5, 6} with each event having probability16 (the rolls of a fair die). If we
were to roll a fair dieN times (forN large), we observe a particular sequence of outcomes. It is natural to
assume the rolls are independent of each other. Letxi denote the outcome of theith roll. The xis all have
the same distribution (arising fromp). We call thexi i.i.d.r.v. (independent identically distributed random
variables), and we say thexi are asamplefrom the probability distributionp. We say werandomly sample
(with respect top) R. Often we simply say we haverandomly chosenN numbers.
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A common problem is to sample some mathematical or physical process, and use the observations to
make inferences about the underlying system. For example, we may be given a coin without being told what
its probabilities for heads and tails are. We can attempt to infer the probabilityp of a head by tossing the coin
many times, and recoding the outcomes. Letxi be the outcome of theith toss (1 for head, 0 for tail). AfterN
tosses we expect to see aboutNp heads; however, we observe some number, saysN . Given that we observe
sN heads afterN tosses, what is our best guess forp? We guessp = sN

N . It is extremely unlikely that our
guess is exactly right. This leads us to a related question: given that we observesN heads, can we give a
small interval about our best guess where we are extremely confident the true valuep lies? The solution is
given by the Central Limit Theorem (§A.3).

Exercise A.6. For the above example, ifp is irrational, show the best guess can never be correct.

One can generalize the above to include the important case wherep is a continuous distribution. For
example, say we wish to investigate the digits of numbers in[0, 1]. It is natural to put the uniform distribution
on this interval, and choose numbers at random relative to this distribution; we say we chooseN numbers
randomly with respect to the uniform distribution on[0, 1], or simply we chooseN numbers uniformly from
[0, 1]. Two natural problems are to consider thenth digit in the base 10 expansion and thenth digit in the
continued fraction expansion. By observing many choices, we hope to infer knowledge about how these digits
are distributed. The first problem is theoretically straightforward. It is not hard to calculate the probability
that thenth digit is d; it is just 1

10 . The probabilities of the digits of continued fractions are significantly
harder (unlike decimal expansions,anypositive integer can occur as a digit).

Exercise A.7(Important for Computational Investigations). For any continuous distribution, the probability
we chose a number in[a, b] is

∫ b
a p(x)dx. If we were to chooseN numbers,N large, then we expect approx-

imatelyN
∫ b
a p(x)dx to be in [a, b]. Often computers have built in random number generators for certain

continuous distributions, such as the standard Gaussian or the uniform, but not for less common ones. Show
if one can randomly choose numbers from the uniform distribution, one can use this to randomly choose
from any distribution.Hint: useCp(x) =

∫ x
−∞ p(x)dx, theCumulative Distribution Functionof p; it is the

probability of observing a number at mostx.

Remark A.8. The observant reader may notice a problem with sampling from a continuous distribution: the
probability of choosing any particular real number is zero, but some number is chosen! One explanation is
that, fundamentally, we cannot choose numbers from a continuous probability distribution. For example, if
we use computers to choose our numbers, all computers can do is a finite number of manipulations of 0s and
1s; thus, they can only choose numbers from a countable (actually finite) set. The other interpretation of the
probability of anyr ∈ R is zero is that, while at each stage some number is chosen, no number is ever chosen
twice. Thus, in some sense, any number we explicitly write down is “special”.

For our investigations, we approximate continuous distributions by discrete distributions with many out-
comes. From a practical point of view, this suffices for many experiments; however, one should note that
while theoretically we can write statements such as “choose a real number uniformly from[0, 1]”, we can
never actually do this.
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A.3 The Central Limit Theorem

We close our introduction to probability with a statement ofthemain theorem about the behavior of a sum of
independent events. We give a proof in an important special case in §A.3.2.

A.3.1 Statement of the Central Limit Theorem

Let xi (i ∈ {1, . . . , N}) be i.i.d.r.v. as in §A.2, all sampled from the same probability distributionp with
meanE[p] = µ and varianceσ2

p = σ2 (soE[xi] = µ andσ2
xi

= σ2 for all i). Let sN =
∑N

i=1 xi. We are
interested in the distribution ofsN asN → ∞. As eachxi has expected valueE[x] = µ, E[sN ] = Nµ. We
now consider a more refined question: how issN distributed aboutNµ? The Central Limit Theorem answers
this, and tells us what the correct scale is to study the fluctuations aboutµ.

Theorem A.9 (Central Limit Theorem). AsN →∞,

Prob(sN ∈ [α, β]) ∼ 1√
2πσ2N

∫ β

α
e−(t−µN)2/2σ2Ndt. (69)

In other words, the distribution ofsN converges to a Gaussian with meanµN and varianceσ2N . We may
re-write this as

Prob

(
sN − µN√

σ2N
∈ [a, b]

)
−→ 1√

2π

∫ b

a
e−t2/2dt. (70)

Herezn = sN−µN√
σ2N

converges to a Gaussian with mean 0 and variance 1.

The probability densitye−t2/2/
√

2π is the standard Gaussian. It isthe universal curve of probability.
Note how robust the Central Limit Theorem is: it does not depend on fine properties of thexj , just that
they all have the same distributions. Sometimes it is important to know how rapidlyzN is converging to the
Gaussian; see [Fe].

Exercise A.10.The Central Limit Theorem gives us the correct scale to study fluctuations. For example, say
we toss a fair coinN times (henceµ = 1

2 andσ2 = 1
4 ). We expectsN to be aboutN2 . Find values ofa andb

such that the probability ofsN −Nµ ∈ [a
√

N/2, b
√

N/2] converges to 95% (99%). For largeN , show for

any fixedδ > 0 that the probability ofsN −Nµ ∈ [aN
1
2
+δ/2, bN

1
2
+δ/2] tends to zero. Thus, we expect to

observe half of the tosses as heads, and we expect deviations from one-half to be of size2/
√

N .

One common application of the Central Limit Theorem is to test whether or not we are sampling thexi

independently from a fixed probability distribution with meanµ. ChooseN numbers randomly from what
we expect has meanµ. We formsN as before and investigatesN−µ√

N
. As sN =

∑N
i=1 xi, we expectsN to be

of sizeN . If the xi are not drawn from a distribution with meanµ, thensN − Nµ will also be of sizeN .
Thus, sN−Nµ√

N
will be of size

√
N if the xi are not drawn from something with meanµ. If, however, thexi

are from sampling a distribution with meanµ, the Central Limit Theorem states thatsN−Nµ√
N

will be of size
1. See Chapter 3 for more details.
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Finally, we note that the Central Limit Theorem is an example of thePhilosophy of Square-root Can-
cellation: the sum is of sizeN , but the deviations are of size

√
N .

A.3.2 Proof for Bernoulli Processes

We sketch the proof of the Central Limit Theorem for Bernoulli Processes where the probability of success is
p = 1

2 . Consider the random variablex that is 1 with probability1
2 and−1 with probability 1

2 (for example,
tosses of a fair coin; the advantage of making a tail−1 is that the mean is zero). Note the mean ofx is x = 0,
the standard deviation isσx = 1

2 and the variance isσ2
x = 1

4 .
Let x1, . . . , x2N be independent identically distributed random variables, distributed asx (it simplifies

the expressions to consider an even number of tosses). Considers2N = x1 + · · ·+ x2N . Its mean is zero and
its variance is2N/4, and we expect fluctuations of size

√
2N/4. We show that forN large, the distribution

of s2N is approximately normal. We need

Lemma A.11 (Stirling’s Formula). For n large,

n! = nne−n
√

2πn (1 + O(1/n)) . (71)

For a proof, see [WW]. We show the above is a reasonable approximation.

log n! =
n∑

k=1

log k ≈
∫ n

1
log tdt = (t log t− t)|n1 . (72)

Thus,log n! ≈ n log n− n, or n! ≈ nne−n.
We now consider the distribution ofs2N . The probability thats2N = 2k is just

(
2N

N+k

)
(1
2)N+k(1

2)N−k.
This is because fors2N = 2k, we need2k more 1s (heads) than−1s (tails), and the number of heads and
tails adds to2N . Thus we haveN + k heads andN − k tails. There are22N strings of1s and−1s,

(
2N

N+k

)

have exactlyN + k heads andN − k tails, and the probability of each string is(1
2)2N . We have written

(1
2)N+k(1

2)N−k to show how to handle the more general case when there is a probabilityp of heads and1−p
of tails.

We use Stirling’s Formula to approximate
(

2N
N+k

)
. After elementary algebra we find

(
2N

N + k

)
≈ 22N

(N + k)N+k(N − k)N−k

√
N

π(N + k)(N − k)

=
22N

√
πN

1

(1 + k
N )N+ 1

2
+k(1− k

N )N+ 1
2
−k

. (73)

Using(1 + w)N ≈ ew, after some more algebra we find
(

2N

N + k

)
≈ 22N

√
πN

e2k2/N . (74)
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Thus

Prob(s2N = 2k) =
(

2N

N + k

)
1

22N
≈ 1√

2π · (2N/4)
e−k2/2(2N/4). (75)

The distribution ofs2N looks like a Gaussian with mean 0 and variance2N/4. While we can only observe
an integer number of heads, forN enormous the Gaussian is very slowly varying and hence approximately
constant from2k to 2k + 2.

Exercise A.12.Generalize the above arguments to handle the case whenp 6= 1
2 .
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