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Abstract

For many systems, there is a bias in the distribution of the first digits. For example, if one looks at the
first digit of 2" in base 10, as ranges over the positive integers, one observes 1 d#6tof the time
(and not% ~ .11% of the time as one might expect). This bias is known as Benford’s Law, and occursin a
variety of phenomena. In fact, the IRS uses Benford’s Law to check the tax returns of large corporations!

We will show that ify,, = log, z,, is equidistributed mod, thenz,, is Benford baseé. This is
sufficient to prove that Recurrence Relations (with distinct rogts. ., A such thaii,| > --- > |\g]
and|\;| # 1) are Benford. In particular, this will imply that the Fibonacci numbers, which satisfy the
Recurrence Relatiom, = a,,_1 + a,_2, are Benford.

In these notes we develop most of the techniques needed to prove these results. The only fact which
we must assume is thatdf ¢ Q, thenna mod 1 is equidistributed.

The first section introduces Benford’s Law, and highlights the method of proof. The second section
investigates Recurrence Relations. The final section is drawn Aorinvitation to Modern Number
Theory by Steven J. Miller and Ramin Takloo-Bighash, and connects Benford’'s Law t8athe 1
problem (as well as providing some numerical investigations and explanation of statistical inference).
The material in this section assumes prior knowledge of probability theory.

For a nice introduction to Benford’s Law, the reader should see [Hil]; for an exposition on Benford’s
Law and Recurrence Relations, see [BrDu, NS].
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1 Benford’s Law

While looking through tables of logarithms in the late 1800s, Newcomb noticed a surprising fact: certain
pages were significantly more worn out than others. People were looking up numbers whose logarithm
started with 1 significantly more frequently than other digits. In 1938, Benford observed the same digit bias
in a variety of phenomenon. See [Hil] for a description and history, [Hi2, BBH, KonMi] for recent results,
and [Knu] for connections between Benford’s law and rounding errors in computer calculations.

We say a sequence of positive numbgts } is Benford (baseb) if the probability of observing the first

digit of z,, (in baseb) is j is log, (1 + ;).
More precisely, we would have

. #{n < N :firstdigitofz, isj} 1
]\}gnoo i = log, | 1+ i) Q)

Note thatj € {1,...,b— 1}. This is a division of probability, as one of tihe- 1 events must occur, and the



total probability is

b—1 1 b—1 1
Zlogb <1 + ) = log, H <1 + >
= J J

j=1
= log,b = 1. (2)

Note it is possible to be Benford to some bases but not otherdoghs2 =~ .3, this means that abogd%
of the time the first digit is a 1. This is a very strong digit bias; if all digits (1 through 9) were equally likely,
than the probability of the first digit being 1 would éew A1,

A common way to prove a sequence is Benford is to show its logarithms (modulo 1) are equidistributed.
Recall

Definition 1.1 (Equidistributed) A sequencgy, }>° , y, € [0, 1], is equidistributed if0, 1] if

lim #{n:n| < N,yn €[a,b]} lim SN X(ab) (Yn)
N—o0 2N +1 N—o0 2N +1
for all (a,b) C [0,1].

The following theorem will be central to our presentation, and will be proved in §1.2:

=b—a 3)

Theorem 1.2.If y,, = log,, =, equidistributed mod, thenz,, is Benford (basé).

1.1 Preliminaries

We need the following simple fact:

Lemma 1.3. If u = v mod1, then the first digits of“ andb” are the same in bade

Proof. (of Lemma 1.3): A, = v mod1, without loss of generality we may write= v + m, m € Z. If

b = b’ 4w B g, (4)
then
pY — bu+m
= pu.pm
= (upb® +up_ b+ )™
wpbPT g™, (5)
Thus, the first digits of each atg), proving the claim. O

The utility of the above lemma is that it in order to study the first digti“ofin baseb), it suffices to study
y mod 1.



1.2 Equidistribution and Benford

Proof (of Theorem 1.2): Assumg, = log =, is equidistributed mod. Consider the unit intervad, 1). For
j €{1,...,b}, definep; by

W= j; (6)
equivalently, we have
pj = logyj. (7)
Forj e {1,...,b— 1}, let
I; = [pj,pj+1) C[0,1). (8)

Claim 1.4. If y mod1 € I;, thend? has first digit;.

The proof is immediate. By Lemma 1.3, it is sufficient to prove thisifer ;, which we now assume.
Then
y € [pj,pj+1) impliesthat %7 <y < bPi+t. 9)

From the definitions of thg;, it follows that
j <y <j+l, (10)

proving the claim.
Thus, the measure of the subse{®fl) which, when we exponentiate byhas first digitj, is simply the
length of ;. This is

|+ 1 1
| = pjs1—p; = log,? i logy, (1 + j> ; (11)

the Benford (base) probabilities.

Returning to the proof of Theorem 1.2, we see that the inteivatave lengthog,, (1 + %) Asy, is
equidistributed mod, in the limit the percent of timg,, € I; is equal to/;|, ie, log b, (1 + %)

Now z,, = b¥. Eachy, is equivalent to somg, mod1, and by Lemma 1.3» andb® have the same
first digit.

Thus, in the limit, the probability that the first digit of, is j (baseb) is justlog, (1 + %) proving the
theorem.O

2 Recurrence Relations and Benford’s Law

2.1 Recurrence Preliminaries

We consider Recurrence Relations of the following form:

Qn = ClGp—1+ -+ CxOn_k, (12)
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wherecy, ..., ¢, k are fixed integers. It is well known that we may explicitly writg in Binet form:
an = WAL + -+ up Ay, (13)

where we have ordered the eigenvalues such/Mat> - - - > |Ag|.
We give a quick sketch in a special case wler 2; the reader can generalize the arguments. Assume
an, = c1an_1 + coan_o. Let us guess that, = r” for somer. If this were true, then

= e 4 cpr™ T2 (14)

After a little algebra, this leads us to the equation

r2—cir—cy = 0. (15)

There are two solutions to that, sayandrs. A little algebra shows that any solutiar is of the form
an = urry + uary, (16)

for someuy,uy € C. If we are given initial conditions (say the valuesagfanda,), we can then solve for
a1, ag; if the two roots are the same.

Remark 2.1. We call the equation? — ¢;r — ¢, the characteristic polynomial. Technically, we need to
assume its roots are distinct; if there are repeated roots, the solution must be modified. Below, we always
assume we have Recurrence Relations where the roots are distinct.

For example, for the Fibonacci numbeéts= 2, ¢ = ¢ = 1, uy = —ug = % and\; = 1+T‘/5
Ay = 71_2\/5.

If |A\1| = 1, we do not expect the first digit af, to be Benford (basg). For example, if we consider

ap = 2ap-1 — Ap—2 (17)

with initial valuesag = a1 = 1, everya,, = 1! If we instead takeiy = 0, a; = 1, we geta,, = n.

2.2 Geometric Series are Benford

Let{z} = = — [z] denote the fractional part af where[z]| as always is the greatest integer at modRecall
the following:

Theorem 2.2. Leta ¢ Q. Then the fractional parts ofa are equidistributed mod.

For a proof, see [HW].
From this and Theorem 1.2, it immediately follows that Geometric Series (series whetrer™) are
Benford (modulo a certain irrationality condition ej

Theorem 2.3. Letx,, = ar”™, log, r ¢ Q. Thenz,, is Benford (basé).

Proof: Lety,, = log, x,, = nlog, r +log, a. Aslog, r ¢ Q, the fractional parts of,, are equidistributed.
Exponentiating by, we obtain that:,, is Benford (basé) by Theorem 1.2.
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2.3 Recurrence Relations are Benford

We first introduce some notation, and then show recurrence relations are Benford.

Definition 2.4 (Big-Oh, Little-Oh) If F" andG are two real functions witlé7(z) > 0 for z large, we write
F(x) = O(G(x)) (18)

if there existM, zo > 0 such thaf F'(z)| < MG(x) for all z > xg. If

-
z—+oo G(x)

= 0, (29)

we write F'(x) = o(G(x)) and sayF' is little-oh of G.

An alternative notation fo¥'(z) = O(g(x)) is F(xz) < G(z). If the constant depends on parameters
a, 3 but not on parametets b, we sometimes writé"(z) <, 3 G(x).

Exercise 2.5.Prove for anyr, e > 0, asz — oo we haver” = O(e”) andlog z = O(z°).

Theorem 2.6. Let a,, be a Recurrence Relation as before, wilh| # 1 (note|\;| is the largest absolute
value of the eigenvalues).llig, |\1| € Q, thena,, is Benford (basé).

Proof: for notational simplicity, we assume > 0, A; > |\2|, andu; > 0. We will comment at the end
on how to handle the more general case.

As always, lety,, = log, x,,. By Theorem 1.2, it is sufficient to showy, is equidistributed mod. We
have

Tn = WAL+ up Ay
kuAz

Tn = WAD {1+O< Kﬁ)] (20)
1

whereu = max; |u;| + 1 (Soku > 1 and the big-Oh constant i. Choose a smadl and ann such that

1. Aeo] < Al7S

1 1\"
2. foralln > ng, (’“;) <1, and notef% = <(k”)"> .
1 1

1

As ku > 1, (ku)= is monotonically decreasing o Notee > 0if A\; > 1 ande < 0if A\; < 1. Letting

= <1, 21
8= S 21)
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we find that the error term above is boundedd®yfor n > ng, which tends td@. Therefore

yn = logyzy
= logy(u1AT) + O (logy(1 + 5"))
= nlog, A1 +log, ug + O(8"), (22)

where the big-Oh constantigactually, the constant is slightly greater thiarout for notational ease we will
usel below). Aslog, A1 ¢ Q, the fractional parts of log, A\, are equidistributed motl. Therefore, so are
the shifts obtained by adding the fixed constagf, u; .

We need only show that the error tef{5") is negligible. It is possible for the error term to change the
first digit; for example, if we ha®99999999999999 (or 10000000000), then if the error term contributes
(or —2), we would change the first digit (ba$e).

However, forn sufficiently large, the error term will change a vanishingly small number of first digits.

Sayn log, A1 + log, u; exponentiates (bagg to first digitj, j € {1,...,b — 1}. This means

nlogy A1 +logyur € I; = [pj—1,p;). (23)

The error term is at mogt”. Thus,y,, will have exponentiate to a different first digit thartog, A1 + logy, u1
only if one of the following holds:

1. nlogy A1 + log, uy is within 5™ of p;, and adding the error term pushes us to or pgst

2. nlogy, A1 + logy, uy is within 5" of p,;_, and adding the error term pushes us befgrg .

The first set is contained ifp; — 8", p;), of length3". The second is contained ip;_1,p;—1 + 8"),
also of lengths™.

Thus, the length of the interval wherdog;, \; + log, u; andy,, could exponentiate (baggto different
first digits is of size2s™. If we chooseN sufficiently large, than for ath > N, we can make these lengths
arbitrarily small.

Thus, asnlog, A1 + log, uy is equidistributed mod, we can control the size of the subsets|@fl1)
wheren log, A1 + log, u; andy,, disagree. The Benford behavior (bagef x,, now follows (in the limit, of
course).

2.4 Weakening of Recurrence Constraints (Sketch)

We now show that we can weaken most of the Recurrence Relation assumptions, namely
1. )\1 > 0,
2. A\ > ’)\2’,

3. u; > 0.



It is possible that\;| = |\2| = - -- = |\;]. If so (including signs), we can combine these terms to give

U1>\7f +---+ Uz>\? = ’LL*)\? + U#(_)‘l)n‘ (24)

Of course, if the different eigenvalues of modulusrange over more thatt A1, one replaces the sum
above with the obvious generalization.

The proof will proceed similarly if the\q, . .., A; are real-valued (simply split into even and odd powers
of n, and2log, A1 ¢ Q (in the odd case, we get an extra translation by a multipleggfA;). Note this shows
how to handle the negative sign constraint (for we do not want to take logarithms of negative numbers, hence
we break our sequence into two sequences). Similarly, {(for the net effect from eigenvalues of modulus
|A1]) is negative, we considerz,,, and show that satisfies Benford (bage

3 Applications of Probability: Benford’s Law and Hypothesis Testing

The Gauss-Kuzmin Theorem tells us that the probability that the millionth digit of a randomly chosen con-
tinued fraction expansion is is approximatelyg, = log (1 + m> What if we chooseV algebraic
numbers, say the cube roots@fconsecutive primes: how often do we expect to observe the millionth digit
equal tok? If we believe that algebraic numbers (other than rationals and quadratic irrationals) satisfy the
Gauss-Kuzmin Theorem, we expect to obsen® digits equal tak, and probably fluctuations on the order
of v/N. If we observel/ digits equal tak, how confident are we (as a function.of and N, of course) that
the digits are distributed according to the Gauss-Kuzmin Theorem? This leads us to the sutyjeotludsis
testing: if we assume some process has probabijlinf success, and we obserl¥é successes itV trials,
does this provide support for or against the hypothesis that the probability of sucp@ss is

We develop some of the theory of hypothesis testing by studying a concrete problem, the distribution of
the first digit of certain sequences. In many problems (for exargplbase 10), the distribution of the first
digit is given by Benford’s Law, described below. We first investigate situations where we can easily prove
the sequences are Benford, and then discuss how to analyze data in harder cases where the proofs aren'’t as
clear. The error analysis is, of course, the same we would use to investigate whether or not the digits of
the continued fraction expansions of algebraic numbers satisfy the Gauss-Kuzmin Theorem. In the process
of investigating Benford’s Law, we encounter equidistributed sequences, logarithmic probabilities (similar
to the Gauss-Kuzmin probabilities), and Poisson Summation, as well as many of the common problems in
statistical testing (such as non-independent events and multiple comparisons).

3.1 Benford’s Law

While looking through tables of logarithms in the late 1800s, Newcomb noticed a surprising fact: certain
pages were significantly more worn out than others. People were looking up numbers whose logarithm
started with 1 significantly more frequently than other digits. In 1938, Benford observed the same digit bias
in a variety of phenomenon. See [Hil] for a description and history, [Hi2, BBH, KonMi] for recent results,
and [Knu] for connections between Benford’s law and rounding errors in computer calculations.



A sequence of positive numbefs,, } is Benford (baseb) if the probability of observing the first digit of
x,, in baseb is j is log, <1 + %) More precisely,

< N . . . 1
lim #{n < N : first digit of z-,, in baseb is j} ~ log, (1 n > ' (25)
N—oo N J

Note thatj € {1,...,b— 1}. This is a probability distribution as one of the- 1 events must occur, and the

total probability is

b—1 1 b—1 1 b-l g
Zlogb <1 + j) = log, H (1 + > = log, H ‘77 = logyb = 1. (26)
j=1 j=1 j=1

J

It is possible to be Benford to some bases but not others; we show the first difiioBenford base 10,

but clearly it is not Benford base 2 as the first digit is always 1. For many processes, we obtain a sequence of
points, and the distribution of the first digits are Benford. For example, consida the problem. Letag

be any positive integer, and consider the sequence where

3 1 ifa,isodd
Gyt = 4o FE ! (27)
an /2 if a,, is even.
For example, ifig = 13, we have
3 — 40 —20 — 100 —5 — 16 —8 — 4 — 2 — 1
— 4 —2 —1—4 —2 —1--- (28)
An alternate definition is to remove as many powers of two as possible in one step. Thus,
3a, + 1
an4+1 = 27;{7 (29)

wherek is the largest power of 2 dividing,, + 1. It is conjectured that foany ag, eventually the sequence
becomest — 2 — 1 — 4--- (or in the alternate definitiomn — 1 — 1---). While this is known for

all ag < 299, the problem has resisted numerous attempts at proofs (Kakutani has described the problem
as a conspiracy to slow down mathematical research because of all the time spent on it). See [Lag] for an
excellent survey of the problem. How do the first digits behave dfolarge)? Do numerical simulations
support the claim that this process is Benford? Does it matter which definition we use?

3.2 Benford’s Law and Equidistributed Sequences

As we can write any positive asb* for someu, the following lemma shows that it suffices to investigate
u mod 1:



Lemma 3.1. The first digits ob* andb” are the same in bageif and only ifu = v mod1.

Proof. We prove one direction as the other is similar. = v mod 1, we may writev = v + m, m € Z. If

b = ugh® + up_ B 4+ g, (30)
then
bv — bu+m
= (upb® +up_ b+ )™
= b ugh™, (31)
Thus the first digits of each atg,, proving the claim. O

Exercise 3.2.Prove the other direction of the if and only if.
Consider the unitintervdl, 1). Forj € {1,...,b}, definep; by
b’i = j orequivalently p; = logy, j. (32)
Forje {1,...,b— 1}, let
1" = [pj,pjs1) C[0,1). (33)

Lemma 3.3. The first digit oftY baseb is j if and only ify mod1 € Ij(.b).

Proof. By Lemma 3.1, we may assurges [0,1). Theny € I;b) = [pj, pj+1) ifand only ifbPi < y < bPi+1,
which from the definition op; is equivalent tgj < b¥ < j + 1, proving the claim. O

The following theorem shows that the exponentials of equidistributed sequences (see definition 1.1) are
Benford.

Theorem 3.4.If y,, = log,, =, is equidistributed mod thenz,, is Benford (basé).

Proof. By Lemma 3.3,
{n <N :y, mod1 € [log, j,log,(7 + 1))} = {n < N :firstdigit of z,, inbasebisj}. (34)

Therefore

lim #{n < N :y, mod 1 € [log,j,log,(j +1))} lim # {n < N :first digit of z,, in basebis j}
N—oo N o N—o00 N '

(35)
If y,, is equidistributed, then the left side of (35)lig;, (1 + %) which impliesz,, is Benford basé. O
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Remark 3.5. One can extend the definition of Benford from statements concerning the distribution of the first
digit to the distribution of the first digits. With such an extension, Theorem 3.4 becaypes log, z,, mod
1 is equidistributed if and only if,, is Benford basé. For details, see [KonMi].

Let {z} = = — [z] denote the fractional part af where[z] as always is the greatest integer at masdit
is known that fora. ¢ Q the fractional parts oha are equidistributed motl (for a proof, see [HW]). From
this and Theorem 3.4, it immediately follows that geometric series are Benford (modulo the irrationality
condition):

Theorem 3.6. Letz,, = ar™, log, r ¢ Q. Thenz,, is Benford (basé).

Proof. Lety,, = log,x, = nlog,r + log, a. Aslog,r ¢ Q, the fractional parts of,, are equidistributed.
Exponentiating by, we obtain that:,, is Benford (basé) by Theorem 3.4. O

Theorem 3.6 implies th&" is Benford base 10, but not surprisingly that it is not Benford lzase

Exercise 3.7.Do the first digits ok™ follow Benford’s Law? What about’ + e "?

3.3 Recurrence Relations and Benford’s Law

We show many recurrence relations are Benford. The interested reader should see [BD, NS] for more on the
subject.

Exercise 3.8 Recurrence Relationshetay, .. ., ar_1 be fixed integers and consider the recurrence relation
(of orderk)
Tpnik = Qg 1Tpik—1+ Qk 2Tpik—2 ++ + Q1Tpt1 + QT (36)

Show oncé: values ofr,, are specified, all values af are determined. Let
fr) = P — ot = — g (37)

we call this the characteristic polynomial of the recurrence relation. Shof(4) = 0, thenz, = cp™
satisfies the recurrence relation for any C. If f(r) hask distinct rootsry, . . ., rx, sShow that any solution
of the recurrence equation can be represented as

Tp = cry + -+ Ty (38)

for somec; € C. The Initial Value Problem is wheh values ofz,, are specified; using linear algebra, this
determines the values of, . . ., c;. Investigate the cases where the characteristic polynomial has repeated
roots. For more on recursive relations, see 83.3 and [GKP], §7.3.

Exercise 3.9.Solve the Fibonacci recurrence relatidn, o = F,,+1 + F,, givenFy = F; = 1. ShowF,,
grows exponentially, i.eF), is of sizer™ for somer > 1. What isr? Letr, = F}—f Show that the even
termsrsy,, are increasing and the odd termsg,,; are decreasing. Investigatém,, .., r, for the Fibonacci

numbers. Show, converges to the golden meér%ﬁ.
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Exercise 3.10(Binet’'s Formula) For F;, as in the previous exercise, prove
1
anl = =

1 " (1-v5)"
+v6\ V5 ‘ (39)
V5 2 2
This formula should be surprising at firsk, is an integer, but the expression on the right involves irrational
numbers and division b¥. More generally, for which positive integens is

1 1 " 1-— "
+ym — J (40)
Jm 2 2
an integer for any positive integer?
Exercise 3.11.Letz = ay, ..., a,] be a simple continued fraction. Far > 1, showg,, > F,,; therefore,

theg,,s grow exponentially. Find a number> 1 such that foranysimple continued fractiony, > ¢".

3.3.1 Recurrence Preliminaries

We consider recurrence relations of length

Opik = ClOpik—1 + -+ Crpanp, (41)
wherecy, ..., ¢ are fixed real numbers. If the equation
e e g = = 0 (42)
hask distinct roots\q, .. ., A, there exist numbersuq, . .., u; such that
an = WAT + -+ Uy, (43)

where we have ordered the roots such that > - -+ > |\g].

For the Fibonacci numbeis= 2, ¢; = ¢o = 1, u1 = —uy = % and\; = 1+2‘/5, Ay = 1‘—55 (see
exercise 3.10). If\1| = 1, we do not expect the first digit af, to be Benford (bas&). For example, if we
consider

ap = 20p-1 — ap—2 (44)

with initial valuesag = a1 = 1, everya,, = 1! If we instead takeiy = 0, a1 = 1, we geta,, = n.

3.3.2 Recurrence Relations are Benford

Theorem 3.12. Let a,, satisfy a recurrence relation of lengthwith k distinct real roots. Assumi\;| # 1
with |\ | the largest absolute value of the rootsld§, |A\1| ¢ Q, thena,, is Benford (basé).
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Proof. For simplicity we assumg; > 0, A\; > |\2|, andu; > 0. Again lety,, = log; =,,. By Theorem 3.4,
it suffices to showy,, is equidistributed mod. We have

Tn = WA+ Fup Ay
1

whereu = max; |u;| + 1 (S0oku > 1 and the big-Oh constanti9. As A; > |2/, we “borrow” some of the
growth fromA\7; this is a very common technique. Choose a smatd ann such that

1 Ao < A5

2. foralln > no, (’“;);/” < 1, which then impliesfz: — (%)"

As ku > 1, (ku)'/™ is decreasing td asn tends to infinity. Note: > 0if A; > 1 ande < 0if A\; < 1.

Letting

(ku)'/mo |
AN

B = < 1, (46)

we find that the error term above is bounded®yfor n > ng, which tends td). Therefore

Yn = logyxy
= logy(u1AT) + O (logy(1 + "))
= nlog, A\ +log,u; +O(6"), (47)

where the big-Oh constant is bounded @ysay. Aslog, A1 ¢ Q, the fractional parts of: log, A\; are
equidistributed mod, and hence so are the shifts obtained by adding the fixed cohstgmnt, .

We need only show that the error tef{5") is negligible. It is possible for the error term to change the
first digit; for example, if we had99999 (or 1000000), then if the error term contribut@gor —2), we would
change the first digit (bask). However, forn sufficiently large, the error term will change a vanishingly
small number of first digits. Saylog;, A1 +log, u; exponentiates (ba$gto first digitj, j € {1,...,0—1}.
This means

(0)

nlogy A1 +logyu; € Ijb = [pj-1,Dj)- (48)

The error term is at most5” andy,, exponentiates to a different first digit thaog, A; + log, u; only if
one of the following holds:

1. nlogy A1 + log, uy is within C 3" of p;, and adding the error term pushes us to or pgst

2. nlogy, A1 + logy, uy is within C'5" of p;_1, and adding the error term pushes us befgrg .
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The first setis contained ip, —C 3", p,), of lengthC'5". The second is containedfin;_1, p;—1+CG"),
also of lengthC' ™. Thus the length of the interval wherdog, \; + log, u; andy,, could exponentiate base
b to different first digits is of siz&C (™. If we chooseV sufficiently large, than for alb > N, we can make
these lengths arbitrarily small. Aslog, \1 + log, u; is equidistributed mod, we can control the size of the
subsets 0f0, 1) wheren log, \1 4 log, u; andy,, disagree. The Benford behavior (bayef x,, now follows
(in the limit, of course). O

Exercise 3.13.Weaken the conditions of Theorem 3.12 as much as possible. What if several eigenvalues
equal\;? What does a general solution (1) look like now? What if\; is negative? Can anything be said
if there are complex roots?

3.4 Random Walks and Benford

Consider the following (colorful) problem: A drunk starts off at time zero at a lamppost. Each minute he
stumbles with probability one unit to the right and with probability= 1 — p one unit to the left. Where do

we expect the drunk to be aftdf tosses? This is known asmndom Walk. By the Central Limit Theorem,

his distribution aftetV tosses is well approximated by a Gaussian with megm- (—1)- (1 —p) =2p—1

and variance(1 — p)N. For more details on Random Walks, see [Re].

For us, aGeometric Brownian Motion is a process such that its logarithm is a Random Walk. We show
below that the first digits of Geometric Brownian Motions are Benford. In [KonSi3the- 1 problem is
shown to be an example of Geometric Brownian Motion. For heuristic purposes we use the first definition
of the3x + 1 map, though the proof is for the alternate definition. We have two operdtp@ndT,, with
T3(x) = 3z + 1 andTy(x) = §. If a,, is 0dd,3a, + 1 is even, sd’3 must always be followed b¥>. Thus,
we have really have two operatdfs and T} 5, with T 5 () = ?’IT“ If we assume each operator is equally
likely, half the time we go fromx — 22 + 1, and half the time td;z.

If we take logarithmslog « goes tdlog 3z = log z + log 3 half the time andog 2z = log z + log 3 the
other half. Hence on average we séogxz — logz + %log % As log% < 0, on average our sequence is
decreasing (which agrees with the conjecture that eventually we #eael2 — 1). Thus we might expect
our sequence to look likevg x, = logx + glog%. As log% ¢ Q, its multiples are equidistributed mod
1, and thus when we exponentiate we expect to see Benford behavior. Note, of course, that this is simply a
heuristic, suggesting we might see Benford’s Law.

While we can consider Random Walks or Brownian Motion with non-zero means, for simplicity below
we assume the means are zero. Thus, in the example abeve,

3.4.1 Needed Gaussian Integral

Consider a sequence of Gaussians with mean 0 and vardnagth 0> — oo. The following lemma shows
that for anys > 0, aso — oo almost all of the probability is in the intervalo'*7, o1+%]. We will use this
lemma to show that it is enough to investigate Gaussians in the faade?, o' +9].
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Lemma 3.14.

2 (e e}
V2ro? / e 20y < e )2, (49)
To“ Jol+s
Proof. Change the variable of integrationdo= Uiﬁ Denoting the above integral by we find
2 & 2 2 o 2
I = / eV oV2dw = / e " dw. (50)
V2mo? a3 /2 VT % /2

V2 V2
in the left endpoint, and the region of integration is of lengtfihus,

The integrand is monotonically decreasing. ko€ [”5 Al 1} , the integrand is bounded by substituting

I o< 1 2 —020)2 n 2 o0 7w2d
—e — e w
ves VT |
2 7026/2 2 /OO 7(u+1)2
= — — d
\/776 + /r % e U
2 70.25/2 2 /OO 7”2 —2u —1
= —¢ + — e e e du
o0
N3 VL3 2
2 25 2 25 o0
< ey T e /2/ e 2t du,
)
NS e/ el
< 2(6+ 1)6_0.26/2
Vi
< 42, (51)

3.4.2 Geometric Brownian Motions are Benford

We investigate the distribution of digits of processes that are Geometric Brownian Motions. By Theorem 3.4,
it suffices to show that the Geometric Brownian Motion converges to being equidistributed mgrglicitly,
we have the following: afteV iterations, by the Central Limit Theorem the expected value converges to
a Gaussian with meahand variance proportional t¢’N. We must show that the Gaussian with growing
variance is equidistributed madd

For convenience we assume the medndad the variance i&/27. This corresponds to a fair coin where
for each head (tail) we move}r7r units to the right (left). By the Central Limit Theorem the probability of
beingzx units to the right of the origin afteN tosses is asymptotic to

e—wx2/N

pn(z) = N (52)
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For ease of exposition, we assume that rather than being asymptotic to a Gaussian, the distribution is a
Gaussian. For our example of flipping a coin, this cannot be true. If every minute we flip a coin and record
the outcome, afteN minutes there arg’V possible outcomes, a finite number. To each of these we attach
a a number equal to the excess of heads to tails. There are technical difficulties in working with discrete
probability distributions; thus we study instead continuous processes such that af timeeprobability of
observinge is given by a Gaussian with meéirand varianceV/2w. For complete details see [KonMi].

—Trft2 . gy .
Theorem 3.15.AsN — oo, py(x) = & "™ pecomes equidistributed mad

VN
Proof. We want the probability that for € R, x mod 1 € [a,b] C [0,1). Thisis
1 / P o)
—> e @) /N g (53)
\/N nez ’ r=a

We need to show the above converges toa asN — oo. Forz € [a, b], standard calculus (Taylor series
expansions) gives
R e e T (54)
We claim that in (53), it is sufficient to restrict the summatiorjy7io < N°/*. The proof is immediate
from Lemma 3.14: we increase the integration by expanding4o[0, 1], and then trivially estimate. Thus,
up to negligible terms, all the contribution is fram| < N5/4,
The Poisson Summation formula states that

TN = e, (55)
LD RY
The beauty of this formula is it converts one infinite sum velibw decay to another sum witlapid decay.
The exponential terms on the left of (55) are all of size kfet /N, and don’'t become small uniil > N
(for instance, once > /N log N, the exponential terms are small for lary@; however, almost all of the
contribution on the right comes from = 0. The power of Poisson Summation is it often allows us to
approximate well long sums with short sums. We therefore have

= > / AN 'y / [—W/N O<max(1 ) —WN)]

|n|<N5/4 [n|<NB/4
_ b-a 3 /N | 0 ]%4”“ —(n/VN)?2
VN [n| <N/4
_ b-a Z ™ IN 4 O <1 /NS/4 (w+ 1)6_”w2\/ﬁdw>
VN R N Ju=
_b \/N“ |n|§5/4 e ™ N 40 (N‘1/2> : (56)
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By Lemma 3.14 we can expand all sumsrtoc Z in (56) with negligible error. We now apply Poisson
Summation and find that up to lower order terms,

L / " /N N
—Z e T dww(b—a)-Ze e (57)
\/NnEZ r=a nez
Forn = 0 the right hand side of (57) ts— a. For all othem, we trivially estimate the sum:
—7N
—mn2N —mnN 2e
> <2) e S g (58)
n#0 n>1
which is less thade~™ for N sufficiently large. O

We can interpret the above arguments as follows: for €achonsider a Gaussigny () with mean0
and varianceV/2w. As N — oo for eachz (which occurs with probability v (x)) the first digit of 10*
converges to the Benford base 10 probabilities.

Remark 3.16. The above framework is very general and applicable to a variety of problems. In [KonMi]

it is shown that these arguments can be used to prove Benford behavior in discrete systems such as the
3z + 1 problem as well as continuous systems such as the absolute values of the Riemann Zeta Function (and
any “good” L-function) near the critical line! For these number theory results, the crucial ingredients are
Selberg’s result (near the critical lindog |((s + it)| for t € [T, 2T converges to a Gaussian with variance
tending to infinity in7") and estimates by Hejhal on the rate of convergence.

3.5 Statistical Inference

Often we have reason to believe that some process occurs with probahifityuccess ang = 1 — p of

failure. For example, consider ti3a: + 1 problem. Choose a large) and look at the first digit of the

a,S. There is reason to believe the distribution of the first digits is given by Benford’s Law foraneast

ag — oo. We describe how to test this and similar hypotheses. We content ourselves with describing one
simple test; the interested reader should consult a statistics textbook (for example, [BD, LF, MoMc]) for the
general theory and additional applications.

3.5.1 Null and Alternative Hypotheses

Suppose we think some population has a parameter with a certain value. If the population is small, it is
possible to investigate every element; in general this is not possible.

For example, say the parameter is how often the millionth decimal or continued fraction digit is 1 in two
populations: all rational numbers [, 1) with denominator at mosi, and all real numbers if0, 1). In
the first, there are only 10 numbers, and it is easy to check them all. In the second, as there are infinitely
many numbers, it is impossible to numerically investigate each. What we do in practice is we sample a large
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number of elements (say¥ elements) in0, 1), and calculate the average value of the parameter for this
sample.

We thus have twgopulations, the underlying population (in the second case, all numbersjin1)),
and thesample population(in this case, théV sampled elements).

Our goal is to test whether or not the underlying population’s parameter has a given valpeTedkis
end, we want to compare the sample population’s valye Tthenull hypothesis denotedH, is the claim
that there is no difference between the sample population’s value and the underlying population’s value; the
alternative hypothesis denotedH,, is the claim that there is a difference between the sample population’s
value and the underlying population’s value.

When we analyze the data from the sample population, either we reject the null hypothesis, or we fail to
reject the null hypothesis. It is important to note thatrvegerprove the null or alternative hypothesis is true
or false. We are always rejecting or failing to reject the null hypothesis, we are never accepting it. If we flip
a coin 100 times and observe all heads, this does not mean the coin isn't fair: it is possible the coin is fair but
we had a very unusual sample (though, of course, it is extremely unlikely).

We now discuss how to test the null hypothesis. Our main tool is the Central Limit Theorem.

3.5.2 Bernoulli Trials and the Central Limit Theorem

Assume we have some process where we expect a probabdftpbserving a given value. For example, if
we choose numbers uniformly jA, 1) and look at the millionth decimal digit, we believe that the probability
this digit is 1 is%. If we look at the continued fraction expansion, by the Gauss-Kuzmin Theorem the
probability that the millionth digit is 1 is approximatelyg, %. What if we restrict to algebraic numbers?
What is the probability the millionth digit (decimal or continued fraction expansion) equals 1?

In general, once we formalize our conjecture, we test it by choodirgjements from the population
independently at random. Consider the claim that a process has probaloifisuccess. We haw’ inde-
pendent Bernoulli trials. The null hypothesis is the claim fhpercent of the sample are a success. daet
be the number of successes; if the null hypothesis is correct, by the Central Limit Theorem wesgxfmect
have a Gaussian distribution with mealN and varianceyg N. This means that if we were to look at many
samples withV elements, on average each sample would paVe: O(1/pgN) successes. We calculate the
probability of observing a differende — pN| as large or larger tham This is given by the area under the
Gaussian with meap/N and varianceqV:

1 / —(s—pN)2/2pgN
e ds. (59)
V2mpgN |s—pN|>a

If this integral is small, it is extremely unlikely that we choodeindependent trials from a process with
probability p of success and we reject the null hypothesis; if the integral is large, we do not reject the null
hypothesis, and we have support for our claim that the underlying process does have prgbalslitycess.
Unfortunately, the Gaussian is a difficult function to integrate, and we would need to tabulate these
integrals foreverydifferent pair of mean and variance. It is easier, therefore, to renormalize and look at a
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new statistic which should also be Gaussian, but with mean 0 and variance 1. The advantage is that we need
only tabulateonespecial Gaussian, the standard normal.

Letz = SN pN . This is known as the-statistic. If sy’s distribution is a Gaussian with mea®v and
variancepg N, notez will be a Gaussian with mean 0 and variance 1.

Exercise 3.17.Prove the above statement about the distribution. of

Let

I(a) = e_ZZ/de, (60)

1
\/ﬂ /|z2a
the area under the standard normal (mean 0, standard deviation 1) that is atueisfrom the mean. We
consider differentonfidence intervals If we were to randomly choose a numhefrom such a Gaussian,
what is the probability (as a function af thatz is at most: units from the mean? Approximatebg% of the
time|z| < 1(I(1) ~ .32), approximately5% of the timez < 1.96 (I(1.96) ~ .05), and approximatel99%
of the time|z| < 2.57 (I(2.57) = .01). In other words, there is only aboutl& probability of observing
|z| > 2.57. If |z| > 2.57, we have strong evidence against the hypothesis that the process occurs with
probability p, and we would be reasonably confident in rejecting the null hypothesis; of course, it is possible
we were unlucky and obtained an unrepresentative set of data (but it is extremely unlikely that this occurred,;
in fact, the probability is at most 1%).

Remark 3.18. For a Gaussian with meap and standard deviatiom, the probability|z — u| < ois
approximately.68, and so on.

To test the claim that some process occurs with probabhilitye observeV independent trials, calculate
the z-statistic, and see how likely it is to obsen¢ that large or larger. We give two examples below.

3.5.3 Digits of the3x + 1 Problem

Consider again thdz + 1 problem. Choose a large integey, and look at the iteratesiy, as, as,.... We

study how often the first digit of terms in the sequence edqual{1,...,9}. We can regard the first digit

of a term as a Bernoulli trial with a success (91if the first digit isd and a failure (o0) otherwise. If the
distribution of digits is governed by Benford’s Law, the theoretical prediction is that the percent of the first
digits that equatl is p = logw(d+1) Assume there ar®/ terms in our sequence (before we hit the pattern

4 -2 —1— 4--.), and sayM of them have first digiti. For whatM does this experiment provide
support that the digits follow Benford’'s Law?

Exercise 3.19.The terms in the sequence generatedpgre not independent, as, is determined by,,.
Show that if the first digit of,, is 2, the first digit ofa,,; cannot be &.

The above exercise shows that the first digit of the tecarmotbe considered independent Bernoulli
trials. As the sequence is completely determined by the first term, this is not surprising. If we look at an
enormous number of terms, however, these effects “should” average out. Another possible experiment is to
look at the first digit of the millionth term folV differentags.
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Letap = 333...333 be the integer that is 10,000 threes. There are 177,857 terms in the sequence before
we hit4 — 2 — 1. The following data comparing the number of first digits equadl tw the Benford
predictions is from [Min]:

digit | observed predicted variance z-statistic 1(2)

1 53425 53540 193.45 -0.596 0.45
31256 31310 160.64 -0.393 0.31
22257 22220  139.45 0.257 0.21
17294 17230 124.76 0.464 0.36
14187 14080 113.88 0.914 0.63
11957 11900 105.40 0.475 0.36
10267 10310 98.57 -0.480 0.37

9117 9090 92.91 0.206 0.16

8097 8130 88.12 -0.469 0.36

O©CoOoO~NO UL WDN

As the values of the-statistics are all small (well below.96 and2.57), the above table provides evidence
that the first digits in th&z + 1 problem follow Benford’s Law, and we would not reject the null hypothesis
for any of the digits. If we had obtained largestatistics, say 4, we would reject the null hypothesis and
doubt that the distribution of digits follow Benford’s Law.

Remark 3.20(Important) One must be very careful when analyzing all the digits. Once we know how many
digits arel, ..., 8, then the number of 9s is forced: these are not 9 independent tests. Our point here is not
to write a treatise on statistical inference, but merely highlight some of the tools and concepts.

Additionally, if we have many different experiments, then “unlikely” events should happen. For example,
if we have 100 different experiments we would not be surprised to see an outcome which only has a 1%
chance of occurring (see exercise 3.21). Thus, if there are many experiments, the confidence intervals need
to be adjusted. One common method is the Bonferroni adjustment method for multiple comparisons. See
[BD, MoMc].

Exercise 3.21.Assume for each trial there is a 95% chance of observing the percent of first digits equal to 1
isin [log;2 — o,logy 2 + o] (for somer). If we have 10 independent trials, what is the probability &t
the observed percents are in this interval? If we have 14 independent trials?

Remark 3.22. How does one calculate with 10,000 digit numbers? Such large numbers are greater than the
standard number classes (int, long, double) of many computer programming languages. The solution is to
represent numbers as arrays. To go framto 3a,, + 1, we multiply the array by 3, carrying as needed, and
then add 1; we leave space-holding zeros at the start of the array. For example,

3-10,...,0,0,5,6,7] = [0,...,0,1,7,0,1]. (61)
We need only do simple operations on the array. For exan3pl&, = 21, so the first entry of the product

array is 1 and we carry the 2 for the next multiplication. We must also comgute if a,, is even. Note this
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is the same aSa,, divided by 10. The advantage of this approach is that it is easy to calcidgateand as
ay, IS even, the last digit dfa,, is zero, hence array division by 10 is trivial.

Exercise 3.23.Consider the first digits of th&z + 1 problem in base 6. Choose a large integgr and look
at the iteratesiy, as, as, . ... Show that agy — oo, the distribution of digits is Benford base 6.

Exercise 3.24Recommended)Here is another variant of thgz + 1 problem:
3a, +1 ifa,isodd
an /2 if a,, is even an@®”||a,,.

By 2¥||a,, we mear2* dividesa,,, but2*+! does not. Consider the distribution of first digits of this sequence.
What is the null hypothesis? Do the data support the null hypothesis, or the alternative hypothesis? Do you
think these numbers also satisfy Benford’'s Law? What if instead we define

3a, + 1

apt+1 = 2]€ y 2k‘|an (63)

3.5.4 Digits of Continued Fractions

Let us test the hypothesis that the digits of algebraic numbers are given by the Gauss-Kuzmin Theorem. Let
us look at how often th@000™ digit equals 1. By Kuzmin, this should be approximatklys %. Let p,

be then!™ prime. In the continued fraction expansions@p,, for n € {100000, 199999}, exactly 41,565
have1000™ digit equal to 1. Assuming we have a Bernoulli process with probability of success (a digit of

1) of p = log, %, the z-statistic is.393. As the z-statistic is small $5% of the time we expect to observe

|z| < 1.96), we do not reject the null hypothesis, and we have obtained evidence supporting the claim that
the probability that the000™ digit is 1 is given by the Gauss-Kuzmin Theorem.

3.6 Summary

We have chosen to motivate our presentation of statistical inference by investigating the first digits of the
3z + 1 problem, but of course the methods apply to a variety of problems. Our main tool is the Central Limit
Theorem: if we have a process with probabilityg = 1 — p) of success (failure), then iV independent
trials we expect aboytNV successes, with fluctuations of sigewqN. To test whether or not the underlying
probability isp we formed thez-statistic: #\f%év, where #S is the number of successes observed iVthe
trials.

If the process really does have probabilitgf success, then by the Central Limit Theorem the distribution
of #S is Gaussian with meanV and standard deviatiog’pg N, and we then expect thestatistic to be of
size 1. If, however, the underlying process occurs not with probabilbiyt p’, then we expect #S to be a
Gaussian with meapl N and standard deviatiof{p’q’ N. We now expect the-statistic to be of sizé\’;ﬂ.

p'd' N
This is of sizey’N, much larger than 1.
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We see the-statistic is very sensitive to' — p: if p’ is differs fromp, for large N we quickly observe
large values of:. Note, of course, that statistical tests can only provide compelling evidence in favor or
against a hypothesis, never a proof.

A Probability Review

A.1 Bernoulli Distribution

Recall the binomial coefficient") = T,(NLLT), is the number of ways to chooseobjects fromN ob-

jects when order does not matter. Consideéndependent repetitions of a process with only two possible
outcomes. We typically call one outcorsaccessand the othefailure, the event 8Bernoulli trial , and a
collection of independent Bernoulli trialsBernoulli process In each Bernoulli trial, let there be probability

p of success ang = 1 — p of failure. Often, we represent a success viit#nd a failure with).

Exercise A.1. Consider a Bernoulli trial with random variable equal to 1 for a success and 0 for a failure.
Showz = p, 02 = pq, ando, = ,/pq. Notez is also an indicator random variable.

Let yn be the number of successeshhtrials. Clearly the possible values of; are{0,1,..., N}. We
analyzepy (k) = Prol(yny (w) = k). Here the sample spa€kis all possible sequences f trials, and the
random variable/y : Q@ — R is given byyy (w) equals the number of successes)in

If £ € {0,1,..., N}, we needk successes anll — k failures. We don’t care what order we have them
(i.e.,ifk = 4and N = 6 thenSSFSSF and F'SSSSF both contribute equally). Each such stringkof
successes anl — k failures has probability of* - (1 — p)¥=*. There arg(Y) such strings, which implies
pn (k)= ()pF - (1 —p)N~*if k € {0,1,..., N} and0 otherwise.

By clever algebraic manipulations, one can directly evaluate the gieand the variancegN; however,
standard lemmas allow one to calculate both quantities immediately, once one knows the mean and variance
for a single occurrence (see Exercise A.1).

Lemma A.2. For a Bernoulli process withV trials, each having probabilityy of success, the expected
number of successesiy = Np, and the variance isgN = Npq.

Lemma A.2 states the expected number of successes is dVgizand the fluctuations aboXp are of
sizeazN = /Npq. Thus, ifp = % and N = 10%, we expect 500,000 successes, with fluctuations on the
order of 500. Note how much smaller the fluctuations about the mean are than the mean itself (the mean is
of size N, the fluctuations of siz¢/N). This is an example of a general phenomenon, which we describe in
greater detail in 8A.3.

Exercise A.3. Prove Lemma A.2. Prove the variance is largest whengq = %

Consider the following problem: L&2 = {S, F'S, F'F'S,...} and letz be the number of trials before
the first success. Whatisando?2?
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First we determine th8ernoulli distribution p(k) = Probz(w) = k), the probability that the first
success occurs aftértrials. Clearly this probability is non-zero only féra positive integer, in which case
the string of results must be— 1 failures followed byl success. Therefore

1—p)tl.op ifke{1,2,...
plky = {177 1.2, (64)
0 otherwise
To determine the meanwe must evaluate
z = k(1 —p)klp = kaq’H, 0<g=1—-p<1. (65)
k=1 k=1

Consider the geometric series

= 1
floy =) d" = —. (66)
—q
k=0
A careful analysis shows we can differentiate term by termlif< ¢ < 1. Then
ad 1
fllg) =D k"t = : (67)
kzo (1—-q)?
Recallingg = 1 — p and substituting yields
= - p 1
= pS k= — P2 (68)
; (1-(1-p)*> p

Remark A.4. Differentiating under the summation sign is a powerful tool in Probability Theory, and is a
common technique for proving such identities.

Exercise A.5. Calculates?. Hint: differentiatef (q) twice.

A.2 Random Sampling

We introduce the notion alindom sampling. Consider a countable st C R and a probability function
p on§); we can exteng to all of R by settingp(r) = 0 if » ¢ . Using the probability functiop, we can
choose elements frof at random. Explicitly, the probability that we choose € Q is p(w).

For example, lef2 = {1, 2, 3,4, 5,6} with each event having probabili%/(the rolls of a fair die). If we
were to roll a fair dieN times (for V large), we observe a particular sequence of outcomes. It is natural to
assume the rolls are independent of each otherxLdenote the outcome of th# roll. The z;s all have
the same distribution (arising from). We call thex; i.i.d.r.v. (independent identically distributed random
variables), and we say the are asamplefrom the probability distributiop. We say waandomly sample
(with respect top) R. Often we simply say we hawvandomly chosenN numbers.
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A common problem is to sample some mathematical or physical process, and use the observations to
make inferences about the underlying system. For example, we may be given a coin without being told what
its probabilities for heads and tails are. We can attempt to infer the probabditg head by tossing the coin
many times, and recoding the outcomes. Lgbe the outcome of th& toss (1 for head, 0 for tail). AfteN
tosses we expect to see abdlh heads; however, we observe some numbersgayGiven that we observe
sy heads afterV tosses, what is our best guess #6r We guesp = =Y. It is extremely unlikely that our
guess is exactly right. This leads us to a related question: given that we obgeheads, can we give a
small interval about our best guess where we are extremely confident the true Vigls® The solution is
given by the Central Limit Theorem (8A.3).

Exercise A.6. For the above example, jfis irrational, show the best guess can never be correct.

One can generalize the above to include the important case whisra continuous distribution. For
example, say we wish to investigate the digits of numbe[@,itj. It is natural to put the uniform distribution
on this interval, and choose numbers at random relative to this distribution; we say we ¢hansebers
randomly with respect to the uniform distribution 1], or simply we choos&’ numbers uniformly from
[0,1]. Two natural problems are to consider € digit in the base 10 expansion and th® digit in the
continued fraction expansion. By observing many choices, we hope to infer knowledge about how these digits
are distributed. The first problem is theoretically straightforward. It is not hard to calculate the probability
that then™ digit is d; it is just % The probabilities of the digits of continued fractions are significantly
harder (unlike decimal expansiors)y positive integer can occur as a digit).

Exercise A.7(Important for Computational Investigationgjor any continuous distribution, the probability
we chose a number i, b] is fabp(a:)d:c. If we were to choos& numbers N large, then we expect approx-

imately N f;p(a:)dx to be in[a, b]. Often computers have built in random number generators for certain
continuous distributions, such as the standard Gaussian or the uniform, but not for less common ones. Show
if one can randomly choose numbers from the uniform distribution, one can use this to randomly choose
from any distributionHint: useC,(z) = [*__ p(x)dz, theCumulative Distribution Functionof p; it is the
probability of observing a number at maost

Remark A.8. The observant reader may notice a problem with sampling from a continuous distribution: the
probability of choosing any particular real number is zero, but some number is chosen! One explanation is
that, fundamentally, we cannot choose numbers from a continuous probability distribution. For example, if
we use computers to choose our numbers, all computers can do is a finite number of manipulations of 0Os and
1s; thus, they can only choose numbers from a countable (actually finite) set. The other interpretation of the
probability of anyr € R is zero is that, while at each stage some number is chosen, no number is ever chosen
twice. Thus, in some sense, any number we explicitly write down is “special”.

For our investigations, we approximate continuous distributions by discrete distributions with many out-
comes. From a practical point of view, this suffices for many experiments; however, one should note that
while theoretically we can write statements such as “choose a real number uniformlyofrofi) we can
never actually do this.
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A.3 The Central Limit Theorem

We close our introduction to probability with a statementh@main theorem about the behavior of a sum of
independent events. We give a proof in an important special case in 8A.3.2.

A.3.1 Statement of the Central Limit Theorem

Letx; (i € {1,...,N}) beiid.rv. asin 8A.2, all sampled from the same probability distributiovith
meanE[p] = x and variancer? = o2 (soE[z;] = pando?, = o2 for all §). Letsy = >, z;. We are
interested in the distribution afy asN — oo. As eachr; has expected valug[z] = u, E[sy] = Nu. We
now consider a more refined question: howjsdistributed aboulv ? The Central Limit Theorem answers
this, and tells us what the correct scale is to study the fluctuations about

Theorem A.9 (Central Limit Theorem)AsN — oo,

1 p 2 1942

Prob(sy € [, f]) ~ / e~ (=nN)*/20°N g (69)

( S V212N Ja
In other words, the distribution ofyy converges to a Gaussian with meafv and variances? N. We may
re-write this as ,
SN - /JN 1 —t2 2
Prob| ———— ¢ a,b>—>/e /2dt. 70

(o e o =/ (70

Herez, = *2=£Y converges to a Gaussian with mean 0 and variance 1.

Vo2N

The probability densit;e—tQ/Q/\/% is the standard Gaussian. Ittlse universal curve of probability.
Note how robust the Central Limit Theorem is: it does not depend on fine properties ©f,thest that
they all have the same distributions. Sometimes it is important to know how rapjdly converging to the
Gaussian; see [Fe].

Exercise A.10.The Central Limit Theorem gives us the correct scale to study fluctuations. For example, say
we toss a fair coinV times (hence: = % ando? = %). We expect to be about%. Find values ofi andb

such that the probability of;y — Ny € [av/N/2,bv/N /2] converges to 95% (99%). For larg¥, show for

any fixeds > 0 that the probability ofsy — Ny € [aN2+% /2, bN 279 /2] tends to zero. Thus, we expect to
observe half of the tosses as heads, and we expect deviations from one-half to be of dize

One common application of the Central Limit Theorem is to test whether or not we are sampling the
independently from a fixed probability distribution with meanChooseN numbers randomly from what
we expect has megn We formsy as before and investigaﬁé\/%“. Assy = Zfil x;, We expecty to be
of size N. If the z; are not drawn from a distribution with mean thensy — N will also be of sizeN.

Thus,sN\/’%V“ will be of sizeV/N if the z; are not drawn from something with mean If, however, ther;

are from sampling a distribution with mea the Central Limit Theorem states thﬁt\/_% will be of size
1. See Chapter 3 for more details.
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Finally, we note that the Central Limit Theorem is an example ofthiégosophy of Square-root Can-
cellation: the sum is of sizeV, but the deviations are of sizéN.

A.3.2 Proof for Bernoulli Processes

We sketch the proof of the Central Limit Theorem for Bernoulli Processes where the probability of success is
p= % Consider the random variahlethat is 1 with probability% and—1 with probability% (for example,
tosses of a fair coin; the advantage of making a-tdilis that the mean is zero). Note the mean &z = 0,
the standard deviation is, = 3 and the variance is2 = 1.

Let zq,...,zon be independent identically distributed random variables, distributed(asimplifies
the expressions to consider an even number of tosses). Congider z1 + - - - + xo. Its mean is zero and
its variance i2 N /4, and we expect fluctuations of si;éQN/zL We show that forV large, the distribution

of sov is approximately normal. We need

Lemma A.11(Stirling’s Formula) For n large,
n! = n"e "V2mn (14 O(1/n)). (71)

For a proof, see [WW]. We show the above is a reasonable approximation.
n n
logn! = Z logk ~ / logtdt = (tlogt —1t)|7. (72)
k=1 1

Thus,logn! =~ nlogn — n, orn! =~ n"e™".
We now consider the distribution ef,. The probability thatoy = 2% is just (V) (3)VHF(3)N K.
This is because fas,y = 2k, we needk more 1s (heads) thanls (tails), and the number of heads and

tails adds t@N. Thus we haveV + k heads andV — & tails. There ar@?" strings ofls and—1s, (3V,)
have exactlyV + k£ heads andV — k tails, and the probability of each string G%)QN. We have written
()N +k(L)N=* to show how to handle the more general case when there is a probalofiheads and — p
of tails.

We use Stirling’s Formula to approxima(tﬁfk). After elementary algebra we find

2N B 22N N
<N + k:> T (N4 B)NFE(N — k)N=F\| (N + k)(N — k)
22N 1

= . (73)
Q/WN(1+%)N+§+k(1 _ %)N+%—k
Using (1 +w)Y ~ e, after some more algebra we find
2N 2 e, (74)
N+ k vaTN
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Thus

2N ]. . ]. 7]{/.222]\74

The distribution ofso looks like a Gaussian with mean 0 and varia@@&/4. While we can only observe
an integer number of heads, fof enormous the Gaussian is very slowly varying and hence approximately
constant fron2k to 2k + 2.

Exercise A.12. Generalize the above arguments to handle the case wb@é.
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