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Abstract
We give a quick introduction to binomial coefficients, and prove the bi-
nomial theorem.

1 Definitions
Recall the factorial function:

nl=n-(n—1)-(n—2)---3-2-1. (1)

For the factorial function, we assumeis a non-negative integer (ie, either
zero or a positive integer). We defifieto be 1. This is a convenient choice, and
simplifies many formulas. The factorial function can be analytically continued to
a new function which agrees with the old on the non-negative integers, but makes
sense for all complex numbers!

We define the following combinatorial quantities:

(n):n—!()grgn (2)

r rl(n—r)
and
n!
P(n,r) = m, 0<r<n. (3)
In some books, one often encountétg:, r) for (). TheC stands for Com-
binations (order doesn’t count), and tRestands for Permutations (order counts).
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2 Permutations: P(n,r)

P(n,r) is the number of ways of choosingobjects fromn, when order matters.
Obviously, we should have < r < n — we can’t choose more objects than there
are objects!

How many ways are there to choose zero objects? There is just one way to
choose nothing, and nofé(n, 0) = = = 1.

How many ways are there to choose one object, when order matters? There
aren objects, once we choose 1 object we are done. TR¢s,r) = 1. Note

n!

(11 —
( 1I2|ow many ways are there to choose two objects, when order matters? There
aren choices for the first object, and then there are 1 people objects available
for the next slot. We now choose one of them. Thus, there@ie- 1) ways to
choose two objects so that order matters. Note again that t n'f'z' .

Continuing in this way, what if we want to choosebjects, with order count-
ing? For example, the first person chosen is the president, the second is the vice
president, the third the treasurer, and so on. There: afeices for the first po-
sition. We now have, — 1 people left, and choose one of these people for the
second position — there ane— 1 ways of doing this. We now hawe — 2 people
left, and we choose one for the third position — thererare2 ways of doing this.
Finally, we come to the last choice. There are- (r — 1) people left (we have
chosen — 1 people), and there are— (r — 1) ways of choosing someone from
n — (r — 1) people.

Thus, we find

Pn,r) =n-(n—1)---(n—(r—1)). (4)

(n—r)!

Multiply the above by(n_r)!.
(n—r)l
We have therefore proved

The numerator becomes, the denominator

Lemma 2.1. P(n,r) = ~™ is the number of ways to choosgeople fromn

(n—r)!

people, when order matters.

3 Combinations: (")

We now ask a harder question — how many ways are there to chopseple
from n people, where it doesn’t matter whaider we choose the people. All
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that matters is who is chosen, and who isn't.

This is similar to forming committees. Often everyone on a committee has an
equal vote.

We first consider an easier problem: let us assume we halifferent po-
sitions (president, vice president, treasurer, et cetera), so that we now have an
orderedproblem. How many ways can we choaspeople fromn people to sit
on thisorderedcommittee?

This is exactly what?(n, ) is! Thus, there aré’(n,r) ordered committees
of r people chosen from people.

Given an ordered committee with peoplg, ..., A,, how many ways can |
re-order the committee? For example, initialy might be president, and, the
vice president, and so on.

We can think of this as there beimdgboxes, labelled president, vice president,
treasurer, and so on. We then need to put a person in each box (each person can
be used just once). Well, there arehoices of a person to put in the first box
(president box), then there are- 1 choices of a person to be in the second box
(vice president box), all the way down to there is just 1 person left for the last box.

Thus, given an ordered committeergfeople, we find there arére-orderings
or re-arrangements of that committee. As the people are distinct, no two of these
ordered committees will be the same.

Thus, Iet(’j) denote the number of ways of choosingeople fromn, when
orderdoesn’tcount. Each choice af people can then be made intbordered
committees. All these ordered committees are different. Further, two different
choices ofr people (where order doesn’t count) cannot give rise to the same or-
dered committee — as order doesn’t count, there must be at least one person in one
set that is not in another.

For example, we could choose two different unordered committees containing
people{A, B, D} in one case, andA, C, D} in the other. As persom® is in
the first unordered committee, all ordered committees from this set will Bave
serving; sinceB is not in the second unordered committee, none of those ordered
committees will contair.

Claim 3.1.
(”) 7l = P(n,r). (5)

r

Proof. We know there aré’(n, r) ordered committees. We can enumerate all the
ordered committees as follows: first, choose thgeople who will serve on the
committeewithout specifying who is serving in which position. By definition,
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there are(™) ways to do this.Then for each unordered committee ofeople,
there are'! different ordered committees. Thus, the total number of ordered com-
mittees is alsq”) - !, as claimed. ]

We can now solve fo("):

T (6)

rl(n —r)l

Exercise 3.2.Prove(”) = (. ). Interpret this as the number of ways of choosing

r people to serve on a committee (order doesn’t count) is equivalent to choosing
n —r peoplenotto serve on a committee (where, obviously, it doesn’t matter what
order you choose peoptetto serve).

4 Binomial Theorem

Theorem 4.1.For n > 0 and an integer, we have

e = 3 (1) )

k=0

Exercise 4.2.Using Exercise 3.2, show we may also write the binomial theorem
in the form

e = 3 ()t @

k=0

Proof. When we expandr + y)", we haven factors. From each, weitherchose
to take anc or we choose to take@ obviously, we cannot do both. As there are
terms, and we have a binary choice each time, therg"ailerms when we expand.
Many, however, will have the same powersiadindy, and we can amalgamate.
The reason is multiplication is commutative, andyzyy = yyrryr = x3y°.
Clearly, we can never see a powenafreater tham or less thard), and similarly
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for y. Moreover, however many powers gfwe choose, say, determines the

power ofx. There aren factors. If we choosg from exactlyk factors, then we

must choose: from the remaining: — £ factors Thus, all terms are of the form
" *y*, and we have, for some coefficients:, n) (depending om andk), that

(x+y)" Zakn n=kyk, 9)

The proof is completed by showingk,n) = (Z) The factor in front of
z"Fy* is simply the number of ways of choosing a factoryoéxactly & times
and a factor ofr exactlyn — k times. Thus, of the: factors, we need to know
how many ways can we choogefactors (to give ugs). This is an unordered
counting problem — we don’t casghatorder we chose the factors, we just care
how many ways can we choogdactors. This is jus(’,j), which completes the

proof.
O

Remark 4.3. Note that choosing factors to bey is equivalent to choosing — &
factors to ber; using () = (", ). one finds the same expansion.

Exercise 4.4.Let k, n be non-negative integers with< n. Prove (Z) < 2" Ifn
is odd, one can improve on this and sh(ilg/)! < on-th



