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Abstract
We give a quick introduction to binomial coefficients, and prove the bi-

nomial theorem.

1 Definitions

Recall the factorial function:

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1. (1)

For the factorial function, we assumen is a non-negative integer (ie, either
zero or a positive integer). We define0! to be 1. This is a convenient choice, and
simplifies many formulas. The factorial function can be analytically continued to
a new function which agrees with the old on the non-negative integers, but makes
sense for all complex numbers!

We define the following combinatorial quantities:(
n

r

)
=

n!

r!(n− r)!
, 0 ≤ r ≤ n (2)

and

P (n, r) =
n!

(n− r)!
, 0 ≤ r ≤ n. (3)

In some books, one often encountersC(n, r) for
(

n
r

)
. TheC stands for Com-

binations (order doesn’t count), and theP stands for Permutations (order counts).
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2 Permutations: P (n, r)

P (n, r) is the number of ways of choosingr objects fromn, when order matters.
Obviously, we should have1 ≤ r ≤ n – we can’t choose more objects than there
are objects!

How many ways are there to choose zero objects? There is just one way to
choose nothing, and noteP (n, 0) = n!

n!
= 1.

How many ways are there to choose one object, when order matters? There
aren objects, once we choose 1 object we are done. Thus,P (n, r) = 1. Note

n!
(n−1)!

= n.
How many ways are there to choose two objects, when order matters? There

aren choices for the first object, and then there aren− 1 people objects available
for the next slot. We now choose one of them. Thus, there aren(n − 1) ways to
choose two objects so that order matters. Note again that this isn!

(n−2)!
.

Continuing in this way, what if we want to chooser objects, with order count-
ing? For example, the first person chosen is the president, the second is the vice
president, the third the treasurer, and so on. There aren choices for the first po-
sition. We now haven − 1 people left, and choose one of these people for the
second position – there aren − 1 ways of doing this. We now haven − 2 people
left, and we choose one for the third position – there aren− 2 ways of doing this.
Finally, we come to the last choice. There aren − (r − 1) people left (we have
chosenr − 1 people), and there aren − (r − 1) ways of choosing someone from
n− (r − 1) people.

Thus, we find

P (n, r) = n · (n− 1) · · · (n− (r − 1)). (4)

Multiply the above by(n−r)!
(n−r)!

. The numerator becomesn!, the denominator
(n− r)!.

We have therefore proved

Lemma 2.1. P (n, r) = n!
(n−r)!

is the number of ways to chooser people fromn
people, when order matters.

3 Combinations:
(
n
r

)
We now ask a harder question – how many ways are there to chooser people
from n people, where it doesn’t matter whatorder we choose ther people. All
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that matters is who is chosen, and who isn’t.
This is similar to forming committees. Often everyone on a committee has an

equal vote.
We first consider an easier problem: let us assume we haver different po-

sitions (president, vice president, treasurer, et cetera), so that we now have an
orderedproblem. How many ways can we chooser people fromn people to sit
on thisorderedcommittee?

This is exactly whatP (n, r) is! Thus, there areP (n, r) ordered committees
of r people chosen fromn people.

Given an ordered committee with peopleA1, . . . , Ar, how many ways can I
re-order the committee? For example, initiallyA1 might be president, andA2 the
vice president, and so on.

We can think of this as there beingr boxes, labelled president, vice president,
treasurer, and so on. We then need to put a person in each box (each person can
be used just once). Well, there arer choices of a person to put in the first box
(president box), then there arer − 1 choices of a person to be in the second box
(vice president box), all the way down to there is just 1 person left for the last box.

Thus, given an ordered committee ofr people, we find there arer! re-orderings
or re-arrangements of that committee. As the people are distinct, no two of these
ordered committees will be the same.

Thus, let
(

n
r

)
denote the number of ways of choosingr people fromn, when

orderdoesn’tcount. Each choice ofr people can then be made intor! ordered
committees. All these ordered committees are different. Further, two different
choices ofr people (where order doesn’t count) cannot give rise to the same or-
dered committee – as order doesn’t count, there must be at least one person in one
set that is not in another.

For example, we could choose two different unordered committees containing
people{A, B, D} in one case, and{A, C,D} in the other. As personB is in
the first unordered committee, all ordered committees from this set will haveB
serving; sinceB is not in the second unordered committee, none of those ordered
committees will containB.

Claim 3.1. (
n

r

)
· r! = P (n, r). (5)

Proof. We know there areP (n, r) ordered committees. We can enumerate all the
ordered committees as follows: first, choose ther people who will serve on the
committeewithout specifying who is serving in which position. By definition,

3



there are
(

n
r

)
ways to do this.Then, for each unordered committee ofr people,

there arer! different ordered committees. Thus, the total number of ordered com-
mittees is also

(
n
r

)
· r!, as claimed.

We can now solve for
(

n
r

)
:

(
n

r

)
· r! = P (n, r)(
n

r

)
=

P (n, r)

r!

=
n!

r!(n− r)!
. (6)

Exercise 3.2.Prove
(

n
r

)
=

(
n

n−r

)
. Interpret this as the number of ways of choosing

r people to serve on a committee (order doesn’t count) is equivalent to choosing
n−r peoplenot to serve on a committee (where, obviously, it doesn’t matter what
order you choose peoplenot to serve).

4 Binomial Theorem

Theorem 4.1.For n ≥ 0 and an integer, we have

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (7)

Exercise 4.2.Using Exercise 3.2, show we may also write the binomial theorem
in the form

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k. (8)

Proof. When we expand(x+ y)n, we haven factors. From each, weeitherchose
to take anx or we choose to take ay; obviously, we cannot do both. As there aren
terms, and we have a binary choice each time, there are2n terms when we expand.
Many, however, will have the same powers ofx andy, and we can amalgamate.

The reason is multiplication is commutative, andxxyxyy = yyxxyx = x3y3.
Clearly, we can never see a power ofx greater thann or less than0, and similarly
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for y. Moreover, however many powers ofy we choose, sayk, determines the
power ofx. There aren factors. If we choosey from exactlyk factors, then we
must choosex from the remainingn − k factors Thus, all terms are of the form
xn−kyk, and we have, for some coefficientsa(k, n) (depending onn andk), that

(x + y)n =
n∑

k=0

a(k, n)xn−kyk. (9)

The proof is completed by showinga(k, n) =
(

n
k

)
. The factor in front of

xn−kyk is simply the number of ways of choosing a factor ofy exactlyk times
and a factor ofx exactlyn − k times. Thus, of then factors, we need to know
how many ways can we choosek factors (to give usys). This is an unordered
counting problem – we don’t carewhatorder we chose thek factors, we just care
how many ways can we choosek factors. This is just

(
n
k

)
, which completes the

proof.

Remark 4.3. Note that choosingk factors to bey is equivalent to choosingn− k
factors to bex; using

(
n
k

)
=

(
n

n−k

)
, one finds the same expansion.

Exercise 4.4.Letk, n be non-negative integers withk ≤ n. Prove
(

n
k

)
≤ 2n. If n

is odd, one can improve on this and show
(

n
k

)
≤ 2n−1.
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