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Chapter 1

Algebraic and Transcendental
Numbers

Definition 1.0.1 (Algebraic Number). o € C is an algebraic number if it is a
root of a polynomial with finite degree and integer coefficients.

Definition 1.0.2 (Transcendental Number).« € C is a transcendental number
if it is not algebraic.

Thus, a transcendental number is a number that does not satisfy any poly-
nomial equation with integer coefficients. Fortunately primitive man must have
thought that every number is algebraic otherwise the development of mathematics
would have suffered greatly. But transcendental numbers do exist. The mere exis-
tence of such numbers was a puzzling problem for hundreds of years. Remember
that back in the Pythagorean era the existence of irrational numbers was quite a
devastating event. The existence of transcendental numbers, however, must have
brought a sense of relief to the mathematical psyche. For one, the transcendence
of a certain numbery, settled the long-standing problem of proving the impossi-
bility of squaring a circle. Also, it showed that the theory of equations is simply
not enough, and hence it opened the door for the development of other branches of
mathematics. The purpose of this chapter is to prove the existence of transcenden-
tal numbers. While it is possible to write down explicit examples of transcenden-
tal numbersd, =, etc!), we prefer to show the existence using a different method.
Here we will use Cantor’s ingenious counting argument. The basic idea is to show
that there are a lot more real numbers than there are algebraic numbers. This will
then show that there must be a left-over set, entirely consisting of transcendental
numbers. We will see from the proof, that are a lot more transcendental numbers
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than there are algebraic ones; in fact, if one chooses a random number, the chance
of it being transcendental is effectively one hundred percent!

1.1 Definitions and Cardinalities of Sets

1.1.1 Definitions

A function f : A — B is one-to-one(or injective) if f(z) = f(y) impliesz = y;
f is onto (or surjective) if given any € B, 3a € A with f(a) = b. A bijection
is a one-to-one and onto function.

We say two sets! and B have the same cardinality(ie, are the same size) if
there is a bijectiorf : A — B. We denote the common cardinality by| = | B|.
If A has finitely many elements (sayelements)A is finite and|A| = n < oo.

Exercise 1.1.1.Show two finite sets have the same cardinality if and only if they
have the same number of elements.

Exercise 1.1.2.If f is a bijection fromA to B, prove there is a bijectiop = !
from B to A.

Exercise 1.1.3.SupposeA and B are two sets, and suppose we have two onto
mapsf : A — Bandg : B — A. Then show thatd| = |B|. NOT AS EASY AS
IT SEEMS

Exercise 1.1.4.A setA is called infinite if there is a one-to-one mgp A — A
which is not onto. Using this definition, show that the $étand Z are infinite
sets. In other words, prove that an infinite set has infinitely many elements.

Exercise 1.1.5.Show that the cardinality of the even integers is the same as the
cardinality of the integers.

Remark 1.1.6. The above example is surprising to manyAYBE ADD RE-
MARK HERE ABOUT COUNTING INTEGERS UP TO X, AND LOOKING
AT LIMITS .

A is countableif there is a bijection betweeA and the integer&. A is at
most countableif A is either finite or countable.

Exercise 1.1.7.Let z,y, z be subsets oK (for example, X = Q,R,C,R", et
cetera). DefineR(x,y) to be true if|x| = |y| (the two sets have the same cardi-
nality), and false otherwise. Prove is an equivalence relation.
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1.1.2 Countable Sets

We show that several common sets are countable. Consider the set of whole num-
bersW = {1,2,3,...}. Definef : W — Z by f(2n) =n—1, f2n+1) =
—n — 1. By inspection, we seg gives the desired bijection betwe8handZ.

Similarly, we can construct a bijection fromto Z, whereN = {0,1,2,... }.

Thus, we have proved

Lemma 1.1.8.To show a sef is countable, it is sufficient to find a bijection from
S to eitherW or N.

We need the intuitively plausible
Lemma 1.1.9.1f A C B, then|A| < |B|.

Definition 1.1.10.If f : A — C'is a one-to-one function (not necessarily onto),
then|A| < |C|. Further, ifC C A, then|A| = |C]|.

Exercise 1.1.11 Prove Lemmas 1.1.9 and 1.1.10.
If AandB are sets, theartesian product A x Bis{(a,b):a € A,b € B}.
Theorem 1.1.12.1f A and B are countable, soigl U B andA x B.

Proof. We have bijectiong : N — A andg : N — B. Thus, we can label the
elements ofd and B by

A = {ao,al,ag,ag,...}
B = {by,bi,bs,bs,...}. (1.1)

AssumeANnB is empty. Definér : N — AUB by h(2n) = a, andh(2n+1) =
b,. We leave to the reader the case when B is not empty.
To prove the second claim, consider the following functionN — A x B:



h(an +1) = (an, bo), h(n* +2) = (an,bp_1), - - -,
h(n® 4+n+1) = (an, bn), h(n* + n+2) = (an_1,bp), ...,
h((n+1)%) = (ao, by)

(1.2)

Basically, look at all pairs of integers in the first quadrant (including those on
the axes). Thus, we have pairs., b,). The above function starts at0, 0), and
then moves through the first quadrant, hitting each pair once and only once, by
going up and over. Draw the picture!
0

Corollary 1.1.13. Let A; be countable/i € N. Then for anyn, A, U---U A,
andA; x --- x A, are countable, where the last set is altuples(a, . .., a,),
a; € A;. Further, U® A, is countable. If eacq; is at most countable, then
U, A; is at most countable.

Exercise 1.1.14.Prove Corollary 1.1.13. Hint: fotu$2,A;, mimic the proof used
to showA x B is countable.

As the natural numbers, integers and rationals are countable, by taking each
A; = N, Z or Q we immediately obtain

Corollary 1.1.15. N, Z" andQ™ are countable. Hint: proceed by induction. For
example writeQ"*! asQ" x Q.

Exercise 1.1.16.Prove that there are countably many rationals in the interval
[0, 1].
1.1.3 Algebraic Numbers

Consider a polynomigf(x) with rational coefficients. By multiplying by the least
common multiple of the denominators, we can clear the fractions. Thus, without
loss of generality it is sufficient to consider polynomials with integer coefficients.
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The set ofalgebraic numbers A, is the set of alkk € C such that there is a
polynomial of finite degree and integer coefficients (depending,asf course!)
such thatf(z) = 0. The remaining complex numbers are thenscendentals

The set ofalgebraic numbers of degreen, A, is the set of alk: € A such
that

1. there exists a polynomial with integer coefficients of degremich that

f(z) =0

2. there is no polynomia} with integer coefficients and degree less than
with g(z) = 0.

Thus, A, is the subset of algebraic numbersvhere for eachx € A, the
degree of the smallest polynomiabith integer coefficients andl(z) = 0 is n.

Exercise 1.1.17.Show the following are algebraic: any rational number, the
. . D
square-root of any rational number, the cube-root of any rational number,

wherer,p,q € Q,i = v/—1, v/3v2 — 5.
Theorem 1.1.18.The algebraic numbers are countable.

Proof. If we show each4,, is at most countable, then as= U2 , A,,, by Corol-
lary 1.1.134 is at most countable.

Recall theFundamental Theorem of Algebra (FTA): Let f(x) be a poly-
nomial of degree: with complex coefficients. Thelfi(z) hasn (not necessarily
distinct) roots. Of course, we will only need a weaker version, namely that the
Fundamental Theorem of Algebra holds for polynomials with integer coefficients.

Fix ann € N. We now showA,, is at most countable. We can represent every
integral polynomialf(xz) = a,2" + --- + ao by an(n + 1)-tuple (ao, . .., a,).

By Corollary 1.1.15, the set of alh + 1)-tuples with integer coefficient&( )
is countable. Thus, there is a bijection franto Z"*!, and we can index each
(n + 1)-tuplea € Z"*:

{a:aczZ"} = U{ai}, (1.3)

where eachy; € Z"*!.

For each tupley; (or a € Z"1), there aren roots. LetR,, be the roots of the
integer polynomial associatedd. The roots ink,,, need not be distinct, and the
roots may solve an integer polynomial of smaller degree. For exarfiple,=
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(x2 —1)*is a degre® polynomial. It has two roots; = 1 with multiplicity 4 and
x = —1 with multiplicity 4, and each root is a root of a degrepolynomial.
Let R, = {x € C: zis aroot of a degree polynomiall. One can show that

R, = | JRa D An (1.4)
i=1

By Lemma 1.1.13R,, is countable. Thus, by Lemma 1.1.9, &s is at most
countable A,, is at most countable.

Therefore, eactq,, is at most countable, so by Corollary 1.1.243s at most
countable. As4; > Q (given§ € Q, considergz — p = 0), A, is at least
countable. As we've showA, is at most countable, this implie$; is countable.
Thus, A is countable.

O

Exercise 1.1.19.Show the full force of the Fundamental Theorem of Algebra is
not needed in the above proof; namely, that it is enough that every polynomial
have finitely many roots.

Exercise 1.1.20.ProveR, D A,.

1.1.4 Transcendental Numbers

A set isuncountableif there is no bijection between it and the rationals (or the
integers, or any countable set). The aim of this paragraph is to prove the following
fundamental theorem:

Theorem 1.1.21.The set of all real numbers is uncountable.
We first state and prove a lemma.

Lemma 1.1.22.LetS be the set of all sequencesg);cn Withy; € {0,1}. ThenS
IS uncountable.

Proof. We proceed by contradiction. Suppose there is a bijectiol — N. It



is clear that this is equivalent to giving a list of the elementsSof

r1 = T11T12713%14 " * -
To = T21X22T23T24 " "
T3 = T31T32X33TL34 " " *
Tpn = Tp1Tn2Tn3Tpg - Tpp """

(1.5)

Define an elemen{ = (&;)ien € S by § = x4, and another elemeidt =

(1—¢&;)ien- Now the elemeng cannot be in the list; itis naty becausé —x vy #
INN! OJ

Proof of the theoremConsider all those numbers in the inter{all] whose dec-
imal expansion consists entirely of numbérg. Clearly, there is a bijection be-
tween this subset & and the seS. We have established th&tis uncountable.
ConsequentlR has an uncountable subset. This gives the theorem. O

The above proof is due to Cantadr’(3 — 1874), and is known a£antor’s
Diagonalization Argument. Note Cantor’'s proof shows thatostnumbers are
transcendental, though it doesn’t tell which numbers are transcendental. We

can easily show many numbers (such+a8 + 2%\/7) are algebraic. What of
other numbers, such asande?

Lambert (761), Legendre {794), Hermite (1873) and others proved irra-
tional. In1882 Lindemann proved transcendental.

What aboute? Euler (737) proved thate ande? are irrational, Liouville
(1844) provede is not an algebraic number of degze&nd Hermite (873) proved
e is transcendental.

Liouville (1851) gave a construction for an infinite (in fact uncountable) family
of transcendental numbers; we will discuss his construction later.

1.1.5 Continuum Hypothesis

We have shown that there are more transcendental numbers than algebraic num-
bers. Does there exist a subse{®fl] which is strictly larger than the rationals,
yet strictly smaller than the transcendentals?

Cantor’s Continuum Hypothesis says that there are no subsets of intermediate
size.



The standard axioms of set theory are known as the Zermelo-Fraenkel axioms
(note to the expert: often the Axiom of Choice is assumed, and we talk ef ZF
Choice).

Kurt Gédel showed that if the standard axioms of set theory are consistent, so
too are the resulting axioms where the Continuum Hypothesis is assumed true;
Paul Cohen showed that the same is true if the negation of the Continuum Hy-
pothesis is assumed.

These two results imply that the Continuum Hypothesis is independent of the
other standard assumptions of set theory!

1.2 Properties ofe

In this section, we study some of the basic properties of the numié&ne of the
many ways to define the numberthe base of the natural logarithms, is to write
it as the sum of the following infinite series:

1
= ~ (1.6)
n=1
Now, let us denote the partial sums of the above series by
= L 1.7
Sm=) (1.7)
n=1

Hencee is the limit of the convergent sequengg. This idea will be the main
tool in analyzing the nature ef

Theorem 1.2.1 (Euler, 1737).The numbee is irrational.

Proof. Assume that € Q. Then we can writee = § wherep, ¢ are positive
integers.



Now,

=1
€ — Sm = Z m

n=m+1
1

1 1
" (m+ 1) {1+m+1+(m+1)(m+2)+'“}

1 1 1 1
< 1
(m—i—l)!{ +m+1+(m+1)2+(m+1)3+ }
1 1 1
= = (1.8)

Hence we obtain

1
0<e—s, < ——. (2.9)
m!m

In particular, takingn = ¢ we get:

1
0 < e—-s, < ]
0 < qle—¢qls;, <1 (1.10)

which is clearly impossible since the left hand side of the last equation, namely
q'e — q!s4, would have to be an integer between 0 and 1. This contradicts our
assumption that was rational. O

1.2.1 eis Transcendental

Here we prove the following beautiful fact:
Theorem 1.2.2 (Hermite,1873).The numbee is transcendental.

Proof. The proof is again by contradiction. Assume thas algebraic. Then it
must satisfy a polynomial equation

X"+ ...+ X +ay=0 (1.11)

whereay, ay, .., a,, are integer numbers, and we can assume without loss of
generality thatg, a,, # 0.
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Now consider a polynomigi(X') of degree-, and associate to it the following
linear combination of its derivatives:

F(X) = f(X)+ f(X) + ... + fUX) (1.12)
Now, the polynomialF’(X') has the property that

dilx (e F(z)] = e " f(a). (1.13)

As F(X) is differentiable, applying the Mean Value Theorenzté /(X ) on
the intervall0, k] for k£ any integer gives
e *F(k) — F(0) = —ke “ f(c;,), forsome c; € (0,k), (1.14)
or, equivalently

F(k) — " F(0) = —ke*~ f(cy) =: €. (1.15)

Now, if we plug in the previous equation the values- 0, 1, ..., n we get the
following system of equations:

F(2) — 2F(0) = —2e*"2 f(cy) =: € (1.16)

F(n)—e"F(0) = —ne" " f(c,) =: €,

We multiply the first equation by, the second by, ..., the(n + 1)* by
a,. Adding the resulting equations gives

Z apF (k) — (Z akek) F(0) = Z A€ (1.17)

k=0 k=0 k=0
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Notice that on the left hand side we have exactly the polynomial equation that
is satisfied by:

> agek = 0; (1.18)
k=0
hence Equation 1.17 reduces to
> arF(k) =) are. (1.19)
k=0 k=0

So far we had complete freedom in our choice'pand the previous equation
always holds for its associafé. In what follows we choose a special polynomial
f in order to reach a contradiction.

Take a large prime, large enough such that> |ao| andp > n. Let f equal

fX) = =X (= XPR =X (= X
= % _1 ol ((n!)”Xp‘1 + higher order term)s (1.20)

Though it plays no role in the proof, we note that the degregief

deg(f) =r=n+1)p—1. (1.21)

In what follows we make a number of remarks which will help us finish the
proof. By pZ we mean the set of integer multiples;of

Remark 1.2.3.Fori > p, f@(j) € pZ,Vj € N.

Proof. Differentiate Equation 1.20 > p times. The only terms which survive
bring down at least @!. As each term off (x) is an integer ovefp — 1)!, we see
that all surviving terms are multiplied by O

Remark 1.2.4.For0 <i < p, fP(j) =0,j =1,2,..,n.

Proof. The multiplicity of a root of a polynomial gives the order of vanishing of

the polynomial at that particular root. As= 1, 2, ..., n are roots of multiplicity
p, differentiating f () less tharp times yields a polynomial which still vanishes
at thesegy. H
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Remark 1.2.5.Let F" be the polynomial associated fo ThenF'(1), F(2),..., F(n) €
pZ.

Proof. Recall thatF'(5) = f(j) + f'(j) + .. + f7(j). By the first remarkf®5)
is a multiple ofp for i > p and any integeyj. By the second remark,() () = 0
for0 <i<pandj =1,2,...,n. Thus,F(j) is a multiple ofp for thesej. [

Remark 1.2.6.For0 <i <p— 2, f®(0) = 0.

Proof. Similar to the second remark, we note thfé&t(0) = 0 for 0 <i < p — 2,
becausé is a root of f (x) of multiplicity p — 1. O

Remark 1.2.7. F(0) is not a multiple op.

Proof. By the first remark,f?(0) is a multiple ofp for i > p; by the fourth
remark,f®(0) = 0 for 0 <4 < p — 2. Since

F(0) = f0)+ f/(0) 4 -+ fP=2(0) + fC~D(0) + fP(0) +- - -+ f)(0), (1.22)

to prove F(0) is a not multiple ofp it is sufficient to provef®=1(0) is not
multiple of p (as all other termare multiples ofp).
However, from the Taylor Series expansionfah Equation 1.20, we see that

fPU0) = (n)? + (terms that are multiples q»f). (1.23)
Since we chosg > n, n! is not divisible byp, proving the remark. ]

We resume the proof of the transcendence. of
We also chose such thatag is not divisible byp. This fact plus the above
remarks imply first thap -, a, F'(k) is an integer, and second that

n

> " arF(k) = agF(0) # 0 modp. (1.24)
k=0

Thus,) ", a,F(k) is a non-zero integer.
Let us recall equation 1.19:

n

Z arF (k) = are; + -+ + anéy. (1.25)

k=0

13



We have already proved that the left hand side is a non-zero integer. We ana-
lyze the sum on the right hand side. We have

_kek—ckcifl(l — )P (n—cp)P

€ = —k:ek_c’“f(ck) = (p _ 1>1 (126)
As 0 < ¢, < k < n we obtain
eFLr(1-2...n)P
o < ( )
(p—1)!
n [ P
% 0 as p— oo (1.27)

Now recall thatn is fixed, and so are the constants. . . , a,, (they define the
polynomial equation supposedly satisfiedd)yand the only thing that varies in
our argument is the prime numberHence, by choosing a prime numbelarge
enough, we can make sure thatals are uniformly small, in particular we can
make them small enough such that the following holds:

n
E A€
k=1

To be more precise, we only have to chopseich thap > n, |ag| and:

<1 (1.28)

e™(nln)P _ 1
(P=D! 2o lax|
In this way we reach a contradiction in the identity 1.19 where the left hand

side is a non-zero integer, while the right hand side is a real number of absolute
value< 1. [

(1.29)

Exercise 1.2.8.In the above proof, we assumeg a,, # 0. Prove that if a non-
zero number is algebraic, one can always find a polynomial such that the leading
term and the constant term are both non-zero.

Exercise 1.2.9.For fixedn, prove thatap — oo, E;'fl); — 0. Hint: LetC = n!n.
Choosey > 2(2C)*. Then(p—1)! > (p—1)(p—2)--- (p— &) ~ ()%. Substitute

2
and compare.
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1.3 Properties of Algebraic Numbers

Let o and 3 be two algebraic numbers. Is their sum algebraic? Is their product?
What about a general linear combination? What if both are transcendental?

1.3.1 Symmetric Polynomials

Consider the sefl, ..., n}. There arex! ways to permute the elements (where
order counts). Let denote one of these permutations. THug,1),...,0(n)} is
the same set afl, ..., n}, with the elements (possibly) in a different order. Let
the group of permutations dfl, ..., n} be denoted,,, where the product of two
permutations is given by composition.

Definition 1.3.1 (Symmetric Functions).Let f : R* — C and letc be any
permutation of the sefl,... ,n}. Thenf is symmetric if for any permutation
oesS,,

fl@1, @0, Tne1,%0) = f(Zo(1), To@@), - - - To(no1), To(n))- (1.30)
Forn = 2, there are two possible permutations, and we have

f(x1,22) = f(22,21). (1.31)
Forn = 3, there are six possible permutations, and we have

f(xr, 20, 23) = f(x1, 23, 22) = f(02, 21, 23) = f(22, 23, 71) = f(23, 21, 22) = f(23,22,71).
(1.32)

Example 1.3.2.For examplef(z1,22) = 125 OF 2L 4 22 Or x{ + x3 are sym-
metric, butf (z1, z2) = 23z, is not.

If we haven = 2, we often denote the variables byandy instead ofr; and
ZI9.
In two variables, there are two basic symmetric polynomials:

1. o1 =o01(z,y) =z +y.

2. 09 = 09(x,y) = xY.
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Theorem 1.3.3.Let f(z,y) be a symmetric polynomial in two variables. Then
f(z,y) can be expressed in termsafandos.

For example,
?+y’ = ai(x,y) — 20a(z,y)
yr* +xyt = oa(x,y) - (ol(z,y) — 301(x,y)oa(z,y)) . (1.33)

1.3.2 Needed Lemmas

Definition 1.3.4 (Zero Polynomial). A polynomialf is the zero polynomial if it
has no non-zero terms. In other wordsfifs a function ofz4, . . ., x,, it contains
no monomials’zy" - - - a2,

n

Lemma 1.3.5.Let f(x, y) be a polynomial with at least one non-zero term. Then
f(z,y) is not identically zero. Equivalently, jf(z,y) = 0 for all complexz and
y, f(z,y) is the zero polynomial.

FROM REVIEWER: FOR ANY INFINITE FIELD K, AN ELEMENT
OF K(X1,...,XN) IS IDENTICALLY ZERO IF IT ONLY TAKES ZERO VAL-
UES. BY INDUCTION IT'S ENOUGH TO PROVE FOR N=1, WHICH IS
OBVIOUS.

Proof. Without loss of generality, we can assume there is at least one term con-
taining a power ofr, sayx®. We collect terms where has the same degree, and
write f(x,y) as

flwy) = gy, (1.34)
=0

where eacly;(y) is a polynomial iny of finite degree (not necessarily the same
degree for each). Clearly,g,(y) is not the zero polynomial (if it were, it would
contradict our assumption that we have a tefin

By the Fundamental Theorem of Algebra, a polynomial in one variable with
complex coefficients of degree has at mostn roots. Thus, there are only finitely
manyy such thay,(y) = 0. Choosey, such thaty,(y,) # 0. Then

F(z) = f(z,50) = Zg(yo)xi (1.35)
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is not the zero polynomial, ag (yo) # 0. Therefore,F'(x) is a finite polyno-
mial of degree at least By the Fundamental Theorem of Algebra(z) equals
zero at most finitely often; thereforé)(x) is not identically zero, which implies
f(z,y) is not identically zero.
0

Lemmal.3.6.Letf(x,...,z,) have atleast one non-zero term. Thén,, ..., x,)
is not the zero polynomial. Equivalently fifzy, ..., x,) = 0forall (xq,...,z,),
thenf is the zero polynomial.

The proof is by induction. The Fundamental Theorem of Algebra does the
case where we have just one variable; we did two variables above. The general
case is handled similarly. Briefly, we may assume without loss of generality that
there is a term containing a powerof, sayz{. We may write

N
flxe, ..., z,) = Zgi(mg,...,xn)x’i. (1.36)
=0
ga(x2, ..., z,)is not the zero polynomial (otherwise we would not have:gn
by the inductive assumption (singgis a function ofn — 1 instead of: variables),
there is a tupléxy, . . ., x,0) such thaty, (za, . . ., o) # 0.
We form
N
F(I) = f(.fEl, 20, - - - ,;Cno) = Zgi(l'zo, Ce ,Q?no)l'l. (137)
=0

The rest of the proof is as before.

Lemma 1.3.7.If a symmetric polynomial contains a ter@u“y®, then it must
contain the ternCz%y°.

Clearly, we only need to check when# b.

Assumef(x,y) is symmetric, sof (z,y) = f(y,x). Assume for some and
b, Cx%y® occurs inf (z, y) but Cz’y* does not. Thelw'zby* occurs inf(y, =) but
Cz%y" does not.

Hence, if we look aff (z, y) — f(y, ), we see the terr@'z?y® — Cz’y® occurs.
Hence,f(z,y) — f(y,z) is notthe zero polynomial.

By Lemma 1.3.5f(z,y) — f(y,x) cannot be identically zero, which contra-
dicts f(z,y) = f(y,x) (as we assumeflwas symmetric)[
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Remark 1.3.8.0ne could have defined symmetric polynomials slightly differently.
Namely, we could say a polynomiéz, y) is symmetric if wheneveft contains a
term C'z%°, it contains a termC'z’y®. For polynomials with variables i, the

two definitions are equivalent. Consider, however, the following:

2miy(z3+1) 2miz(y+1)3

flz,y) = e 5 4+e s | x,y€l. (1.38)
Thenf(z,y) = f(y,z) for all z,y € Z, but the two terms look different.

1.3.3 Proof of Theorem 1.3.3

The following is due to Newton. We proceed by induction on the number of terms
of the symmetric polynomiaf.

By Lemma 1.3.7, if a symmetric polynomial contains a tefty®, then it
must contain the terr@’z’y°.

Thus, the polynomial must contairtr®y® 4+ Czby¢; if we subtract this expres-
sion from the original polynomial, the remaining polynomial will still be symmet-
ric, and it will have fewer terms.

Thus, it is sufficient to prove that we can expresg® + z%y* in terms of

o1(z,y) andos(z,y).
Suppose: > b. Then

l_ayb _’_:L,bya — xbyb(xa—b +ya—b)
= opw,y)" (@ +y ). (1.39)
Thus, to complete the proof, it suffices to show

Lemma 1.3.9. Any polynomiak™ + y™ can be expressed in termsaf(x, y) and
0‘2(1', y)

We proceed by induction; the basis step- 1 is clear. We also note that for
n=2z*+y*= Ul($7y>2 — 209(z,y).
Look at

X-2)(X-y) = X —(z+yX+ay
= X?—oi(z,9)X + ooz, y). (1.40)

SettingX = z gives

18



0 = 22 — oy(z,y)x + oa(z, 7). (1.41)
Therefore, we find
2

xr = O-1<J:’ y)x - 0-2(1:7 y) (142)
Multiplying by x" yields

xn+2 = 01 (.Z', y)a: - 02(1’, y)ﬂf
n+2

y = o1z, y)y" — ooz, y)y", (1.43)

where the second line follows from the symmetryzodndy (we can apply
same type of argument with replaced withy, aso;(x,y) = o;(y, x)). Adding
the two equations above yields

"yt = oi(a,y) (2" ") = oo, y) (@ -y, (1.44)
By induction, we are done. Note that it was important to verifyrfoe 1 and

n = 2.

1.3.4 Theory for More Variables

There is a theory of symmetric polynomials in any number of variables.
The basic symmetric functions in three variables are

lL.o=x4+y+z

2. o9 =xy+ 22+ Y2,

3. 03 = xyz;

in four variables, the basic symmetric functions are
l.oyo=24+y+2+4t

2. 09 =2y + 2 + ot +yz + yt + zt;

3. 03 = yzt + z2t + xyt + vyz;
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4. o4 = xyzt.
The main result, which we will not prove, is

Theorem 1.3.10 (Newton).For eachn, there aren basic symmetric functions
o1,...,0, such that any symmetric polynomidican be expressed in termsaf
througho,. Furthermore, if P has rational coefficients, the expressionfoin
terms in thes; will have rational coefficients.

FROM REVIEWER: UTE PROOF OF THIS USING GALOIS THE-
ORY — SEE E. ARTIN’'S GALOIS THEORY

1.3.5 Applications

The formula
(X—2)(X—-y) = X*—(z4+y)X +ay
= X2 _Ul(x7y)X+O-2(x7y)7 (145)
generalizes to
(X—2) - X—-m,) = X"—o X" '+ +(-1)"0,X° (1.46)

If we have any polynomial with coefficients i@, it factors overC into a
product of linear factors (the Fundamental Theorem of Algebra).
Thus, if we take a polynomial with rational coefficients,

an X"+ an X"t X tag = an(X —ap) e (X — a,)(1.47)

where then; € C. A simple comparison combined with Newton’s theorem
implies

Lemma 1.3.11.Let oy, as, .. ., a,, be the solutions of an algebraic equation of
degreen with rational coefficients. Then every symmetric polynomial expression
with rational coefficients in terms of the will be a rational number.

This lemma has a number of interesting consequences.

20



Proposition 1.3.12.1f « and § are two algebraic numbers, then+ 3, o3, and
o/ will be algebraic numbers.

Proof. We will prove this fora 4+ 3; the others are similar. Lety,...,a,,
(61, ..., 08m, resp.) be all the roots of the algebraic equation satisfied ¥,
resp.). Consider the polynomial

H H (I — Qy — ﬁj)
1<i<n 1<j<m

Itis clear thatz —a— )| P(x). So our result will follow if we can show thdt(z)
has rational coefficients. The coefficients/ofz) are polynomials with integral
coefficients in terms of the; and thes;. Also they are separately symmetric in
each set of the variables. The lemma then gives the result. O

Exercise 1.3.13.Complete the details of the proof.

Proposition 1.3.14. A number that satisfies an equation with algebraic coeffi-
cients (not necessarily rational) is algebraic.

Proof. Suppose our equation is
A" + Ap12" 4 a4 ag = 0,

and suppose is a solution of this equation. We will find an equation with integral
coefficients that hag as a root. For this we proceed as follows. Take a typical
coefficient of the above equation, say Sinceu; is algebraic it will be the solution

of an equation

with b(7),’s rational. Letc(i)1, c(i)2, ..., c(i)n, be all the roots of this equation.
Notice that by definitior; is one of the-(7),;'s. Next we consider the product

ﬁ 11 (C(n)jnwn +e(n—1);, 2" e e()7 + C(O)jo>'

k=0 1<jx<my

This is an equation which has as a solution. Also it has rational coefficients!
This proves the claim. ]

Exercise 1.3.15.Fill in the missing steps.

Remark 1.3.16.The last two propositions imply that the set of algebraic numbers
is an algebraically closed field.

REVIEWER: PROBABLY WANT TO MENTION RESULTS ON AL-
GEBRAIC INTEGERS
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Chapter 2

Liouville’s Theorem Constructing
Transcendentals

2.1 Review of Approximating by Rationals

Definition 2.1.1 (Approximated by rationals to order n). A real numberz is
approximated by rationals to order if there exist a constarit(z) (possibly de-
pending onr) such that there are infinitely many ration;%\k/vith

x—g‘ < % 2.1)

Recall that Dirichlet’s Box Principle gives us, far¢ Q,

v — ]—9’ < 12 2.2)
q q

for infinitely many fraction%. This was proved by choosing a large parameter
@, and considering th@ + 1 fractionary partdqz} € [0,1) for ¢ € {0,...,Q}.
The box principle ensures us that there must be two diffefensay:

0<q1 <<Q (2.3)

such that bot{ ¢, =} and{¢.z} belong to the same interv%, %1), for some
0 < a < @ — 1. Note that there are exactly such intervals partitioningp, 1),
and(@ + 1 fractionary parts! Now, the length of such an intervaéiso we get
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{ar} — ()] < ~. (2.4)

Q
There exist integerg, andp, such that
{ar} = gz — p, {@r} = @ —p. (2.5)
Lettingp = p, — p; we find
1
(g2 — q1)x — p| < 0 (2.6)

Letg = ¢ — ¢1, 501 < ¢ < @, and the previous equation can be rewritten as

< —< = 2.7)

Now, letting @ — oo, we get an infinite collection of rational fractloriYs
satisfying the above equation. If this collection contains only finitely many dis-
tinct fractions, then one of these fractions, %?,ywould occur for infinitely many
choices); of @, thus giving us:

< —— =0, (2.8)

ask — oo. Thisimplies thatt = 2 € QQ. So, unless: is a rational number,
q0
we can find infinitely manyistinct rational number§ satisfying Equation 2.7.
This means that any real, irrational number can be approximated tororgde?
by rational numbers.

2.2 Liouville’s Theorem

Theorem 2.2.1 (Liouville’s Theorem). Let = be a real algebraic number of de-
green. Thenz is approximated by rationals to order at most

Proof. Let

f(X) = ap, X"+ a1 X + ag (2.9)

be the polynomial with coprime integer coefficients of smallest degree (mini-
mal polynomial) such that satisfies
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f(z) = 0. (2.10)
Note thatdeg z = deg f and the condition of minimality implies that(X)

is irreducible overZ. Further, a well known result from algebra states that a
polynomial irreducible ove¥. is also irreducible oveQ.

Remark 2.2.2. FROM REVIEWER: LET fi(z) = 2™ + b, 12" ' +--- + b, €
Q[z]. Then itis irreducible overQ with no rational roots. Clear the denomina-
tors to getf.

In particular, asf(X) is irreducible overQ, f(X) does not have any rational
roots. If it did, thenf (X) would be divisible by a linear polynomiak — 7). Let
G(X) = f((—f%) Clear denominators (multiply throughout by and letg(X) =
bG(X). Thendeg g = deg f — 1, andg(x) = 0. This contradicts the minimality
of f (we choosef to be a polynomial of smallest degree such tfiat) = 0).
Therefore,f is non-zero at every rational.

Let

M = sup |f'(2)] (2.11)

|z—x|<1

Let now§ be a rational such th%tz; — § < 1. The Mean Value Theorem

GIVE REF gives us that

r(2) -1 =7 (o - g)' <

wherec is some real number betweerand?; |c — x| < 1 for £ moderately
close toz.
Now we use the fact that(.X') does not have any rational roots:

z- L (2.12)
q

n n n—1 n
07&;‘(2):%(75) bty P a;f 4+ a0 (2.13)

The numerator of the last term is a nonzero integer, hence it has absolute value
at leastl. Since we also know thgt(z) = 0 it follows that

()| =Jr (5)| = e s L eag
q q q" q"
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Combining the equations 2.12 and 2.14, we get:

1 p'
— <M <l|lz-—-*= (2.15)
q" Maqg» q

whenevelz — 2| < 1. This last equation shows us thatan be approximated
by rationals to order at most For assume it was otherwise, namely thatn be
approximated to order + ¢. Then we would have an infinite sequence of distinct
rational numberg ? };~, and a constark(z) depending only om such that

x—]—?‘ =
q

_pi| _ k@)
qi CIZME .

Since the number% converge tar we can assume that they already are in the
interval (x — 1,z + 1). Hence they also satisfy Equation 2.15:

(2.16)

1 .
TSMP—&. (2.17)
q; qi
Combining the last two equations we get
1 Di k(x)
— < |jz—= 2.18
qu‘ o ’ qi Z‘nJré ’ ( )
hence
@ < Mk(x) (2.19)
and this is clearly impossible for arbitrarily largesincee > 0 andg; — oc.
O

Exercise 2.2.3.Justify the fact that if{%}izl is a sequence of rational approxi-
mations to ordern > 1 of z, theng; — oc.

Remark 2.2.4. So far we have seen that the order to which an algebraic number
can be approximated by rationals is bounded by its degree. Hence if a real, ir-
rational numbera ¢ Q can be approximated by rationals to an arbitrary large
order, themn must be transcendental! This provides us with a recipe for construct-
ing transcendental numbers.
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2.3 Constructing Transcendental Numbers

—m!
231 Y 10
The following construction of transcendental numbers is due to Liouville.

Theorem 2.3.1.The number

=1
T = ZW (2.20)
m=1

is transcendental.

Proof. The series defining is convergent, since it is dominated by the geometric
series) | 10%, In fact, the series converges very rapidly and it is this high rate of
convergence that will yield is transcendental.

Fix N large, and lek, > N. Write

n

Pn 1
— = — 2.21
an mz:l 10™! (2.21)
with p,,, ¢, > 0 and(p,,q,) = 1. Then{g—:}nzl IS @ monotone increasing
sequence converging ta In particular, all these rational numbers are distinct.

Not also thaty,, must divide10™, which implies

g < 10™. (2.22)
Using this, we get
Dn 1 - 1 1 1
0<z-— q_n - Z 10m' - 10(n+1)! (1 + 10n+2 + 10(n+2)(n+3) +--
m>n
2 _ 2
< 10+ (10n!)n+1
2 2
< o5 < g (2.23)

This gives an approximation by rationals of ord€rof x. SinceN can be
chosen arbitrarily large, this implies thatcan be approximated by rationals to
arbitrary order. We can conclude, in view of our previous remark 2.2.4 xteat
transcendental. O
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2.3.2 [10%,10%...]
Theorem 2.3.2.The number
y = [10",10%,. ] (2.24)
is transcendental.

Proof. Let 2= be the continued fraction ¢f0" - - - 10™']. Then

‘ Pn 1 1
Yy—— = =
an an;H-l Qn(a;l_t,_lqn + anl)
1 1
< o= e (2.25)

Sinceqr = angr—1 + qn-2, itimplies thatg, > g1 AlSO, gr11 = ar11Gn +
qr—1, SO we get

Bt e+ B2 < 1 (2.26)
dk dk
Hence writing this inequality fok = 1,--- ,n — 1 we obtain
=28 I Das+ 1) (0 + 1)
a1 q2 n—1
(1+ 1) (1+ ! )
f— —_— PR —_— a ... a’TL
aq Qp, !

< 2%y - --a, = 2"10M A

< 10" =a? (2.27)
Combining equations 2.25 and 2.27 we get:
Pn 1 1
— < —
‘ Gn anpr  aptt
1\2 1) 2
\e) “\a@
1



In this way we get, just as in the previous theorem, an approximatigrogf
rationals to arbitrary order. This proves thas transcendental.
O
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