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ABSTRACT. A Mersenne prime is a prime that can be writter2as- 1 for some prime

p. The first few Mersenne primes a3e7 and31 (corresponding respectively to= 2,

3 and5). We give some standard conditions prvhich ensure tha2? — 1 is prime,

and discuss an application to even perfect numbers. The proof requires us to study the
field Z/qZ[v/3], whereq # 3 is a prime.

1. INTRODUCTION

If n > 2anda”™ — 1is prime, we calk™ — 1 a Mersenne prime. For which integers
cana™ — 1 be prime? We take > 2 as ifn = 1 thena is just one more than a prime.
We know, using the geometric series, that

a"—1 = (a—1)(a" " H+a" P+ Fa+1). 1)

So,a—1 | a™—1 and therefore™ —1 will be composite unless— 1 = 1, or equivalently
unlesse = 2. Thus it suffices to investigate numbers of the f&m- 1.

Further, we need only examine the case.q@rime. For assume is composite, say
n = mk. Then2" = 2% = (2™)* and

=1 = (@ =1 = "= (@) @4+ (272427 +1). ()

So ifn = mk, 2" — 1 always has a factat™ — 1, and therefore is prime only when
2™ — 1 = 1. This immediately reduces " = 2, or simplym = 1. Thus, ifn is
composite2™ — 1 is composite.

Now we know we are only interested in numbers of the f@fm- 1; if this number is

prime then we call it a Mersenne prime. As it turns out, not every number of the form
2P — 1 is prime. For example&!t — 1 = 2047, which is23 - 89.

2. STATEMENT OF THELUCAS-LEHMER TEST

How do we determine which yield M, = 27 — 1 prime? An answer is the Lucas-
Lehmer test, which states thaf, is prime if and only ifM, | s,_2, where we recur-

sively define
4 ifi=0,
Si=1 , . (3)
We prove one direction of this statement, namely that}if| s,_,, then},, is prime.
We start by defining: = 2 — /3 andv = 2 + /3. Some immediate properties are

o u+v=4=sp,
e yv = 1, implying that(uv)* = u"v* = 1 (Souwv to any power equals one).
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We will show thats,, = «*™ + v*™), where we have defingds) = 2°. We shall see
later that this is a useful way to writg,. Two properties of(s) that we need are
° t(O) =1,
o t(s+ 1) =251 = 2(s).
We prove by induction that, = u!(™ + ¢!,

Base CaseClearly the base case is true, as we have already seen that' +v! = 4.

Inductive Case: Assumings,, = u‘(™ +v*™ we must show,, , ; = !0 4+ =
s2 — 2. To do this, we look at

Spt1 = si -2
S () 42 g
L 20 20 o) ) _ o )
But we already know that!™ ! = (yv)!™) = 1 and2t(n) = t(n + 1), so we have
Spp1 = D gttt g o9
wt ) 4 Ut(n+1)7 (5)

which shows that,, ; = u*"+1 4 ot

3. PROOF OF THELUCAS-LEHMER TEST

We prove one direction of the Lucas-Lehmer test. Specifically, we prove by contra-
diction that if M, |s,_» then}M,, is prime.

3.1. Preliminaries. We assume that,_; is divisible by A, but that)Z, is not prime.
By direct calculation we may assume that- 5. There is therefore an integé& > 1
such that

Spg = u'P7D 4072 — R, (6)
If we multiply both sides by:!?=2), we obtain
ut®=2) . (ut(p—2) + Ut(p—2)) = ) 41 = RM,, - utr=2) 7)
Subtracting one from each side gives
ute=1 — RM,, - ut=2 _ 1 (8)
We square both sides. As'*~Y)2 = ¢!(?), we obtain that
ut® = (RM,, - utP=2) _ 1)2. 9)

Note«') is not necessarily an integer.

Let us choose some prime factpr- 1 of M, such thaty < \/ﬁp or equivalently so
thatq® < M,. Does such g exist? There is no problem with assumipg- 1, but what
aboutg < \/M,? If M, = bc then eithe or ¢ is at most, /M, for if both were larger
then the product would exceed,. Note we are not claiming that< /M, just that
¢ < /M,

We use below the fact that# 3; we need; # 3 so that3 will have a multiplicative
inverse inZ/qZ. We are assuming > 5 (as the other cases can be handled by direct
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computation). Thus we may writgas4n + a, wheren is an integer and € {1, 3}.
Thus

M, = 2"-1

p
_ 24n+a -1

= 2.0 ]
— (24)77, .90 1
2% — 1 mod 3, (20)

since2* = 16 = 1 mod 3. If @ = 1 then2*™* — 1 = 1 mod 3, while if « = 3 then
24nte — 1 = 1 mod 3. Thus3 does not divideM,,, and we may assume that# 3
below.

The proof is completed by analyzing the ordendf) in the fieldZ/qZ[v/3], where
q is a prime dividing)/,. There are two different cases, depending on whether a3 not
is a square modulg. Note that if3 is a square modulg, then this field is actually just
Z7/qZ.

3.2. 3is not a square modulog. We finish the proof in the case thais not a square
modulog. This means that® — 3 does not have a root iti/¢Z, or equivalently that
t* — 3 isirreducible inZ/qZ.

Proof. Consider the ringZ/qZ[v3] = {a+bV3: a,b € Z/qZ}; note there arg?’
elements, ang® — 1 non-zero elements. Ag+# 3 is prime,Z/qZ is a field. Further,
7./qZ[\/3] is a field asy/3 is invertible inZ/qZ[v/3]; the inverse i$/3, whereb ¢
7./qZ is such thaBb = 1 mod ¢q. More generally, lep(t) = t*> — 3 € Z/qZ]t] be the
irreducible monic polynomial fot/3 overZ/qZ. Given anya + bv/3 € Z/qZ[+/3] with

a andb not both zero, consider the linear polynomjél) = a + bt. Thenp(t) andg(t)

are relatively prime (sincg(t) is monic and irreducible). Thus there are polynomials
such thath, (t)g(t) + ha(t)p(t) = 1; lettingt = /3 yields ki (v/3)g(v/3) = 1, so we
have found an inverse tgv/3) = a + b\/3, provingZ/qZ[+/3] is a field.

We may study the subset of elements with multiplicative inver&&gZ[v/3])". The
order of this multiplicative group ig*> — 1; thus by Lagrange’s theorem every element
x € 7/qZ[\/3] satisfiest” ~! = 1; note that here by equalswe mean with respect to
the multiplication operation df./qZ[+/3] (which includes multiplication modulg and

V313 =13).
From (7), we see that
u'?V = RM, - u'®? — 1 mod q. (11)
As q|M,, M, = 0 mod g. Therefore
uw'® ) = —1mod g. (12)
Similarly, looking at (9), we see that
u'?) = (RM,, - u'®=? — 1)? mod ¢, (13)

which implies that
u'® = (0—1)%2 = 1 mod q. (14)
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The order of an elementin our multiplicative group(Z/qZ[\/g])* is the smallest
positivek such thaty* = 1; we often denote this byrd(g). By Lagrange’s theorem,
k|q? — 1. Further, by (14) we know thatrd(u) | ¢(p).

We now show thatrd(u) is exactlyt(p). From (14) we see thatrd(u)|t(p). As
t(s) = 2%, if ord(u) # t(p) thenord(u)|t(p — 1). But if ord(u) dividedt(p — 1) then

u'*™Y = 1mod g, (15)

which contradicts (12). Thusd(u) = t(p) = 2P.
However, since the order of any element is at most the order of the group, we have

ord(u) = 2 < ¢*—-1 < M, = 2 —1, (16)

where the second inequality follows frogh < 1,,. We thus obtain the contradiction
2’ < P 1, (17)

which proves thaf\/, is prime. O

3.3. 3 is a square modulog. We finish the proof in the case thats a square modulo
q. This means thaf — 3 has a root irZ/qZ, or equivalently that®> — 3 factors into two
linear terms irZ/qZ. For example, ify = 13 thent* — 3 = (¢t — 4)(t — 9) mod q.

Proof. We now assume thatis a square modulg; for definiteness, lei? = 3. In §3.1
we showed that

u'®V = RM, - u!®? — 1 (18)
and

u'® = (RM, - u'®=» —1)2. (19)
Noteu'™ is not necessarily an integer. We may regard these equations mpdiing
so, we replace/3 with b. Reducing these equations modylgield

u'?™Y = —1modgq (20)
and
u'® = 1 mod gq. (21)
Arguing as in 83.2ord(u) = 27; the only difference is that now there are 1 non-zero
elements in our field./¢Z, and notg®> — 1. We therefore have
ord(u) = 2 < ¢—1 < M, = 2P -1, (22)

and this contradiction completes the proof. O

4. MERSENNEPRIMES AND PERFECTNUMBERS

Another interesting fact about Mersenne primes is their correspondence with perfect
numbers. Perfect numbers are integers whose proper divisors (all divisors except the
number itself) sum to the number. For exampgle= 1 +2 4+ 3 and28 = 1+ 2 +
4 4+ 7 + 14. There is a one-to-one correspondence between even perfect numbers and
Mersenne primes. While it can be shown that every even perfect number is of the form
(27 — 1) - 2P~ where2? — 1 is a Mersenne prime, we content ourselves with showing
that any number of the forrf2? — 1) - 27! is perfect wher2? — 1 is a Mersenne prime.
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Letq = 27 — 1 be a Mersenne prime; we show tlhat2?~! is perfect. We know that the
proper divisors break up into two disjoint sets:
{1,2,4,...,2°71}Y U {q,2q,4q,...,2""%¢}. (23)

So, using the geometric formula
" —1

Lot da™ = —, (24)
we see that the first set sums to
1+2+4+---+2p—1=2210__11 =21 = g, (25)
and the second set sums to
q+2q+4q+--+2"%q = q(1+2+44---+2"7?) = ¢ <%> = g(2'-1).
(26)

Thus the sum of the proper divisors is
q+q2t=1) = ¢+ 2 g—q = 27, (27)
proving that(2? — 1) - 27! is perfect.
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