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Abstract

We introduce enough group theory and number theory to analyze in detail certain problems in cryptology. In the
course of our investigations we comment on the importance of finding efficient algorithms for real world applica-
tions. The notes below are fromAn Invitation to Modern Number Theory, to be published by Princeton University
Press in 2006. For more on the book, see

http://www.math.princeton.edu/mathlab/book/index.html

The notes below are Chapter One of the book; as such, there are often references to other parts of the book.

Notation

1. W : the set of whole numbers:{1, 2, 3, 4, . . . }.
2. N : the set of natural numbers:{0, 1, 2, 3, . . . }.
3. Z : the set of integers:{. . . ,−2,−1, 0, 1, 2, . . . }.
4. Q : the set of rational numbers:{x : x = p

q , p, q ∈ Z, q 6= 0}.
5. R : the set of real numbers.

6. C : the set of complex numbers:{z : z = x + iy, x, y ∈ R}.
7. <z, =z : the real and imaginary parts ofz ∈ C; if z = x + iy, <z = x and=z = y.

8. Z/nZ : the additive group of integers modn: {0, 1, . . . , n− 1}.
9. (Z/nZ)∗ : the multiplicative group of invertible elements modn.

10. Fp : the finite field withp elements:{0, 1, . . . , p− 1}.
11. a|b : a dividesb.

12. (a, b) : greatest common divisor (gcd) ofa andb, also writtengcd(a, b).

13. primes, composite : A positive integera is prime ifa > 1 and the only divisors ofa are1 anda. If a > 1 is
not prime, we saya is composite.

14. coprime (relatively prime) :a andb are coprime (or relatively prime) if their greatest common divisor is1.

15. x ≡ y mod n : there exists an integera such thatx = y + an.

16. ∀ : for all.

17. ∃ : there exists.



18. Big-Oh notation :A(x) = O(B(x)), read “A(x) is of order (or big-Oh)B(x)”, means∃C > 0 and anx0

such that∀x ≥ x0, |A(x)| ≤ C B(x). This is also writtenA(x) ¿ B(x) or B(x) À A(x).

19. Little-Oh notation :A(x) = o(B(x)), read “A(x) is little-Oh ofB(x)”, meanslimx→∞A(x)/B(x) = 0.

20. |S| or #S : number of elements in the setS.

21. p : usually a prime number.

22. i, j, k, m, n : usually an integer.

23. [x] or bxc : the greatest integer less than or equal tox, read “the floor ofx”.

24. {x} : the fractional part ofx; notex = [x] + {x}.
25. supremum : given a sequence{xn}∞n=1, the supremum of the set, denotedsupn xn, is the smallest numberc

(if one exists) such thatxn ≤ c for all n, and for anyε > 0 there is somen0 such thatxn0 > c − ε. If the
sequence has finitely many terms, the supremum is the same as the maximum value.

26. infimum : notation as above, the infimum of a set, denotedinfn xn, is the largest numberc (if one exists)
such thatxn ≥ c for all n, and for anyε > 0 there is somen0 such thatxn0 < c + ε. If the sequence has
finitely many terms, the infimum is the same as the minimum value.

27. 2 : indicates the end of a proof.
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Chapter 1

Mod p Arithmetic, Group Theory and
Cryptography

In this chapter we review the basic number theory and group theory which we use throughout the book, culminating
with a proof of quadratic reciprocity. Good introductions to group theory are [J, La3]; see [Da1, IR] for excellent
expositions on congruences and quadratic reciprocity, and [Sil2] for a friendly introduction to much of the material
below. We use cryptographic applications to motivate some basic background material in number theory; see [Ga]
for a more detailed exposition on cryptography and [Lidl, vdP2] for connections with continued fractions. The guid-
ing principle behind much of this chapter (indeed, much of this book and number theory) is the search for efficient
algorithms. Just being able to write down an expression does not mean we can evaluate it in a reasonable amount
of time. Thus, while it is often easy to prove a solution exists, doing the computations as written is sometimes
impractical; see Chapter6 of [BB] and [Wilf] for more on efficient algorithms.

1.1 Cryptography

Cryptography is the science of encoding information so that only certain specified people can decode it. We describe
some common systems. To prove many of the properties of these crypto-systems will lead us to some of the basic
concepts and theorems of algebra and group theory.

Consider the following two password systems. In the first we choose two large distinct primesp andq; for
example, let us sayp andq have about200 digits each. LetN = pq and display the400 digit numberN for
everyone to see. The password is any divisor ofN greater than1 and less thanN . One very important property of
the integers is unique factorization: any integer can be written uniquely as a product of prime powers. This implies
that the only factorizations ofN are1 · N , N · 1, p · q andq · p. Thus there are two passwords,p andq. For the
second system, we choose a5000 digit number. We keep this number secret; to gain access the user must input this
number.

Which method is more secure? While it is harder to correctly guess5000 digits then200, there is a danger in
the second system: the computer needs to store the password. As there is no structure to the problem, the computer
can only determine if you have entered the correct number by comparing your5000 digit number to the one it was
told is the password. Thus there is a code-book of sorts, and code-books can be stolen. In the first system there is
no code-book to steal. The computer does not need to knowp or q: it only needs to knowN and how to divide, and
it will know the password when it sees it!
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There are so many primes that it is not practical to try all200 digit prime numbers. The Prime Number Theorem
(Theorem??) states that there are approximatelyxlog x primes smaller thanx; for x = 10200, this leads to an imprac-
tically large number of numbers to check. What we have is a process which is easy in one direction (multiplyingp
andq), but hard in the reverse (knowingN , right now there is no “fast” algorithm to findp andq).

It is trivial to write an algorithm which is guaranteed to factorN : simply testN by all numbers (or all primes)
at most

√
N . While this will surely work, this algorithm is so inefficient that it is useless for such large numbers.

This is the first of many instances where we have an algorithm which will give a solution, but the algorithm is so
slow as to be impractical for applications. Later in this chapter we shall encounter other situations where we have
an initial algorithm that is too slow but where we can derive faster algorithms.

Exercise 1.1.1.There are approximately1080 elementary objects in the universe (photons, quarks, et cetera).
Assume each such object is a powerful supercomputer capable of checking1020 numbers a second. How many
years would it take to check all numbers (or all primes) less than

√
10400? What if each object in the universe was

a universe in itself, with1080 supercomputers: how many years would it take now?

Exercise 1.1.2.Why do we wantp andq to be distinct primes in the first system?

One of the most famous cryptography methods is RSA (see [RSA]). Two people, usually named Alice and Bob,
want to communicate in secret. Instead of sending words they send numbers that represent words. Let us represent
the lettera by 01, b by 02, all the way to representingz by 26 (and we can have numbers represent capital letters,
spaces, punctuation marks, and so on). For example, we write 030120 for the word “cat”. Thus it suffices to find a
secure way for Alice to transmit numbers to Bob. Let us say a message is a numberM of a fixed number of digits.

Bob chooses two large primesp andq and then two numbersd ande such that(p − 1)(q − 1) dividesed − 1;
we explain these choices in §1.5. Bob then makes publicly available the following information:N = pq ande,
but keeps secretp, q andd. It turns out that this allows Alice to send messages to Bob that only Bob can easily
decipher. If Alice wants to send the messageM < N to Bob, Alice first calculatesMe, and then sends Bob the
remainder after dividing byN ; call this numberX. Bob then calculatesXd, whose remainder upon dividing byN
is the original messageM ! The proof of this uses modulo (or clock) arithmetic and basic group theory, which we
describe below. Afterwards, we return and prove the claim.

Exercise 1.1.3.Let p = 101, q = 97. Letd = 2807 ande = 23. Show that this method successfully sends “hi”
(0809) to Bob. Note that(0809)23 is a sixty-six digit number! See Remark?? for one way to handle such large
numbers.

Exercise(hr) 1.1.4. Use a quadratic polynomialax2 + bx + c to design a security system satisfying the following
constraints:

1. the password is the triple(a, b, c);

2. each of10 people is given some information such that any three of them can provide(a, b, c), but no two of
them can.

Generalize the construction: consider a polynomial of degreeN such that some people “know more” than others
(for example, one person can figure out the password with anyone else, another person just needs two people, and
so on).

Remark 1.1.5. We shall see another important application of unique factorization in §?? when we introduce the
Riemann Zeta function. Originally defined as an infinite sum over the integers, by unique factorization we shall be
able to express it as a product over primes; this interplay yields numerous results, among them a proof of the Prime
Number Theorem.
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1.2 Efficient Algorithms

For computational purposes, often having an algorithm to compute a quantity is not enough; we need an algorithm
which will compute itquickly. We have seen an example of this when we tried to factor numbers; while we can
factor any number, current algorithms are so slow that crypto-systems based on “large” primes are secure. For
another example, recall Exercise 1.1.3 where we needed to compute a sixty-six digit number! Below we study
three standard problems and show how to either rearrange the operations more efficiently or give a more efficient
algorithm than the obvious candidate. See Chapter6 of [BB] and [Wilf] for more on efficient algorithms.

1.2.1 Exponentiation

Considerxn. The obvious way to calculate it involvesn − 1 multiplications. By writingn in base two we can
evaluatexn in at most2 log2 n steps, an enormous savings. One immediate application is to reduce the number of
multiplications in cryptography (see Exercise 1.1.3). Another is in §1.2.33, where we derive a primality test based
on exponentiation.

We are used to writing numbers in base 10, say

x = am10m + am−110m−1 + · · ·+ a1101 + a0, ai ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. (1.1)

Base two is similar, except each digit is now either 0 or 1. Letk be the largest integer such that2k ≤ x. Then

x = bk2k + bk−12k−1 + · · ·+ b12 + b0, bi ∈ {0, 1}. (1.2)

It costsk multiplications to evaluatex2i

for all i ≤ k. How? Considery0 = x20
, y1 = y0 · y0 = x20 · x20

= x21
,

y2 = y1 · y1 = x22
, . . . , yk = yk−1 · yk−1 = x2k

. To evaluatexn, note

xn = xbk2k+bk−12
k−1+···+b12+b0

= xbk2k · xbk−12
k−1 · · ·xb12 · xb0

=
(
x2k

)bk ·
(
x2k−1

)bk−1 · · · (x2
)b1 · (x1

)b0

= ybk

k · ybk−1
k−1 · · · yb1

1 · yb0
0 . (1.3)

As eachbi ∈ {0, 1}, we have at mostk + 1 multiplications above (ifbi = 1 we have the termyi in the product, if
bi = 0 we do not). It costsk multiplications to evaluate thex2i

(i ≤ k), and at most anotherk multiplications to
finish calculatingxn. As k ≤ log2 n, we see thatxn can be determined in at most2 log2 n steps. Note, however,
that we do need more storage space for this method, as we need to store the valuesyi = x2i

, i ≤ log2 n. For n
large,2 log2 n is much smaller thann− 1, meaning there is enormous savings in determiningxn this way. See also
Exercise??.

Exercise 1.2.1.Show that it is possible to calculatexn storing only two numbers at any given time (and knowing
the base two expansion ofn).

Exercise 1.2.2.Instead of expandingn in base two, expandn in base three. How many calculations are needed to
evaluatexn this way? Why is it preferable to expand in base two rather than any other base?

Exercise 1.2.3.A better measure of computational complexity is not to treat all multiplications and additions
equally, but rather to count the number of digit operations. For example, in271× 31 there are six multiplications.
We then must add two three-digit numbers, which involves at most four additions (if we need to carry). How many
digit operations are required to computexn?
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1.2.2 Polynomial Evaluation (Horner’s Algorithm)

Let f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0. The obvious way to evaluatef(x) is to calculatexn and multiply

by an (n multiplications), calculatexn−1 and multiply byan−1 (n − 1 multiplications) and add, et cetera. There
aren additions and

∑n
k=0 k multiplications, for a total ofn + n(n+1)

2 operations. Thus the standard method leads

to aboutn
2

2 computations.

Exercise 1.2.4.Prove by Induction (see Appendix??) that
∑n

k=0 k = n(n+1)
2 . In general,

∑n
k=0 kd = pd+1(n),

wherepd+1(n) is a polynomial of degreed + 1 with leading termnd+1

d+1 ; one can find the coefficients by evaluating
the sums forn = 0, 1, . . . , d because specifying the values of a polynomial of degreed at d + 1 points uniquely
determines the polynomial (see also Exercise 1.1.4). See [Mil4] for an alternate proof which does not use induction.

Exercise 1.2.5.Notation as in Exercise 1.2.4, use the integral test from calculus to show the leading term ofpd+1(n)
is nd+1

d+1 and bound the size of the error.

Exercise 1.2.6.How many operations are required if we use our results on exponentiation?

Consider the following grouping to evaluatef(x), known asHorner’s Algorithm :

(((anx + an−1)x + an−2) x + · · ·+ a1)x + a0. (1.4)

For example,
7x4 + 4x3 − 3x2 − 11x + 2 = (((7x + 4)x− 3) x− 11)x + 2. (1.5)

Evaluating term by term takes14 steps; Horner’s Algorithm takes8 steps. One common application is in fractal
geometry, where one needs to iterate polynomials (see also §1.2.4 and the references there). Another application is
in determining decimal expansions of numbers (see §??).

Exercise 1.2.7.Prove Horner’s Algorithm takes at most2n steps to evaluateanxn + · · ·+ a0.

1.2.3 Euclidean Algorithm

Definition 1.2.8 (Greatest Common Divisor). Let x, y ∈ N. The greatest common divisor ofx andy, denoted by
gcd(x, y) or (x, y), is the largest integer which divides bothx andy.

Definition 1.2.9(Relatively Prime, Coprime). If for integersx andy, gcd(x, y) = 1, we sayx andy are relatively
prime (or coprime).

The Euclidean algorithm is an efficient way to determine the greatest common divisor ofx andy. Without
loss of generality, assume1 < x < y. The obvious way to determinegcd(x, y) is to dividex andy by all positive
integers up tox. This takes at most2x steps; we show a more efficient way, taking at most about2 log2 x steps.

Let [z] denote thegreatest integerless than or equal toz. We write

y =
[y

x

]
· x + r1, 0 ≤ r1 < x. (1.6)

Exercise 1.2.10.Prove thatr1 ∈ {0, 1, . . . , x− 1}.
Exercise 1.2.11.Provegcd(x, y) = gcd(r1, x).

4



We proceed in this manner untilrk equals zero or one. As each execution results inri < ri−1, we proceed at
mostx times (although later we prove we need to apply these steps at most about2 log2 x times).

x =
[

x

r1

]
· r1 + r2, 0 ≤ r2 < r1

r1 =
[
r1

r2

]
· r2 + r3, 0 ≤ r3 < r2

r2 =
[
r2

r3

]
· r3 + r4, 0 ≤ r4 < r3

...

rk−2 =
[
rk−2

rk−1

]
· rk−1 + rk, 0 ≤ rk < rk−1. (1.7)

Exercise 1.2.12.Prove that ifrk = 0 thengcd(x, y) = rk−1, while if rk = 1, thengcd(x, y) = 1.

We now analyze how largek can be. The key observation is the following:

Lemma 1.2.13. Consider three adjacent remainders in the expansion:ri−1, ri and ri+1 (wherey = r−1 and
x = r0). Thengcd(ri, ri−1) = gcd(ri+1, ri), andri+1 < ri−1

2 .

Proof. We have the following relation:

ri−1 =
[
ri−1

ri

]
· ri + ri+1, 0 ≤ ri+1 < ri. (1.8)

If ri ≤ ri−1
2 then asri+1 < ri we immediately conclude thatri+1 < ri−1

2 . If ri > ri−1
2 , then we note that

ri+1 = ri−1 −
[
ri−1

ri

]
· ri. (1.9)

Our assumptions onri−1 andri imply that
[

ri−1
ri

]
= 1. Thusri+1 < ri−1

2 .

We count how often we apply these steps. Going from(x, y) = (r0, r−1) to (r1, r0) costs one application.
Every two applications gives three pairs, say(ri−1, ri−2), (ri, ri−1) and(ri+1, ri), with ri+1 at most half ofri−1.
Thus ifk is the largest integer such that2k ≤ x, we see have at most1+2k ≤ 1+2 log2 x pairs. Each pair requires
one integer division, where the remainder is the input for the next step. We have proven

Lemma 1.2.14.Euclid’s Algorithm requires at most1 + 2 log2 x divisions to find the greatest common divisor ofx
andy.

Euclid’s Algorithm provides more information than just thegcd(x, y). Let us assume thatri = gcd(x, y). The
last equation before Euclid’s Algorithm terminated was

ri−2 =
[
ri−2

ri−1

]
· ri−1 + ri, 0 ≤ ri < ri−1. (1.10)

Therefore we can find integersai−1 andbi−2 such that

ri = ai−1ri−1 + bi−2ri−2. (1.11)
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We have writtenri as a linear combination ofri−2 andri−1. Looking at the second to last application of Euclid’s
algorithm, we find that there are integersa′i−2 andb′i−3 such that

ri−1 = a′i−2ri−2 + b′i−3ri−3. (1.12)

Substituting forri−1 in the expansion ofri yields that there are integersai−2 andbi−3 such that

ri = ai−2ri−2 + bi−3ri−3. (1.13)

Continuing by induction and recallingri = gcd(x, y) yields

Lemma 1.2.15.There exist integersa andb such thatgcd(x, y) = ax + by. Moreover, Euclid’s Algorithm gives a
constructiveprocedure to finda andb.

Thus, not only does Euclid’s algorithm showa andb exists, it gives an efficient way to find them.

Exercise 1.2.16.Find a andb such thata · 244 + b · 313 = gcd(244, 313).

Exercise 1.2.17.Add the details to complete an alternate, non-constructive proof of the existence ofa andb with
ax + by = gcd(x, y):

1. Letd be the smallest positive value attained byax+by as we varya, b ∈ Z. Such ad exists. Sayd = αx+βy.

2. Showgcd(x, y)|d.

3. Lete = Ax + By > 0. Thend|e. Therefore for any choice ofA,B ∈ Z, d|(Ax + By).

4. Consider(a, b) = (1, 0) or (0, 1), yielding d|x and d|y. Therefored ≤ gcd(x, y). As we have shown
gcd(x, y)|d, this completes the proof.

Note this is a non-constructive proof. By minimizingax + by we obtaingcd(x, y), but we have no idea how many
steps are required. Prove that a solution will be found either among pairs(a, b) with a ∈ {1, . . . , y − 1} and
−b ∈ {1, . . . , x − 1}, or −a ∈ {1, . . . , y − 1} and b ∈ {1, . . . , x − 1}. Choosing an object that is minimal in
some sense (here the minimality comes from being the smallest integer attained as we varya andb in ax + by) is
a common technique; often this number has the desired properties. See the proof of Lemma?? for an additional
example of this method.

Exercise 1.2.18.How many steps are required to find the greatest common divisor ofx1, . . . , xN?

Remark 1.2.19. In bounding the number of computations in the Euclidean algorithm, we looked at three adjacent
remainders and showed a desirable relation held. This is a common technique, where it can often be shown that at
least one of several consecutive terms in a sequence has some good property; see also Theorem??for an application
to continued fractions and approximating numbers.

1.2.4 Newton’s Method and Combinatorics

We give some examples and exercises on efficient algorithms and efficient ways to arrange computations. The first
assumes some familiarity with calculus, the second with basic combinatorics.

Newton’s Method: Newton’s Method is an algorithm to approximate solutions tof(x) = 0 for f a differen-
tiable function onR. It is much faster than the method ofDivide and Conquer (see §??), which finds zeros by
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y = f(x)

a x1 x0

Figure 1.1: Newton’s Method

looking at sign changes off , though this method is of enormous utility (see Remark??where Divide and Conquer
is used to find zeros of the Riemann Zeta function).

Start withx0 such thatf(x0) is small; we callx0 the initial guess. Draw the tangent line to the graph off at
x0, which is given by the equation

y − f(x0) = f ′(x0) · (x− x0). (1.14)

Let x1 be thex-intercept of the tangent line;x1 is the next guess for the rootα. See Figure 1.1. Simple algebra
gives

x1 = x0 − f(x0)
f ′(x0)

. (1.15)

We now iterate and apply the above procedure tox1, obtaining

x2 = x1 − f(x1)
f ′(x1)

. (1.16)

If we let g(x) = x− f(x)
f ′(x) , we notice we have the sequence

x0, g(x0), g(g(x0)), . . . (1.17)

We hope this sequence will converge to the root, at least forx0 close to the root and forf sufficiently nice. How
closex0 has to be is a delicate matter. If there are several roots tof , which root the sequence converges to depends
crucially on the initial valuex0 and the functionf . In fact its behavior is what is known technically aschaotic.
Informally, we say that we have chaos when tiny changes in the initial value give us very palpable changes in
the output. One common example is in iterates of polynomials, namely the limiting behavior off(x0), f(f(x0)),
f(f(f(x0))) and so on (see [Dav, Edg, Fal]).

Exercise 1.2.20.Letf(x) = x2−a for somea > 0. Show Newton’s Method converges to
√

a, and discuss the rate
of convergence; i.e., ifxn is accurate tom digits, approximately how accurate isxn+1? For example, look ata = 3
and x0 = 2. Similarly, investigaten

√
a. Compare this with Divide and Conquer, where each iteration basically

halves the error (so roughly every ten iterations yields three new decimal digits, because1
210 ≈ 1

103 ).
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Remark 1.2.21. One big difference between Newton’s Method and Divide and Conquer is that while both require
us to evaluate the function, Newton’s Method requires us to evaluate the derivative as well. Hence Newton’s Method
is not applicable to as wide of a class of functions as Divide and Conquer, but as it uses more information aboutf
it is not surprising that it gives better results (i.e., converges faster to the answer).

Exercise 1.2.22.Modify Newton’s Method to find maxima and minima of functions. What must you assume about
these functions to use Newton’s method?

Exercise 1.2.23.Let f(x) be a degreen polynomial with complex coefficients. By the Fundamental Theorem of
Algebra, there aren (not necessarily distinct) roots. Assume there arem distinct roots. Assignm colors, one to
each root. Given a pointx ∈ C, we colorx with the color of the root thatx approaches under Newton’s Method (if
it converges to a root). Write a computer program to color such sets for some simple polynomials, for example for
xn − 1 = 0 for n = 2, 3 or 4.

Exercise 1.2.24.Determine conditions onf , the roota and the starting guessx0 such that Newton’s Method will
converge to the root. See page212 of [BB] or page118 of [Rud] for more details.

Exercise(h) 1.2.25(Fixed Points). We sayx0 is a fixed point of a functionh if h(x0) = x0. Letf be a continuously
differentiable function. If we setg(x) = x− f(x)

f ′(x) , show a fixed point ofg corresponds to a solution tof(x) = 0.
Assume thatf : [a, b] → [a, b] and there is aC < 1 such that|f ′(x)| < C for x ∈ [a, b]. Provef has a

fixed point in[a, b]. Is the result still true if we just assume|f ′(x)| < 1? Fixed points have numerous applications,
among them showing optimal strategies exist inn-player games. See [Fr] for more details.

Combinatorics: Below we describe a combinatorial problem which contains many common features of the
subject. Assume we have 10 identical cookies and 5 distinct people. How many different ways can we divide the
cookies among the people, such that all 10 cookies are distributed? Since the cookies are identical, we cannot tell
which cookies a person receives; we can only tell how many. We could enumerate all possibilities: there are 5 ways
to have one person receive 10 cookies, 20 ways to have one person receive 9 and another receive 1, and so on. While
in principle we can solve the problem, in practice this computation becomes intractable, especially as the number
of cookies and people increase.

We introduce common combinatorial functions. The first is thefactorial function : for a positive integern, set
n! = n · (n− 1) · · · 2 · 1. The number of ways to chooser objects fromn when order matters isn · (n− 1) · · · (n−
(r − 1)) = n!

(n−r)! (there aren ways to choose the first element, thenn − 1 ways to choose the second element,

and so on). Thebinomial coefficient
(
n
r

)
= n!

r!(n−r)! is the number of ways to chooser objects fromn objects
when order does not matter. The reason is once we have chosenr objects there arer! ways to order them. For
convenience, we define0! = 1; thus

(
n
0

)
= 1, which may be interpreted as saying there is one way to choose zero

elements from a set ofn objects. For more on binomial coefficients, see §??.
We show the number of ways to divide 10 cookies among 5 people is

(
10+5−1

5−1

)
. In general, if there areC

cookies andP people,

Lemma 1.2.26.The number of distinct ways to divideC identical cookies amongP different people is
(
C+P−1

P−1

)
.

Proof. ConsiderC + P − 1 cookies in a line, and number them1 to C + P − 1. ChooseP − 1 cookies. There are(
C+P−1

P−1

)
ways to do this. This divides the cookies intoP sets: all the cookies up to the first chosen (which gives the

number of cookies the first person receives), all the cookies between the first chosen and the second chosen (which
gives the number of cookies the second person receives), and so on. This dividesC cookies amongP people. Note
different sets ofP − 1 cookies correspond to different partitions ofC cookies amongP people, and every such
partition can be associated to choosingP − 1 cookies as above.
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Remark 1.2.27. In the above problem we do not carewhichcookies a person receives. We introduced the numbers
for convenience: now cookies 1 throughi1 (say) are given to person 1, cookiesi1 + 1 throughi2 (say) are given to
person 2, and so on.

For example, if we have 10 cookies and 5 people, say we choose cookies 3,4,7, and 13 of the 10+5-1 cookies:

⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙ ⊗ ⊙

This corresponds to person 1 receiving two cookies, person 2 receiving zero, person 3 receiving two, person 4
receiving five, and person 5 receiving one cookie.

The above is an example of a partition problem: we are solvingx1 + x2 + x3 + x4 + x5 = 10, wherexi is the
number of cookies personi receives. We may interpret Lemma 1.2.26 as the number of ways to divide an integer
N into k non-negative integers is

(
N+k−1

k−1

)
.

Exercise 1.2.28.Prove that
N∑

n=0

(
n + k − 1

k − 1

)
=

(
N + 1 + k − 1

k − 1

)
. (1.18)

We may interpret the above as dividingN cookies amongk people, where we do not assume all cookies are
distributed.

Exercise(h) 1.2.29. LetM be a set withm > 0 elements,N a set withn > 0 elements andO a set withm + n
elements. For̀ ∈ {0, . . . , m + n}, prove

min(m,`)∑

k=max(0,`−n)

(
m

k

)(
n

`− k

)
=

(
m + n

`

)
. (1.19)

This may be interpreted as partitioningO into two sets, one of sizè.

In Chapter??we describe other partition problems, such as representing a number as a sum of primes or integer
powers. For example, the famous Goldbach problem says any even number greater than 2 is the sum of two primes
(known to be true for integers up to6 · 1016 [Ol]). While to date this problem has resisted solution, we have good
heuristics which predict that, not only does a solution exist, but how many solutions there are. Computer searches
have verified these predictions for largeN of size1010.

Exercise 1.2.30(Crude prediction). By the Prime Number Theorem, there areNlog N primes less thanN . If we
assume all numbersn ≤ N are prime with the same likelihood (a crude assumption), predict how many ways there
are to writeN as a sum of two primes.

Exercise 1.2.31.In partition problems, often there are requirements such as everyone receives at least one cookie.
How many ways are there to writeN as a sum ofk non-negative integers? How many solutions ofx1 + x2 + x3 =
1701 are there if eachxi is an integer andx1 ≥ 2, x2 ≥ 4, andx3 ≥ 601?

Exercise 1.2.32.In solving equations in integers, often slight changes in the coefficients can lead to wildly different
behavior and very different sets of solutions. Determine the number of non-negative integer solutions tox1 + x2 =
1996, 2x1 + 2x2 = 1996, 2x1 + 2x2 = 1997, 2x1 + 3x2 = 1996, 2x1 + 2x2 + 2x3 + 2x4 = 1996 and
2x1 + 2x2 + 3x3 + 3x4 = 1996. See Chapter?? for more on finding integer solutions.
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Exercise(h) 1.2.33. Letf be a homogenous polynomial of degreed in n variables. This means

f(x1, . . . , xn) =
∑

0≤k1,...,kn≤d
k1+···+kn=d

ak1,...,knxk1
1 · · ·xkn

n , ak1,...,knxk1
1 ∈ C. (1.20)

Prove for anyλ ∈ C that
f(λx1, . . . , λxn) = λdf(x1, . . . , xn). (1.21)

As a function ofn andd, how many possible terms are there inf (each term is of the formxk1
1 · · ·xkn

n )?

The above problems are a small set of interesting results in combinatorics. We give some additional problems
which illustrate the subject; the Binomial Theorem (Theorem??) is useful for these and other investigations.

Exercise(h) 1.2.34. Let k be a positive integer and consider the sequence1k, 2k, 3k, . . . (soxn = nk). Consider
the new sequence obtained by subtracting adjacent terms:2k − 1k, 3k − 2k, . . . and so on. Continue forming new
sequences by subtracting adjacent terms of the previous terms. Prove that each term of thekth sequence isk!.

Exercise(hr) 1.2.35. Letk andd be positive integers. Prove

kd =
d−1∑
m=0

k−1∑

`=0

(
d

m

)
`m. (1.22)

1.3 Clock Arithmetic: Arithmetic Modulo n

Let Z denote the set of integers and forn ∈ N defineZ/nZ = {0, 1, 2, . . . , n − 1}. We often readZ/nZ as the
integers modulon.

Definition 1.3.1(Congruence). x ≡ y mod n meansx− y is an integer multiple ofn. Equivalently,x andy have
the same remainder when divided byn.

When there is no danger of confusion, we often drop the suffix modn, writing insteadx ≡ y.

Lemma 1.3.2(Basic Properties of congruences). For a fixedn ∈ N anda, a′, b, b′ integers we have

1. a ≡ b mod n if and only ifb ≡ a mod n.

2. a ≡ b mod n andb ≡ c mod n impliesa ≡ c mod n.

3. a ≡ a′ mod n and b ≡ b′ mod n, thenab ≡ a′b′ mod n. In particular a ≡ a′ mod n implies ab ≡
a′b mod n for all b.

Exercise 1.3.3.Prove the above relations. Ifab ≡ cb mod m, musta ≡ c mod m?

Forx, y ∈ Z/nZ, we definex + y to be the unique numberz ∈ Z/nZ such thatn|(x + y − z). In other words,
z is the unique number inZ/nZ such thatx + y ≡ z mod n. One can show thatZ/nZ is a finite group under
addition; in fact, it is a finite ring. (See §1.4.1 for the definition of a group).

Exercise(h) 1.3.4(Arithmetic Modulon). Define multiplication ofx, y ∈ Z/nZ by x · y is the uniquez ∈ Z/nZ
such thatxy ≡ z mod n. We often writexy for x · y. Prove that this multiplication is well defined, and that an
elementx has a multiplicative inverse if and only if(x, n) = 1. Conclude that if every non-zero element ofZ/nZ
has a multiplicative inverse, thenn must be prime.
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Arithmetic modulon is also called clock arithmetic. Ifn = 12 we haveZ/12Z. If it is 10 o’clock now, in
5 hours it is3 o’clock because10 + 5 = 15 ≡ 3 mod 12. See [Bob] for an analysis of the “randomness” of the
inverse map in clock arithmetic.

Definition 1.3.5 (Least Common Multiple). Let m,n ∈ N . The least common multiple ofm andn, denoted by
lcm(m,n), is the smallest positive integer divisible by bothm andn.

Exercise 1.3.6.If a ≡ b mod n anda ≡ b mod m, thena ≡ b mod lcm(m,n).

Exercise 1.3.7.Prove for all positive integersm,n that lcm(m,n) · gcd(m, n) = mn.

Are there integer solutions to the equation2x + 1 = 2y? The left hand side is always odd, the right hand side is
always even. Thus there are no integer solutions. What we did is really arithmetic modulo2 or arithmetic inZ/2Z,
and indicates the power of congruence arguments.

Consider nowx2 + y2 + z2 = 8n + 7. This never has integer solutions. Let us study this equation modulo8.
The right hand side is7 modulo8. What are the squares modulo8? They are12 ≡ 1, 22 ≡ 4, 32 ≡ 1, 42 ≡ 0, and
then the pattern repeats (as modulo8, k and(8 − k) have the same square). We see there is no way to add three
squares and get7. Thus there are no solutions tox2 + y2 + z2 = 8n + 7.

Remark 1.3.8 (Hasse Principle). In general, when searching for integer solutions one often tries to solve the
equation modulo different primes. If there is no solution for some prime, then there are no integer solutions.
Unfortunately, the converse is not true. For example, Selmer showed3x3 + 4y3 + 5z3 = 0 is solvable modulop for
all p, but there are no rational solutions. We discuss this in more detail in Chapter??.

Exercise 1.3.9(Divisibility Rules). Prove a number is divisible by 3 (or 9) if and only if the sum of its digits are
divisible by 3 (or 9). Prove a number is divisible by 11 if and only if the alternating sum of its digits is divisible by
11 (for example, 341 yields 3-4+1). Find a rule for divisibility by 7.

Exercise 1.3.10(Chinese Remainder Theorem). Let m1, m2 be relatively prime positive integers. Prove that for
anya1, a2 ∈ Z there exists a uniquex mod m1m2 such thatx ≡ a1 mod m1 andx ≡ a2 mod m2. Is this still
true if m1 andm2 are not relatively prime? Generalize tom1, . . . , mk anda1, . . . , ak.

1.4 Group Theory

We introduce enough group theory to prove our assertions about RSA. For more details, see [Art, J, La3].

1.4.1 Definition

Definition 1.4.1(Group). A setG equipped with a mapG×G → G denote by(x, y) 7→ xy is a group if

1. (Identity)∃e ∈ G such that∀g ∈ G, eg = ge = g.

2. (Associativity)∀x, y, z ∈ G, (xy)z = x(yz).

3. (Inverse)∀x ∈ G, ∃y ∈ G such thatxy = yx = e.

4. (Closure)∀x, y ∈ G, xy ∈ G.
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We have written the group multiplicatively,(x, y) 7→ xy; if we wrote (x, y) 7→ x + y, we say the group is
written additively. We callG a finite group if the setG is finite. If ∀x, y ∈ G, xy = yx, we say the group isabelian
or commutative.

Exercise 1.4.2.Show that under additionZ/nZ is an abelian group.

Exercise 1.4.3.Consider the set ofN × N matrices with real entries and non-zero determinant. Prove this is a
group under matrix multiplication, and show this group is not commutative ifN > 1. Is it a group under matrix
addition?

Exercise 1.4.4.Let(Z/pZ)∗ = {1, 2, . . . , p−1}wherea ·b is defined to beab mod p. Prove this is a multiplicative
group if p is prime. More generally, let(Z/mZ)∗ be the subset ofZ/mZ of numbers relatively prime tom. Show
(Z/mZ)∗ is a multiplicative group.

Exercise 1.4.5(Euler’sφ-function (or totient function)). Letφ(n) denote the number of elements in(Z/nZ)∗. Prove
that forp prime,φ(p) = p−1 andφ(pk) = pk−pk−1. If p andq are distinct primes, proveφ(pjqk) = φ(pj)φ(qk).
If n andm are relatively prime, prove thatφ(nm) = φ(n)φ(m). Noteφ(n) is the size of the group(Z/nZ)∗.

Definition 1.4.6(Subgroup). A subsetH of G is a subgroup ifH is also a group.

Our definitions imply any groupG has at least two subgroups, itself and the empty set.

Exercise 1.4.7.Prove the following equivalent definition: A subsetH of a groupG is a subgroup if for allx, y ∈ H,
xy−1 ∈ H.

Exercise 1.4.8.Let G be an additive subgroup ofZ. Prove there exists ann ∈ N such that every element ofG is
an integral multiple ofn.

Exercise 1.4.9.Let GLn(R) be the multiplicative group ofn× n invertible matrices with real entries. Let SLn(Z)
be the subset with integer entries and determinant 1. Prove SLn(Z) is a subgroup. This is a very important subgroup
in number theory; whenn = 2 it is called themodular group. See §?? for an application to continued fractions.

1.4.2 Lagrange’s theorem

We prove some basic properties offinite groups (groups with finitely many elements).

Definition 1.4.10(order). If G is a finite group, the number of elements ofG is the order ofG and is denoted by
|G|. If x ∈ G, the order ofx in G, ord(x), is the least positive powerm such thatxm = e, wheree ∈ G is the
identity of the group.

Exercise(h) 1.4.11. Prove all elements in a finite group have finite order.

Theorem 1.4.12(Lagrange). LetH be a subgroup of a finite groupG. Then|H| divides|G|. In particular, taking
H to be the subgroup generated byx ∈ G, ord(x)|ord(G).

We first prove two useful lemmas.

Lemma 1.4.13.LetH be a subgroup ofG, and leth ∈ H. ThenhH = H.

Proof. It suffices to showhH ⊂ H andH ⊂ hH. By closure,hH ⊂ H. For the other direction, leth′ ∈ H. Then
hh−1h′ = h′; ash−1h′ ∈ H, everyh′ ∈ H is also inhH.
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Lemma 1.4.14. LetH be a subgroup of a groupG. Then for allgi, gj ∈ G eithergiH = gjH or the two sets are
disjoint.

Proof. AssumegiH∩gjH is non-empty; we must show they are equal. Letx = gih1 = gjh2 be in the intersection.
Multiplying on the right byh−1

1 ∈ H (which exists becauseH is a subgroup) givesgi = gjh2h
−1
1 . SogiH =

gjh2h
−1
1 H. As h2h

−1
1 H = H, we obtaingiH = gjH.

Definition 1.4.15(Coset). We call a subsetgH of G a coset(actually, a left coset) ofH. In general the set of all
gH for a fixedH is not a subgroup.

Exercise(h) 1.4.16. Show not every set of cosets is a subgroup.

We now prove Lagrange’s Theorem.

Proof of Lagrange’s theorem.We claim
G =

⋃

g∈G

gH. (1.23)

Why is there equality? Asg ∈ G andH ⊂ G, eachgH ⊂ G, hence their union is contained inG. Further, as
e ∈ H, giveng ∈ G, g ∈ gH. Thus,G is a subset of the right side, proving equality.

By Lemma 1.4.13, two cosets are either identical or disjoint. By choosing a subset of the cosets, we show the
union in (1.23) equals a union of disjoint cosets. There are only finitely many elements inG. As we go through all
g in G, if the cosetgH equals one of the cosets already chosen, we do not include it; if it is new, we do. Continuing
this process, we obtain

G =
k⋃

i=1

giH (1.24)

for some finitek and all cosets are disjoint. IfH = {e}, k is the number of elements ofG; in general, however,k
will be smaller. Each setgiH has|H| elements, and no two cosets share an element. Thus|G| = k|H|, proving
|H| divides|G|.
Exercise 1.4.17.LetG = (Z/15Z)∗. Find all subgroups ofG and writeG as the union of cosets for some proper
subgroupH (H is a proper subgroup of G if H is neither{1} nor G).

Exercise 1.4.18.LetG = (Z/p1p2Z)∗ for two distinct primesp1 andp2. What are the possible orders of subgroups
of G? Prove there is either a subgroup of orderp1 or a subgroup of orderp2 (in fact, there are subgroups of both
orders).

1.4.3 Fermat’s Little Theorem

We deduce some consequences of Lagrange’s Theorem which will be useful in our cryptography investigations.

Corollary 1.4.19 (Fermat’s Little Theorem). For any primep, if gcd(a, p) = 1 thenap−1 ≡ 1 mod p.

Proof. As |(Z/pZ)∗| = p− 1, the result follows from Lagrange’s Theorem.

Exercise(h) 1.4.20. One can reformulate Fermat’s Little Theorem as the statement that ifp is prime, for alla we
havep|ap − a. Give a proof for this formulationwithoutusing group theory. Doesn|an − a for all n?

Exercise 1.4.21.Prove that if for somea, an−1 6≡ 1 mod n thenn is composite.
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Thus Fermat’s Little Theorem is a fast way to show certain numbers are composite (remember exponentiation
is fast: see §1.2.1); we shall also encounter Fermat’s Little Theorem in §?? when we count the number of integer
solutions to certain equations. Unfortunately, it is not the case thatan−1 ≡ 1 mod n impliesn is prime. There are
compositen such that for all positive integersa, an−1 ≡ 1 mod n. Such composite numbers are called Carmichael
numbers (the first few are 561, 1105, and 1729). More generally, one has

Theorem 1.4.22(Euler). If gcd(a, n) = 1, thenaφ(n) ≡ 1 mod n.

Proof. Let (a, n) = 1. By definition,φ(n) = |(Z/nZ)∗|. By Lagrange’s Theorem the order ofa ∈ (Z/nZ)∗

dividesφ(n), or aφ(n) ≡ 1 mod n.

Remark 1.4.23. For our applications to RSA, we only need the case whenn is the product of two primes. In this
case, consider the set{1, . . . , pq}. There arepq numbers,q numbers are multiples ofp, p numbers are multiples
of q, and one is a multiple of bothp andq. Thus, the number of numbers in{1, . . . , pg} relatively prime topq is
pq − p− q + 1 (why?). Note this equalsφ(p)φ(q) = (p− 1)(q − 1). This type of argument is known asInclusion
- Exclusion. See also Exercise??.

Exercise 1.4.24.Korselt [Kor] proved that a composite numbern is a Carmichael number if and only ifn is square-
free and if a primep|n, then(p − 1)|(n − 1). Prove that if these two conditions are met thenn is a Carmichael
number.

Research Project 1.4.25(Carmichael Numbers). It is known (see [AGP]) that there are infinitely many Carmichael
numbers. One can investigate the spacings between adjacent Carmichael numbers. For example, choose a largeX
and look at all Carmichael numbers in[X, 2X], sayc1, . . . , cn+1. The average spacing between these numbers is
about 2X−X

n (they are spread out over an interval of sizeX, and there aren differences:c2 − c1, . . . , cn+1 − cn.
How are these differences distributed? Often, it is more natural to rescale differences and spacings so that the
average spacing is 1. The advantage of such a renormalization is the results are often scale invariant (i.e., unitless
quantities). For more on investigating such spacings, see Chapter??.

Exercise(h) 1.4.26. Prove an integer is divisible by3 (resp.,9) if and only if the sum of its digits is divisible by3
(resp.,9).

Exercise(h) 1.4.27. Show an integer is divisible by11 if and only if the alternating sum of its digits is divisible by
11; for example,924 is divisible by11 because11|(9 − 2 + 4). Use Fermat’s Little Theorem to find a rule for
divisibility by7 (or more generally, for any prime).

1.4.4 Structure of(Z/pZ)∗

The multiplicative group(Z/pZ)∗ for p prime has a rich structure which will simplify many investigations later.

Theorem 1.4.28.For p prime,(Z/pZ)∗ is cyclic of orderp− 1. This means there is an elementg ∈ (Z/pZ)∗ such
that

(Z/pZ)∗ = {1, 2, . . . , p− 2, p− 1} = {g1, g2, . . . , gp−2, gp−1}. (1.25)

We sayg is a generator of the group. For eachx there is a unique integerk ∈ {1, . . . , p − 1} such that
x ≡ gk mod p. We sayk is the index of x relative tog. For eachx ∈ (Z/pZ)∗, theorder of x is the smallest
positive integern such thatxn ≡ 1 mod p. For example, ifp = 7 we have

{1, 2, 3, 4, 5, 6} = {36, 32, 31, 34, 35, 33}, (1.26)

which implies3 is a generator (and the index of 4 relative to 3 is 4, because4 ≡ 34 mod 7). Note 5 is also a
generator of this group, so the generator need not be unique.
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Sketch of the proof.We will use the fact that(Z/pZ)∗ is a commutative group:xy = yx. Let x, y ∈ (Z/pZ)∗ with
ordersm andn for the exercises below. The proof follows from the following:

Exercise 1.4.29.Assumem = m1m2, with m1,m2 relatively prime. Showxm1 has orderm2.

Exercise(h) 1.4.30. Let ` be the least common multiple ofm andn (the smallest number divisible by bothm and
n). Prove there is an elementz of order`.

Exercise 1.4.31.By Lagrange’s Theorem, the order of anyx dividesp − 1 (the size of the group). From this fact
and the previous exercises, show there is somed such that the order of every element dividesd ≤ p − 1, andthere
is an element of orderd and no elements of larger order.

The proof is completed by showingd = p − 1. The previous exercises imply that every element satisfies the
equationxd− 1 ≡ 0 mod p. As every element in the group satisfies this, and there arep− 1 elements in the group,
we have a degreed polynomial withp− 1 roots. We claim this can only occur ifd = p− 1.

Exercise(h) 1.4.32. Prove the above claim.

Therefored = p− 1 and there is some elementg of orderp− 1; thus,g’s powers generate the group.

Exercise 1.4.33.For p > 2, k > 1, what is the structure of(Z/pkZ)∗? If all the prime divisors ofm are greater
than 2, what is the structure of(Z/mZ)∗? For more on the structure of these groups, see any undergraduate algebra
textbook (for example, [Art, J, La3]).

1.5 RSA Revisited

We have developed sufficient machinery to prove why RSA works. Remember Bob chose two primesp andq, and
numbersd (for decrypt) ande (for encrypt) such thatde ≡ 1 mod φ(pq). He made publicN = pq ande and kept
secret the two primes andd. Alice wants to send Bob a numberM (smaller thanN ). She encrypts the message by
sendingX ≡ Me mod N . Bob then decrypts the message by calculatingXd mod N , which we claimed equals
M .

AsX ≡ Me mod N , there is an integern such thatX = Me+nN . ThusXd = (Me+nN)d, and the last term
is clearly of the form(Me)d +n′N for somen′. We need only show(Me)d ≡ M mod N . As ed ≡ 1 mod φ(N),
there is anm such thated = 1 + mφ(N). Therefore

(Me)d = Med = M1+mφ(N) = M ·Mmφ(N) = M · (Mφ(N))m. (1.27)

By Euler’s Theorem (Theorem 1.4.22),Mφ(N) ≡ 1 mod N , which completes the proof.
Why is RSA secure? Assume a third person (say Charlie) intercepts the encrypted messageX. He knowsX, N

ande, and wants to recoverM . Knowingd such thatde ≡ 1 mod φ(N) makes decrypting the message trivial: one
need only computeXd mod N . Thus Charlie is trying to solve the equationed ≡ 1 mod φ(N); fortunately for
Alice and Bob this equation has two unknowns,d andφ(N)! Right now, there is no known fast way to determine
φ(N) from N . Charlie can of course factorN ; once he has the factors, he knowsφ(N) and can findd; however,
the fastest factorization algorithms make 400 digit numbers unaccessible for now.

This should be compared to primality testing, which was only recently shown to be fast ([AgKaSa]). Previous
deterministic algorithms to test whether or not a number is prime were known to be fast only if certain well believed
conjectures are true. It was an immense achievement showing that there is a deterministic, efficient algorithm. The
paper is very accessible, and worth the read.
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Remark 1.5.1. Our simple example involved computing a sixty-six digit number, and this was for a smallN
(N = 9797). Using binary expansions to exponentiate, as we need only transmit our message moduloN , we never
need to compute anything larger than the product of four digit numbers.

Remark 1.5.2. See [Bon] for a summary of attempts to break RSA. Certain products of two primes are denoted RSA
challenge numbers, and the public is invited to factor them. With the advent of parallel processing, many numbers
have succumbed to factorization. See http://www.rsasecurity.com/rsalabs/node.asp?id=2092 for
more details.

Exercise 1.5.3.If M < N is not relatively prime toN , show how to quickly find the prime factorization ofN .

Exercise 1.5.4(Security Concerns). In the system described, there is no way for Bob to verify that the message
came from Alice! Design a system where Alice makes some information public (and keeps some secret) so that Bob
can verify that Alice sent the message.

Exercise 1.5.5.Determiningφ(N) is equivalent to factoringN ; there is no computational shortcut to factoring.
Clearly, if one knows the factors ofN = pq, one knowsφ(N). If one knowsφ(N) andN , one can recover the
primesp andq. Show that ifK = N + 1− φ(N), then the two prime factors ofN are (K ±√K2 − 4N)/2, and
these numbers are in fact integers.

Exercise(hr) 1.5.6(Important). If e and(p − 1)(q − 1) are given, show how one may efficiently find ad such that
ed− 1 divides(p− 1)(q − 1).

1.6 Eisenstein’s Proof of Quadratic Reciprocity

We conclude this introduction to basic number theory and group theory by giving a proof of quadratic reciprocity
(we follow the beautiful exposition in [LP] of Eisenstein’s proof; see the excellent treatments in [IR, NZM] for
alternate proofs). In §1.2.4, we described Newton’s Method to find square-roots of real numbers. Now we turn our
attention to a finite group analogue: for a primep and ana 6≡ 0 mod p, when isx2 ≡ a mod p solvable? For
example, ifp = 5 then(Z/pZ)∗ = {1, 2, 3, 4}. Squaring these numbers gives{1, 4, 4, 1} = {1, 4}. Thus there
are two solutions ifa ∈ {1, 4} and no solutions ifa ∈ {2, 3}. The problem of whether or not a given number is a
square is solvable: we can simply enumerate the group(Z/pZ)∗, square each element, and see ifa is a square. This
takes aboutp steps; quadratic reciprocity will take aboutlog p steps. For applications, see §??.

1.6.1 Legendre Symbol

We introduce notation. From now on,p andq will always be distinct odd primes.

Definition 1.6.1(Legendre Symbol
( ·
p

)
). The Legendre Symbol

(
a
p

)
is

(
a

p

)
=

{ 1 if a is a non-zero square modulop
0 if a ≡ 0 mod p

−1 if a is a not a square modulop.
(1.28)

The Legendre symbol is a function onFp = Z/pZ. We extend the Legendre symbol to all integers by
(
a
p

)
=(

a mod p
p

)
.

Notea is a square modulop if there exists anx ∈ {0, 1, . . . , p− 1} such thata ≡ x2 mod p.
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Definition 1.6.2 (Quadratic Residue, Non-residue). For a 6≡ 0 mod p, if x2 ≡ a mod p is solvable (respectively,
not solvable) we saya is a quadratic residue (respectively, non-residue) modulop. Whenp is clear from context,
we just say residue and non-residue.

Exercise 1.6.3.Show the Legendre symbol is multiplicative:
(
ab
p

)
=

(
a
p

)(
b
p

)
.

Exercise(h) 1.6.4(Euler’s Criterion). For oddp,
(
a
p

) ≡ a
p−1
2 mod p.

Exercise 1.6.5.Show
(−1

p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8 .

Lemma 1.6.6. For p an odd prime, half of the non-zero numbers in(Z/pZ)∗ are quadratic residues and half are
quadratic non-residues.

Proof. As p is odd, p−1
2 ∈ N. Consider the numbers12, 22, . . . , (p−1

2 )2. Assume two numbersa and b are
equivalent modp. Thena2 ≡ b2 mod p, so(a−b)(a+b) ≡ 0 mod p. Thus eithera ≡ b mod p or a ≡ −b mod p;
in other words,a ≡ p − b. For1 ≤ a, b ≤ p−1

2 we cannot havea ≡ p − b mod p, implying the p−1
2 values above

are distinct. As(p− r)2 ≡ r2 mod p, the above list is all of the non-zero squares modulop. Thus half the non-zero
numbers are non-zero squares, half are non-squares.

Remark 1.6.7. By Theorem 1.4.28,(Z/pZ)∗ is a cyclic group with generatorg. Using the group structure we can
prove the above lemma directly: once we show there is at least one non-residue, theg2k are the quadratic residues
and theg2k+1 are the non-residues.

Exercise 1.6.8.Show for anya 6≡ 0 mod p that

p−1∑
t=0

(
t

p

)
=

p−1∑
t=0

(
at + b

p

)
= 0. (1.29)

Exercise 1.6.9.For x ∈ {0, . . . , p− 1}, let Fp(x) =
∑

a≤x

(
n
p

)
; noteFp(0) = Fp(p− 1) = 0. If

(−1
p

)
= 1, show

Fp

(
p−1
2

)
= 0. Do you thinkF (x) is more likely to be positive or negative? Investigate its values for variousx and

p.

Initially the Legendre symbol is defined only when the bottom is prime. We now extend the definition. Let
n = p1 · p2 · · · pt be the product oft distinct odd primes. Then

(
a
n

)
=

(
a
p1

)(
a
p2

) · · · ( a
pt

)
; this is theJacobi symbol,

and has many of the same properties as the Legendre symbol. We will study only the Legendre symbol (see [IR]
for more on the Jacobi symbol). Note the Jacobi symbol doesnot say that ifa is a square (a quadratic residue) mod
n, thena is a square modpi for each prime divisor.

The main result (which allows us to calculate the Legendre symbol quickly and efficiently) is the celebrated

Theorem 1.6.10(The Generalized Law of Quadratic Reciprocity). For m, n odd and relatively prime,
(

m

n

)(
n

m

)
= (−1)

m−1
2

n−1
2 . (1.30)

Gauss gave eight proofs of this deep result whenm andn are prime. If eitherp or q are equivalent to1 mod 4
then we have

(
q
p

)
=

(
p
q

)
, i.e.,p has a square root moduloq if and only if q has a square root modulop. We content

ourselves with proving the case withm,n prime.

Exercise 1.6.11.Using the Generalized Law of Quadratic Reciprocity, Exercise 1.6.5 and the Euclidean algorithm,
show one can determine ifa < m is a square modulom in logarithmic time (i.e., the number of steps is at most
a fixed constant multiple oflog m). This incredible efficiency is just one of many important applications of the
Legendre and Jacobi symbols.
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1.6.2 The Proof of Quadratic Reciprocity

Our goal is to prove

Theorem 1.6.12(Quadratic Reciprocity). Letp andq be distinct odd primes. Then
(

q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 . (1.31)

As p andq are distinct, odd primes, both
(

q
p

)
and

(
p
q

)
are±1. The difficulty is figuring out which signs are

correct, and how the two signs are related. We use Euler’s Criterion (Exercise 1.6.4).
The idea behind Eisenstein’s proof is as follows:

(
q
p

)(
p
q

)
is−1 to a power. Further, we only need to determine

the power modulo2. Eisenstein shows many expressions are equivalent modulo2 to this power, and eventually we
arrive at an expression which is trivial to calculate modulo 2. We repeatedly use the fact that asp andq are distinct
primes, the Euclidean algorithm implies thatq is invertible modulop andp is invertible moduloq.

We choose to present this proof as it showcases many common techniques in mathematics. In addition to
using the Euclidean algorithm and modular arithmetic, the proof shows that quadratic reciprocity is equivalent to
a theorem about the number of integer solutions of some inequalities, specifically the number of pairs of integers
strictly inside a rectangle. This is just one of many applications of counting solutions; we discuss this topic in
greater detail in Chapter??.

1.6.3 Preliminaries

Consider all multiples ofq by an evena ≤ p − 1: {2q, 4q, 6q, . . . , (p − 1)q}. Denote a generic multiple byaq.
Recall[x] is the greatest integer less than or equal tox. By the Euclidean algorithm,

aq =
[
aq

p

]
p + ra, 0 < ra < p− 1. (1.32)

Thusra is the least non-negative number equivalent toaq mod p. The numbers(−1)rara are equivalent to even
numbers in{0, . . . , p − 1}. If ra is even this is clear; ifra is odd, then(−1)rara ≡ p − ra mod p, and asp and
ra are odd, this is even. Finally notera 6= 0; if ra = 0 thenp|aq. As p andq are relatively prime, this impliesp|a;
however,p is prime anda ≤ p− 1. Thereforep cannot dividea and thusra 6= 0.

Lemma 1.6.13. If (−1)rara ≡ (−1)rbrb thena = b.

Proof. We quickly get±ra ≡ rb mod p. If the plus sign holds, thenra ≡ rb mod p impliesaq ≡ bq mod p. As q
is invertible modulop, we geta ≡ b mod p, which yieldsa = b (asa andb are even integers between2 andp− 1).

If the minus sign holds, thenra + rb ≡ 0 mod p, or aq + bq ≡ 0 mod p. Multiplying by q−1 mod p now gives
a + b ≡ 0 mod p. As a andb are even integers between2 andp− 1, 4 < a + b ≤ 2p− 2. The only integer strictly
between4 and2p− 2 which is equivalent to0 mod p is p; however,p is odd anda+ b is even. Thus the minus sign
cannot hold, and the elements are all distinct.

Remark 1.6.14. The previous argument is very common in mathematics. We will see a useful variant in Chapter
??, where we show certain numbers are irrational by proving that if they were not then there would have to be an
integer strictly between0 and1.
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Lemma 1.6.15.We have (
q

p

)
= (−1)

P
a even,a 6=0 ra , (1.33)

wherea even, a 6= 0 meansa ∈ {2, 4, . . . , p− 3, p− 1}.
Proof. For each evena ∈ {2, . . . , p− 1}, aq ≡ ra mod p. Thus modulop

∏
a even
a 6=0

aq ≡
∏

a even
a6=0

ra

q
p−1
2

∏
a even

a 6=0

a ≡
∏

a even
a6=0

ra

(
q

p

) ∏
a even

a 6=0

a ≡
∏

a even
a6=0

ra, (1.34)

where the above follows from the fact that we havep−1
2 choices for an evena (giving the factorq

p−1
2 ) and Euler’s

Criterion (Exercise 1.6.4). Asa ranges over all even numbers from2 to p − 1, so too do the distinct numbers
(−1)rara mod p. Note how important it was that we showedra 6= 0 in (1.32), as otherwise we would just have
0 = 0 in (1.34). Thus modulop,

∏
a even

a 6=0

a ≡
∏

a even
a 6=0

(−1)rara

∏
a even

a 6=0

a ≡ (−1)
P

a even,a 6=0 ra
∏

a even
a 6=0

ra. (1.35)

Combining gives (
q

p

)
(−1)

P
a even,a 6=0 ra

∏
a even

a6=0

ra ≡
∏

a even
a6=0

ra mod p. (1.36)

As eachra is invertible modulop, so is the product. Thus
(

q

p

)
(−1)

P
a even,a 6=0 ra ≡ 1 mod p. (1.37)

As
(

q
p

)
= ±1, the lemma follows by multiplying both sides by

(
q
p

)
.

Therefore it suffices to determine
∑

a even,a 6=0 ra mod 2. We make one last simplification. By the first step in

the Euclidean algorithm (1.32) we haveaq =
[

aq
p

]
p + ra for somera ∈ {2, . . . , p− 1}. Hence

∑
a even

a6=0

aq =
∑

a even
a6=0

([
aq

p

]
p + ra

)
=

∑
a even

a6=0

[
aq

p

]
p +

∑
a even

a 6=0

ra. (1.38)
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As we are summing over evena, the left hand side above is even. Thus the right hand side is even, so

∑
a even

a6=0

[
aq

p

]
p ≡

∑
a even

a 6=0

ra mod 2

∑
a even

a 6=0

[
aq

p

]
≡

∑
a even

a 6=0

ra mod 2, (1.39)

where the last line follows from the fact thatp is odd, so modulo2 dropping the factor ofp from the left hand side

does not change the parity. We have reduced the proof of quadratic reciprocity to calculating
∑

a even,a6=0

[
aq
p

]
.

We summarize our results below.

Lemma 1.6.16.Define

µ =
∑

a even
a6=0

[
aq

p

]

ν =
∑

a even
a6=0

[
ap

q

]
. (1.40)

Then
(

q

p

)
= (−1)µ

(
p

q

)
= (−1)ν . (1.41)

Proof. By (1.37) we have (
q

p

)
= (−1)

P
a even,a 6=0 ra . (1.42)

By (1.39) we have ∑
a even

a6=0

[
aq

p

]
≡

∑
a even

a6=0

ra mod 2, (1.43)

and the proof for
(

q
p

)
is completed by recalling the definition ofµ; the proof for

(
p
q

)
proceeds similarly.

1.6.4 Counting Lattice Points

As our sums are not over all evena ∈ {0, 2, . . . , p − 1} but rather just over evena ∈ {2, . . . , p − 1}, this slightly
complicates our notation and forces us to be careful with our book-keeping. We urge the reader not to be too
concerned about this slight complication and instead focus on the fact that we are able to show quadratic reciprocity
is equivalent to counting the number of pairs of integers satisfying certain relations.

Consider the rectangle with vertices atA = (0, 0), B = (p, 0), C = (p, q) andD = (0, q). The upward sloping
diagonal is given by the equationy = q

px. As p andq are distinct odd primes, there are no pairs of integers(x, y)
on the lineAC. See Figure 1.2.
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D(0,q)

A(0,0) B(p,0)

C(p,q)H

FG

E

Figure 1.2: Lattice for the proof of Quadratic Reciprocity. PointsE(p
2 , 0), F (p

2 , q
2 ), G(0, q

2 ), H(p
2 , q)

We add some non-integer points:E = (p
2 , 0), F = (p

2 , q
2 ), G = (0, q

2 ) andH = (p
2 , q). Let #ABCeven

denote the number of integer pairsstrictly inside the triangleABC with evenx-coordinate, and#AEF denote
the number of integer pairsstrictly inside the triangleAEF ; thus, we do not count any integer pairs on the lines
AB, BC, CD or DA.

We now interpret
∑

a even,a 6=0

[
aq
p

]
. Consider the vertical line withx-coordinatea. Then

[
aq
p

]
gives the number

of pairs(x, y) with x-coordinate equal toa andy-coordinate a positive integer at most
[

aq
p

]
. To see this, consider

the lineAC (which is given by the equationy = q
px). For definiteness, let us takep = 5, q = 7 anda = 4. Then[

aq
p

]
=

[
28
5

]
= 5, and there are exactly five integer pairs withx-coordinate equal to4 and positivey-coordinate at

most
[
28
5

]
: (4, 1), (4, 2), (4, 3), (4, 4) and(4, 5). The general proof proceeds similarly.

Thus
∑

a even,a6=0

[
aq
p

]
is the number of integer pairsstrictly inside the rectangleABCD with even x-

coordinate that are below the lineAC, which we denote#ABCeven. We prove

Lemma 1.6.17.The number of integer pairs under the lineAC strictly inside the rectangle with evenx-coordinate
is congruent modulo2 to the number of integer pairs under the lineAF strictly inside the rectangle. Thus
#ABCeven = #AEF .

Proof. First observe that if0 < a < p
2 is even then the points underAC with x-coordinate equal toa are exactly

those under the lineAF with x-coordinate equal toa. We are reduced to showing that the number of points under
FC strictly inside the rectangle with evenx-coordinate is congruent modulo2 to the number of points under the
line AF strictly inside the rectangle with oddx-coordinate. Therefore let us consider an evena with p

2 < a < p−1.
The integer pairs on the linex = a strictly inside the rectangle are(a, 1), (a, 2), . . . , (a, q− 1). There areq− 1

pairs. Asq is odd, there are an even number of integer pairs on the linex = a strictly inside the rectangle. As there
are no integer pairs on the lineAC, for a fixeda > p

2 , modulo2 there are the same number of integer pairsabove
AC as there arebelowAC. The number of integer pairsaboveAC on the linex = a is equivalent modulo2 to
the number of integer pairs belowAF on the linex = p − a. To see this, consider the map which takes(x, y) to
(p− x, q − y). As a > p

2 and is even,p− a < p
2 and is odd. Further, every odda < p

2 is hit (givenaodd < p
2 , start

with the even numberp− aodd > p
2 ). A similar proof holds fora < p

2
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Exercise 1.6.18.Why are there no integer pairs on the lineAC?

We have thus shown that ∑
a even

a 6=0

[
aq

p

]
≡ #AEF mod 2; (1.44)

remember that#AEF is the number of integer pairs strictly inside the triangleAEF . From Lemma 1.6.16 we
know the left hand side isµ and

(
q
p

)
= (−1)µ. Therefore

(
q

p

)
= (−1)µ = (−1)#AEF . (1.45)

Reversing the rolls ofp andq, we see that
(

p

q

)
= (−1)ν = (−1)#AGF , (1.46)

whereν ≡ #AGF mod 2, with #AGF equal to the number of integer pairs strictly inside the triangleAGF .

Exercise 1.6.19.Prove 1.46.

Combining our expressions forµ andν yields

µ + ν = #AEF + #AGF mod 2, (1.47)

which is the number of integer pairs strictly inside the rectangleAEFG. There arep−1
2 choices forx (x ∈

{1, 2, . . . , p−1
2 }) and q−1

2 choices fory ∈ {1, 2, . . . , q−1
2 }), giving p−1

2
q−1
2 pairs of integers strictly inside the

rectangleAEFG. Thus,
(

q

p

)(
p

q

)
= (−1)µ+ν

= (−1)#AEF+#AGF

= (−1)
p−1
2

q−1
2 , (1.48)

which completes the proof of Quadratic Reciprocity.2

Exercise 1.6.20(Advanced). Letp be an odd prime. Are there infinitely many primesq such thatq is a square mod
p? The reader should return to this problem after Dirichlet’s Theorem (Theorem??).
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