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ABSTRACT. A Mersenne prime is a prime that can be written as2p−1 for some prime
p. The first few Mersenne primes are3, 7 and31 (corresponding respectively top = 2,
3 and5). We give some standard conditions onp which ensure that2p − 1 is prime,
and discuss an application to even perfect numbers. The proof requires us to study the
fieldZ/qZ[

√
3], whereq 6= 3 is a prime.

1. INTRODUCTION

If n ≥ 2 andan− 1 is prime, we callan− 1 a Mersenne prime. For which integersa
canan − 1 be prime? We taken ≥ 2 as ifn = 1 thena is just one more than a prime.

We know, using the geometric series, that

an − 1 = (a− 1)(an−1 + an−2 + · · ·+ a + 1). (1)

So,a−1 | an−1 and thereforean−1 will be composite unlessa−1 = 1, or equivalently
unlessa = 2. Thus it suffices to investigate numbers of the form2n − 1.

Further, we need only examine the case ofn prime. For assumen is composite, say
n = mk. Then2n = 2mk = (2m)k, and

2n − 1 = (2m)k − 1 = (2m − 1)((2m)k−1 + (2m)k−2 + · · ·+ (2m)2 + 2m + 1). (2)

So if n = mk, 2n − 1 always has a factor2m − 1, and therefore is prime only when
2m − 1 = 1. This immediately reduces to2m = 2, or simplym = 1. Thus, if n is
composite,2n − 1 is composite.

Now we know we are only interested in numbers of the form2p− 1; if this number is
prime then we call it a Mersenne prime. As it turns out, not every number of the form
2p − 1 is prime. For example,211 − 1 = 2047, which is23 · 89.

2. STATEMENT OF THE LUCAS-LEHMER TEST

How do we determine whichp yield Mp = 2p − 1 prime? An answer is the Lucas-
Lehmer test, which states thatMp is prime if and only ifMp | sp−2, where we recur-
sively define

si =

{
4 if i = 0,

s2
i−1 − 2 if i 6= 0.

(3)

We prove one direction of this statement, namely that ifMp | sp−2, thenMp is prime.
We start by definingu = 2−√3 andv = 2 +

√
3. Some immediate properties are

• u + v = 4 = s0;
• uv = 1, implying that(uv)x = uxvx = 1 (souv to any power equals one).
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We will show thatsn = ut(n) + vt(n), where we have definedt(s) = 2s. We shall see
later that this is a useful way to writesn. Two properties oft(s) that we need are

• t(0) = 1;
• t(s + 1) = 2s+1 = 2t(s).

We prove by induction thatsn = ut(n) + vt(n).

Base Case:Clearly the base case is true, as we have already seen thats0 = u1+v1 = 4.

Inductive Case:Assumingsn = ut(n)+vt(n), we must showsn+1 = ut(n+1)+vt(n+1) =
s2

n − 2. To do this, we look at

sn+1 = s2
n − 2

= (ut(n) + vt(n))2 − 2

= u2t(n) + v2t(n) + 2ut(n)vt(n) − 2. (4)

But we already know thatut(n)vt(n) = (uv)t(n) = 1 and2t(n) = t(n + 1), so we have

sn+1 = ut(n+1) + vt(n+1) + 2− 2

= ut(n+1) + vt(n+1), (5)

which shows thatsn+1 = ut(n+1) + vt(n+1).

3. PROOF OF THELUCAS-LEHMER TEST

We prove one direction of the Lucas-Lehmer test. Specifically, we prove by contra-
diction that ifMp|sp−2 thenMp is prime.

3.1. Preliminaries. We assume thatsp−2 is divisible byMp, but thatMp is not prime.
By direct calculation we may assume thatp > 5. There is therefore an integerR > 1
such that

sp−2 = ut(p−2) + vt(p−2) = RMp. (6)

If we multiply both sides byut(p−2), we obtain

ut(p−2) · (ut(p−2) + vt(p−2)) = ut(p−1) + 1 = RMp · ut(p−2). (7)

Subtracting one from each side gives

ut(p−1) = RMp · ut(p−2) − 1. (8)

We square both sides. As(ut(p−1))2 = ut(p), we obtain that

ut(p) = (RMp · ut(p−2) − 1)2. (9)

Noteut(p) is not necessarily an integer.
Let us choose some prime factorq > 1 of Mp such thatq ≤ √

Mp, or equivalently so
thatq2 ≤ Mp. Does such aq exist? There is no problem with assumingq > 1, but what
aboutq ≤ √

Mp? If Mp = bc then eitherb or c is at most
√

Mp, for if both were larger
then the product would exceedMp. Note we are not claiming thatq <

√
Mp, just that

q ≤ √
Mp.

We use below the fact thatq 6= 3; we needq 6= 3 so that3 will have a multiplicative
inverse inZ/qZ. We are assumingp > 5 (as the other cases can be handled by direct
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computation). Thus we may writep as4n + a, wheren is an integer anda ∈ {1, 3}.
Thus

Mp = 2p − 1

= 24n+a − 1

= 24n · 2a − 1

= (24)n · 2a − 1

≡ 2a − 1 mod 3, (10)

since24 = 16 ≡ 1 mod 3. If a = 1 then24n+a − 1 ≡ 1 mod 3, while if a = 3 then
24n+a − 1 ≡ 1 mod 3. Thus3 does not divideMp, and we may assume thatq 6= 3
below.

The proof is completed by analyzing the order ofut(p) in the fieldZ/qZ[
√

3], where
q is a prime dividingMp. There are two different cases, depending on whether or not3
is a square moduloq. Note that if3 is a square moduloq, then this field is actually just
Z/qZ.

3.2. 3 is not a square moduloq. We finish the proof in the case that3 is not a square
moduloq. This means thatt2 − 3 does not have a root inZ/qZ, or equivalently that
t2 − 3 is irreducible inZ/qZ.

Proof. Consider the ringZ/qZ[
√

3] =
{
a + b

√
3 : a, b ∈ Z/qZ

}
; note there areq2

elements, andq2 − 1 non-zero elements. Asq 6= 3 is prime,Z/qZ is a field. Further,
Z/qZ[

√
3] is a field as

√
3 is invertible inZ/qZ[

√
3]; the inverse isb

√
3, whereb ∈

Z/qZ is such that3b ≡ 1 mod q. More generally, letp(t) = t2 − 3 ∈ Z/qZ[t] be the
irreducible monic polynomial for

√
3 overZ/qZ. Given anya+ b

√
3 ∈ Z/qZ[

√
3] with

a andb not both zero, consider the linear polynomialg(t) = a + bt. Thenp(t) andg(t)
are relatively prime (sincep(t) is monic and irreducible). Thus there are polynomials
such thath1(t)g(t) + h2(t)p(t) = 1; letting t =

√
3 yieldsh1(

√
3)g(

√
3) = 1, so we

have found an inverse tog(
√

3) = a + b
√

3, provingZ/qZ[
√

3] is a field.
We may study the subset of elements with multiplicative inverses,

(
Z/qZ[

√
3]

)∗
. The

order of this multiplicative group isq2 − 1; thus by Lagrange’s theorem every element
x ∈ Z/qZ[

√
3] satisfiesxq2−1 = 1; note that here by equals1 we mean with respect to

the multiplication operation ofZ/qZ[
√

3] (which includes multiplication moduloq and√
3 · √3 = 3).
From (7), we see that

ut(p−1) ≡ RMp · ut(p−2) − 1 mod q. (11)

As q|Mp, Mp ≡ 0 mod q. Therefore

ut(p−1) ≡ −1 mod q. (12)

Similarly, looking at (9), we see that

ut(p) ≡ (RMp · ut(p−2) − 1)2 mod q, (13)

which implies that
ut(p) ≡ (0− 1)2 ≡ 1 mod q. (14)
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The order of an elementg in our multiplicative group
(
Z/qZ[

√
3]

)∗
is the smallest

positivek such thatgk = 1; we often denote this byord(g). By Lagrange’s theorem,
k|q2 − 1. Further, by (14) we know thatord(u) | t(p).

We now show thatord(u) is exactlyt(p). From (14) we see thatord(u)|t(p). As
t(s) = 2s, if ord(u) 6= t(p) thenord(u)|t(p− 1). But if ord(u) dividedt(p− 1) then

ut(p−1) ≡ 1 mod q, (15)

which contradicts (12). Thusord(u) = t(p) = 2p.
However, since the order of any element is at most the order of the group, we have

ord(u) = 2p ≤ q2 − 1 < Mp = 2p − 1, (16)

where the second inequality follows fromq2 ≤ Mp. We thus obtain the contradiction

2p < 2p − 1, (17)

which proves thatMp is prime. ¤

3.3. 3 is a square moduloq. We finish the proof in the case that3 is a square modulo
q. This means thatt2− 3 has a root inZ/qZ, or equivalently thatt2− 3 factors into two
linear terms inZ/qZ. For example, ifq = 13 thent2 − 3 ≡ (t− 4)(t− 9) mod q.

Proof. We now assume that3 is a square moduloq; for definiteness, letb2 = 3. In §3.1
we showed that

ut(p−1) = RMp · ut(p−2) − 1 (18)

and
ut(p) = (RMp · ut(p−2) − 1)2. (19)

Noteut(n) is not necessarily an integer. We may regard these equations moduloq. Doing
so, we replace

√
3 with b. Reducing these equations moduloq yield

ut(p−1) ≡ −1 mod q (20)

and
ut(p) ≡ 1 mod q. (21)

Arguing as in §3.2,ord(u) = 2p; the only difference is that now there areq−1 non-zero
elements in our fieldZ/qZ, and notq2 − 1. We therefore have

ord(u) = 2p ≤ q − 1 ≤ Mp = 2p − 1, (22)

and this contradiction completes the proof. ¤

4. MERSENNEPRIMES AND PERFECTNUMBERS

Another interesting fact about Mersenne primes is their correspondence with perfect
numbers. Perfect numbers are integers whose proper divisors (all divisors except the
number itself) sum to the number. For example,6 = 1 + 2 + 3 and28 = 1 + 2 +
4 + 7 + 14. There is a one-to-one correspondence between even perfect numbers and
Mersenne primes. While it can be shown that every even perfect number is of the form
(2p − 1) · 2p−1, where2p − 1 is a Mersenne prime, we content ourselves with showing
that any number of the form(2p− 1) · 2p−1 is perfect when2p− 1 is a Mersenne prime.
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Let q = 2p− 1 be a Mersenne prime; we show thatq · 2p−1 is perfect. We know that the
proper divisors break up into two disjoint sets:

{1, 2, 4, . . . , 2p−1} ∪ {q, 2q, 4q, . . . , 2p−2q}. (23)

So, using the geometric formula

1 + x + x2 + · · ·+ xn−1 =
xn − 1

x− 1
, (24)

we see that the first set sums to

1 + 2 + 4 + · · ·+ 2p−1 =
2p − 1

2− 1
= 2p − 1 = q, (25)

and the second set sums to

q+2q+4q+ · · ·+2p−2q = q(1+2+4+ · · ·+2p−2) = q

(
2p−1 − 1

2− 1

)
= q(2p−1−1).

(26)
Thus the sum of the proper divisors is

q + q(2p−1 − 1) = q + 2p−1q − q = 2p−1q, (27)

proving that(2p − 1) · 2p−1 is perfect.
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