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Abstract

We introduce enough group theory and number theory to analyze in detail certain problems in cryptology. In the
course of our investigations we comment on the importance of finding efficient algorithms for real world applica-
tions. The notes below are froAn Invitation to Modern Number Thegrgublished by Princeton University Press

in 2006. For more on the book, see

http://www.math.princeton.edu/mathlab/book/index.html

The notes below are Chapter One of the book; as such, there are often references to other parts of the book.
These references will look something like ?? in the text. If you want additional information on any of these
references, please let me know. | am including the entire bibliography, as well as a subset of the index.

Notation

. W : the set of whole numberd1,2,3,4,...}.

N : the set of natural number$6,1,2,3,...}.

Z : the set of integersf. .., —2,—1,0,1,2,... }.

Q : the set of rational numbergzx : « = g,p, q€Z,q#0}.

R : the set of real numbers.

C : the set of complex number§z : z = x + iy, =,y € R}.

Rz, Sz : the real and imaginary parts ofc C; if z = x + iy, Rz = z andSz = .
Z/nZ : the additive group of integers med {0,1,...,n — 1}.
(Z/nZ)* : the multiplicative group of invertible elements mad

10. F,, : the finite field withp elements{0,1,...,p — 1}.

11. a|b: a dividesb.

12. (a,b) : greatest common divisor (gcd) afandb, also writtenged(a, b).

13. primes, composite : A positive integelis prime ifa > 1 and the only divisors of arel anda. If a > 1 is
not prime, we say: is composite.

14. coprime (relatively prime) a andb are coprime (or relatively prime) if their greatest common divisdr. is
15. x =y mod n: there exists an integersuch thatr = y + an.

16. V : for all.



17

18.

19.
20.
21.
22.
23.
24,
25.

26.

27.

. 3: there exists.

Big-Oh notation :A(x) = O(B(x)), read “A(x) is of order (or big-Oh)B(z)”, means3C' > 0 and anz,
such thatvz > g, |A(x)| < C B(x). This is also writtend(z) < B(x) or B(x) > A(x).

Little-Oh notation :A(z) = o(B(x)), read "A(z) is little-Oh of B(x)", meanslim,_,~, A(z)/B(x) = 0.
|S| or #S : number of elements in the s&t

p : usually a prime number.

i, J, k, m, n: usually an integer.

[z] or |«] : the greatest integer less than or equat,teead “the floor of:”.

{z} : the fractional part of; notex = [z] + {x}.

supremum : given a sequenge, }°2 ,, the supremum of the set, denotet,, =, is the smallest number
(if one exists) such that,, < ¢ for all n, and for anye > 0 there is somey, such thate,,, > ¢ — ¢. If the
sequence has finitely many terms, the supremum is the same as the maximum value.

infimum : notation as above, the infimum of a set, denatdd x,,, is the largest number (if one exists)
such thatr,, > c for all n, and for anye > 0 there is somey, such thatz,,, < ¢+ €. If the sequence has
finitely many terms, the infimum is the same as the minimum value.

O : indicates the end of a proof.



Chapter 1

Mod p Arithmetic, Group Theory and
Cryptography

In this chapter we review the basic number theory and group theory which we use throughout the book, culminating
with a proof of quadratic reciprocity. Good introductions to group theory are [J, La3]; see [Dal, IR] for excellent
expositions on congruences and quadratic reciprocity, and [Sil2] for a friendly introduction to much of the material
below. We use cryptographic applications to motivate some basic background material in number theory; see [Ga]
for a more detailed exposition on cryptography and [Lidl, vdP2] for connections with continued fractions. The guid-
ing principle behind much of this chapter (indeed, much of this book and nhumber theory) is the search for efficient
algorithms. Just being able to write down an expression does not mean we can evaluate it in a reasonable amount
of time. Thus, while it is often easy to prove a solution exists, doing the computations as written is sometimes
impractical; see Chaptérof [BB] and [Wilf] for more on efficient algorithms.

1.1 Cryptography

Cryptography is the science of encoding information so that only certain specified people can decode it. We describe
some common systems. To prove many of the properties of these crypto-systems will lead us to some of the basic
concepts and theorems of algebra and group theory.

Consider the following two password systems. In the first we choose two large distinct priamek;; for
example, let us say and ¢ have abouR00 digits each. LetNV = pq and display thel00 digit numberN for
everyone to see. The password is any divisaNafreater thari and less tha@v. One very important property of
the integers is unique factorization: any integer can be written uniquely as a product of prime powers. This implies
that the only factorizations oV arel - N, N - 1, p - ¢ andq - p. Thus there are two passworgsandq. For the
second system, we choos&@0 digit number. We keep this number secret; to gain access the user must input this
number.

Which method is more secure? While it is harder to correctly gteds digits then200, there is a danger in
the second system: the computer needs to store the password. As there is no structure to the problem, the computer
can only determine if you have entered the correct number by comparing§@udigit number to the one it was
told is the password. Thus there is a code-book of sorts, and code-books can be stolen. In the first system there is
no code-book to steal. The computer does not need to kinavy: it only needs to knowN and how to divide, and
it will know the password when it sees it!



There are so many primes that it is not practical to tr@fll digit prime numbers. The Prime Number Theorem
(Theoren??) states that there are approximat%%; primes smaller tham; for = = 102°°, this leads to an imprac-
tically large number of numbers to check. What we have is a process which is easy in one direction (mukiplying
andq), but hard in the reverse (knowing, right now there is no “fast” algorithm to findandg).

It is trivial to write an algorithm which is guaranteed to facfér simply testN by all numbers (or all primes)
at mosty/N. While this will surely work, this algorithm is so inefficient that it is useless for such large numbers.
This is the first of many instances where we have an algorithm which will give a solution, but the algorithm is so
slow as to be impractical for applications. Later in this chapter we shall encounter other situations where we have
an initial algorithm that is too slow but where we can derive faster algorithms.

Exercise 1.1.1.There are approximatel§03° elementary objects in the universe (photons, quarks, et cetera).
Assume each such object is a powerful supercomputer capable of ché6kingumbers a second. How many
years would it take to check all numbers (or all primes) less thdn4%9? What if each object in the universe was

a universe in itself, with03° supercomputers: how many years would it take now?

Exercise 1.1.2.Why do we wanp andgq to be distinct primes in the first system?

One of the most famous cryptography methods is RSA (see [RSA]). Two people, usually named Alice and Bob,
want to communicate in secret. Instead of sending words they send numbers that represent words. Let us represent
the lettera by 01, b by 02, all the way to representingby 26 (and we can have numbers represent capital letters,
spaces, punctuation marks, and so on). For example, we write 030120 for the word “cat.” Thus it suffices to find a
secure way for Alice to transmit numbers to Bob. Let us say a message is a nirdfex fixed number of digits.

Bob chooses two large primgsandq and then two numberéande such thatp — 1)(¢ — 1) dividesed — 1;
we explain these choices in 81.5. Bob then makes publicly available the following informafica: pg ande,
but keeps secret, ¢ andd. It turns out that this allows Alice to send messages to Bob that only Bob can easily
decipher. If Alice wants to send the messdge< N to Bob, Alice first calculated/¢, and then sends Bob the
remainder after dividing by; call this numberX . Bob then calculateX ¢, whose remainder upon dividing by
is the original messag®/! The proof of this uses modulo (or clock) arithmetic and basic group theory, which we
describe below. Afterwards, we return and prove the claim.

Exercise 1.1.3.Letp = 101, ¢ = 97. Letd = 2807 ande = 23. Show that this method successfully sends “hi”
(0809) to Bob. Note that0809)23 is a sixty-six digit number! See Rem&R for one way to handle such large
numbers.

Exercisé™ 1.1.4. Use a quadratic polynomialz? + bx + ¢ to design a security system satisfying the following
constraints:

1. the password is the tripléu, b, c);

2. each of10 people is given some information such that any three of them can pravitier), but no two of
them can.

Generalize the construction: consider a polynomial of degvesuch that some people “know more” than others
(for example, one person can figure out the password with anyone else, another person just needs two people, and
S0 on).

Remark 1.1.5. We shall see another important application of unique factorization®ghen we introduce the
Riemann zeta function. Originally defined as an infinite sum over the integers, by unique factorization we shall be
able to express it as a product over primes; this interplay yields numerous results, among them a proof of the Prime
Number Theorem.



1.2 Efficient Algorithms

For computational purposes, often having an algorithm to compute a quantity is not enough; we need an algorithm
which will compute itquickly. We have seen an example of this when we tried to factor numbers; while we can
factor any number, current algorithms are so slow that crypto-systems based on “large” primes are secure. For
another example, recall Exercise 1.1.3 where we needed to compute a sixty-six digit number! Below we study
three standard problems and show how to either rearrange the operations more efficiently or give a more efficient
algorithm than the obvious candidate. See Chapt#i{BB] and [Wilf] for more on efficient algorithms.

1.2.1 Exponentiation

Considerz™. The obvious way to calculate it involves— 1 multiplications. By writingn in base two we can
evaluater™ in at most2 log, n steps, an enormous savings. One immediate application is to reduce the number of
multiplications in cryptography (see Exercise 1.1.3). Another is in §1.2.34, where we derive a primality test based
on exponentiation.

We are used to writing numbers in base 10, say

n = apl0™ 4 ap 110™ 4o+ a 10 +ag, a; € {1,2,3,4,5,6,7,8,9}. (1.1)
Base two is similar, except each digit is now either 0 or 1.4 be the largest integer such ti#at < n. Then
n o= 28 b2 4 b2+ by, b €1{0,1}. (1.2)
It costsk multiplications to evaluate?' for all i < k. How? Considey, = 22°, y1 = yo - yo = 22 - 22" = 22,
Y2 =1 Y1 = 3322, oYk = Yk—1 * Yk—1 = x2k. To evaluates™, note
2 = bR be 125 b 24 b
= pbe2" bea2MT b2 b
) ()T ) )
= Wl (1.3)

As eachh; € {0, 1}, we have at most + 1 multiplications above (ib; = 1 we have the terny, in the product, if
b; = 0 we do not). It costg multiplications to evaluate the?' (i < k), and at most anothdr multiplications to
finish calculatinge™. As k < log, n, we see that™ can be determined in at ma3tog, n steps. Note, however,
that we do need more storage space for this method, as we need to store thevalued , i < log, n. FOrn
large,2 log, n is much smaller than — 1, meaning there is enormous savings in determinitithis way. See also
Exercise??.

Exercise 1.2.1.Show that it is possible to calculaté storing only two numbers at any given time (and knowing
the base two expansion 0j.

Exercise 1.2.2.Instead of expanding in base two, expand in base three. How many calculations are needed to
evaluater™ this way? Why is it preferable to expand in base two rather than any other base?

Exercise 1.2.3. A better measure of computational complexity is not to treat all multiplications and additions
equally, but rather to count the number of digit operations. For exampl27inx 31 there are six multiplications.

We then must add two three-digit numbers, which involves at most four additions (if we need to carry). How many
digit operations are required to computé&?



1.2.2 Polynomial Evaluation (Horner’s Algorithm)

Let f(z) = ana™ + an_12" "t + - + a2 + ap. The obvious way to evaluaf{z) is to calculater™ and multiply

by a,, (n multiplications), calculate™ ! and multiply bya,,_; (n — 1 multiplications) and add, et cetera. There
aren additions andy"; _, ¥ multiplications, for a total of: + @ operations. Thus the standard method leads
to abouté computations.

Exercise 1.2.4.Prove by induction (see Appendi®) that>_;_  k = % In general,>";_, k% = pay1(n),

wherep,.1(n) is a polynomial of degreé + 1 with leading term%; one can find the coefficients by evaluating

the sums fom = 0,1, ..., d because specifying the values of a polynomial of dedratd + 1 points uniquely
determines the polynomial (see also Exercise 1.1.4). See [Mil4] for an alternate proof which does not use induction.

Exercise 1.2.5.Notation as in Exercise 1.2.4, use the integral test from calculus to show the leading term ©f)

. d+1 .
is *7—5 and bound the size of the error.
Exercise 1.2.6.How many operations are required if we use our results on exponentiation?

Consider the following grouping to evaluatéz), known asHorner’s algorithm :
("'((an$+an—1)x+an—2)l’+-~~+a1)x+a0. (14)

For example,
7ot F 42 — 322 — 1z 4+ 2= ((Te + 4z — 3z — 1)z + 2. (1.5)

Evaluating term by term takels! steps; Horner’s Algorithm takes steps. One common application is in fractal
geometry, where one needs to iterate polynomials (see also §1.2.4 and the references there). Another application is
in determining decimal expansions of numbers (s&8.8

Exercise 1.2.7.Prove Horner's Algorithm takes at moat steps to evaluate, x™ + - - - + ag.

1.2.3 Euclidean Algorithm

Definition 1.2.8 (Greatest Common Divisar)Letz, y € N. The greatest common divisor ofandy, denoted by
ged(z, y) or (z,y), is the largest integer which divides batrandy.

Definition 1.2.9(Relatively Prime, Coprime)lf for integersz andy, ged(z,y) = 1, we sayr andy are relatively
prime (or coprime).

The Euclidean algorithm is an efficient way to determine the greatest common divisar afidy. Without
loss of generality, assume< x < y. The obvious way to determingd(x, y) is to dividexz andy by all positive
integers up tac. This takes at mostr steps; we show a more efficient way, taking at most abBwg, = steps.

Let [z] denote theyreatest integerless than or equal te. We write

y = {%}.IJFH’ 0<r <. (1.6)

Exercise 1.2.10.Prove thatr; € {0,1,...,2 — 1}.

Exercise 1.2.11.Proveged(z, y) = ged(ry, ).



We proceed in this manner unti}. equals zero or one. As each execution results ir r;_1, we proceed at
mostz times (although later we prove we need to apply these steps at mostdbgyi: times).

T
r = — | ri4re, 0<ryo <y
L71 ]
]
71 = 7 crg+13, 0<r3 <y
L2 ]
1]
re= | r3trg, 0< 1y <713
L3 ]
_Tk—2
Te-2 = |- Tp—1+ TR, 0 < g <7Tpoq. (1.7)
| Thk—1

Exercise 1.2.12.Prove that ifry, = 0 thenged(z,y) = r,—1, while ifr;, = 1, thenged(z, y) = 1.
We now analyze how large can be. The key observation is the following:

Lemma 1.2.13. Consider three adjacent remainders in the expansion:, r; andr;; (wherey = r_; and
Ti—1

x = 10). Thenged(ri, i-1) = ged(rip1, i), andryy < ~52.

Proof. We have the following relation:

Ti—
i1 = {111]'T¢+7’z‘+1,0§ﬁ+1<ﬁ:- (1.8)
3
If r; < “5* then asr;;; < r; we immediately conclude that,; < “*. If r; > “=*, then we note that
ri-1
Tit1 = Ti—1 — [ : ] “Ti- (1.9)
T
Our assumptions ory_; andr; imply that [TT—“} = 1. Thusr;;; < “5*. O

We count how often we apply these steps. Going fiamy) = (ro,r—1) to (r1,79) costs one application.
Every two applications gives three pairs, &y 1,7;_2), (r;,7;—1) and(r;11,r;), with r,; at most half ofr;_.
Thus ifk is the largest integer such th#t < , we see have at most 2k < 1+ 2log, z pairs. Each pair requires
one integer division, where the remainder is the input for the next step. We have proven

Lemma 1.2.14. Euclid’s algorithm requires at most+ 2 log, = divisions to find the greatest common divisor:of
andy.

Euclid’s algorithm provides more information than just thel(x, y). Let us assume that = ged(z,y). The
last equation before Euclid’s algorithm terminated was

Ti—o = |:ri2:| cTi—1 + T, 0< Ty < Ti—1. (110)
Ti—1

Therefore we can find integetis_; andb;_» such that

Ty = @j—1Ti—1 + bi_oTi_o. (1.11)



We have written; as a linear combination of_, andr; ;. Looking at the second to last application of Euclid’s
algorithm, we find that there are integers , andbd;_, such that

Tic1 = h_oTi—o + bi_s7i_3. (1.12)
Substituting for-;_; in the expansion of; yields that there are integetis_> andb;_3 such that
Ty = Qi—2Ti—2 + b;_3T;i_3. (1.13)
Continuing by induction and recalling = ged(x, y) yields

Lemma 1.2.15. There exist integers andb such thatged(x, y) = ax + by. Moreover, Euclid’s algorithm gives a
constructiveprocedure to find: andb.

Thus, not only does Euclid’s algorithm show thiandb exist, it gives an efficient way to find them.
Exercise 1.2.16.Find a andb such thata - 244 + b - 313 = ged(244, 313).

Exercise 1.2.17.Add the details to complete an alternate, non-constructive proof of the existea@ndb with
az + by = ged(z, y):

1. Letd be the smallest positive value attainedday+ by as we vary, b € Z. Such &l exists. Sayl = ax+ (y.
2. Showged(z, y)|d.

3. Lete = Az + By > 0. Thend|e. Therefore for any choice of, B € Z, d|(Ax + By).

4

. Consider(a,b) = (1,0) or (0,1), yieldingd|z and d|y. Therefored < ged(x,y). As we have shown
ged(z, y)|d, this completes the proof.

Note this is a non-constructive proof. By minimizing+ by we obtainged(z, y), but we have no idea how many
steps are required. Prove that a solution will be found either among fairs) with e € {1,...,y — 1} and
-be{l,...,.x —1},or—a € {1,...,y — 1} andb € {1,...,2 — 1}. Choosing an object that is minimal in
some sense (here the minimality comes from being the smallest integer attained as wanabyin ax + by) is

a common technique; often this number has the desired properties. See the proof of 2foman additional
example of this method.

Exercise 1.2.18.How many steps are required to find the greatest common diviser,of ., xy?

Remark 1.2.19. In bounding the number of computations in the Euclidean algorithm, we looked at three adjacent
remainders and showed that a desirable relation held. This is a common technique, where it can often be shown
that at least one of several consecutive terms in a sequence has some good property; see also?Heorm
application to continued fractions and approximating numbers.

1.2.4 Newton’'s Method and Combinatorics

We give some examples and exercises on efficient algorithms and efficient ways to arrange computations. The first
assumes some familiarity with calculus, the second with basic combinatorics.

Newton’s Method: Newton's Method is an algorithm to approximate solutiong (@) = 0 for f a differen-
tiable function onR. It is much faster than the method Dfvide and Conquer (see 87?), which finds zeros by



/ X X0

Figure 1.1: Newton’s Method

looking at sign changes ¢f, though this method is of enormous utility (see Renf2@kvhere Divide and Conquer
is used to find zeros of the Riemann zeta function).

Start withxo such thatf(x) is small; we callx, the initial guess. Draw the tangent line to the graplf @it
xo, Which is given by the equation

y — f(zo) = f'(x0) - (x — o). (1.14)
Let z; be thez-intercept of the tangent line;; is the next guess for the roat See Figure 1.1. Simple algebra
gives
f(@o)
T = Tg— . 1.15
' ©7 F(xo) (1.19)
We now iterate and apply the above procedure;toobtaining
f(z1)
To = X1 — . 1.16
2 LT ) (1.16)
If we letg(z) =2 — J{c,((?) , we notice we have the sequence
To, 9(7o), g(g(wo)), (1.17)

We hope this sequence will converge to the root, at leastfalose to the root and fof sufficiently nice. How
closexq has to be is a delicate matter. If there are several roofswaich root the sequence converges to depends
crucially on the initial valuery and the functionf. In fact its behavior is what is known technically esaotic.
Informally, we say that we have chaos when tiny changes in the initial value give us very palpable changes in
the output. One common example is in iterates of polynomials, namely the limiting behayigrof f(f(xo)),
f(f(f(x0))) and so on; see [Dev, Edg, Fal, Man].

Exercise 1.2.20.Let f(z) = 2% — a for somez > 0. Show Newton’s Method convergesta, and discuss the rate

of convergence; i.e., if,, is accurate tan digits, approximately how accurateis, 1 ? For example, look at = 3
andz, = 2. Similarly, investigatet/a. Compare this with Divide and Conquer, where each iteration basically
halves the error (so roughly every ten iterations yields three new decimal digits, b%@%).



Exercise 1.2.21.Let f(x) = 22 — a. Show that we may write, . ; as

oy = © (wn T “) . (1.18)

2 Ty
Find a similar formula forg(z) = 2P — a.

Remark 1.2.22. One big difference between Newton’s Method and Divide and Conquer is that while both require
us to evaluate the function, Newton’s Method requires us to evaluate the derivative as well. Hence Newton’s Method
is not applicable to as wide of a class of functions as Divide and Conquer, but as it uses more informatiofi about

it is not surprising that it gives better results (i.e., converges faster to the answer).

Exercise 1.2.23.Modify Newton’s Method to find maxima and minima of functions. What must you assume about
these functions to use Newton’s method?

Exercise 1.2.24.Let f(x) be a degreex polynomial with complex coefficients. By the Fundamental Theorem of
Algebra, there aren (not necessarily distinct) roots. Assume there ara@istinct roots. Assigmn colors, one to

each root. Given a point € C, we colorz with the color of the root that approaches under Newton's Method (if

it converges to a root). Write a computer program to color such sets for some simple polynomials, for example for
" —1=0forn=2,30r4.

Exercise 1.2.25.Determine conditions offf, the roota and the starting guess, such that Newton’s Method will
converge to the root. See page2 of [BB] or page118 of [Rud] for more details.

Exercisé™ 1.2.26(Fixed Points) We sayz, is a fixed point of a functioh if h(x) = z¢. Let f be a continuously

differentiable function. If we set(z) = = — J-f,((?), show a fixed point af corresponds to a solution tf(x) = 0.
Assume thaf : [a,b] — [a,b] and there is aC' < 1 such that|f'(z)| < C for z € [a,b]. Provef has a

fixed point in[a, b]. Is the result still true if we just assum# (z)| < 1? Fixed points have numerous applications,

among them showing optimal strategies existiplayer games. See [Fr] for more details.

Combinatorics: Below we describe a combinatorial problem which contains many common features of the
subject. Assume we have 10 identical cookies and 5 distinct people. How many different ways can we divide the
cookies among the people, such that all 10 cookies are distributed? Since the cookies are identical, we cannot tell
which cookies a person receives; we can only tell how many. We could enumerate all possibilities: there are 5 ways
to have one person receive 10 cookies, 20 ways to have one person receive 9 and another receive 1, and so on. While
in principle we can solve the problem, in practice this computation becomes intractable, especially as the numbers
of cookies and people increase.

We introduce common combinatorial functions. The first isfe@orial function: for a positive integer., set
n!=n-(n—1)---2-1. The number of ways to choosebjects fromn when order mattersis- (n — 1) --- (n —

(r—1)) = (7,7_’—'7"), (there aren ways to choose the first element, ther- 1 ways to choose the second element,

and so on). Thdinomial coefficient (Z) = #Lr), is the number of ways to chooseobjects fromn objects
when order does not matter. The reason is that once we have chobgatts there are! ways to order them. For
convenience, we defif® = 1; thus (3) = 1, which may be interpreted as saying there is one way to choose zero
elements from a set of objects. For more on binomial coefficients, s&€€.8

We show the number of ways to divide 10 cookies among 5 peomgﬁi’fl). In general, if there ar€’
cookies andP people,

C+P—1)_

Lemma 1.2.27. The number of distinct ways to divideidentical cookies among different people ig™~ "]



Proof. ConsiderC + P — 1 cookies in a line, and number theimio C' + P — 1. ChooseP — 1 cookies. There are

(C;’ffl) ways to do this. This divides the cookies irtesets: all the cookies up to the first chosen (which gives the
number of cookies the first person receives), all the cookies between the first chosen and the second chosen (which
gives the number of cookies the second person receives), and so on. This dividekies amongd® people. Note

different sets ofP — 1 cookies correspond to different partitions @fcookies among® people, and every such

partition can be associated to choosiig- 1 cookies as above. O

Remark 1.2.28. In the above problem we do not cakdnich cookies a person receives. We introduced the numbers
for convenience: now cookies 1 through(say) are given to person 1, cookigs+ 1 throughi, (say) are given to
person 2, and so on.

For example, if we havé0 cookies and people, say we choose cookigst, 7 and13 of the10+5— 1 cookies:

OORIRIOVOROOOOOKRO

This corresponds to persdnreceiving two cookies, persahreceiving zero, persol receiving two, person
receiving five and persahreceiving one cookie.

The above is an example of a partition problem: we are solving x5 + x3 + x4 + x5 = 10, wherexz; is the
number of cookies persaireceives. We may interpret Lemma 1.2.27 as the number of ways to divide an integer
N into k non-negative integers i8' " 1).

Y 4 k—1 N+1l+k—1
n}_:o( ol ):( bl ) (1.19)

We may interpret the above as divididg cookies amond: people, where we do not assume all cookies are
distributed.

Exercise 1.2.29.Prove that

Exercisé™ 1.2.30. Let M be a set withn > 0 elements\ a set withn > 0 elements and a set withm + n
elements. Fof € {0,...,m + n}, prove

min(m,£) m n _(m+n 1.20
5 @0 (5 -

k=max(0,{—n
This may be interpreted as partitionir@@ into two sets, one of size

In Chapter??we describe other partition problems, such as representing a number as a sum of primes or integer
powers. For example, the famous Goldbach problem says any even number greater than 2 is the sum of two primes
(known to be true for integers up &- 106 [Ol]). While to date this problem has resisted solution, we have good
heuristics which predict that, not only does a solution exist, but how many solutions there are. Computer searches
have verified these predictions for larfyeof size10'°.

Exercise 1.2.31(Crude Prediction) By the Prime Number Theorem, there qug% primes less tharnV. If we
assume all numberns < N are prime with the same likelihood (a crude assumption), predict how many ways there
are to write N as a sum of two primes.

Exercise 1.2.32.In partition problems, often there are requirements such as that everyone receives at least one
cookie. How many ways are there to writé as a sum ofi non-negative integers? How many solutions of
x1 + xo + x3 = 1701 are there if eachy; is an integer ande; > 2, 2o > 4, andzz > 6017



Exercise 1.2.33.In solving equations in integers, often slight changes in the coefficients can lead to wildly different
behavior and very different sets of solutions. Determine the number of hon-negative integer solutionsito—=

1996, 221 + 2x9 = 1996, 2x1 + 2z = 1997, 2z1 + 322 = 1996, 221 + 229 + 223 + 224 = 1996 and

2x1 + 29 + 3z3 + 324 = 1996. See Chapte?? for more on finding integer solutions.

Exercis€™ 1.2.34. Let f be a homogenous polynomial of degrei@ n variables. This means

flz1, ... zn) = Z Uy ey T b a2 e C (1.21)

Prove for any\ € C that
fOz, . ) = Xf(z,. .., ). (1.22)

As a function of andd, how many possible terms are therefitfeach term is of the form’f1 cogkn)?

The above problems are a small set of interesting results in combinatorics; see also [Mil4] for other techniques
to prove combinatorial identities. We give some additional problems which illustrate the subject; the Binomial
Theorem (Theorerm?) is useful for these and other investigations.

Exercisé™ 1.2.35. Let k be a positive integer and consider the sequerfce”, 3%, ... (soz,, = n*). Consider
the new sequence obtained by subtracting adjacent te2fns: 1%, 3* — 2%, ... and so on. Continue forming new
sequences by subtracting adjacent terms of the previous terms. Prove that each terii'oselgeence ia!.

Exercisé™ 1.2.36. Letk andd be positive integers. Prove

d—1 k—1 d
=" (m)ém. (1.23)

m=0 £=0

1.3 Clock Arithmetic: Arithmetic Modulo n

Let Z denote the set of integers and forc N defineZ/nZ = {0,1,2,...,n — 1}. We often readZ/nZ as the
integers modulon.

Definition 1.3.1(Congruence) z = y mod n meanst — y is an integer multiple ofi. Equivalentlyx andy have
the same remainder when dividedsby

When there is no danger of confusion, we often drop the suffix maditing insteadr = y.
Lemma 1.3.2(Basic Properties of Congruences$pr a fixedn € N anda,a’, b, b’ integers we have

1. a = b mod n if and only ifb = a@ mod n.

2. a = bmod n andb = ¢ mod n impliesa = ¢ mod n.

3.a = d modn andb = ¥ mod n, thenab = /b’ mod n. In particular a = o’ mod n impliesab =
a’b mod n for all b.

Exercise 1.3.3.Prove the above relations. d = cb mod m, musta = ¢ mod m?
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Forz,y € Z/nZ, we definex + y to be the unique numbere Z/nZ such that|(z + y — z). In other words,
z is the unique number i /nZ such thatr + y = z mod n. One can show thak/nZ is a finite group under
addition; in fact, it is a finite ring. (See §1.4.1 for the definition of a group).

Exercisé™ 1.3.4(Arithmetic Modulon). Define multiplication ofe,y € Z/nZ by z - y is the uniquez € Z/nZ
such thatzy = z mod n. We often writery for x - y. Prove that this multiplication is well defined, and that an
element: has a multiplicative inverse if and only(if,n) = 1. Conclude that if every non-zero elemenZghZ
has a multiplicative inverse, thenmust be prime.

Arithmetic modulor: is also called clock arithmetic. If = 12 we haveZ/12Z. If it is 10 o’'clock now, in
5 hours it is3 o’clock becausd0 + 5 = 15 = 3 mod 12. See [Bob] for an analysis of the “randomness” of the
inverse map in clock arithmetic.

Definition 1.3.5 (Least Common Multiple) Letm,n € N. The least common multiple ef and n, denoted by
lcm(m, n), is the smallest positive integer divisible by batrandn.

Exercise 1.3.6.1f a = b mod n anda = b mod m, thena = b mod lcm(m, n).
Exercise 1.3.7.Prove for all positive integerse, n thatlcm(m, n) - gcdm, n) = mn.

Are there integer solutions to the equatin+ 1 = 2y? The left hand side is always odd, the right hand side is
always even. Thus there are no integer solutions. What we did is really arithmetic n2ashéwithmetic inZ /27,
and indicates the power of congruence arguments.

Consider now:? + 32 + 22 = 8n + 7. This never has integer solutions. Let us study this equation médulo
The right hand side i modulo8. What are the squares mod@® They arel? = 1,22 = 4,32 = 1,42 = 0, and
then the pattern repeats (as modgjd: and (8 — k) have the same square). We see there is no way to add three
squares and g&t Thus there are no solutions 18 + y2 + 22 = 8n + 7.

Remark 1.3.8 (Hasse Principle) In general, when searching for integer solutions one often tries to solve the
equation modulo different primes. If there is no solution for some prime, then there are no integer solutions.
Unfortunately, the converse is not true. For example, Selmer shawfed 4y3 + 523 = 0 is solvable modulg for

all p, but there are no rational solutions. We discuss this in more detail in Ch&gter

Exercise 1.3.9Divisibility Rules). Prove a number is divisible by 3 (or 9) if and only if the sum of its digits are
divisible by 3 (or 9). Prove a number is divisible by 11 if and only if the alternating sum of its digits is divisible by
11 (for example, 341 yields 3-4+1). Find a rule for divisibility by 7.

Exercise 1.3.10Chinese Remainder Theorem)et my, mo be relatively prime positive integers. Prove that for
anyai,as € Z there exists a unique mod mms such thatr = a; mod m; andx = as mod my. Is this still
true if m; andmsy are not relatively prime? Generalize taq, ..., mg anday, ..., ax.

Exercisé™ 1.3.11(Fermat primes) Letz = 2™ + 1 be a prime. Prove:. = 2™ for somem. Primes of the form
22" 4 1 are called Fermat primes.

1.4 Group Theory

We introduce enough group theory to prove our assertions about RSA. For more details, see [Art, J, La3].
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1.4.1 Definition
Definition 1.4.1(Group) A setG equipped with a mafy x G — G (denoted by(z, y) — xy) is a group if
1. (Identity)Je € G such thatvx € G, ex = xe = .
2. (AssociativityWVz, y, z € G, (zy)z = z(yz).
3. (Inverse)vz € G, Jy € G such thatry = yz = e.
4. (Closure)Vzx,y € G, xy € G.

We have written the group multiplicativelyx,y) — xy; if we wrote (z,y) — = + y, we say the group is
written additively. We call7 a finite group if the sef is finite. If Va, y € G, xy = yx, we say the group iabelian
or commutative.

Exercise 1.4.2.Show that under additiofi/nZ is an abelian group.

Exercise 1.4.3.Consider the set aV x N matrices with real entries and non-zero determinant. Prove this is a
group under matrix multiplication, and show this group is not commutativé if 1. Is it a group under matrix
addition?

Exercise 1.4.4.Let(Z/pZ)* = {1,2,...,p—1} wherea-bis defined to beb mod p. Prove this is a multiplicative
group if p is prime. More generally, letZ/mZ)* be the subset &&/mZ of numbers relatively prime to.. Show
(Z/mZ)* is a multiplicative group.

Exercise 1.4.5Euler's¢-function (or totient function)) Let¢(n) denote the number of element§#ynZ)*. Prove
that forp prime,é(p) = p— 1 and(p*) = p* — p*~1. If p andq are distinct primes, prove(p’¢*) = ¢(p?)p(q").
If n andm are relatively prime, prove that(nm) = ¢(n)¢(m). Noteg(n) is the size of the groufZ /nZ)*.

Definition 1.4.6(Subgroup) A subsetd of G is a subgroup ifH is also a group.
Our definitions imply any grougr has at least two subgroups, itself and the set containing the identity element.

Exercise 1.4.7.Prove the following equivalent definition: A subggbf a groupG is a subgroup if foralk, y € H,
—1
zy € H.

Exercise 1.4.8.Let G be an additive subgroup &. Prove that there exists an€ N such that every element 6f
is an integral multiple of..

Exercise 1.4.9.Let GL,(R) be the multiplicative group of x n invertible matrices with real entries. Let $(Z)

be the subset with integer entries and determinant 1. Proy¢Z3lis a subgroup. This is a very important subgroup
in number theory; when = 2 it is called themodular group See 87 for an application to continued fractions.
1.4.2 Lagrange’s Theorem

We prove some basic propertiesfiiite groups (groups with finitely many elements).

Definition 1.4.10(Order) If G is a finite group, the number of elementsbfs the order ofG and is denoted by
|G|. If z € G, the order ofz in G, ord(x), is the least positive power. such thatz™ = e, wheree € G is the
identity of the group.
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Exercisé™ 1.4.11. Prove all elements in a finite group have finite order.

Theorem 1.4.12(Lagrange) Let H be a subgroup of a finite groud. Then|H| divides|G|. In particular, taking
H to be the subgroup generated bye G, ord(z)|ord(G).

We first prove two useful lemmas.
Lemma 1.4.13.Let H be a subgroup of7, and leth € H. ThenhH = H.

Proof. It suffices to showhH c H andH C hH. By closurehH C H. For the other direction, lét’ € H. Then
hh~'h' = K;ash~'h' € H, everyh’ € H is also inhH. O

Lemma 1.4.14. Let H be a subgroup of a grou@. Then for allg;, g; € G eitherg; H = g; H or the two sets are
disjoint.

Proof. Assumey; HNg;H is non-empty; we must show they are equal. ket g;h1 = g;ho be in the intersection.
Multiplying on the right byh; ! € H (which exists becausH is a subgroup) giveg; = gjhghl_l. Sog;H =
g;hohi H. Ashohi'H = H, we obtaing; H = g, H. O

Definition 1.4.15(Coset) We call a subsegH of G a coset(actually, a left coset) of. In general the set of all
gH for a fixedH is not a subgroup.

Exercisé™ 1.4.16. Show not every set of cosets is a subgroup.

We now prove Lagrange’s Theorem.
Proof[Proof of Lagrange’s theorem] We claim

¢ = JgH (124)
geG

Why is there equality? Ag € G andH C G, eachgH C G, hence their union is contained @?. Further, as
e € H,giveng € G, g € gH. Thus,G is a subset of the right side, proving equality.

By Lemma 1.4.13, two cosets are either identical or disjoint. By choosing a subset of the cosets, we show the
union in (1.24) equals a union of disjoint cosets. There are only finitely many elemeHtsAisa we go through all
g in G, if the cosetyH equals one of the cosets already chosen, we do not include it; if it is new, we do. Continuing
this process, we obtain

k
G = |JaH (1.25)
=1

for some finitek, and thek cosets are disjoint. [l = {e}, k is the number of elements 6f; in general, however,
k will be smaller. Each sef; H has|H| elements, and no two cosets share an element. [THus k| H|, proving
|H| divides|G].

Exercise 1.4.17.LetG = (Z/15Z)*. Find all subgroups oz and writeG as the union of cosets for some proper
subgroupH (H is aproper subgroup of G if H is neither{1} nor G).

Exercise 1.4.18LetG = (Z/p1p2Z)* for two distinct prime®; andp,. What are the possible orders of subgroups
of G? Prove that there is either a subgroup of orggror a subgroup of ordep,, (in fact, there are subgroups of
both orders).
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1.4.3 Fermat’s Little Theorem

We deduce some consequences of Lagrange’s Theorem which will be useful in our cryptography investigations.
Corollary 1.4.19 (Fermat's Little Theorem)For any primep, if gcd(a, p) = 1 thena?~! = 1 mod p.

Proof. As |(Z/pZ)*| = p — 1, the result follows from Lagrange’s Theorem. O

Exercisé€" 1.4.20. One can reformulate Fermat’s Little Theorem as the statement thasiprime, for alla we
havep|a? — a. Give a proof for this formulatiomithout using group theory. Does|a™ — a for all n?

Exercise 1.4.21.Prove that if for some, a”~! # 1 mod n thenn is composite.

Thus Fermat's Little Theorem is a fast way to show certain numbers are composite (remember exponentiation
is fast: see §1.2.1); we shall also encounter Fermat'’s Little TheorerddmBen we count the number of integer
solutions to certain equations. Unfortunately, it is not the casesthat = 1 mod n impliesn is prime. There are
compositen such that for all positive integets a”~! = 1 mod n. Such composite numbers are called Carmichael
numbers (the first few are 561, 1105 and 1729). More generally, one has

Theorem 1.4.22Euler). If ged(a,n) = 1, thena®™ =1 mod n.

Proof. Let (a,n) = 1. By definition, ¢(n) = |(Z/nZ)*|. By Lagrange’s Theorem the order @fe (Z/nZ)*
divides¢(n), or a®™ =1 mod n. O

Remark 1.4.23. For our applications to RSA, we only need the case whéenthe product of two primes. In this
case, consider the sét, ..., pq}. There arepg numbersg numbers are multiples gf, p numbers are multiples
of ¢, and one is a multiple of both and g. Thus, the number of numbers{a, ..., pq} relatively prime topq is
pqg —p — q + 1 (why?). Note this equals(p)¢p(q) = (p — 1)(¢ — 1). This type of argument is known blusion

- Exclusion. See also Exercisg?.

Exercise 1.4.24 Korselt [Kor] proved that a composite numbeis a Carmichael number if and onlysifis square-
free and if a primep|n, then(p — 1)|(n — 1). Prove that if these two conditions are met thers a Carmichael
number.

Research Project 1.4.2%Carmichael Numbers)it is known (see [AGP]) that there are infinitely many Carmichael
numbers; see [Pi] for some recent numerical investigations. One can investigate the spacings between adja-
cent Carmichael numbers. For example, choose a laXgand look at all Carmichael numbers (X, 2X], say
c1,.-.,Cnte1. The average spacing between these numbers is a?’éél# (they are spread out over an interval

of size X, and there aren differences:co — ¢1,...,ch+1 — ¢, HOw are these differences distributed? Often,

it is more natural to rescale differences and spacings so that the average spacing is 1. The advantage of such a
renormalization is the results are often scale invariant (i.e., unitless quantities). For more on investigating such
spacings, see Chapter.

Exercisé™ 1.4.26. Prove an integer is divisible by (resp.,9) if and only if the sum of its digits is divisible By
(resp.,9).

Exercisé™ 1.4.27. Show an integer is divisible by if and only if the alternating sum of its digits is divisible by
11; for example,924 is divisible by1l becausell|(9 — 2 + 4). Use Fermat’s Little Theorem to find a rule for
divisibility by 7 (or more generally, for any prime).

Exercisé" 1.4.28. Show that ifr is a positive integer then there exists a positive integsnch that the producty
has only zeros and ones for digits.
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1.4.4 Structure of (Z/pZ)*
The multiplicative groudZ/pZ)* for p prime has a rich structure which will simplify many investigations later.

Theorem 1.4.29.For p prime,(Z/pZ)* is cyclic of orderp — 1. This means there is an element (Z/pZ)* such
that

(Z/pzZ)" = {1,2,....,p—2,p—1} = {91,92,...,gp72,gp71}. (1.26)

We sayg is a generator of the group. For each there is a unique integér € {1,...,p — 1} such that
r = ¢g¥ mod p. We sayk is theindex of x relative tog. For eachr € (Z/pZ)*, theorder of z is the smallest
positive integemn such that:™ = 1 mod p. For example, ip = 7 we have

{1,2,3,4,5,6} = {3°,3%,3",31,3%,3%}, (1.27)

which implies3 is a generator (and the index of 4 relative to 3 is 4, becduse 3* mod 7). Note5 is also a
generator of this group, so the generator need not be unique.

Proof[Sketch of the proof] We will use the fact th@/pZ)* is a commutative groupry = yz. Letz,y €
(Z/pZ)* with ordersm andn for the exercises below. The proof comes from the following:

Exercise 1.4.30.Assumen = myms, With mq, mo relatively prime. Show™! has orderms.

Exercisé" 1.4.31. Let/ be the least common multiple of andn (the smallest number divisible by bathand
n). Prove that there is an elemenbf order.

Exercise 1.4.32.By Lagrange’s Theorem, the order of amyividesp — 1 (the size of the group). From this fact
and the previous exercises, show there is sdraech that the order of every element divides p — 1, andthere
is an element of ordef and no elements of larger order.

The proof is completed by showingj= p — 1. The previous exercises imply that every element satisfies the
equationz? — 1 = 0 mod p. As every element in the group satisfies this, and therg aré elements in the group,
we have a degre polynomial withp — 1 roots. We claim this can only occurdf= p — 1.

Exercisé™ 1.4.33. Prove the above claim.
Therefored = p — 1 and there is some elemepbf orderp — 1; thus,g’s powers generate the group.

Exercise 1.4.34.For p > 2, k > 1, what is the structure ofZ/p*Z)*? If all the prime divisors ofn are greater
than 2, what is the structure 0% /mZ)*? For more on the structure of these groups, see any undergraduate algebra
textbook (for example, [Art, J, La3]).

1.5 RSA Revisited

We have developed sufficient machinery to prove why RSA works. Remember Bob chose twoppaintzs and
numbersd (for decrypt) anc: (for encrypt) such thafe = 1 mod ¢(pg). He made publidV = pq ande and kept
secret the two primes ant Alice wants to send Bob a numbg&f (smaller thanV). She encrypts the message by
sendingX = M¢ mod N. Bob then decrypts the message by calculafiffgmod N, which we claimed equals
M.
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As X = M® mod N, there is an integer such thatX = M¢+nN. ThusX? = (M¢+nN)?, and the last term
is clearly of the form(A7¢)? +n/ N for somen’. We need only shoM ¢)? = M mod N. Ased = 1 mod ¢(N),
there is ann such thaktd = 1 + m¢(N). Therefore

(Me)d _ Med — M1+m¢(N) - M- Mmqb(N) - M- (M¢(N))m. (128)

If M is relatively prime toV then By Euler's Theorem (Theorem 1.4.22)*(") = 1 mod N, which completes
the proof. Thus we can only send messages relatively prindé.tén practice this is not a problem, as it is very
unlikely to stumble upon a message that shares a factorMithf course, if we did find such a message we could
quickly find the factors ofV. If our initial message has a factor in common with we need only tweak our
message (add another letter or spell a word incorrectly); see also Exercise 1.5.3.

Why is RSA secure? Assume a third person (say Charlie) intercepts the encrypted nmiéskegenowsX, N
ande, and wants to recove¥/. Knowingd such thatle = 1 mod ¢(N) makes decrypting the message trivial: one
need only computé&? mod N. Thus Charlie is trying to solve the equatiest = 1 mod ¢(N); fortunately for
Alice and Bob this equation has two unknowrdsand¢(N)! Right now, there is no known fast way to determine
¢(N) from N. Charlie can of course factd¥; once he has the factors, he knoy(sV) and can findl; however,
the fastest factorization algorithms make 400 digit numbers unaccessible for now.

This should be compared to primality testing, which was only recently shown to be fast ([AgKaSa]). Previous
deterministic algorithms to test whether or not a number is prime were known to be fast only if certain well believed
conjectures are true. It was an immense achievement showing that there is a deterministic, efficient algorithm. The
paper is very accessible, and worth the read.

Remark 1.5.1. Our simple example involved computing a sixty-six digit number, and this was for a Amall
(IV = 9797). Using binary expansions to exponentiate, as we need only transmit our message Mpdeloever
need to compute anything larger than the product of four digit numbers.

Remark 1.5.2. See [Bon] for a summary of attempts to break RSA. Certain products of two primes are denoted RSA
challenge numbers, and the public is invited to factor them. With the advent of parallel processing, many numbers
have succumbed to factorization. See http://www.rsasecurity.com/rsalabs/node.asp?id=2092 for more details.

Exercise 1.5.3.If N is the product of two distinct odd primes, show that at least one out of every three consecutive
integers is relative prime t&v. Thus if the last digit of a message is kept free, it is always possible to choose a final
digit so that the message is relatively primeNo

Exercise 1.5.4.1f M < N is not relatively prime taV, show how to quickly find the prime factorization/éf

Exercise 1.5.5Security Concerns)In the system described, there is no way for Bob to verify that the message
came from Alice! Design a system where Alice makes some information public (and keeps some secret) so that Bob
can verify that Alice sent the message.

Exercise 1.5.6.Determiningg(N) is equivalent to factoringV; there is no computational shortcut to factoring.
Clearly, if one knows the factors &f = pg, one knowsp(N). If one knowsp(N) and N, one can recover the
primesp andg. Show that ik = N + 1 — ¢(N), then the two prime factors éf are (K + v K2 —4N)/2, and
these numbers are in fact integers.

Exercisé™ 1.5.7(Important) If e and(p — 1)(q — 1) are given and relatively prime, show how one may efficiently
find ad such thated — 1 divides(p — 1)(¢ — 1).
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Exercisé™ 1.5.8. It is essential that is relatively prime tas(pq) = (p — 1)(¢ — 1). Unlike Exercise 1.5.3, show

it is possible for three consecutive numbers not to be relatively prirpéitg); how many consecutive numbers can
share a factor withp(pq)? The answer will depend on the prime factorizationp ef 1 andg — 1. In the remarks

to this exercise we discuss howpifind ¢ are Germain primes then one out of every six consecutive integers are
relative prime tog(pq).

1.6 Eisenstein’s Proof of Quadratic Reciprocity

We conclude this introduction to basic number theory and group theory by giving a proof of quadratic reciprocity
(we follow the beautiful exposition in [LP] of Eisenstein’s proof; see the excellent treatments in [IR, NZM] for
alternate elementary proofs, as well as [Kar] for an advanced proof with connections to values of the Riemann
zeta function). In §1.2.4, we described Newton’s Method to find square roots of real numbers. Now we turn our
attention to a finite group analogue: for a primend ana # 0 mod p, when isz? = a mod p solvable? For
example, ifp = 5 then(Z/pZ)* = {1,2,3,4}. Squaring these numbers givek 4,4,1} = {1,4}. Thus there

are two solutions it: € {1,4} and no solutions it € {2,3}. The problem of whether or not a given number is a
square is solvable: we can simply enumerate the g(@ypZ)*, square each element, and seeig a square. This

takes aboup steps; quadratic reciprocity will take abdug; p steps. For applications, se@3

1.6.1 Legendre Symbol

We introduce notation. From now opandgq will always be distinct odd primes.

Definition 1.6.1(Legendre Symboq;)). The Legendre Symb()%) is

1 if a is a non-zero square modyko
a
() = 0 if a =0 modulop (1.29)
—1 if ais anotasquare modufo

The Legendre symbol is a function &y = Z/pZ. We extend the Legendre symbol to all integers(%jy:
(a mod p) )
p

Notea is a square modulp if there exists an: € {0,1,...,p — 1} such thats = 2? mod p.

Definition 1.6.2 (Quadratic Residue, Non-Residudjor a # 0 mod p, if 22 = a mod p is solvable (resp., not

solvable) we say is a quadratic residue (resp., non-residue) moduldVhenp is clear from context, we just say

residue and non-residue.

Exercise 1.6.3.Show the Legendre symbol is multiplicative?) = (2) (2).

Exercise” 1.6.4(Euler's Criterion) For oddp, (%) = a"= mod p.
: _ p=1 -1

Exercise 1.6.5.Show(—}) = (-1)"7 and(}) = (-1)"s

Lemma 1.6.6. For p an odd prime, half of the non-zero numberg#ypZ)* are quadratic residues and half are

quadratic non-residues.
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Proof. As p is odd, 21 € N. Consider the number, 22,..., (%*)2. Assume two numbers andb are
equivalent modulg. Thena? = b? mod p, S0 (a — b)(a + b) = 0 mod p. Thus eithetra = b mod p ora =
—b mod p; in other wordsg = p —b. Forl < a,b < % we cannot have = p — b mod p, implying thepz;1
values above are distinct. Ap — )2 = 2 mod p, the above list is all of the non-zero squares moguld@hus

half the non-zero numbers are non-zero squares, half are non-squares. O

Remark 1.6.7. By Theorem 1.4.297/pZ)* is a cyclic group with generatgy. Using the group structure we can
prove the above lemma directly: once we show there is at least one non-residu® tive the quadratic residues
and theg?**! are the non-residues.

Exercise 1.6.8.Show for any: # 0 mod p that

S-S -e

t=0

Exercise 1.6.9.Forz € {0,...,p — 1}, let F,(z) = 3, (%); note F;,(0) = F,(p — 1) = 0. If (5}) = 1, show
F, (%1) = 0. Do you thinkF'(x) is more likely to be positive or negative? Investigate its values for vaticarsd
p-
Initially the Legendre symbol is defined only when the bottom is prime. We now extend the definition. Let
n = p; - p2 - - p be the product of distinct odd primes. Theff) = (%) (%) - - (ﬁ) this is theJacobi symbol

and has many of the same properties as the Legendre symbol. Wep\llviI[p

szztudy only the Legendre symbol (see [IR] for
more on the Jacobi symbol). Note the Jacobi symbol dogsay that ifa is a square (a quadratic residue) modulo
n, thena is a square mog; for each prime divisor.
The main result (which allows us to calculate the Legendre symbol quickly and efficiently) is the celebrated

Theorem 1.6.10(The Generalized Law of Quadratic Reciprocityjor m, n odd and relatively prime,

(n> <m> N (1.31)

Gauss gave eight proofs of this deep result wheandn are prime. If eithep or ¢ are equivalent td mod 4
then we have(%) = (g) i.e.,p has a square root moduiaf and only if ¢ has a square root moduto We content
ourselves with proving the case with, n prime.

Exercise 1.6.11.Using the Generalized Law of Quadratic Reciprocity, Exercise 1.6.5 and the Euclidean algorithm,
show one can determinedf < m is a square modulen in logarithmic time (i.e., the number of steps is at most

a fixed constant multiple dbg m). This incredible efficiency is just one of many important applications of the
Legendre and Jacobi symbols.

1.6.2 The Proof of Quadratic Reciprocity

Our goal is to prove

Theorem 1.6.12(Quadratic Reciprocity) Letp andg be distinct odd primes. Then

QO
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As p andq are distinct, odd primes, bot('%) and (£) are+1. The difficulty is figuring out which signs are
correct, and how the two signs are related. We use Euler’s Criterion (Exercise 1.6.4).

The idea behind Eisenstein’s proof is as follow$) () is —1 to a power. Further, we only need to determine
the power modul@. Eisenstein shows many expressions are equivalent maduolthis power, and eventually we
arrive at an expression which is trivial to calculate modulo 2. We repeatedly use the factglatdisare distinct
primes, the Euclidean algorithm implies thgeis invertible modulgy andp is invertible modulay.

We choose to present this proof as it showcases many common techniques in mathematics. In addition to
using the Euclidean algorithm and modular arithmetic, the proof shows that quadratic reciprocity is equivalent to
a theorem about the number of integer solutions of some inequalities, specifically the number of pairs of integers
strictly inside a rectangle. This is just one of many applications of counting solutions; we discuss this topic in
greater detail in Chaptéy?.

1.6.3 Preliminaries

Consider all multiples of by an everu < p — 1: {2¢,4q,6q,...,(p — 1)q}. Denote a generic multiple byq.
Recall[z] is the greatest integer less than or equal.t8y the Euclidean algorithm,

aq = [apﬂp—l—r@, O<re<p-—1. (1.33)

Thusr, is the least non-negative number equivalentdanod p. The numberg—1)"r, are equivalent to even
numbers in{0,...,p — 1}. If r, is even this is clear; if, is odd, then(—1)"r, = p — r, mod p, and agp and
rq are odd, this is even. Finally notg # 0; if r, = 0 thenp|aq. As p andgq are relatively prime, this implieg|a;
howeverp is prime andw < p — 1. Thereforep cannot dividez and thus-, # 0.

Lemma 1.6.13.If (—1)"r, = (—1)"*r, thena = b.

Proof. We quickly get+r, = r, mod p. If the plus sign holds, then, = r, mod p impliesaq = bqg mod p. Asq
is invertible modulg, we geta = b mod p, which yieldsa = b (asa andb are even integers betweemndp — 1).

If the minus sign holds, then, + 7, = 0 mod p, or aq + bg = 0 mod p. Multiplying by ¢! mod p now gives
a+ b= 0mod p. Asa andb are even integers betwerandp — 1, 4 < a + b < 2p — 2. The only integer strictly
betweent and2p — 2 which is equivalent t® mod p is p; howeverp is odd and: + b is even. Thus the minus sign
cannot hold, and the elements are all distinct. O

Remark 1.6.14. The previous argument is very common in mathematics. We will see a useful variant in Chapter
??, where we show certain numbers are irrational by proving that if they were not then there would have to be an
integer strictly betweefi and 1.

Lemma 1.6.15. We have

q P
<> — (_1) a even,az£0 Ta’ (134)
p

wherea even, a # 0 means: € {2,4,...,p—3,p—1}.
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Proof. Foreacheven € {2,...,p — 1}, ag = r, mod p. Thus modulg

Moo = I~

a even a even

a0 a#0
p—1
¢ Il e = ]l
a even a even
a#0 a#0
q
( H a = H Ta, (1.35)
P/ ocien a"even

a#£0 a#0

where the above follows from the fact that we héﬁgé choices for an even (giving the factorqu_l) and Euler’s
Criterion (Exercise 1.6.4). As ranges over all even numbers frdhto p — 1, so too do the distinct numbers
(=1)"=r, mod p. Note how important it was that we showeg # 0 in (1.33), as otherwise we would just have
0 = 0in (1.35). Thus modulg,

H a H (=1)"er,

a even a even

a#£0 a#0

P
H a = (_1) a even,a#0 Ta H Tq- (136)
u‘ae;gn aae;z[e)n
Combining gives
P
(q) (=1) acvenazo’a H re = H 7, mod p. (1.37)
p @ cven @ cven
As eachr, is invertible modula, so is the product. Thus
q P
(> (fl) aeenaz0’e = 1 mod . (138)
p
As (%) = £1, the lemma follows by multiplying both sides If§). O

Therefore it suffices to determirje, r, mod 2. We make one last simplification. By the first step in

a even,a#0

the Euclidean algorithm (1.33), we hawe = [%} p+r, forsomer, € {2,...,p—1}. Hence

Sag = Y ({‘ﬂpwa) =y [Cﬂw 3 e (1.39)

a even a even a even a even

a#0 a#0 a#0 a#0

As we are summing over eve the left hand side above is even. Thus the right hand side is even, so

3 mp S 1, mod 2

a even a even

a#0 a#0
aq
a#0 a#0
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where the last line follows from the fact thats odd, so modul@ dropping the factor op from the left hand side
does not change the parity. We have reduced the proof of quadratic reciprocity to calchlating, .. [%}
We summarize our results below.

Lemma 1.6.16. Define

vo= Y {“qp] (1.41)

Then

(Z) " (1.42)

Proof. By (1.38) we have
P
(q> — (fl) a evena0 r‘l_ (143)

By (1.40) we have

3 {‘ﬂ = Y 7 mod?2, (1.44)

a even a even

a0 a#0

and the proof fo(%) is completed by recalling the definition pf the proof for the cas(eg) proceeds similarly. [

1.6.4 Counting Lattice Points

As our sums are not over all evene {0,2,...,p — 1} but rather just over evem € {2,...,p — 1}, this slightly
complicates our notation and forces us to be careful with our book-keeping. We urge the reader not to be too
concerned about this slight complication and instead focus on the fact that we are able to show quadratic reciprocity
is equivalent to counting the number of pairs of integers satisfying certain relations.

Consider the rectangle with verticesAat= (0,0), B = (p,0), C = (p,¢q) andD = (0, q). The upward sloping
diagonal is given by the equation= %x. As p andgq are distinct odd primes, there are no pairs of integerg)
on the lineAC. See Figure 1.2.

We add some non-integer point&l = (£,0), F = (£,4), G = (0,%) andH = (%,q). Let#ABCeen
denote the number of integer passictly inside the triangleABC with evenx-coordinate, ang# AEF' denote
the number of integer paigrictly inside the triangleAE F'; thus, we do not count any integer pairs on the lines

AB, BC,CD or DA.
We now interpred_, . ... .0 {%} . Consider the vertical line with-coordinate:. Then {%} gives the number

of pairs(z, y) with z-coordinate equal ta andy-coordinate a positive integer at mc{%ﬂ} . To see this, consider
the line AC (which is given by the equation = %x). For definiteness, let us take= 5, ¢ = 7 anda = 4. Then
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H ap,q9)

0(0,q)

A(0,0) E B(p,0)

Figure 1.2: Lattice for the proof of Quadratic Reciprocity. Poiitg, 0), F'(

(]S
ke
—
Q
=
NS
N~—
=
(NS
)
S—

[%} = [25—8] = 5, and there are exactly five integer pairs witltoordinate equal td and positivey-coordinate at

most|[2]: (4,1), (4,2), (4,3), (4,4) and(4, 5). The general proof proceeds similarly.
Thus > ﬂ} is the number of integer pairstrictly inside the rectangleABCD with even z-

a even,a#0 | p

coordinate that are below the ling”, which we denotet ABC..,. We prove

Lemma 1.6.17. The number of integer pairs under the lid€’ strictly inside the rectangle with evencoordinate
is congruent modul® to the number of integer pairs under the linkF strictly inside the rectangle. Thus
#ABCoyen = #AEF.

Proof. First observe that i < a < £ is even then the points undeiC' with z-coordinate equal ta are exactly
those under the lind ' with z-coordinate equal ta. We are reduced to showing that the number of points under
FC strictly inside the rectangle with evencoordinate is congruent moduioto the number of points under the
line AF strictly inside the rectangle with odgcoordinate. Therefore let us consider an ewavith £ < o < p—1.
The integer pairs on the line= q strictly inside the rectangle afe, 1), (a,2), ..., (a,q—1). There arg; — 1
pairs. Asqg is odd, there are an even number of integer pairs on thecliaes strictly inside the rectangle. As there
are no integer pairs on the linéC, for a fixeda > £, modulo2 there are the same number of integer palseve
AC as there arbelow AC. The number of integer paiboveAC on the linex = a is equivalent modul@ to
the number of integer pairs belawF' on the linex = p — a. To see this, consider the map which takesy) to
(p—x,q—y). Asa > § andis evenp — a < & and is odd. Further, every odd< % is hit (givena,qq < §, start
with the even numbes — a,qq > ). A similar proof holds for < £. O

Exercise 1.6.18.Why are there no integer pairs on the linkg”?

We have thus shown that

3y [‘ﬂ = #AEF mod 2; (1.45)

a even

a0

remember tha#t AE'F' is the number of integer pairs strictly inside the triangl&€ F'. From Lemma 1.6.16 we
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know the left hand side is and (%) = (—1)*. Therefore

(g) = (—1)F = (—1)#ABF (1.46)
Reversing the rolls gf andg, we see that

(p) = (-1 = (-1)FAr, (1.47)

q

whererv = #AGF mod 2, with #AGF equal to the number of integer pairs strictly inside the triantyler'.
Exercise 1.6.19.Prove 1.47.
Combining our expressions farandv yields
w+v = #AEF + #AGF mod 2, (1.48)

which is the number of integer pairs strictly inside the rectangleF’'G. There arep2;1 choices forz (z €
{1,2,...,251}) and & choices fory € {1,2,...,%*}), giving 25+ 451 pairs of integers strictly inside the

rectangleAEF'G. Thus,
q\ (P
kS L — -1 n+v
GG - o
_ (_1)#AEF+#AGF
= (-1)7 7, (1.49)
which completes the proof of Quadratic Reciprocity.

Exercise 1.6.20(Advanced) Letp be an odd prime. Are there infinitely many primgsuch thatq is a square
modulop? The reader should return to this problem after Dirichlet's Theorem (The@8m
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