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Abstract

We introduce some of the approximation methods commonly used in mathematical statistics. We first consider
Taylor series expansion. We then look at Stirling’s Formula, which provides an approximation for n!. As an application
we show how to apply these techniques to estimate the solution to the Birthday Problem. In the appendices we review
the Intermediate and Mean Value Theorems, factorials, the Gamma function and proofs by induction.
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1 Introduction

Often when studying statistics, we find that we must work with expressions which are too unwieldy to consider exactly.
For example, we often need to look at factorials, which are often contributed by binomial coefficients. Sometimes we have
the good fortune of being able to cancel one factorial with another. Often, however, we will have no way to simplify exactly
an expression involving a factorial. In order to draw meaningful conclusions, we must therefore rely on approximations,
which will typically be valid for large sample sizes.

Stirling’s Formula provides an approximation for n!. Before introducing Stirling’s Formula, we will look at Taylor
series, an approximation method used in justifying Stirling’s Formula and elsewhere.

2 Taylor Series

A Taylor series is a power series that allows us to approximate a function that has certain properties. The theoretical
basis for Taylor series is given by the following theorem. The theorem and its proof are as given in [Rud]; by f (i)(t) we
mean the ith derivative of f(t). A key ingredient in our proof is the Mean Value Theorem, which is proved in Appendix
A.

Theorem 2.1 (Taylor’s Theorem). Let f be a real-valued function on [a, b] and let n be a positive integer. Suppose that
the following conditions hold:

1. f (n−1)(t) is continuous on [a, b]

2. f (n)(t) exists for every t ∈ (a, b).
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Let α and β be distinct points of [a, b], and define

Pn−1(t) =
n−1∑

i=0

f (i)(α)
i!

(t− α)i. (2.1)

Then for some x between α and β,

f(β) = Pn−1(β) +
f (n)(x)

n!
(β − α)n. (2.2)

Given appropriate bounds on the higher derivatives, we can approximate a function as a polynomial, which is often
much simpler than considering the function exactly. The function Pn−1(t) is called the Taylor series of order (or degree)
n− 1. It is the best approximation to f(t) among polynomials of degree n− 1, and the error between our function f(t)
and our Taylor series approximation Pn−1(t) is bounded by the nth derivative. Not surprisingly, the larger n is, the better
the approximation. This is because we are using more and more information. If n − 1 = 0 then we are approximating
f(β) with f(α). This means that, if all we know at time α is the value f(α), our best guess is that the function is always
this value (for we do not know if it is increasing or decreasing).

If now we know f ′(α), we know how rapidly the function f is changing at α (if we think of f as representing distance,
then f ′(α) is the speed at α). Our best guess is now that the speed is constant, always equal to f ′(α). If this were
true, then the value of f at β would be f(α) + f ′(α)(β − α) (where we start plus the distance traveled, which under the
assumption of constant speed is just speed times elapsed time). This is the first order Taylor series approximation. The
next piece of information, f ′′(α), tells us how fast the speed is changing at time α. This allows us weaken our assumption
of constant speed, and obtain a better approximation.

Proof. For a < t < b, we define
g(t) = f(t)− Pn−1(t)−M(t− α)n, (2.3)

where M is chosen so that g(β) = 0. It is easily seen from (2.1) that the values of P
(i)
n−1(α) coincide with the values of

f (i)(α) for any choice of i with 0 ≤ i ≤ n− 1. Then for any such i, we have

g(i)(α) = f (i)(t)− P
(i)
n−1(t)−M

n!
(n− i)!

(α− α)n−i = 0 (2.4)

From the Mean Value Theorem, since g(β) = g(α) = 0, we must have g′(x1) = 0 for some x1 between α and β. We can
now apply the mean value theorem to g′(t). We have g′(x1) = g′(α) = 0, so g′′(x2) = 0 for some x2 between x1 and α.
We can continue this process for a total of n steps to see that g(n)(xn) = 0 for some xn between α and xn−1. We let
x = xn and note that x is also between α and β.

By differentiating n times the equation (2.3), we have

g(n)(t) = f (n)(t)− P
(n)
n−1(t)−Mn!(t− α)0. (2.5)

Since Pn−1(t) is a polynomial of degree n− 1, this becomes

g(n)(t) = f (n)(t)−Mn!. (2.6)

Since g(n)(α) = 0,
f (n)(t) = Mn!. (2.7)

We then have

Pn−1(β) +
f (n)(x)

n!
(β − α)n = Pn−1(β) +

Mn!
n!

(β − α)n = f(β)− g(β) = f(β). (2.8)

The x we have chosen therefore satisfies the statement of the theorem.

Taylor’s Theorem allows us to approximate f(β) as Pn−1(β) and gives us to approximate the error by finding the
maximum value of f(n)(x)

n! (β − α)n for x on the interval [a, b]. If we have a good upper bound on the derivatives of f , we
can get a good polynomial approximation for f(β).

Example 2.2. Let us consider
f(x) = log(1− x). (2.9)

We will compute the Taylor series about x = 0.
By direct computation, we have f(0) = 0. We now compute the first derivative:

f ′(x) = − 1
1− x

. (2.10)
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Hence, f ′(0) = −1.
We will now show that

f (n)(x) = − (n− 1)!
(1− x)n

(2.11)

for n ≥ 1. We have just shown the case n = 1, and we will proceed by induction (see Appendix C). Assuming the
statement for n− 1, we compute f (n)(x) as the derivative of f (n−1)(x). We have

f (n)(x) =
d

dx

(
− (n− 2)!

(1− x)n−1

)
= −−(n− 1) · (n− 2)!

(1− x)n
· (−1) = − (n− 1)!

(1− x)n
. (2.12)

The statement in 2.11 now follows by induction for n ≥ 1. From this, we see that f (n)(0) = −(n− 1)!. The Taylor series
for f(x) about 0 is therefore given by

f(x) = −
(

0!
1!
· x +

1!
2!
· x2 +

2!
3!
· x3 + · · ·

)
= −

(
x +

x2

2
+

x3

3
+ · · ·

)
= −

∞∑
n=1

xn

n
. (2.13)

Remark 2.3. Note the expansion for log(1− x) above converges for 0 ≤ x < 1. Further, one can see that this expansion
is a negative number for x > 0. This makes sense, as for x ∈ (0, 1), 1− x ∈ (0, 1). When we calculate log(1− x) we are
taking the logarithm of a positive number less than 1; this has to be negative (the logarithm of 1 is zero, the logarithm of
numbers greater than 1 are positive and those less than 1 are negative). It is very important to be able to quickly spot-check
a formula to look for simple omission. For complicated formulas, try to concentrate on the main parts or features, and
see if they make sense.

Remark 2.4. One can also derive the Taylor series expansion by integration. From the geometric series formula, we
know

− 1
1− y

= −
∞∑

n=0

yn (2.14)

for 0 ≤ y < 1. If we integrate both sides from 0 to x < 1, provided we can interchange the integration and summation, we
have

∫ x

0

− 1
1− y

dy =
∫ x

0

−
∞∑

n=1

yn dy

ln(1− y)
∣∣∣
x

0
= −

∞∑
n=0

∫ x

0

yn dy

ln(1− x) = −
∞∑

n=0

xn+1

n + 1
= −

∞∑
n=1

xn

n
; (2.15)

the interchange of integration and summation can be justified by Fubini’s Theorem.

Example 2.5. One of the most important Taylor series is that of f(x) = ex about x = 0. As f (n)(x) = ex for all n, we
have

ex =
∞∑

n=0

f (n)(0)xn

n!
=

∞∑
n=0

xn

n!
. (2.16)

Exercise 2.6. Calculate the Taylor series of cos θ and sin θ around θ = 0. Consider what we get by formally plugging in
iθ in the Taylor series expansion of ex:

∑∞
n=0(iθ)

n/n!. Often the Taylor series expansion is used as the definition of ex;
because of the rapid decay of n! (see §3), this infinite sum converges for all complex valued x. Thus we may define ex by∑∞

n=0 xn/n! for all x, real or complex. Show that

eiθ = cos θ + i sin θ. (2.17)

One can use this to derive all trigonometric formulas1. For example, sin2 θ + cos2 θ = 1 follows from eiθ · e−iθ = 1.
Taking real and imaginary parts of eiθ · eiφ = ei(θ+φ) gives the angle addition formulas for sine and cosine. To see this
we substitute the Taylor series expansions, and find

(cos θ + i sin θ) · (cos φ + i sin φ) = cos(θ + φ) + i sin(θ + φ); (2.18)

complete the proof by multiplying out the two factors on the left hand side, and comparing the real and imaginary parts.
1We need one additional, important fact: ex · ey = ex+y holds for all x and y, even those that are complex valued. This is not at all clear,

as we have defined ex and ey as infinite sums! One must do some book-keeping to show that, interpreting all three quantities as infinite sums,
we do indeed get ex · ey = ex+y . While it is likely that this relation is true (if it wasn’t, this would be horrible notation!), we must prove this.

3



Exercise 2.7. Calculate the Taylor series of e−t2 about t = 0 two different ways. First use the standard technique of
finding derivatives and evaluating them at zero, and then check your work by substituting −t2 in for x in the Taylor series
expansion of ex. This second technique is a very useful way to find the Taylor series of f(g(t)) if we know the Taylor
series of f(x).

Example 2.8. Consider

f(x) =
1−√1− 4x

2
. (2.19)

We will compute the Taylor series expansion of f(x) about x = 0. For the constant term, we have f(0) = 0. We now find
the first derivative:

f ′(x) = (1− 4x)−1/2. (2.20)

Hence f ′(0) = 1.
We introduce some useful notation:

(2n)!! = 2n(2n− 2)(2n− 4) · · · 4 · 2, (2n + 1)!! = (2n + 1)(2n− 1)(2n− 3) · · · 3 · · · 1. (2.21)

Thus the double factorial means take every other until you reach 2 (if even) or 1 (if odd).
For n > 1, we will now show that

f (n)(x) = 2n−1 · (2n− 3)!! · (1− 4x)−
2n−1

2 . (2.22)

Note that by the definition of the double factorial, (2n − 3)!! = (2n − 3) · (2n − 5) · · · 3 · 1. For n = 2, this is f ′′(x) =
2(1 − 4x)−3/2, which is true by direct computation of the derivative in (2.20). We now assume the statement for n − 1.
Then

f (n)(x) =
d

dx
f (n−1)(x) =

d

dx

(
2n−2 · (2n− 5)!(1− 4x)−

2n−3
2

)
= 2n−1 · (2n− 5)!

(
−2n− 3

2
(1− 4x)−

2n−5
2 · (−4)

)
.

(2.23)
Simplification yields (2.22), so the claim follows by induction.

Evaluating (2.22) at x = 0, we see that

f (n)(0) = 2n−1 · (2n− 3)!!. (2.24)

Therefore, f(x) = a0 + a1x + a2x
2 + a3x

3 + · · · where

an =





0 n = 0
1 n = 1
2n−1·(2n−3)!!

n! n ≥ 2.

(2.25)

Exercise 2.9. With reference to Example 2.8, show that

lim
n→∞

an+1

an
= 4. (2.26)

Exercise 2.10. Compute the Taylor polynomial of degree 2 of log(1 + x) about x = 0.

Exercise 2.11. Consider the function f(x) given by

f(x) =

{
e−1/x2

x 6= 0
0 x = 0.

(2.27)

Show that the Taylor series for f(x) about x = 0 is 0 even though f(x) is not the zero function. Why is this the case?
Hint: you must go back to the definition of the derivative to take the derivative at x = 0.

3 Stirling’s Formula

Stirling’s Formula allows us to approximate the factorial in terms of elementary functions.

Theorem 3.1 (Stirling’s Theorem). For large n,

n! ≈ nne−n
√

2πn. (3.28)
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Remark 3.2. Before proving Stirling’s formula, we show it is a reasonable approximation. It is often easier to analyze
a product by converting it to a sum; this is readily accomplished by taking logarithms; in fact, we shall see this trick again
when we study the Birthday Problem in §4. We have

log n! =
n∑

k=1

log k ≈
∫ n

1

log tdt = (t log t− t)|n1 . (3.29)

Thus log n! ≈ n log n− n, or n! ≈ nne−n.

For a more precise statement of the theorem and a proof that relies on some more advanced results of analysis, we
refer the reader to [Rud]. We include the simpler proof of [Wei] here.

Proof. To prove the theorem, we will use the identity

n! = Γ(n + 1) =
∫ ∞

0

e−xxn dx. (3.30)

A review of the Gamma function, including a proof of this identity, can be found in Appendix B.
In order to get an approximation, we would like to find where the integrand is largest. Because of the exponential

factor in the integrand, we will take the logarithm before differentiating2:

d

dx
log(e−xxn) =

d

dx
(−x + n log x) =

n

x
− 1. (3.31)

The maximum value of the integrand is therefore seen to occur only for x = n. The exponential factor shrinks much more
quickly than the growth of xn, so we assume that x = n + α with |α| much smaller then n. We then have,

log x = log(n + α) = log n + log
(
1 +

α

n

)
. (3.32)

We now expand the second term using the Taylor polynomial computed in Example 2.23 to find

log(n + α) = log n +
α

n
− 1

2
α2

n2
+ · · · . (3.33)

Therefore

log(xne−x) = n log x− x ≈ n

(
log n +

α

n
− 1

2
α2

n2

)
− (n + α) = n log n− n− α2

2n2
. (3.34)

It follows that

xne−x ≈ exp
(

n log n− n− α2

2n2

)
= nne−n · exp

(
− α2

2n2

)
. (3.35)

Then returning to the integral expression for n! of (3.30), we have

n! =
∫ ∞

0

e−xxn dx ≈
∫ ∞

−n

nne−n · exp
(
− α2

2n2

)
dα ≈ nne−n ·

∫ ∞

−∞
exp

(
− α2

2n2

)
dα. (3.36)

In the last step, we rely on the fact that the integrand is very small for α < −n. The integral is the the same as the one
we would obtain in integrating a normal density with mean 0 and variance

√
n. Its value is

√
2πn. We thus have

n! ≈ nne−n
√

2πn, (3.37)

which is the statement of the theorem.

4 The Birthday Problem

There are several variants of the Birthday Problem; we state a few here. Assume each day of the year is equally likely to
be someone’s birthday, and no one is ever born on February 29th (just to make our lives easier!). How many people must
there be in a room before there is at least a 50% chance that two share a birthday? How many other people must there
be before at least one of them shares your birthday? Note the two questions have very different answers, because in the

2Maximizing a positive function f(x) is equivalent to maximizing log f(x). There are many useful versions of this principle: in calculus it
is often easier to minimize the square of the distance rather than the distance (as this avoids the square-root function).

3In the example, we computed the Taylor series for log(1− x), but we can write log(1 + α) = log(1− (−α)) to apply our result.
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first we do not specify beforehand which is the shared day, while in the second we do. How many people must be in the
room before at least two share a birthday?

One can, of course, solve these questions by brute force. For the standard formulation, we are looking for an n such
that (

1− 0
365

)
·
(

1− 1
365

)
· · ·

(
1− n− 1

365

)
≈ 1

2
. (4.38)

To solve this with a calculator is possible, especially if we simplify it by using factorials:

365!
(365− n)!

. (4.39)

Such large factorials quickly overflow standard calculators (though we would be fine if we used Mathematica or Matlab);
things are even worse if we are on a planet such as Mars or Jupiter with a longer year. We discuss how one can very
easily approximate the correct answer.

The probability that n people all have distinct birthdays is

p(n) =
(

1− 0
365

)
· · ·

(
1− n− 1

365

)
=

n−1∏

k=0

(
1− k

365

)
. (4.40)

We want to find n so that p(n) = 1
2 . A common technique to analyze products is to take logarithms, as logarithms convert

products to sums. Thus we want to solve

log
1
2

=
n−1∑

k=0

log
(

1− k

365

)
. (4.41)

We use log 1
2 ≈ −.7, the Taylor series expansion log(1−x) = x+O(x2) for x small (see Example 2.2), and

∑n−1
k=0 k ≈ n2/2

(which can be proved by induction; see Appendix C for a review of proofs by induction) to find

−.7 ≈ −
n−1∑

k=0

k

365
≈ −n2/2

365
. (4.42)

Thus n2 ≈ 511 or n ≈ 22.6, which agrees very well with the exact answer. Similar arguments also provide a terrific (and
easy!) approximation to the number of people needed before there is a 50% probability that one of them shares your
birthday (about 253 are needed).

A The Intermediate and Mean Value Theorems (IVT, MVT)

These notes are a modified version of the presentation in [MT-B].

Theorem A.1 (Intermediate Value Theorem (IVT)). Let f be a continuous function on [a, b]. For all C between f(a)
and f(b) there exists a c ∈ [a, b] such that f(c) = C. In other words, all intermediate values of a continuous function are
obtained.

Sketch of the proof. We proceed by Divide and Conquer. Without loss of generality, assume f(a) < C < f(b). Let x1

be the midpoint of [a, b]. If f(x1) = C we are done. If f(x1) < C, we look at the interval [x1, b]. If f(x1) > C we look at
the interval [a, x1].

In either case, we have a new interval, call it [a1, b1], such that f(a1) < C < f(b1) and the interval has half the size
of [a, b]. We continue in this manner, repeatedly taking the midpoint and looking at the appropriate half-interval.

If any of the midpoints satisfy f(xn) = C, we are done. If no midpoint works, we divide infinitely often and obtain a
sequence of points xn in intervals [an, bn]. This is where rigorous mathematical analysis is required (see [Rud] for details)
to show xn converges to an x ∈ (a, b).

For each n we have f(an) < C < f(bn), and limn→∞ |bn − an| = 0. As f is continuous, this implies limn→∞ f(an) =
limn→∞ f(bn) = f(x) = C.

Theorem A.2 (The Mean Value Theorem (MVT)). Let f(x) be differentiable on [a, b]. Then there exists a c ∈ (a, b)
such that

f(b)− f(a) = f ′(c) · (b− a). (A.43)
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We give an interpretation of the Mean Value Theorem. Let f(x) represent the distance from the starting point at
time x. The average speed from a to b is the distance traveled, f(b) − f(a), divided by the elapsed time, b − a. As
f ′(x) represents the speed at time x, the Mean Value Theorem says that there is some intermediate time at which we are
traveling at the average speed.

To prove the Mean Value Theorem, it suffices to consider the special case when f(a) = f(b) = 0; this case is known
as Rolle’s Theorem:

Theorem A.3 (Rolle’s Theorem). Let f be differentiable on [a, b], and assume f(a) = f(b) = 0. Then there exists a
c ∈ (a, b) such that f ′(c) = 0.

Exercise A.4. Show the Mean Value Theorem follows from Rolle’s Theorem. Hint: Consider

h(x) = f(x)− f(b)− f(a)
b− a

(x− a)− f(a). (A.44)

Note h(a) = f(a)− f(a) = 0 and h(b) = f(b)− (f(b)− f(a))− f(a) = 0. The conditions of Rolle’s Theorem are satisfied
for h(x), and

h′(c) = f ′(c)− f(b)− f(a)
b− a

. (A.45)

Proof of Rolle’s Theorem. Without loss of generality, assume f ′(a) and f ′(b) are non-zero. If either were zero we would
be done. Multiplying f(x) by −1 if needed, we may assume f ′(a) > 0. For convenience, we assume f ′(x) is continuous.
This assumption simplifies the proof, but is not necessary. In all applications in these notes this assumption will be met.

Case 1: f ′(b) < 0: As f ′(a) > 0 and f ′(b) < 0, the Intermediate Value Theorem applied to f ′(x) asserts that all
intermediate values are attained. As f ′(b) < 0 < f ′(a), this implies the existence of a c ∈ (a, b) such that f ′(c) = 0.

Case 2: f ′(b) > 0: f(a) = f(b) = 0, and the function f is increasing at a and b. If x is real close to a then f(x) > 0
if x > a. This follows from the fact that

f ′(a) = lim
x→a

f(x)− f(a)
x− a

. (A.46)

As f ′(a) > 0, the limit is positive. As the denominator is positive for x > a, the numerator must be positive. Thus f(x)
must be greater than f(a) for such x. Similarly f ′(b) > 0 implies f(x) < f(b) = 0 for x slightly less than b.

Therefore the function f(x) is positive for x slightly greater than a and negative for x slightly less than b. If the first
derivative were always positive then f(x) could never be negative as it starts at 0 at a. This can be seen by again using
the limit definition of the first derivative to show that if f ′(x) > 0 then the function is increasing near x. Thus the first
derivative cannot always be positive. Either there must be some point y ∈ (a, b) such that f ′(y) = 0 (and we are then
done) or f ′(y) < 0. By the Intermediate Value Theorem, as 0 is between f ′(a) (which is positive) and f ′(y) (which is
negative), there is some c ∈ (a, y) ⊂ [a, b] such that f ′(c) = 0.

B Factorials and the Gamma Function

The Gamma function is defined by the equation

Γ(x) =
∫ ∞

0

xn−1e−x dx. (B.47)

The Gamma function is useful to us because of the following theorem.

Theorem B.1. Let n be a nonnegative integer. Then

n! = Γ(n + 1). (B.48)

Proof. We prove the theorem by induction. For n = 0, the theorem says

0! = Γ(1) =
∫ ∞

0

e−x dx. (B.49)

Both the leftmost and rightmost expressions evaluate to 1, so the base case is proven.
We now assume the statement to be true for 0 to n− 1. We must show Γ(n + 1) = n!. By definition,

Γ(n + 1) =
∫ ∞

0

xne−x dx. (B.50)
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Integrating by parts gives us

Γ(n + 1) =
∫ ∞

0

xne−x dx

=
[−e−xxn

]∞
0

+
∫ ∞

0

nxn−1e−x dx

= 0 + n

∫ ∞

0

xn−1e−x dx

= nΓ(n)
= n · (n− 1)!
= n!. (B.51)

The theorem follows by induction (see Appendix C for a review of induction).

C Proofs by Induction

These notes are a modified version of the presentation in [MT-B].
Assume for each positive integer n we have a statement P (n) which we desire to show is true. P (n) is true for all

positive integers n if the following two statements hold:

• Basis Step: P (1) is true;

• Inductive Step: whenever P (n) is true, P (n + 1) is true.

This technique is called Proof by Induction, and is a very useful method for proving results; we shall see many instances
of this in this appendix. The reason the method works follows from basic logic. We assume the following two sentences
are true:

P (1) is true
∀n ≥ 1, P (n) is true implies P (n + 1) is true. (C.52)

Set n = 1 in the second statement. As P (1) is true, and P (1) implies P (2), P (2) must be true. Now set n = 2 in
the second statement. As P (2) is true, and P (2) implies P (3), P (3) must be true. And so on, completing the proof.
Verifying the first statement the basis step and the second the inductive step. In verifying the inductive step, note
we assume P (n) is true; this is called the inductive assumption. Sometimes instead of starting at n = 1 we start at
n = 0, although in general we could start at any n0 and then prove for all n ≥ n0, P (n) is true.

We give three of the more standard examples of proofs by induction, and one false example; the first example is
the most typical. When you have mastered proofs by induction, the following is a fun problem involving the Fibonacci
numbers.

Exercise C.1 (Zeckendorf’s Theorem). Consider the set of distinct Fibonacci numbers: {1, 2, 3, 5, 8, 13, . . . }. Show every
positive integer can be written uniquely as a sum of distinct Fibonacci numbers where we do not allow two consecutive
Fibonacci numbers to occur in the decomposition. Equivalently, for any n there are choices of εi(n) ∈ {0, 1} such that

n =
`(n)∑

i=2

εi(n)Fi, εi(n)εi+1(n) = 0 for i ∈ {2, . . . , `(n)− 1}. (C.53)

Does a similar result hold for all recurrence relations? If not, can you find another recurrence relation where such a result
holds?

C.1 Sums of Integers

Let P (n) be the statement
n∑

k=1

k =
n(n + 1)

2
. (C.54)

Basis Step: P (1) is true, as both sides equal 1.
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Inductive Step: Assuming P (n) is true, we must show P (n + 1) is true. By the inductive assumption,
∑n

k=1 k = n(n+1)
2 .

Thus

n+1∑

k=1

k = (n + 1) +
n∑

k=1

k

= (n + 1) +
n(n + 1)

2

=
(n + 1)(n + 1 + 1)

2
. (C.55)

Thus, given P (n) is true, then P (n + 1) is true.

Exercise C.2. Prove
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
. (C.56)

Find a similar formula for the sum of k3.

Exercise C.3. Show the sum of the first n odd numbers is n2, i.e.,

n∑

k=1

(2k − 1) = n2. (C.57)

Remark C.4. We define the empty sum to be 0, and the empty product to be 1. For example,
∑

n∈N,n<0 1 = 0.

See [Mil] for an alternate derivation of sums of powers that does not use induction.

C.2 Divisibility

Let P (n) be the statement 133 divides 11n+1 + 122n−1.

Basis Step: A straightforward calculation shows P (1) is true: 111+1 + 122−1 = 121 + 12 = 133.
Inductive Step: Assume P (n) is true, i.e., 133 divides 11n+1 +122n−1. We must show P (n+1) is true, or that 133 divides
11(n+1)+1 + 122(n+1)−1. But

11(n+1)+1 + 122(n+1)−1 = 11n+1+1 + 122n−1+2

= 11 · 11n+1 + 122 · 122n−1

= 11 · 11n+1 + (133 + 11)122n−1

= 11
(
11n+1 + 122n−1

)
+ 133 · 122n−1. (C.58)

By the inductive assumption 133 divides 11n+1 + 122n−1; therefore, 133 divides 11(n+1)+1 + 122(n+1)−1, completing the
proof.

Exercise C.5. Prove 4 divides 1 + 32n+1.

C.3 The Binomial Theorem

We prove the Binomial Theorem. First, recall that

Definition C.6 (Binomial Coefficients). Let n and k be integers with 0 ≤ k ≤ n. We set
(

n

k

)
=

n!
k!(n− k)!

. (C.59)

Note that 0! = 1 and
(
n
k

)
is the number of ways to choose k objects from n (with order not counting).

Lemma C.7. We have (
n

k

)
=

(
n

n− k

)
,

(
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
. (C.60)

Exercise C.8. Prove Lemma C.7.
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Theorem C.9 (The Binomial Theorem). For all positive integers n we have

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (C.61)

Proof. We proceed by induction.
Basis Step: For n = 1 we have

1∑

k=0

(
1
k

)
x1−kyk =

(
1
0

)
x +

(
1
1

)
y = (x + y)1. (C.62)

Inductive Step: Suppose

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (C.63)

Then using Lemma C.7 we find that

(x + y)n+1 = (x + y)(x + y)n

= (x + y)
n∑

k=0

(
n

k

)
xn−kyk

=
n∑

k=0

(
n

k

)
xn+1−kyk +

(
n

k

)
xn−kyk+1

= xn+1 +
n∑

k=1

{(
n

k

)
+

(
n

k − 1

)}
xn+1−kyk + yn+1

=
n+1∑

k=0

(
n + 1

k

)
xn+1−kyk. (C.64)

This establishes the induction step, and hence the theorem.

C.4 False Proofs by Induction

Consider the following: let P (n) be the statement that in any group of n people, everyone has the same name. We give
a (false!) proof by induction that P (n) is true for all n!

Basis Step: Clearly, in any group with just 1 person, every person in the group has the same name.
Inductive Step: Assume P (n) is true, namely, in any group of n people, everyone has the same name. We now prove

P (n + 1). Consider a group of n + 1 people:

{1, 2, 3, . . . , n− 1, n, n + 1}. (C.65)

The first n people form a group of n people; by the inductive assumption, they all have the same name. So, the name of
1 is the same as the name of 2 is the same as the name of 3 . . . is the same as the name of n.

Similarly, the last n people form a group of n people; by the inductive assumption they all have the same name. So,
the name of 2 is the same as the name of 3 . . . is the same as the name of n is the same as the name of n+1. Combining
yields everyone has the same name! Where is the error?

If n = 4, we would have the set {1, 2, 3, 4, 5}, and the two sets of 4 people would be {1, 2, 3, 4} and {2, 3, 4, 5}. We see
that persons 2, 3 and 4 are in both sets, providing the necessary link.

What about smaller n? What if n = 1? Then our set would be {1, 2}, and the two sets of 1 person would be {1} and
{2}; there is no overlap! The error was that we assumed n was “large” in our proof of P (n) ⇒ P (n + 1).

Exercise C.10. Show the above proof that P (n) implies P (n + 1) is correct for n ≥ 2, but fails for n = 1.

Exercise C.11. Similar to the above, give a false proof that any sum of k integer squares is an integer square, i.e.,
x2

1 + · · ·+ x2
n = x2. In particular, this would prove all positive integers are squares as m = 12 + · · ·+ 12.

Remark C.12. There is no such thing as Proof By Example. While it is often useful to check a special case and build
intuition on how to tackle the general case, checking a few examples is not a proof. For example, because 16

64 = 1
4 and

19
95 = 1

5 , one might think that in dividing two digit numbers if two numbers on a diagonal are the same one just cancels
them. If that were true, then 12

24 should be 1
4 . Of course this is not how one divides two digit numbers!
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