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Abstract

The Cramér-Rao Inequality provides a lower bound for the variance of an unbiased estimator of a parameter. It
allows us to conclude that an unbiased estimator is a minimum variance unbiased estimator for a parameter. In
these notes we prove the Cramér-Rao inequality and examine some applications. We conclude with a discussion of a
probability distribution for which the Cramér-Rao inequality provides no useful information.
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1 Description of the Problem

Point estimation is the use of a statistic to estimate the value of some parameter of a population having a particular
type of density. The statistic we use is called the point estimator and its value is the point estimate. A desirable
property for a point estimator Θ̂ for a parameter θ is that the expected value of Θ̂ is θ. If Θ̂ is a random variable with
density f and values θ̂, this is equivalent to saying

E[Θ̂] =
∫ ∞

−∞
θ̂f(θ̂) dθ̂ = θ.

An estimator having this property is said to be unbiased.
Often in the process of making a point estimate, we must choose among several unbiased estimators for a given

parameter. Thus we need to consider additional criteria to select one of the estimators for use. For example, suppose
that X1, X2, . . . , Xm are a random sample from a normal population of mean µ and variance σ2 with n an odd integer,
m = 2n + 1. Let the density of this function be given by f(x; µ, σ2). Suppose we wish to estimate the mean, µ, of this
population. It is well-known that both the sample mean and the sample median are unbiased estimators of the mean (c.f.
[MM]).

Often, we will take the unbiased estimator having the smallest variance. The variance of Θ̂ is, as for any random
variable, the second moment about the mean:

var(Θ̂) =
∫ ∞

−∞
(θ̂ − µΘ̂)2f(θ̂) dθ̂.

Here, µΘ̂ is the mean of the random variable Θ̂, which is θ in the case of an unbiased estimator. Choosing the estimator
with the smaller variance is a natural thing to do, but by no means is it the only possible choice. If two estimators have
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the same expected value, then while their average values will be equal the estimator with greater variance will have larger
fluctuations about this common value.

An estimator with a smaller variance is said to be relatively more efficient because it will tend to have values that
are concentrated more closely about the correct value of the parameter, thus it allows us to be more confident that our
estimate will be as close to the actual value as we would like. Furthermore, the quantity

var Θ̂1

var Θ̂2

is used as a measure of the efficiency of Θ̂2 relative to Θ̂1 [MM]. We hope to maximize efficiency by minimizing variance.
In our example, the mean of the population has variance σ2/m = σ2/(2n + 1). If the population median is µ̃, that

is µ̃ is such that ∫ µ̃

−∞
f(x; µ, σ2) dx =

1
2
,

then, according to [MM], the sampling distribution of the median is approximately normal with mean µ̃ and variance

1
8n · f(µ̃)2

.

Since the normal distribution of our example is symmetric, we must have µ̃ = µ, which makes it easy to show that
f(µ̃) = 1/

√
2πσ2. The variance of the sample median is therefore πσ2/4n.

Certainly, in our example, the mean has the smaller variance of the two estimators, but we would like to know whether
an estimator with smaller variance exists. More precisely, it would be very useful to have a lower bound on the variance
of an unbiased estimator. Clearly, the variance must be non-negative1, but it would be useful to have a less trivial lower
bound. The Cramér-Rao Inequality is a theorem that provides such a bound under very general conditions. It does not,
however, provide any assurance that any estimator exists that has the minimum variance allowed by this bound.

2 The Cramér-Rao Inequality

The Cramér-Rao Inequality provides us with a lower bound on the variance of an unbiased estimator for a parameter.

Cramér-Rao Inequality. Let f(x; θ) be a probability density with continuous parameter θ. Let X1, . . . , Xn be indepen-
dent random variables with density f(x; θ), and let Θ̂(X1, . . . , Xn) be an unbiased estimator of θ. Assume that f(x; θ)
satisfies two conditions:

1. We have

∂

∂θ

[∫
· · ·

∫
Θ̂(x1, . . . , xn)

n∏

i=1

f(xi; θ) dxi

]
=

∫
· · ·

∫
Θ̂(x1, . . . , xn)

∂
∏n

i=1 f(xi; θ)
∂θ

dx1 · · · dxn, (2.1)

Conditions under which this holds are reproduced from [HH] in Appendix A.

2. For each θ, the variance of Θ̂(X1, . . . , Xn) is finite.

Then

var(Θ̂) ≥ 1

nE
[(

∂ log f(x;θ)
∂θ

)2
] , (2.2)

where E denotes the expected value with respect to the probability density function f(x; θ).

Proof. We prove the theorem as in [CaBe]. Let Θ̂( ~X) = Θ̂(X1, . . . , Xn). We assume that our estimator depends only on
the sample values X1, . . . , Xn and is independent of θ. Since Θ̂( ~X) is unbiased as an estimator for θ, we have E[Θ̂] = θ.
From this we have:

0 = E[Θ̂− θ]

=
∫
· · ·

∫ (
Θ̂(x1, . . . , xn)− θ

)
f(x1; θ) · · · f(xn; θ) dx1 · · · dxn.

1It is possible for the variance of an estimator to be zero. Consider the following case: we always estimate the mean to be 0, no matter
what sample values we observe. This is a terrific estimate if the mean happens to be 0, and is a poor estimate otherwise. Note, however, that
the variance of our estimator is zero!
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We denote f(x1; θ) · · · f(xn; θ) by φ(~x; θ) and dx1 · · · dxn by d~x. We now have

0 =
∫
· · ·

∫ (
Θ̂(~x)− θ

)
φ(~x; θ) d~x.

Differentiating both sides of this equation and using the the assumption of equation (2.1).

0 =
∂

∂θ

∫
· · ·

∫ (
Θ̂(~x)− θ

)
φ(~x; θ) d~x

=
∫
· · ·

∫
∂

∂θ

[(
Θ̂(~x)− θ

)
φ(~x; θ)

]
d~x

=
∫
· · ·

∫ [
∂

∂θ

(
Θ̂(~x)− θ

)]
φ(~x; θ) d~x +

∫
· · ·

∫
(Θ̂(~x)− θ)

∂φ(~x; θ)
∂θ

d~x. (2.3)

Since Θ̂( ~X) is independent of θ, we have ∂
∂θ (Θ̂(~x)− θ) = 0− 1 = −1, whence

0 =
∫
· · ·

∫
−φ(~x; θ) d~x +

∫
· · ·

∫
(Θ̂(~x)− θ)

∂φ(~x; θ)
∂θ

d~x

0 = −1 +
∫
· · ·

∫
(Θ̂(~x)− θ)

∂φ(~x; θ)
∂θ

d~x. (2.4)

We now expand ∂φ(~x;θ)
∂θ :

∂φ(~x; θ)
∂θ

=
∂

∂θ
(f(x1; θ) · · · f(xn; θ))

=
∂f(x1; θ)

∂θ
· f(x2; θ) · · · f(xn; θ) +

∂f(x2; θ)
∂θ

· f(x1; θ)f(x3; θ) · · · f(xn; θ) + · · ·

+
∂f(xn; θ)

∂θ
· f(x1; θ) · · · f(xn−1). (2.5)

We can simplify the above by using the identity ∂ log g
∂θ = 1

g
∂g
∂θ . We multiply the ith summand by f(xi; θ)/f(xi; θ), and

find

∂φ(~x; θ)
∂θ

=
n∑

i=1

∂ log f(xi; θ)
∂θ

f(x1; θ) · · · f(xn; θ)

= φ(~x; θ)
n∑

i=1

∂ log f(xi; θ)
∂θ

. (2.6)

Combining our expansion for ∂φ(~x; θ)/∂θ with (2.4) yields

1 =
∫
· · ·

∫
(Θ̂(~x)− θ)

[
φ(~x; θ)

n∑

i=1

∂ log f(xi; θ)
∂θ

]
d~x

=
∫
· · ·

∫ [
(Θ̂(~x)− θ) · φ(~x; θ)1/2

] [
φ(~x; θ)1/2 ·

n∑

i=1

∂ log f(xi; θ)
∂θ

]
d~x. (2.7)

The above argument looks strange: we have taken the nice factor φ(~x; θ) and written it as φ(~x; θ)1/2 · φ(~x; θ)1/2. The
reason we do this is so that we may apply the Cauchy-Schwarz Inequality (the statement of this inequality, as well as a
proof, are provided in Appendix B). There are other reasons2 why it is natural to split φ(~x; θ) in two.

2Note that the random variable (Θ̂(~x) − θ)2 is almost surely not integrable with respect to d~x. For example, let X be a random variable
with probability distribution f(x); further, assume all moments of f are finite. Then

∫ ∞

−∞
x2f(x)dx < ∞;

however, ∫ ∞

−∞
x2dx = ∞.

While we don’t expect x2 to be integrable, we do expect x2f(x) to be integrable; we need the density f(x) to give decay and ensure convergence.

It is the same situation here; (Θ̂(~x)− θ)2 is not integrable, but multiplying by φ(~x; θ) will give something that (in general) is integrable.
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We square both sides of (2.7), obtaining

1 =

(∫
· · ·

∫ [
(Θ̂(~x)− θ) · φ(~x; θ)1/2

] [
φ(~x; θ)1/2 ·

n∑

i=1

∂ log f(xi; θ)
∂θ

]
d~x

)2

. (2.8)

We now apply the Cauchy-Schwarz Inequality to (2.8). Thus

1 ≤
∫
· · ·

∫ (
Θ̂(~x)− θ

)2

· φ(~x; θ)d~x ·
∫
· · ·

∫ (
n∑

i=1

∂ log f(xi; θ)
∂θ

)2

φ(~x; θ)d~x. (2.9)

There are two multiple integrals to evaluate on the right hand side. The first multiple integral is just the definition of
the variance of the estimator Θ̂, which we denote by var(Θ̂). Thus (2.8) becomes

1 ≤ var(Θ̂) ·
∫
· · ·

∫ (
n∑

i=1

∂ log f(xi; θ)
∂θ

)2

φ(~x; θ)d~x. (2.10)

To finish the proof of the Cramér-Rao Inequality, it suffices to show

∫
· · ·

∫ (
n∑

i=1

∂ log f(xi; θ)
∂θ

)2

φ(~x; θ)d~x = nE

[(
∂ log f(x; θ)

∂θ

)2
]

. (2.11)

This is because if we can prove (2.11), simple division will yield the Cramér-Rao Inequality from (2.10). We now prove
(2.11).

We have

∫
· · ·

∫ (
n∑

i=1

∂ log f(xi; θ)
∂θ

)2

φ(~x; θ)d~x =
∫
· · ·

∫ n∑

i=1

n∑

j=1

∂ log f(xi; θ)
∂θ

∂ log f(xj ; θ)
∂θ

φ(~x; θ)d~x

=
n∑

i=1

n∑

j=1

∫
· · ·

∫
∂ log f(xi; θ)

∂θ

∂ log f(xj ; θ)
∂θ

φ(~x; θ)d~x

= I1 + I2, (2.12)

where

I1 =
∫
· · ·

∫ n∑

i=1

(
∂ log f(xi; θ)

∂θ

)2

φ(~x; θ)d~x

I2 =
∑

1≤i,j≤n
i6=j

∫
· · ·

∫
∂ log f(xi; θ)

∂θ

∂ log f(xj ; θ)
∂θ

φ(~x; θ)d~x. (2.13)

The proof is completed by showing I1 = nE
[(

∂ log f(x;θ)
∂θ

)2
]

and I2 = 0.

We have

I1 =
∫
· · ·

∫ n∑

i=1

(
∂ log f(xi; θ)

∂θ

)2

φ(~x; θ)d~x

=
n∑

i=1

∫ (
∂ log f(xi; θ)

∂θ

)2

f(xi; θ)dxi ·
∫
· · ·

∫ n∏
`=1
` 6=i

f(x`; θ)dx`

=
n∑

i=1

∫ (
∂ log f(xi; θ)

∂θ

)2

f(xi; θ)dxi · 1n−1

=
n∑

i=1

E

[(
∂ log f(xi; θ)

∂θ

)2
]

= nE

[(
∂ log f(xi; θ)

∂θ

)2
]

. (2.14)
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In the above calculation, we used the fact that f(xi; θ) is a probability density, and therefore integrates to one. In the
final expected values, xi is a dummy variable, and we may denote these n expected values with a common symbol.

We now turn to the analysis of I2. In obvious notation, we may write

I2 =
∑

1≤i,j≤n
i 6=j

I2(i, j). (2.15)

To show I2 = 0 it suffices to show each I2(i, j) = 0, which we now proceed to do. Note

I2(i, j) =
∫
· · ·

∫
∂ log f(xi; θ)

∂θ

∂ log f(xj ; θ)
∂θ

φ(~x; θ)d~x

=
∫

∂ log f(xi; θ)
∂θ

f(xi; θ)dxi ·
∫

∂ log f(xj ; θ)
∂θ

dxj ·
∫
· · ·

∫ n∏
`=1

` 6=i,j

f(x`; θ)dx`

=
∫

∂ log f(xi; θ)
∂θ

f(xi; θ)dxi ·
∫

∂ log f(xj ; θ)
∂θ

dxj · 1n−2

= E
[
∂ log f(xi; θ)

∂θ

]
· E

[
∂ log f(xj ; θ)

∂θ

]
; (2.16)

however, each of these two expected values is zero! To see this, note

1 =
∫

f(x; θ)dx. (2.17)

If we differentiate both sides of (2.17) with respect to θ, we find

0 =
∫

∂f(x; θ)
∂θ

dx

=
∫

1
f(x; θ)

∂f(x; θ)
∂θ

f(x; θ)dx

=
∫

∂ log f(x; θ)
∂θ

f(x; θ)dx = E
[
∂ log f(x; θ)

∂θ

]
. (2.18)

This shows I2(i, j) = 0, which completes the proof.

An estimator for which equality holds in (2.2) is called a minimum variance unbiased estimator or simply a
best unbiased estimator. The expected value in the Cramér-Rao Inequality is called the information number or
the Fisher information of the sample.

We notice that the theorem makes no statement about whether equality holds for any particular estimator Θ̂. Indeed,
in Appendix D, we give an example in which the information is infinite, and the bound provided is therefore var(Θ̂) ≥ 0,
which is trivial.

3 Examples and Exercises

Example 3.1. We first consider estimating the parameter of an exponential population based on a sample of size
m = 2n + 1. This population has density

f(x; θ) =

{
1
θ e−x/θ if x ≥ 0
0 if x < 0.

(3.19)

We consider two estimators, one based on the sample mean and the other on the sample median. We know from the
Central Limit Theorem that for large m, the sample mean will have a normal distribution whose mean is θ, the population
mean, and whose variance is θ2/m = θ2/(2n + 1), where θ2 is the variance computed from the exponential density (the
mean and variance are computed in Appendix C).

For large n, the sample median Yn+1 has approximately a normal distribution with mean equal to µ̃, the population
median, and variance 1/(8n · f(µ̃)2) [MM]. By definition, the population median satisfies

∫ µ̃

−∞
f(x) dx =

∫ µ̃

0

1
θ
e−x/θ dx =

1
2
. (3.20)
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Evaluating the integral, we find

1
2

=
∫ µ̃

0

1
θ
e−x/θ dx

=
[
−e−x/θ

]µ̃

0

= −e−µ̃/θ + 1 (3.21)

so that µ̃ = θ log 2. It follows that Θ̂ = Ym+1
log 2 is an unbiased estimator for θ. The variance of the sample median is

(
8n · f(µ̃)2

)−1
=

(
8 · n

[
1
θ
e−θ log 2/θ

]2
)−1

=
θ2

2n
. (3.22)

The variance of Θ̂ = Ym+1
log 2 is therefore

θ2

2n(log 2)2
, (3.23)

which for n ≥ 0 is larger than the variance θ2/(2n + 1) of the sample mean.
Noting that the conditions for applying the Cramér-Rao Inequality are satisfied, we now find the bound provided by

the theorem. We begin by computing the information of the sample:

E

[(
∂ log f(x; θ)

∂θ

)2
]

= E




(
∂ log

(
1
θ e−x/θ

)

∂θ

)2



= E

[(
∂

∂θ

(
− log θ − x

θ

))2
]

= E

[(
−1

θ
+

x

θ2

)2
]

=
1
θ4
E

[
(x− θ)2

]
. (3.24)

Since θ is the mean of the population, the expected value in the last line is the variance of the population, which is θ2,
so the information is 1/θ2. The bound yielded by the Cramér-Rao Inequality is therefore θ2

m . We see that this is equal to
the variance of the sample mean; the sample mean is a minimum-variance unbiased estimator.

Example 3.2. We also consider a case in which condition (2.1) does not hold, so that the Cramér-Rao Inequality cannot
be used. We look at a sampling of size n = 1 from a population with a uniform distribution on [0, θ]. This population
has density

f(x; θ) =

{
1/θ if 0 ≤ x ≤ θ

0 otherwise.
(3.25)

It is easily shown that an unbiased estimator for θ is Θ̂(X) = 2X, where X is the single observation from the sample.
We compute the left and right sides of (2.1) for this special case. On the left side, we have

∂

∂θ

[∫
Θ̂(x)f(x; θ) dx

]
=

∂

∂θ

[∫ θ

0

2x
1
θ

dx

]

=
∂

∂θ

[
1
θ

∫ θ

0

2x dx

]

=
∂

∂θ
(θ)

= 1. (3.26)
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On the right side, we have
∫

Θ̂(x)
∂f(x; θ)

∂θ
dx =

∫ θ

0

2x
∂

∂θ

(
1
θ

)
dx

= − 1
θ2

∫ θ

0

2x dx

= −1. (3.27)

It is therefore clear that condition (2.1) does not hold, so we cannot assume that the Cramér-Rao Inequality holds. Indeed,
we will show that it does not. We first compute the information of the sample:

nE

[(
∂ log f(x; θ)

∂θ

)2
]

= E

[(
∂ log(1/θ)

∂θ

)2
]

= E

[(
∂(− log θ)

∂θ

)2
]

= E

[(−1
θ

)2
]

=
1
θ2

. (3.28)

Therefore, if applicable, the Cramér-Rao Inequality would tell us that var(Θ̂) ≥ θ2. We now compute the variance of
Θ̂ = 2X:

var(2X) = E
[
(2X)2

]− E [2X]2

=
∫ θ

0

(2x)2 · 1
θ

dx− θ2

=
4θ2

3
− θ2

=
θ2

3
. (3.29)

We therefore see that the Cramér-Rao Inequality need not be satisfied when condition (2.1) is not satisfied. We note that
this example has the property that the region in which the density function is nonzero depends on the parameter that we
are estimating. In such cases we must be particularly careful as condition (2.1) will often not be satisfied.

Exercise 3.3. Show that the sample mean is a minimum variance unbiased estimator for the mean of a normal population.

Exercise 3.4. Let X be a random variable with a binomial distribution with parameters n and θ. Is n · X
n · (1− X

n

)
a

minimum variance unbiased estimator for the variance of X?

A Interchanging Integration and Differentiation

Theorem A.1 (Differentiating under the integral sign). Let f(x, t) : Rn+1 → R be a function such that for each fixed t
the integral

F (t) =
∫

Rn

f(t, x)dx1 · · · dxn (A.30)

exists. For all x, suppose that ∂f/∂t exists3, and that there is a continuous Riemann integrable function4 g(x) such that
∣∣∣∣
f(s, x)− f(t, x)

s− t

∣∣∣∣ ≤ g(x) (A.31)

for all s 6= t. Then F is differentiable, and

dF

dt
=

∫

Rn

∂f

∂t
(t, x)dx1 · · · dxn. (A.32)

3Technically, all we need is that ∂f/∂t exists for almost all x, i.e., except for a set of measure zero.
4This condition can be weakened; it suffices for g(x) to be a Lebesgue integrable function.
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The above statement is modified from that of Theorem 4.11.22 of [HH]. See page 518 of [HH] for a proof. We have
stated a slightly weaker version (and commented in the footnotes on the most general statement) because these weaker
cases often suffice for our applications.

Exercise A.2. It is not always the case that one can interchange orders of operations. We saw in Example 3.2 a case
where we cannot interchange the integration and differentiation. We give an example which shows that we cannot always
interchange orders of integration. For simplicity, we give a sequence amn such that

∑
m(

∑
n am,n) 6= ∑

n(
∑

m am,n). For
m,n ≥ 0 let

am,n =





1 if n = m

−1 if n = m + 1
0 otherwise.

(A.33)

Show that the two different orders of summation yield different answers. The reason the Fubini Theorem is not applicable
here is that

∑
n

∑
m |amn| = ∞.

B The Cauchy-Schwarz Inequality

The Cauchy-Schwarz Inequality is a general result from linear algebra pertaining to inner product spaces. Here we will
consider only an application to Riemann integrable functions. For a more thorough treatment of the general form of the
inequality, we refer the reader to Chapter 8 of [HK].

Cauchy-Schwarz Inequality. Let f, g be Riemann integrable real-valued functions of Rn. Then
(∫

· · ·
∫

f(x1, . . . , xn)g(x1, . . . , xn) dx1 · · · dxn

)2

≤
∫
· · ·

∫
f(x1, . . . , xn)2 dx1, . . . , dxn·

∫
· · ·

∫
g(x1, . . . , xn)2 dx1 · · · dxn.

Proof. The proof given here is a special case of that given in [HK] (page 377). For notational convenience, we define

I(f, g) =
∫
· · ·

∫
f(x1, . . . , xn)g(x1, . . . , xn) dx1 · · · dxn.

The statement of the theorem is then
I(f, g)2 ≤ I(f, f)I(g, g).

The following are results of basic properties of integrals, and we leave it as an exercise for the reader to show that they
hold:

1. I(f + g, h) = I(f, h) + I(g, h)

2. I(f, g) = I(g, f)

3. I(c · f, g) = c · I(f, g)

4. I(f, f) ≥ 0 for all f .

In the case that I(f, f) = 0 we must also have I(f, g) = 0, so the inequality holds in this case. Otherwise, we let

h = g − I(g, f)
I(f, f)

· f.

We consider I(h, h), noting by property 4 above that this number must be nonnegative. Using the properties verified by
the reader, we gave

0 ≤ I(h, h) = I

(
g − I(g, f)

I(f, f)
· f, g − I(g, f)

I(f, f)
· f

)

= I(g, g)− I(g, f)
I(f, f)

· I(f, g)− I(g, f)
I(f, f)

· I(g, f) +
I(g, f)2

I(f, f)2
· I(f, f)

= I(g, g)− I(g, f)2

I(f, f)
. (B.34)

It thus follows that

I(f, g)2 ≤ I(f, f)I(g, g). (B.35)
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C The Exponential Density

An exponential random variable X with parameter θ and values x has density function

f(x; θ) =

{
1
θ e−x/θ if x ≥ 0
0 if x < 0.

(C.36)

We will compute the mean and variance of this random variable.
The mean of the random variable X is

E[x] =
∫ ∞

−∞
xf(x) dx

=
∫ ∞

0

x

(
1
θ
e−x/θ

)
dx. (C.37)

We evaluate the integral by parts to find

∫ ∞

0

x

(
1
θ
e−x/θ

)
dx = lim

l→∞

∫ l

0

(x

θ
e−x/θ

)
dx

= lim
l→∞

[
−xe−x/θ − θe−x/θ

]l

0

= lim
l→∞

[(
−le−l − θe−l/θ

)
−

(
−0e−0/θ − θe−x/θ

)]

= θ. (C.38)

The mean of X is therefore θ.
To compute the variance, we use the fact that

var(X) = E[x2]− E[x]2, (C.39)

which holds for any random variable having finite variance. We have just found the quantity E[x], so we need only
compute E[x2]. From the definition of expected value,

E[x2] =
∫ ∞

−∞
x2f(x) dx

=
∫ ∞

0

x2

(
1
θ
e−x/θ

)
dx. (C.40)

We integrate by parts two times to obtain

∫ ∞

0

x2

(
1
θ
e−x/θ

)
dx = lim

l→∞

∫ l

0

(
x2

θ
e−x/θ

)
dx

= lim
l→∞

[
−(x2 + 2θx + 2θ2)e−x/θ

]l

0

= lim
l→∞

[
− (

l2 + 2θl + 2θ2
)
e−l/θ +

(
02 + 2θ · 0 + 2θ2

)
e−0/θ

]

= 2θ2 (C.41)

It therefore follows from equation (C.39) that

var(X) = E[x2]− E[x]2 = 2θ2 − θ2 = θ2. (C.42)

D When the Cramér-Rao Inequality Provides No Information

In this appendix we analyze a probability density where the Cramér-Rao inequality yields the bound that the variance of
an unbiased estimator is non-negative; this is a useless bound, as variances must be non-negative.
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D.1 An Almost Pareto Density

Consider

f(x; θ) =

{
aθ

1
xθ log3 x

if x ≥ e

0 otherwise,
(D.43)

where aθ is chosen so that f(x; θ) is a probability density function. Thus
∫ ∞

e

aθ
dx

xθ log3 x
= 1. (D.44)

We chose to have log3 x in the denominator to ensure that the above integral converges, as does log x times the integrand;
however, the expected value (in the expectation in (2.2)) will not converge.

For example, 1/x log x diverges (its integral looks like log log x) but 1/x log2 x converges (its integral looks like 1/ log x);
see pages 62–63 of [Rud] for more on close sequences where one converges but the other does not. This distribution is close
to the Pareto distribution (or a power law). Pareto distributions are very useful in describing many natural phenomena;
see for example [DM, Ne, NM]. The inclusion of the factor of log−3 x allows us to have the exponent of x in the density
function equal 1 and have the density function defined for arbitrarily large x; it is also needed in order to apply the
Dominated Convergence Theorem to justify some of the arguments below. If we remove the logarithmic factors, then we
obtain a probability distribution only if the density vanishes for large x. As log3 x is a very slowly varying function, our
distribution f(x; θ) may be of use in modeling data from an unbounded distribution where one wants to allow a power
law with exponent 1, but cannot as the resulting probability integral would diverge. Such a situation occurs frequently
in the Benford Law literature; see [Hi, Rai] for more details.

We study the variance bounds for unbiased estimators Θ̂ of θ, and in particular we show that when θ = 1 then the
Cramér-Rao inequality yields a useless bound.

Note that it is not uncommon for the variance of an unbiased estimator to depend on the value of the parameter being
estimated. For example, consider the uniform distribution on [0, θ]. Let X denote the sample mean of n independent
observations, and Yn = max1≤i≤n Xi be the largest observation. The expected value of 2X and n+1

n Yn are both θ

(implying each is an unbiased estimator for θ); however, Var(2X) = θ2/3n and Var(n+1
n Yn) = θ2/n(n + 1) both depend

on θ, the parameter being estimated (see, for example, page 324 of [MM] for these calculations).

Lemma D.1. As a function of θ ∈ [1,∞), aθ is a strictly increasing function and a1 = 2. It has a one-sided derivative
at θ = 1, and daθ

dθ ∈ (0,∞).

Proof. We have

aθ

∫ ∞

e

dx

xθ log3 x
= 1. (D.45)

When θ = 1 we have

a1 =
[∫ ∞

e

dx

x log3 x

]−1

, (D.46)

which is clearly positive and finite. In fact, a1 = 2 because the integral is
∫ ∞

e

dx

x log3 x
=

∫ ∞

e

log−3 x
d log x

dx
=

−1
2 log2 x

∣∣∣
∞

e
=

1
2
; (D.47)

though all we need below is that a1 is finite and non-zero, we have chosen to start integrating at e to make a1 easy to
compute.

It is clear that aθ is strictly increasing with θ, as the integral in (D.46) is strictly decreasing with increasing θ (because
the integrand is decreasing with increasing θ).

We are left with determining the one-sided derivative of aθ at θ = 1, as the derivative at any other point is handled
similarly (but with easier convergence arguments). It is technically easier to study the derivative of 1/aθ, as

d
dθ

1
aθ

= − 1
a2

θ

daθ

dθ
(D.48)

and
1
aθ

=
∫ ∞

e

dx

xθ log3 x
. (D.49)
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The reason we consider the derivative of 1/aθ is that this avoids having to take the derivative of the reciprocals of integrals.
As a1 is finite and non-zero, it is easy to pass to daθ

dθ |θ=1. Thus we have

d
dθ

1
aθ

∣∣∣
θ=1

= lim
h→0+

1
h

[∫ ∞

e

dx

x1+h log3 x
−

∫ ∞

e

dx

x log3 x

]

= lim
h→0+

∫ ∞

e

1− xh

h

1
xh

dx

x log3 x
. (D.50)

We want to interchange the integration with respect to x and the limit with respect to h above. This interchange is
permissible by the Dominated Convergence Theorem (see Appendix D.3 for details of the justification).

Note

lim
h→0+

1− xh

h

1
xh

= − log x; (D.51)

one way to see this is to use the limit of a product is the product of the limits, and then use L’Hospital’s rule, writing xh

as eh log x. Therefore
d
dθ

1
aθ

∣∣∣
θ=1

= −
∫ ∞

e

dx

x log2 x
; (D.52)

as this is finite and non-zero, this completes the proof and shows daθ

dθ |θ=1 ∈ (0,∞).

Remark D.2. We see now why we chose f(x; θ) = aθ/xθ log3 x instead of f(x; θ) = aθ/xθ log2 x. If we only had two
factors of log x in the denominator, then the one-sided derivative of aθ at θ = 1 would be infinite.

Remark D.3. Though the actual value of daθ

dθ |θ=1 does not matter, we can compute it quite easily. By (D.52) we have

d
dθ

1
aθ

∣∣∣
θ=1

= −
∫ ∞

e

dx

x log2 x

= −
∫ ∞

e

log−2 x
d log x

dx

=
1

log x

∣∣∣
∞

e
= −1. (D.53)

Thus by (D.48), and the fact that a1 = 2 (Lemma D.1), we have

daθ

dθ

∣∣∣
θ=1

= −a2
1 ·

d
dθ

1
aθ

∣∣∣
θ=1

= 4. (D.54)

D.2 Computing the Information

We now compute the expected value, E
[(

∂ log f(x;θ)
∂θ

)2
]
; showing it is infinite when θ = 1 completes the proof of our main

result. Note

log f(x; θ) = log aθ − θ log x + log log−3 x

∂ log f(x; θ)
∂θ

=
1
aθ

daθ

dθ
− log x. (D.55)

By Lemma D.1 we know that daθ

dθ is finite for each θ ≥ 1. Thus

E

[(
∂ log f(x; θ)

∂θ

)2
]

= E

[(
1
aθ

daθ

dθ
− log x

)2
]

=
∫ ∞

e

(
1
aθ

daθ

dθ
− log x

)2

· aθ
dx

xθ log3 x
. (D.56)

If θ > 1 then the expectation is finite and non-zero. We are left with the interesting case when θ = 1. As daθ

dθ |θ=1 is
finite and non-zero, for x sufficiently large (say x ≥ x1 for some x1, though by Remark D.3 we see that we may take any
x1 ≥ e4) we have ∣∣∣∣

1
a1

daθ

dθ

∣∣∣
θ=1

∣∣∣∣ ≤
log x

2
. (D.57)
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As a1 = 2, we have

E

[(
∂ log f(x; θ)

∂θ

)2
] ∣∣∣∣∣

θ=1

≥
∫ ∞

x1

(
log x

2

)2

a1
dx

x log3 x

=
∫ ∞

x1

dx

2x log x

=
1
2

∫ ∞

x1

log−1 x
d log x

dx

=
1
2

log log x
∣∣∣
∞

x1

= ∞. (D.58)

Thus the expectation is infinite. Let Θ̂ be any unbiased estimator of θ. If θ = 1 then the Cramér-Rao Inequality gives

var(Θ̂) ≥ 0, (D.59)

which provides no information as variances are always non-negative.

D.3 Applying the Dominated Convergence Theorem

We justify applying the Dominated Convergence Theorem in the proof of Lemma D.1. See, for example, [SS] for the
conditions and a proof of the Dominated Convergence Theorem.

Lemma D.4. For each fixed h > 0 and any x ≥ e, we have
∣∣∣∣
1− xh

h

1
xh

∣∣∣∣ ≤ e log x, (D.60)

and e log x
x log3 x

is positive and integrable, and dominates each 1−xh

h
1

xh
1

x log3 x
.

Proof. We first prove (D.60). As x ≥ e and h > 0, note xh ≥ 1. Consider the case of 1/h ≤ log x. Since |1 − xh| <
1 + xh ≤ 2xh, we have

|1− xh|
hxh

<
2xh

hxh
≤ 2

h
≤ 2 log x. (D.61)

We are left with the case of 1/h > log x, or h log x < 1. We have

|1− xh| = |1− eh log x|

=

∣∣∣∣∣1−
∞∑

n=0

(h log x)n

n!

∣∣∣∣∣

= h log x

∞∑
n=1

(h log x)n−1

n!

< h log x

∞∑
n=1

(h log x)n−1

(n− 1)!
= h log x · eh log x. (D.62)

This, combined with h log x < 1 and xh ≥ 1 yields

|1− xh|
hxh

<
eh log x

h
= e log x. (D.63)

It is clear that log x
x log3 x

is positive and integrable, and by L’Hospital’s rule (see (D.51)) we have that

lim
h→0+

1− xh

h

1
xh

1
x log3 x

= − 1
x log2 x

. (D.64)

Thus the Dominated Convergence Theorem implies that

lim
h→0+

∫ ∞

e

1− xh

h

1
xh

dx

x log3 x
= −

∫ ∞

e

dx

x log2 x
= −1 (D.65)

(the last equality is derived in Remark D.3).
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