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Abstract

We begin by introducing the concept of order statistics and finding the density of the rth order statistic of a sample.
We then consider the special case of the density of the median and provide some examples. We conclude with some
appendices that describe some of the techniques and background used.
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1 Order Statistics

Suppose that the random variables X1, X2, . . . , Xn constitute a sample of size n from an infinite population with continuous
density. Often it will be useful to reorder these random variables from smallest to largest. In reordering the variables, we
will also rename them so that Y1 is a random variable whose value is the smallest of the Xi, Y2 is the next smallest, and
so on, with Yn the largest of the Xi. Yr is called the rth order statistic of the sample.

In considering order statistics, it is naturally convenient to know their probability density. We derive an expression
for the distribution of the rth order statistic as in [MM].

Theorem 1.1. For a random sample of size n from an infinite population having values x and density f(x), the probability
density of the rth order statistic Yr is given by

gr(yr) =
n!

(r − 1)!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1

f(yr)
[∫ ∞

yr

f(x) dx

]n−r

. (1.1)

Proof. Let h be a positive real number. We divide the real line into three intervals: (−∞, yr), [yr, yr +h], and (yr +h,∞).
We will first find the probability that Yr falls in the middle of these three intervals, and no other value from the sample
falls in this interval. In order for this to be the case, we must have r−1 values falling in the first interval, one value falling
in the second, and n− r falling in the last interval. Using the multinomial distribution, which is explained in Appendix
A, the probability of this event is

Prob(Yr ∈ [yr, yr + h] and Yi 6= [yr, yr + h] if i 6= r)

=
n!

(r − 1)!1!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1
[∫ yr+h

yr

f(x) dx

]1 [∫ ∞

yr+h

f(x) dx

]n−r

. (1.2)
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We need also consider the case of two or more of the Yi lying in [yr, yr + h]. As this interval has length h, this
probability is O(h2) (see Appendix B for a review of big-Oh notation such as O(h2)). Thus we may remove the constraint
that exactly one Yi ∈ [yr, yr + h] in (1.2) at a cost of at most O(h2), which yields

Prob(Yr ∈ [yr, yr + h]) =
n!

(r − 1)!1!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1
[∫ yr+h

yr

f(x) dx

]1 [∫ ∞

yr+h

f(x) dx

]n−r

+ O(h2). (1.3)

We now apply the Mean Value Theorem1 to find that for some ch,yr with yr ≤ ch,yr ≤ yr + h, we have
∫ yr+h

yr

f(x) dx = h · f(ch,yr ). (1.6)

We denote the point provided by the mean value theorem by ch,yr
in order to emphasize its dependence on h and yr.

We can substitute this result into the expression of (1.3). We divide the result by h (the length of the middle interval
[yr, yr + h]), and consider the limit as h → 0:

lim
h→0

Prob(Yr ∈ [yr, yr + h])
h

= lim
h→0

n!
(r−1)!1!(n−r)!

[∫ yr

−∞ f(x) dx
]r−1 [∫∞

yr+h
f(x) dx

]1 [∫∞
yr+h

f(x) dx
]n−r

+ O(h2)

h

= lim
h→0

n!
(r−1)!1!(n−r)!

[∫ yr

−∞ f(x) dx
]r−1

h · f(ch,yr )
[∫∞

yr+h
f(x) dx

]n−r

h

= lim
h→0

n!
(r − 1)!1!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1

f(ch,yr
)
[∫ ∞

yr+h

f(x) dx

]n−r

=
n!

(r − 1)!1!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1

f(yr)
[∫ ∞

yr

f(x) dx

]n−r

. (1.7)

Thus the proof is reduced to showing that the left hand side above is gr(yr). Let gr(yr) be the probability density of
Yr. Let Gr(yr) be the cumulative distribution function of Yr. Thus

Prob(Yr ≤ y) =
∫ y

−∞
gr(yr)dyr = Gr(y), (1.8)

and G′r(y) = gr(y). Thus the left hand side of (1.7) equals

lim
h→0

Prob(Yr ∈ [yr, yr + h])
h

= lim
h→0

Gr(yr + h)−Gr(yr)
h

= gr(yr), (1.9)

where the last equality follows from the definition of the derivative. This completes the proof.

Remark 1.2. The technique employed in this proof is a common method for calculating probability densities. We first
calculate the probability that a random variable Y lies in an infinitesimal interval [y, y + h]. This probability is G(y +
h) − G(y), where g is the density of Y and G is the cumulative distribution function (so G′ = g). The definition of the
derivative yields

lim
h→0

Prob(Y ∈ [y, y + h])
h

= lim
h→0

G(y + h)−G(y)
h

= g(y). (1.10)

2 The Sample Distribution of the Median

In addition to the smallest (Y1) and largest (Yn) order statistics, we are often interested in the sample median, X̃. For
a sample of odd size, n = 2m + 1, the sample median is defined as Ym+1. If n = 2m is even, the sample median is defined
as 1

2 (Ym + Ym+1). We will prove a relation between the sample median and the population median µ̃. By definition,
µ̃ satisfies ∫ µ̃

−∞
f(x) dx =

1
2
. (2.11)

1If F is an anti-derivative of f , then the Mean Value Theorem applied to F ,

F (b)− F (a)

b− a
= F ′(c) (1.4)

is equivalent to ∫ b

a
f(x)dx = (b− a) · f(c). (1.5)
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It is convenient to re-write the above in terms of the cumulative distribution function. If F is the cumulative distri-
bution function of f , then F ′ = f and (2.11) becomes

F (µ̃) =
1
2
. (2.12)

We are now ready to consider the distribution of the sample median.

Median Theorem. Let a sample of size n = 2m + 1 with n large be taken from an infinite population with a density
function f(x̃) that is nonzero at the population median µ̃ and continuously differentiable in a neighborhood of µ̃. The
sampling distribution of the median is approximately normal with mean µ̃ and variance 1

8f(µ̃)2m .

Proof. Let the median random variable X̃ have values x̃ and density g(x̃). The median is simply the (m + 1)th order
statistic, so its distribution is given by the result of the previous section. By Theorem 1.1,

g(x̃) =
(2m + 1)!

m!m!

[∫ x̃

−∞
f(x̃) dx

]m

f(x̃)
[∫ ∞

x̃

f(x) dx

]m

. (2.13)

We will first find an approximation for the constant factor in this equation. For this, we will use Stirling’s approximation,
which tells us that n! = nne−n

√
2πn(1 + O(n−1)); we sketch a proof in Appendix D. We will consider values sufficiently

large so that the terms of order 1/n need not be considered. Hence

(2m + 1)!
m!m!

=
(2m + 1)(2m)!

(m!)2
≈ (2m + 1)(2m)2me−2m

√
2π(2m)

(mme−m
√

2πm)2
=

(2m + 1)4m

√
πm

. (2.14)

As F is the cumulative distribution function, F (x̃) =
∫ x̃

−∞ f(x) dx, which implies

g(x̃) ≈ (2m + 1)4m

√
πm

[F (x̃)]m f(x̃) [1− F (x̃)]m . (2.15)

We will need the Taylor series expansion of F (x̃) about µ̃, which is just

F (x̃) = F (µ̃) + F ′(µ̃)(x̃− µ̃) + O((x̃− µ̃)2). (2.16)

Because µ̃ is the population median, F (µ̃) = 1/2. Further, since F is the cumulative distribution function, F ′ = f and
we find

F (x̃) =
1
2

+ f(µ̃)(x̃− µ̃) + O((x̃− µ̃)2). (2.17)

This approximation is only useful if x̃− µ̃ is small; in other words, we need limm→∞ |x̃− µ̃| = 0. Fortunately this is easy
to show, and a proof is included in Appendix C.

Letting t = x̃ − µ̃ (which is small and tends to 0 as m → ∞), substituting our Taylor series expansion into (2.15)
yields2

g(x̃) ≈ (2m + 1)4m

√
πm

[
1
2

+ f(µ̃)t + O(t2)
]m

f(x̃)
[
1−

(
1
2

+ f(µ̃)t + O(t2)
)]m

. (2.18)

By rearranging and combining factors, we find that

g(x̃) ≈ (2m + 1)4m

√
πm

f(x̃)
[
1
4
− (f(µ̃)t)2 + O(t3)

]m

=
(2m + 1)f(x̃)√

πm

[
1− 4m(f(µ̃)t)2

m
+ O(t3)

]m

. (2.19)

Remember that one definition of ex is

ex = exp(x) = lim
n→∞

(
1 +

x

n

)n

; (2.20)

see Appendix E for a review of properties of the exponential function. Using this, and ignoring higher powers of t for the
moment, we have for large m that

g(x̃) ≈ (2m + 1)f(x̃)√
πm

exp
(−4mf(µ̃)2t2

) ≈ (2m + 1)f(x̃)√
πm

exp
(
− (x̃− µ̃)2

1/(4mf(µ̃)2)

)
. (2.21)

2Actually, the argument below is completely wrong! The problem is each term has an error of size O(t2). Thus when we multiply them
together there is also an error of size O(t2), and this is the same order of magnitude as the secondary term, (f(µ̃)t)2. The remedy is to be
more careful in expanding F (x̃) and 1− F (x̃). A careful analysis shows that their t2 terms are equal in magnitude but opposite in sign. Thus

they will cancel in the calculations below. In summary, we really need to use F (x̃) = 1
2

+ f(m̃u)(x̃− m̃u) +
f ′(m̃u)

2
(x̃− µ̃)2 (and similarly for

1− F (x̃)).
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Since, as shown in Appendix C, x̃ can be assumed arbitrarily close to µ̃ with high probability, we can assume f(x̃) ≈ f(µ̃)
so that3

g(x̃) ≈ (2m + 1)f(µ̃)√
πm

exp
(
− (x̃− µ̃)2

1/(4mf(µ̃)2)

)
. (2.23)

Looking at the exponential part of the expression for g(x̃), we see that it appears to be a normal density with mean µ̃
and σ2 = 1/(8mf(µ̃)2). If we were instead to compute the variance from the normalization constant, we would find the
variance to be

m

2(2m + 1)2f(µ̃)2

We see that the two values are asymptotically equivalent, thus we can take the variance to be σ2 = 1/(8mf(µ̃)2). Thus
to complete the proof of the theorem, all that we need to is prove that we may ignore the higher powers of t and replace
the product with an exponential in passing from (2.19) to (2.21). We have

(
1− 4m(f(µ̃)t)2

m
+ O(t3)

)m

= exp
(
m log

(
1− 4(f(µ̃)t)2 + O(t3)

))
. (2.24)

We use the Taylor series expansion of log(1− x):

log(1− x) = −x + O(x2); (2.25)

we only need one term in the expansion as t is small. Thus (2.24) becomes
(

1− 4m(f(µ̃)t)2

m
+ O(t3)

)m

= exp
(−m · 4(f(µ̃)t)2 + O(mt3)

)

= exp
(
− (x̃− µ̃)2

1/(4mf(µ̃)2)

)
· exp(O(mt3)). (2.26)

Using the methods of Appendix C one can show that as m →∞, mt3 → 0. Thus the exp(O(mt3)) term above tends to
1, which completes the proof.

Remark 2.1. Our justification of ignoring the higher powers of t and replacing the product with an exponential in
passing from (2.19) to (2.21) is a standard technique. Namely, we replace some quantity (1 − P )m with (1 − P )m =
exp(m log(1− P )), Taylor expand the logarithm, and then look at the limit as m →∞.

3 Examples and Exercises

Example 3.1. Consider the case of a normal population. The normal density is symmetric about the mean µ̃, hence
µ̃ = µ. Furthermore, we have

f(µ̃) = f(µ)

=
1√

2πσ2
exp

(
− (µ− µ)2

2σ2

)

=
1√

2πσ2
, (3.27)

which implies that
1

8mf(µ̃)2
=

πσ2

4m
(3.28)

For large n, we therefore see that the distribution of the median (from a normal distribution with mean µ and variance
σ2) will be approximately normal with mean µ and variance πσ2/4m.

Exercise 3.2. Find the distribution of the median of a large sample from an exponential population with parameter θ.
3To prove that there is negligible error in replacing f(x̃) with f(µ̃), we use the mean value theorem and find

f(x̃)− f(µ̃) = f ′(cx̃,µ̃) · (x̃− µ̃); (2.22)

here we have written the constant as cx̃,µ̃ to emphasize the fact that we evaluate the first derivative in the interval [x̃, µ̃]. As we have assumed
f is continuously differentiable and |x̃ − µ̃| is small, we may bound f ′(cx̃,µ̃) Thus we may replace f(x̃) with f(µ̃) at a cost of O(t), where
t = x̃− µ̃ tends to zero with m.
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A The Multinomial Distribution

We can use a binomial distribution to study a situation in which we have multiple trials with two possible outcomes with
the probabilities of each respective outcome the same for each trial and all of the trials independent.

A generalization of the binomial distribution is the multinomial distribution. Like the binomial distribution, the
multinomial distribution considers multiple independent trials with the probabilities of respective outcomes the same for
each trial. However, the multinomial distribution gives the probability of different outcomes when we have more than
two possible outcomes for each trial. This is useful, for example, in proving the distribution of order statistics, where we
take the different trials to be the sample data and the outcomes to be the three intervals in the real line in which these
data can fall.

Suppose that we have n trials and k mutually exclusive outcomes with probabilities θ1, θ2, . . . , θk. We will let
f(x1, x2, . . . , xk) be the probability of having xi outcomes of each corresponding type, for 1 ≤ i ≤ k. Obviously, we must
have x1 + x2 + · · · + xk = n. To compute f(x1, x2, . . . , xk), we first note that the probability of getting these numbers
of outcomes in some particular order is θx1

1 θx2
2 · · · θxk

k . We now compute the number of orders in which our combination
of numbers of outcomes is attainable. The x1 outcomes of the first type can be chosen in

(
n
x1

)
ways, the x2 outcomes

of the second type can be chosen in
(
n−x1

x2

)
ways, and so on up to the xk outcomes of type k which can be chosen in(

n−x1−x2−···−xk−1
xk

)
ways. The total number of orderings is therefore

(
n

x1

)(
n− x1

x2

)
· · ·

(
n− x1 − · · · − xk−1

xk

)
=

n!
(n− x1)!x1!

· (n− x1)!
(n− x1 − x2)!x2!

· · · (n− x1 − ...− xk−1)!
(n− x1 − ...− xk)!xk!

. (A.29)

The product telescopes and we are left with
n!

x1!x2! · · ·xk!
. (A.30)

The expression (A.30) is called a multinomial coefficient and is often denoted
(

n

x1, x2, . . . , xk

)
. (A.31)

Using the multinomial coefficient, we can see that

f(x1, x2, ..., xn) =
n!

x1!x2! · · ·xk!
θx1
1 θx2

2 · · · θxk

k . (A.32)

This is the multinomial distribution. We often write f(x1, x2, ..., xn; θ1, θ2, . . . , θk) to emphasize the dependence on the
parameters.

Remark A.1. One can derive the multinomial distribution by repeated uses of the binomial theorem. For example, if
k = 3 there are three outcomes, say A, B and C. We may amalgamate B and C and consider the case of two outcomes:
A and not A. If we let θ1 equal the probability of A and 1 − θ1 the probability of not A, we find the probability of x1

outcomes being A and n− x1 outcomes being not A is just
(

n

x1

)
θx1
1 (1− θ1)n−x1 . (A.33)

Let θ2 be the probability of outcome B, and θ3 the probability of outcome C. Given A does not occur, the probability that
B occurs is θ2

θ2+θ3
; the probability that C occurs is θ3

θ2+θ3
. Thus the probability that x1 outcomes are A, x2 are B and

x3 = n− x1 − x2 are C is

(
n

x1

)
θx1
1

[(
n− x1

x2

)(
θ2

θ2 + θ3

)x2
(

θ3

θ2 + θ3

)n1−x1−x2
]

(1− θ1)n−x1 ; (A.34)

however, as 1− θ1 = θ2 + θ3 and
(

n
x1

)(
n−x1

x2

)
= n!

x1!x2!x3!
, the above simplifies to

n!
x1!x2!x3!

θx1
1 θx2

2 θn1−x1−x2
3 , (A.35)

which agrees with what we found above.
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B Big-Oh Notation

Definition B.1 (Big-Oh Notation). A(x) = O(B(x)), read “A(x) is of order (or big-Oh) B(x)”, means there is a C > 0
and an x0 such that for all x ≥ x0, |A(x)| ≤ C B(x). This is also written A(x) ¿ B(x) or B(x) À A(x).

Big-Oh notation is a convenient way to handle lower order terms. For example, if we write F (x) = x5 + O(x2), this
means that as x tends to infinity, the main term of F (x) grows like x5, and the correction (or error) terms are at most
some constant times x2.

Exercise B.2. Prove for any r, ε > 0, as x → ∞ we have xr = O(ex) and log x = O(xε). Let F (x) = x2/2 and
G(x) =

∑
n≤x n. Prove F (x) ∼ G(x).

C Proof That With High Probability |X̃ − µ̃| is Small

In proving the Median Theorem, we assume that we can ignore higher powers of t = X̃ − µ̃. We are able to do this
because, with high probability, t is small. Here we provide a more formal statement of this fact, as well as a proof.

Lemma C.1. Suppose f(x) is a continuously differentiable function in some neighborhood of µ̃. Then for any c > 0, we
have

lim
m→0

Prob(|X̃ − µ̃| ≥ c) = 0. (C.36)

Proof. This is equivalent to proving that

lim
m→0

Prob(X̃ ≤ µ̃− c) = 0 and lim
m→0

Prob(X̃ ≥ µ̃ + c) = 0. (C.37)

We will prove only the first of these two statements as the proof of the second is very similar.
By (2.15), we can approximate the density of the median as

g(x̃) ≈ (2m + 1)4mf(x̃)√
πm

([F (x̃)] [1− F (x̃)])m
. (C.38)

We consider the factor ([F (x̃)] [1− F (x̃)])m. It is convenient to write θ = F (x̃) and consider the function h(θ) = θ(1− θ).
This function will attain its maximum for the same value of θ = F (x̃) as ([F (x̃)] [1− F (x̃)])m, and it is a simple exercise
in calculus to show that this value is θ = 1

2 . This condition holds only for x̃ = µ̃. We furthermore note that for θ < 1
2 ,

h′(θ) = 1− 2θ > 0, so h is increasing. Since F (x̃) = 1
2 precisely when x̃ = µ̃, this means that for x̃ ≤ µ̃− c, the maximum

value of g(θ) occurs for x̃ = µ̃− c. We therefore have for x̃ ≤ µ̃− c,

(F (x̃) [1− F (x̃)])m ≤ (F (µ̃− c) [1− F (µ̃− c)])m
< (F (µ̃) [1− F (µ̃)])m =

1
4m

. (C.39)

We choose α so that α
4 = F (µ̃− c) (1− F (µ̃− c)). Equation (C.39) then tells us that for x̃ ≤ µ̃− c,

(F (x̃) [1− F (x̃)])m ≤
(α

4

)m

≤ 1
4m

. (C.40)

In particular, we note that α < 1.
We now begin to look at the probability that X̃ is at most µ̃− c. We have

Prob(X̃ ≤ µ̃− c) =
∫ µ̃−c

−∞
g(x̃) dx̃

≈
∫ µ̃−c

−∞

(2m + 1)4m

√
πm

f(x̃)F (x̃)m(1− F (x̃))m dx̃

<
(2m)4m

√
m

∫ µ̃−c

−∞
f(x̃)F (x̃)m(1− F (x̃))m dx̃. (C.41)

In the last step, we use the fact that for m sufficiently large (m > 1, in fact), 2m < 2m+1√
π

. This simplifies the expression
as a factor of 2m is easier to work with than the factor of 2m + 1. We now apply our bound on F (x̃)(1 − F (x̃)) to find
that

Prob(X̃ ≤ µ̃− c) <
(2m)4m

√
m

∫ µ̃−c

−∞
f(x̃)

(α

4

)m

dx̃ =
(2m)4m

√
m

(α

4

)m
∫ µ̃−c

−∞
f(x̃) dx̃ < 2αm

√
m

∫ µ̃

−∞
f(x̃) dx̃ (C.42)
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In obtaining the rightmost expression, we have used the fact that f(x̃) is nonnegative everywhere and positive in a
neighborhood of µ̃, so that

∫ µ̃−c

−∞ f(x̃) dx̃ <
∫ µ̃

−∞ f(x̃) dx̃. Since µ̃ is the median of the population, by definition, we have∫ µ̃

−∞ f(x̃) dx̃ = 1
2 , so that

Prob(X̃ ≤ µ̃− c) < αm
√

m. (C.43)

Since α < 1, it follows that the right side of this inequality must converge to 0 as m goes to infinity, so the probability on
the right side must likewise converge to 0.

Exercise C.2. Let α ∈ (0, 1). Prove
lim

m→∞
αm

√
m = 0. (C.44)

In fact, this expression tends to zero exponentially fast. Let δ = 1− α. Show that for m sufficiently large,

αm
√

m ≤ A

(
1− δ

2

)m

= Ae−Bm, (C.45)

where A and B are constants (with B = log
(
1− δ

2

)
.

D Stirling’s Approximation Formula for n!

Exact computations involving factorials of large numbers can be very difficult. Fortunately, there is an approximation
formula which can greatly simplify the computations.

Stirling’s Formula.

n! = nne−n
√

2πn

(
1 +

(
O

(
1
n

)))
(D.46)

Proof. For a proof, see [WW]. We show (D.46) is a reasonable approximation. It is often easier to analyze a product by
converting it to a sum; this is readily accomplished by taking logarithms. We have

log n! =
n∑

k=1

log k ≈
∫ n

1

log tdt = (t log t− t)|n1 . (D.47)

Thus log n! ≈ n log n− n, or n! ≈ nne−n.

Exercise D.1. Use the integral test to bound the error in (D.47), and then use that to bound the error in the estimate
of n!.

E Review of the exponential function

These notes in this section are taken from [MT-B].
In this section we study some of the basic properties of the number e (see [Rud] for more properties and proofs). One

of the many ways to define the number e, the base of the natural logarithm, is to write it as the sum of the following
infinite series:

e =
∞∑

n=0

1
n!

. (E.48)

Denote the partial sums of the above series by

sm =
m∑

n=0

1
n!

. (E.49)

Hence e is the limit of the convergent sequence sm. This representation is one of the main tool in analyzing the nature
of e.

Exercise E.1. Define

ex =
∞∑

n=0

xn

n!
. (E.50)

Prove ex+y = exey. Show this series converges for all x ∈ R; in fact, it makes sense for x ∈ C as well. One can define
ab by eb ln a. Hint: Use the series expansion of (E.50) for ex, ey and ex+y, and use the binomial theorem to expand the
factors of (x + y)n.
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Exercise E.2. An alternate definition of ex is

ex = lim
n→∞

(
1 +

x

n

)n

. (E.51)

Show this definition agrees with the series expansion, and prove ex+y = exey. This formulation is useful for growth
problems such as compound interest or radioactive decay; see for example [BoDi]. Hint: Show

(
1 +

x

n

)
·
(
1 +

y

n

)
=

(
1 +

x + y

n

)
·
(

1 +
c(x, y, n)

n2

)
; (E.52)

for n large, |c(x, y, n)| ≤ |2xy|. For n ≥ N the nth power of the second factor satisfies
∣∣∣∣1 +

c(x, y, n)
n2

∣∣∣∣
n

≤
(

1 +
|2xy/N |

n

)n

, (E.53)

and the limit as n → ∞ of the right hand side is e|2xy/N |. As N was an arbitrary large number, this shows that the nth

power of the second factor in (E.52) does not contribute in the limit.

Exercise E.3. Prove d
dxex = ex. As eln x = x, the chain rule implies d

dx ln x = 1
x (ln x is the inverse function to ex).

From the functions ex and lnx, we can interpret ab for any a > 0 and b ∈ R: ab = eb ln a. Note the series expansion
for ex makes sense for all x, thus we have a well defined process to determine numbers such as 3

√
2. We cannot compute

3
√

2 directly because we do not know what it means to raise 3 to the
√

2-power; we can only raise numbers to rational
powers.

Exercise E.4. Split 100 into smaller integers such that each integer is two or more and the product of all these integers
is as large as possible. Suppose now N is a large number and we wish to split N into smaller pieces, but all we require is
that each piece be positive. How should we break up a large N?
Hint: For the second part, for each n consider N = a1 + · · ·+an. Maximize the product a1 · · · an, and denote this value by
f(n). Though initially only defined for n integral, we may extend f to all positive real numbers at least 1; this extension
is differentiable, and we can then use calculus to maximize f(n). Investigate the sign of the first derivative, and deduce
the largest value of f(n) for integral n is either n = 2 or n = 3; 3 turns out to be superior to 2 because 3 is the closest
integer to e (2 is the second closest). An interesting application arises in computer science: using a natural measure of
storage cost, the most efficient computers for storing information are those in base e; the most efficient with an integral
base are those base 3; however, the storage efficiency of base 3 is not large enough to overcome the enormous advantages
of working base 2. See [Ha] for more details.

Exercise E.5. Without using a calculator or computer, determine which is larger: eπ or πe. Hint: One approach is to
study the function x1/x (take the eπ root of both sides to reduce the problem to comparing e1/e and π1/π. Use calculus to
find the maximum value. One could also study f(x) = ex − xe and try to show f(x) > 0 when x > e; however, it is hard
to analyze all the critical points. It is easier to study g(x) = ex/e − x, and show g(x) > 0 for x > e.

Alternatively, taking logarithms of both sides yields π versus e log π, or equivalently π
e versus log π. But

log π = log
(
e · π

e

)
= 1 + log

(
1 +

π − e

e

)
. (E.54)

The proof is completed by using the Taylor series expansion for log(1+x) for x ∈ (0, 1) (the Taylor series is
∑∞

n=1
(−1)n+1xn

n ):

log π = 1 +
∞∑

n=1

(−1)n+1

n

(
π − e

e

)n

= 1 +
π − e

e
− 1

2

(
π − e

e

)2

+ · · ·

=
π

e
− 1

2

(
π − e

e

)2

+ · · · , (E.55)

which is less than π
e as we have an alternating series with decreasing absolute values. Note we multiplied by 1 in a clever

way so as to be able to exploit the Taylor series expansion for log(1 + x). Using alternating series where the terms have
decreasing absolute values is a common technique to obtain bounds. If we stop at a positive term, we have an upper bound;
if we stop at a negative term, we have a lower bound.
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