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Summary

The history, empirical evidence, and classical explanations of the Significant-Digit (or

Benford’s) Law are reviewed, followed by a summary of recent invariant-measure char-

acterizations and then a new statistical derivation of the law in the form of a CLT-like

theorem for significant digits. If distributions are selected at random (in any “unbiased”

way), and random samples are then taken from each of these distributions, the signifi-

cant digits of the combined sample will converge to the logarithmic (Benford) distribution.

This helps explain and predict the appearance of the significant-digit phenomenon in many

different empirical contexts, and helps justify its recent application to computer design,

mathematical modelling, and detection of fraud in accounting data.
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THE SIGNIFICANT-DIGIT LAW

The Significant-Digit Law of statistical folklore is the empirical observation that

in many naturally occurring tables of numerical data, the leading significant digits are

not uniformly distributed as might be expected, but instead follow a particular loga-

rithmic distribution. The first known written reference is a two-page article by the as-

tronomer/mathematician Simon Newcomb in the American Journal of Mathematics in

1881 who stated that

“The law of probability of the occurrence of numbers is such that all mantissae of their

logarithms are equally likely.”

(Recall that the mantissa (base 10) of a positive real number x is the unique number

r in [1/10, 1) with x = r10n for some integer n; e.g., the mantissas of 314 and 0.0314 are

both .314.)

This law implies that a number has leading significant digit 1 with probability log10 2 ∼=

.301, leading significant digit 2 with probability log10(3/2) ∼= .176, and so on monotonically

down to probability .046 for leading digit 9. The exact laws for the first two significant

digits (also given by Newcomb) are

(1) Prob(first significant digit = d) = log10(1 + d−1) d = 1, 2, . . . , 9

and

(2) Prob(second significant digit = d) =
9∑
k=1

log10(1 + (10k + d)−1) d = 0, 1, 2, . . . , 9.

The general form of the law

(3) Prob(mantissa ≤ t/10) = log10 t, t ∈ [1, 10)

even specifies the joint distribution of the significant digits. Letting D1, D2, . . . denote the

(base 10) significant-digit functions (e.g., D1(.0314) = 3, D2(.0314) = 1, D3 = (.0314) =

4), the general law (3) takes the following form.
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(4) General Significant-Digit Law. For all positive integers k, all d1 ∈ {1, 2, . . . , 9} and all

dj ∈ {0, 1, . . . , 9}, j = 2, . . . , k,

Prob (D1 = d1, . . . , Dk = dk) = log10

1 +

(
k∑
i=1

di · 10k−i

)−1
 .

In particular, Prob(D1 = 3, D2 = 1, D3 = 4) = log10(1 + (314)−1) ∼= .0014.

A perhaps surprising corollary of the general law (4) is that

the significant digits are dependent

and not independent as one might expect. From (2) it follows that the (unconditional)

probability that the second digit is 2 is ∼= .109, but by (4) the (conditional) probability

that the second digit is 2, given that the first digit is 1, is ∼= .115. This dependence

among significant digits decreases rapidly as the distance between the digits increases,

and it follows easily from the general law (4) that the distribution of the nth significant

digit approaches the uniform distribution on {0, 1, . . . , 9} exponentially fast as n → ∞.

(This article will concentrate on decimal (base 10) representations and significant digits;

the corresponding analog of (3) for other bases b > 1 is simply Prob(mantissa (base b) ≤

t/b) = logb t for all t ∈ [1, b).)

EMPIRICAL EVIDENCE

Of course, many tables of numerical data do not follow this logarithmic distribution

– lists of telephone numbers in a given region typically begin with the same few digits,

and even “neutral” data such as square-root tables of integers are not good fits. But a

surprisingly diverse collection of empirical data does seem to obey the significant-digit law.

Newcomb (1881) noticed “how much faster the first pages [of logarithmic tables] wear

out than the last ones,” and after several short heuristics, concluded the equiprobable-

mantissae law. Some fifty-seven years later the physicist Frank Benford rediscovered the

law, and supported it with over twenty thousand entries from twenty different tables in-

cluding such diverse data as surface areas of 335 rivers, specific heats of 1389 chemical

compounds, American League baseball statistics, and numbers gleaned from Reader’s Di-

gest articles and front pages of newspapers. Although Diaconis and Freedman (1979,
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p. 363) offer convincing evidence that Benford manipulated round-off errors to obtain a

better fit to the logarithmic law, even the unmanipulated data is a remarkably good fit,

and Newcomb’s article having been overlooked, the law also became known as Benford’s

Law.

Since Benford’s popularization of the law, an abundance of additional empirical evi-

dence has appeared. In physics for example, Knuth (1969) and Burke and Kincanon (1991)

observed that of the most commonly used physical constants (e.g., the constants such as

speed of light and force of gravity listed on the inside cover of an introductory physics

textbook), about 30% have leading significant digit 1. Becker (1982) observed that the

decimal parts of failure (hazard) rates often have a logarithmic distribution; and Buck,

Merchant and Perez (1993), in studying the values of the 477 radioactive half-lives of un-

hindered alpha decays which have been accumulated throughout the present century and

which vary over many orders of magnitude, found that the frequency of occurrence of the

first digits of both measured and calculated values of the half-lives is in “good agreement”

with Benford’s Law.

In scientific calculations the assumption of logarithmically-distributed mantissae “is

widely used and well established” (Feldstein and Turner (1986), p. 241), and as early as

a quarter-century ago, Hamming (1970, p. 1069) called the appearance of the logarithmic

distribution in floating-point numbers “well-known.” Benford-like input is often a common

assumption for extensive numerical calculations (Knuth (1969)), but Benford-like output is

also observed even when the input have random (non-Benford) distributions. Adhikari and

Sarkar (1969) observed experimentally “that when random numbers or their reciprocals

are raised to higher and higher powers, they have log distribution of most significant digit

in the limit,” and Schatte (1988, p. 443) reports that “In the course of a sufficiently long

computation in floating-point arithmetic, the occurring mantissas have nearly logarithmic

distribution.”

Extensive evidence of the Significant-Digit Law has also surfaced in accounting data.

Varian (1972) studied land usage in 777 tracts in the San Francisco Bay Area and concluded

“As can be seen, both the input data and the forecasts are in fairly good accord with

Benford’s Law.” Nigrini and Wood (1995) show that the 1990 census populations of the
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3141 counties in the United States “follow Benford’s Law very closely,” and Nigrini (1995a)

calculated that the digital frequencies of income tax data reported to the Internal Revenue

Service of interest-received and interest-paid is an extremely good fit to Benford. Ley

(1995) found “that the series of one-day returns on the Dow-Jones Industrial Average

Index (DJIA) and the Standard and Poor’s Index (S&P) reasonably agrees with Benford’s

law.”

All these statistics aside, the author also highly recommends that the justifiably skep-

tical reader perform a simple experiment, such as randomly selecting numerical data from

front pages of several local newspapers, “or a Farmer’s Almanack” as Knuth (1969) sug-

gests.

CLASSICAL EXPLANATIONS

Since the empirical significant-digit law (4) does not specify a well-defined statistical

experiment or sample space, most attempts to prove the law have been purely mathematical

(deterministic) in nature, attempting to show that the law “is a built-in characteristic of

our number system,” as Warren Weaver (1963) called it. The idea was to first prove that

the set of real numbers satisfies (4), and then suggest that this explains the empirical

statistical evidence.

A common starting point has been to try to establish (4) for the positive integers IN,

beginning with the prototypical set {D1 = 1} = {1, 10, 11, 12, 13, 14, . . . , 19, 100, 101, . . .},

the set of positive integers with leading significant digit 1. The source of difficulty, and

much of the fascination of the problem, is that this set {D1 = 1} does not have a natural

density among the integers, that is,

lim
n→∞

1

n
{D1 = 1} ∩ {1, 2, . . . , n}

does not exist, unlike the sets of even integers or primes which have natural densities 1/2 and

0, respectively. It is easy to see that the empirical density of {D1 = 1} oscillates repeatedly

between 1/9 and 5/9, and thus it is theoretically possible to assign any number in [1/9, 5/9]

as the “probability” of this set. Flehinger (1966) used a reiterated-averaging technique to

define a generalized density which assigns the “correct” Benford value log10 2 to {D1 = 1},
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Cohen (1976) showed that “any generalization of natural density which applies to the

[significant digit sets] and which satisfies one additional condition must assign the value

log10 2 to [{D1 = 1}],” and Jech (1992) found necessary and sufficient conditions for a

finitely-additive set function to be the log function. None of these solutions, however,

resulted in a true (countably-additive) probability, the difficulty being exactly the same

as that in the foundational problem of “picking an integer at random” (cf. DeFinetti

(1972) pp. 86, 98–99), namely, if each singleton integer occurs with equal probability, then

countable additivity implies that the whole space must have probability zero or infinity.

These discrete/summability arguments have been extended via various integration

schemes, Fourier analysis, and Banach measures to continuous densities on the positive

reals, where {D1 = 1} is now the set of positive numbers with first significant digit 1, i.e.,

(5) {D1 = 1} =
∞⋃

n=−∞

[1, 2) · 10n.

One popular assumption in this context has been that of scale-invariance, which

corresponds to the intuitively attractive idea that any universal law should be independent

of units (e.g., metric or English). The problem here however, as Knuth (1969) observed, is

that there is no scale-invariant Borel probability measure on the positive reals since then the

probability of the set (0, 1) would equal that of (0, s) for all s, which again would contradict

countable additivity. (Raimi (1976) has a good review of many of these arguments.) Just

as with the density proofs for the integers, none of these methods yielded either a true

probabilistic law or any statistical insights.

Attempts to prove the law based on various urn schemes for picking significant digits

at random have been equally unsuccessful in general, although in some restricted settings

log-limit laws have been established. Adhikari and Sarkar (1969) proved that powers of a

uniform (0, 1) random variable satisfy Benford’s law in the limit, Cohen and Katz (1984)

showed that a prime chosen at random with respect to the Zeta distribution satisfies the

logarithmic significant-digit law, and Schatte (1988) established convergence to Benford’s

law for sums and products of certain non-lattice iid variables.

THE NATURAL PROBABILITY SPACE

The task of putting the significant-digit law into a proper countably-additive prob-
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ability framework is actually rather easy. Since the conclusion of the law (4) is simply

a statement about the significant-digit functions (random variables) D1, D2, . . ., let the

sample space be IR+, the set of positive reals, and let the sigma-algebra of events simply

be the σ-field generated by {D1, D2, . . .} (or equivalently, generated by the single function

x 7→ mantissa(x)). It is easily seen that this σ-algebra, which will be denotedM and will

be called the (decimal) mantissa σ-algebra, is a sub σ-field of the Borels and that in fact

(6) S ∈M⇔ S =
∞⋃

n=−∞

B · 10n for some Borel B ⊆ [1, 10),

which is just the obvious generalization of the representation (5) for {D1 = 1}.

The mantissa σ-algebraM, although quite simple, has several interesting properties:

(i) every non-empty set inM is infinite with accumulation points at 0 and at +∞;

(7) (ii) M is closed under scalar multiplication (s > 0, S ∈M⇒ sS ∈M);

(iii) M is closed under integral roots (m ∈ IN, S ∈M⇒ S1/m ∈M) but not powers;

(iv) M is self-similar, in the sense that if S ∈M then 10mS = S for every integer m,

(where aS and Sa denote the sets {as : s ∈ S} and {sa : s ∈ S}, respectively).

Property (i) implies that finite intervals such as [1, 2) are not in M (that is, are not

expressible in terms of the significant digits alone; e.g., significant digits alone cannot dis-

tinguish between the numbers 2 and 20), and thus the countable-additivity contradictions

associated with scale-invariance disappear. Properties (i), (ii) and (iv) follow easily by (6)

but (iii) warrants a closer inspection. The square root of a set in M may consist of two

“parts,” and similarly for higher roots. For example, if

S = {D1 = 1} =
∞⋃

n=−∞

[1, 2) · 10n,

then

S1/2 =
∞⋃

n=−∞

[
1,
√

2
)
· 10n ∪

∞⋃
n=−∞

[√
10,
√

20
)
· 10n ∈M,

but

S2 =
∞⋃

n=−∞

[1, 4) · 102n 6∈ M,
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since it has gaps which are too large and thus cannot be written in terms of {D1, D2, . . .}.

Just as property (ii) is the key to the hypothesis of scale-invariance, property (iv) is the

key to a hypothesis of base-invariance which will be described below.

(Although the space IR+ is emphasized above, the analogous mantissa σ-algebra on the

positive integers IN is essentially the same, and as such removes the countable-additivity

density problem on IN since non-empty finite sets are not in the domain of the probability

function.)

SCALE AND BASE INVARIANCE

With the proper measurability structure now identified, a rigorous notion of scale-

invariance is easy to state. Recall (7ii) thatM is closed under scalar multiplication.

Definition 1. A probability measure P on (IR+,M) is scale-invariant if P (S) = P (sS)

for all s > 0 and all S ∈M.

In fact, scale-invariance characterizes the general significant-digit law (4).

Theorem 1. (Hill (1995a)) A probability measure P on (IR+,M) is scale-invariant if and

only if

(8) P

(
∞⋃

n=−∞

[1, t) · 10n

)
= log10 t for all t ∈ [1, 10).

One possible drawback to a hypothesis of scale-invariance in tables of “universal con-

stants,” however, is the special role played by the constant 1. For example, consider the

two physical laws f = ma and e = mC2. Both laws involve universal constants, but the

force equation constant 1 is not recorded in most tables, whereas the speed of light constant

C is. If a “complete” list of universal physical constants also included the 1’s, it seems

plausible that this special constant might occur with strictly positive frequency. But that

would violate scale-invariance, since then the constant 2 (and all other constants) would

occur with this same positive probability.

Instead, suppose it is assumed that any reasonable universal significant-digit law

should be base-invariant, that is, should be equally valid when rewritten in terms of bases

other than 10. In fact, all of the classical arguments supporting Benford’s law carry over
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“mutatis mutandis” (Raimi (1976), p. 536) to other bases. As will be seen shortly, the hy-

pothesis of base-invariance characterizes mixtures of Benford’s law and a Dirac probability

measure on the special constant 1, which may occur with positive probability.

To motivate the definition of base-invariance, consider the set {D1 = 1} of positive

numbers with leading significant digit 1 (base 10). This same set of numbers can also (cf.

(5)) be written as

{D1 = 1} =
∞⋃

n=−∞

[1, 2) · 100n ∪
∞⋃

n=−∞

[10, 20) · 100n,

that is, {D1 = 1} is also the set of positive numbers whose leading significant digit (base

100) is in the set {1, 10, 11, . . . , 19}. In general, every set of real numbers S (base 10) in

M is exactly the same set as the set of real numbers S1/2 (base 100) in M. Thus if a

probability is base-invariant, the measure of any given set of real numbers (in the mantissa

σ-algebraM) should be the same for all bases, and in particular for bases which are powers

of the original base. This suggests the following natural definition (recall that M is also

closed under integral roots, property (7iii)).

Definition 2. A probability measure P on (IR+,M) is base-invariant if P (S) = P (S1/n)

for all positive integers n and all S ∈M.

Next, observe that the set of numbers

S1 = {D1 = 1, Dj = 0 for all j > 1} = {. . . , .01, .1, 1, 10, 100, . . .} =
∞⋃

n=−∞

{1} · 10n ∈M

has (by (6)) no nonempty M-measurable subsets, so the Dirac delta measure δ1 of this

set is well defined. (Here δ1(S) = 1 if S ⊇ S1 and = 0 otherwise, for all S ∈ M.) Letting

PL denote the logarithmic probability distribution on (IR+,M) given in (8), a complete

characterization for base-invariant significant-digit probability measures can now be given.

Theorem 2. (Hill (1995a)) A probability measure P on (IR+,M) is base-invariant if and

only if

P = qPL + (1− q)δ1 for some q ∈ [0, 1].

From Theorems 1 and 2 it is easily see that scale-invariance implies base-invariance

but not conversely (e.g., δ1 is clearly base- but not scale-invariant).

9



The proof of Theorem 1 follows easily from the fact that scale-invariance corresponds

to invariance under irrational rotations x→ (x+ s)(mod 1) on the circle, and the unique

invariant probability measure under this transformation is well known to be the uniform

(Lebesgue) measure, which in turn corresponds to the log mantissa distribution. Proof of

Theorem 2 is slightly more complicated, since base-invariance corresponds to invariance un-

der multiplication x→ nx(mod 1). The key tool used here (Hill (1995a), Proposition 4.1)

is that a Borel probability Q on [0, 1) is invariant under the mappings nx(mod 1) for all

n if and only if Q is a convex combination of uniform measure and positive mass at 0. (A

number of basic questions concerning invariance under multiplication are still open, such as

Furstenberg’s twenty-five year old conjecture that the uniform distribution on [0, 1) is the

only atomless probability distribution invariant under both 2x(mod 1) and 3x(mod 1).)

RANDOM SAMPLES FROM RANDOM DISTRIBUTIONS

Theorems 1 and 2 may be clean mathematically, but they hardly help explain the

appearance of Benford’s law empirically. What do 1990 census populations of three thou-

sand U.S. counties have in common with 1880 users of logarithm tables, numerical data

from front-page newspaper articles of the 1930’s collected by Benford or universal physical

constants examined by Knuth in the 1960’s? Why should these tables be logarithmic, or,

equivalently, scale or base-invariant? Many tables are not of this form, including even

Benford’s individual tables (as he noted), but as Raimi (1969) pointed out, “what came

closest of all, however, was the union of all his tables.” Combine the molecular weight

tables with baseball statistics and areas of rivers, and then there is a good fit. Many of

the previous explanations of Benford’s law have hypothesized some universal table of con-

stants, Raimi’s (1985, p. 217) “stock of tabular data in the world’s libraries,” or Knuth’s

(1969) “some imagined set of real numbers,” and tried to prove why certain specific sets

of real observations were representative of either this mystical universal table or the set of

all real numbers.

But what seems more natural is to think of data as coming from many different

distributions, as was clearly the case in Benford’s (1938) study in his “effort to collect data

from as many fields as possible and to include a wide variety of types” (p. 552) – “the range
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of subjects studied and tabulated was as wide as time and energy permitted” (p. 554).

Recall that a (real Borel) random probability measure (r.p.m.) IM is a random vector

(on an underlying probability space (Ω,F ,P)) taking values which are Borel probability

measures on IR, and which is regular in the sense that for each Borel set B ⊂ IR, IM(B) is

a random variable (cf. Kallenberg (1983)).

Definition 3. The expected distribution measure of a r.p.m. IM is the probability measure

EIM (on the Borel subsets of IR) defined by

(9) (EIM)(B) = E(IM(B)) for all Borel B ⊂ IR,

(where here and throughout, E(·) denotes expectation with respect to P on the underlying

probability space).

For example, if IM is a random probability which is U [0, 1] with probability 1/2 and

otherwise is an exponential distribution with mean 1, then EIM is simply the continuous

distribution with density f(x) = (1 + e−x)/2 for 0 ≤ x ≤ 1, and = e−x/2 for x > 1.

The next definition plays a central role in this section, and formalizes the concept

of the following natural process which mimics Benford’s data-collection procedure: pick

a distribution at random and take a sample of size k from this distribution; then pick a

second distribution at random, and take a sample of size k from this second distribution,

and so forth.

Definition 4. For a r.p.m. IM and positive integer k, a sequence of IM-random k-samples

is a sequence of random variables X1, X2, . . . on (Ω,F ,P) so that for some i.i.d. sequence

IM1, IM2, IM3, . . . of r.p.m.’s with the same distribution as IM, and for each j = 1, 2, . . .,

(10) given IMj = P , the random variables X(j−1)k+1, . . . , Xjk are i.i.d. with d.f. P ;

and

(11) X(j−1)k+1, . . . , Xjk are independent of {IMi, X(i−1)k+1, . . . , Xik} for all i 6= j.

The following lemma shows the somewhat curious structure of such sequences.
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Lemma 1. Let X1, X2, . . . be a sequence of IM-random k-samples for some k and some

r.p.m. IM. Then

(i) the {Xn} are a.s. identically distributed with distribution EIM, but are not in general

independent; and

(ii) given {IM1, IM2, . . .}, the {Xn} are a.s. independent, but are not in general identically

distributed.

Proof. The first part of (ii) follows easily by (10) and (11), and the second part since

whenever IMi 6= IMj , Xik will not have the same distribution as Xjk. The first part of (i)

follows by conditioning on IMj :

P(Xj ∈ B) = E[IMj(B)] = E[IM(B)] for all Borel B ⊂ IR,

where the last equality follows since IMj has the same distribution as IM. The second part

of (i) follows from the fact that i.i.d. samples from a distribution may give information

about the distribution, as seen in the next example.

In general, sequences of IM-random k-samples are not independent, not exchangeable,

not Markov, not martingale, and not stationary sequences.

Example. Let IM be a random measure which is the Dirac probability measure δ(1)

at 1 with probability 1/2, and which is (δ(1) + δ(2))/2 otherwise, and let k = 3. Then

P(X2 = 2) = 1/4, but P(X2 = 2 | X1 = 2) = 1/2, so X1, X2 are not independent. Since

P((X1, X2, X3, X4) = (1, 1, 1, 2)) = 9/64 > 3/64 = P((X1, X2, X3, X4) = (2, 1, 1, 1)), the

{Xn} are not exchangeable; since P(X3 = 1 | X1 = X2 = 1) = 9/10 > 5/6 = P(X3 =

1 | X2 = 1), the {Xn} are not Markov; since E(X2 | X1 = 2) = 3/2, the {Xn} are not

a martingale; and since P(X1, X2, X3) = (1, 1, 1)) = 9/16 > 15/32 = P((X2, X3, X4) =

(1, 1, 1)), the {Xn} are not stationary.

The next lemma is simply the statement of the intuitively plausible fact that the

empirical distribution of IM-random k-samples converges to the expected distribution of

IM; that this is not completely trivial follows from the independence/identically-distributed

dichotomy stated in Lemma 1. If k = 1, it is just the Bernoulli case of the strong law of

large numbers.
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Lemma 2. Let IM be a r.p.m., and let X1, X2 . . . be a sequence of IM-random k-samples

for some k. Then

lim
n→∞

#{i ≤ n : Xi ∈ B}

n
= E[IM(B)] a.s. for all Borel B ⊂ IR.

Proof. Fix B and j ∈ IN, and let

Yj = #{m, 1 ≤ m ≤ k : X(j−1)k+m ∈ B}.

Clearly,

(12) lim
n→∞

#{i ≤ n : Xi ∈ B}

n
= lim
n→∞

∑m
j=1 Yj

km
(if the limit exists).

By (10), given IMj , Yj is binomially distributed with parameters k and E[IMj(B)], so

by (9)

(13) EYj = E(E(Yj | IMj)) = kE[IM(B)] a.s. for all j,

since IMj has the same distribution as IM.

By (11), the {Yj} are independent. Since they have (via (13)) identical means

kE[IM(B)], and are uniformly bounded (so
∑∞(Var(Yj)/j

2) < ∞), it follows (cf. Loève

(1977), p. 250) that

(14) lim
m→∞

∑m
j=1 Yj

m
= kE[IM(B)] a.s.,

and the conclusion follows by (12) and (14).

The assumption that each IMj is sampled exactly k times is not essential; if the j-th

r.p.m. is sampled Kj times, where the {Kj} are independent uniformly bounded IN-valued

random variables (which are also independent of the rest of the process), then the same

conclusion holds.
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A NEW STATISTICAL DERIVATION

The stage is now set to give a new statistical limit law (Theorem 3 below) which is

a central-limit-like theorem for significant digits. Roughly speaking, this law says that

if probability distributions are selected at random, and random samples are then taken

from each of these distributions in any way so that the overall process is scale (or base)

neutral, then the significant digit frequencies of the combined sample will converge to the

logarithmic distribution. This theorem helps explain and predict the appearance of the

logarithmic distribution in significant digits of tabulated data.

Definition 5. A sequence of random variables X1, X2, . . . has scale-neutral mantissa fre-

quency if

n−1|#{i ≤ n : Xi ∈ S} −#{i ≤ n : Xi ∈ sS}| → 0 a.s.

for all s > 0 and all S ∈M, and has base-neutral mantissa frequency if

n−1|#{i ≤ n : Xi ∈ S} −#{i ≤ n : Si ∈ S
1/m}| → 0 a.s.

for all m ∈ IN and S ∈M.

For example, if {Xn}, {Yn}, and {Zn} are the sequences of (constant) random variables

defined by Xn ≡ 1, Yn ≡ 2, Zn = 2n, then {Xn} has base- but not scale-neutral mantissa

frequency, {Yn} has neither, and (by Theorem 1 above and Theorem 1 of Diaconis (1977))

{Zn} has both.

Mathematical examples of scale-neutral and scale-biased processes are easy to con-

struct, as will be described below. For a real-life example, pick a beverage-producing

company in Europe at random, and look at the metric volumes of a sample of k of its

products, then pick a second company, and so forth. Since product volumes in this case

are probably closely related to liters, this (random k-sample) process is most likely not

scale-neutral, and conversion to another unit such as gallons would probably yield a rad-

ically different set of first-digit frequencies. On the other hand, if species of mammals in

Europe are selected at random and their metric volumes sampled, it seems less likely that

this second process is related to the choice of units.
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Similarly, base-neutral and base-biased processes are also easy to construct mathe-

matically. The question of base-neutrality is most interesting when the units in question

are universally agreed upon, such as the numbers of things. For real-life examples, picking

cities at random and looking at the number of fingers of k-samples of people from those

cities is certainly heavily base-10 dependent (that’s where base 10 originated!), whereas

picking cities at random and looking at the number of leaves of k-samples of trees from those

cities is probably less base dependent. As will be seen in the next theorem, scale and base

neutrality of random k-samples are essentially equivalent to scale- and base-unbiasedness

of the underlying r.p.m. IM.

Definition 6. A r.p.m. IM is scale-unbiased if its expected distribution EIM is scale-

invariant on (IR+,M) and is base-unbiased if EIM is base-invariant on (IR+,M). (Recall

that M is a sub σ-algebra of the Borels, so every Borel probability on IR (such as EIM)

induces a unique probability on (IR+,M).)

A crucial point here is that the definition of scale- and base-unbiased does not require

that individual realizations of IM be scale- or base-invariant; in fact it is often the case (see

Benford’s (1938) data and example below) that none of the realizations are scale-invariant,

but only that the sampling process on the average does not favor one scale over another.

Now for the main new statistical result; here IM(t) denotes the random variable IM(Dt),

where Dt =
⋃∞
n=−∞[1, t) · 10n is the set of positive numbers with mantissae in [1/10, t/10).

(Thus in light of the representation (6), IM(t) may be viewed as the random cumulative

distribution function for the mantissae of the r.p.m. IM.)

Theorem 3. (Log-limit law for significant digits). Let IM be a r.p.m. on (IR+,M). The

following are equivalent:

(i) IM is scale-unbiased;

(ii) IM is base-unbiased and EIM is atomless;

(iii) E[IM(t)] = log10 t for all t ∈ [1, 10);

(iv) every IM-random k-sample has scale-neutral mantissa frequency;

(v) EIM is atomless, and every IM-random k-sample has base-neutral mantissa frequency;
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(vi) for every IM-random k-sample X1, X2, . . . ,

n−1 #{i ≤ n : mantissa(Xi) ∈ [1/10, t/10)} → log10 t a.s. for all t ∈ [1, 10).

Proof. “(i) ⇔ (iii).” Immediate by Definitions 1 and 6 and Theorem 1.

“(ii) ⇔ (iii).” It follows easily from (6) that the Borel probability EIM is atomless if and

only if it is atomless onM. That (ii) is equivalent to (iii) then follows easily by Definitions 2

and 6 and Theorem 2.

“(iii) ⇔ (iv).” By Lemma 2,

An := n−1|#{i ≤ n : Xi ∈ S}| → E[IM(S)] a.s., and

Bn := n−1|#{i ≤ n : Xi ∈ sS}| → E[IM(sS)] a.s.,

so |An − Bn| → 0 a.s. if and only if EIM(S) = EIM(sS), which by Definition 1 and

Theorem 1 is equivalent to (iii).

“(iii) ⇔ (v).” Similar, using Lemma 2, Definition 2, and Theorem 2.

“(iii) ⇔ (vi).” Immediate by Lemma 2.

One of the points of Theorem 3 is that there are many (natural) sampling procedures

which lead to the log distribution, helping explain how the different empirical evidence

of Newcomb, Benford, Knuth and Nigrini all led to the same law. This may also help

explain why sampling the numbers from newspaper front pages (Benford (1938), p. 556),

or almanacs, or extensive accounting data, often tends toward the log distribution, since

in each of these cases various distributions are being sampled in a presumably unbiased

way. Perhaps the first article in the newspaper has statistics about population growth, the

second article about stock prices, the third about forest acreage. None of these individual

distributions itself may be unbiased, but the mixture may well be.

Justification of the hypothesis of scale or base unbiasedness is akin to justification of

the hypothesis of independence (and identical distribution) in applying the strong law of

large numbers or central limit theorem to real-life processes – neither hypothesis can be
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proved, yet in many real-life sampling procedures, they appear to be reasonable assump-

tions. Conversely, Theorem 3 suggests a straightforward test for unbiasedness of data –

simply test goodness-of-fit to the logarithmic distribution.

Many standard constructions of r.p.m.’s are automatically scale- and base-neutral,

and thus satisfy the log-limit significant-digit law. Consider the problem of generating a

random variable X (or r.p.m.) on [1, 10). If the units chosen are desired to be just as likely

stock/dollars as dollars/stock (or Benford’s (1938) “candles per watt” vs “watts per can-

dle”), then the distribution generated should be reciprocal-invariant, e.g., its log10 should

be symmetric about 1/2. So first set F (1) = 0 and F (10−) = 1; next pick F (
√

10) randomly

(according to, say, uniform measure on (0, 1)) since
√

10 is the reciprocal-invariant point

t = 10
t
; then pick F (101/4) and F (103/4), independently and uniformly on (0, F (

√
10))

and (F (
√

10), 1) respectively, and continue in this manner. This classical construction of

Dubins and Freedman is known to generate a r.p.m. a.s. (Dubins and Freedman (1967),

Lemma 9.28) whose expected distribution EIM is the logarithmic probability PL of (8), and

hence by Theorem 3 is scale- and base-unbiased, even though with probability one every

distribution generated this way will be both scale- and base-biased. But on the average,

this r.p.m. is unbiased, so the log-limit significant-digit law will apply to all IM-random

k-samples. (The construction described above using uniform measure is not crucial – any

base measure on (0, 1) symmetric about 1/2 will have the same property (Dubins and

Freedman (1967), Theorem 9.29).)

Also, many significant-digit data sets other than random k-samples have scale or base

neutral mantissa frequency, in which case combining such data together with unbiased

random k-samples (as did Benford, perhaps, in combining data from mathematical tables

with that from newspaper statistics), will still result in convergence to the logarithmic

distribution. For example, if certain data represents (deterministic) periodic sampling of a

geometric process (e.g., Xn = 2n), then by Theorem 1 of Diaconis (1977), this deterministic

process is a strong Benford sequence, which implies that its limiting frequency (separately

or averaged with unbiased random k-samples) will satisfy (4).

An interesting open problem is to determine which common distributions (or mixtures

thereof) satisfy Benford’s Law, i.e., are scale or base-invariant or which have mantissas
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with logarithmic distributions. For example, the standard Cauchy distribution is close to

satisfying Benford’s Law (cf. Raimi (1976)), and the standard Gaussian is not, but perhaps

certain natural mixtures of some common distributions are.

Of course there are many r.p.m.’s and sampling processes which do not satisfy the

log limit law (and hence are necessarily both scale and base biased), such as the (a.s.)

constant uniform distribution on [1, 10), or (for some reason not yet well understood by

the author) the r.p.m. constructed via Dubins-Freedman with base probability uniform

measure on the horizontal bisector of the rectangle, which has expected log distribution a

renormalized arc-sin distribution (Dubins and Freedman (1967), Theorem 9.21).

APPLICATIONS

The statistical log-limit significant-digit law Theorem 3 may help justify some of the

recent applications of Benford’s Law, several of which will now be described.

In scientific calculating, if the distribution of input data into a central processing

station is known then this information can be used to design a computer which is optimal

(in any of a number of ways) with respect to that distribution. Thus if the computer

users are like the log-table users of Newcomb or the taxpayer’s of Nigrini’s study, their

data represents an unbiased (as to units, base, reciprocity . . .) random mixture of various

distributions, in which case it will (by Theorem 3) necessarily follow Benford’s Law. Once a

specific input distribution has been identified, in this case the logarithmic distribution, then

that information can be exploited to improve computer design. Feldstein and Turner (1986)

show that “under the assumption of the logarithmic distribution of numbers, floating-point

addition and subtraction can result in overflow or underflow with alarming frequency”

. . . “and lead to the suggestion of a long word format which will reduce the risks to

acceptable levels.” Schatte (1988) concludes that under assumption of logarithmic input,

base b = 23 is optimal with respect to minimizing storage space. Knuth (1969) after having

“established the logarithmic law for integers by direct calculation,” leaves as an exercise

(p. 228) determining the desirability of hexadecimal versus binary with respect to different

objectives, and Barlow and Bareiss (1985) “conclude that the logarithmic computer has

smaller error confidence intervals for roundoff errors than a floating point computer with
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the same computer word size and approximately the same number range.”

A second modern application of Benford’s Law is to mathematical modelling, where

goodness-of-fit against the logarithmic distribution has been suggested (cf. Varian (1972))

as a test of reasonableness of output of a proposed model, a sort of “Benford-in, Benford-

out” criteria. In Nigrini and Wood’s (1995) census tabulations for example, the 1990

census populations of the 3,141 counties in the United States follow the significant-digit

logarithmic law very closely, so it seems reasonable that mathematical models for predicting

future populations of the counties should also be a close fit to Benford. If not, perhaps a

different model should be considered.

As one final example, Nigrini has amassed a vast collection of U.S. tax and account-

ing data including 91,022 observations of IRS-reported interest income (Nigrini (1995a)),

and share volumes (at the rate of 200-350 million/day) on the New York Stock Exchange

(Nigrini (1995b)), and in most of these cases the logarithmic distribution is an excellent fit

(perhaps exactly because each is an unbiased mixture of data from different distributions).

He postulates that Benford is often a reasonable distribution to expect for the significant

digits of large accounting data sets, and has proposed a goodness-of-fit test against Benford

to detect fraud. In an article in the Wall Street Journal in July 1995 (Berton (1995)) it

was announced that the District Attorney’s office in Brooklyn, New York, using Nigrini’s

Benford goodness-of-fit tests, has detected and charged groups at seven New York compa-

nies with fraud. The Dutch IRS has expressed interest in using this Benford test to detect

income tax fraud, and Nigrini has submitted proposals to the U.S. IRS.
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