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Problem Outline

Alex Kossovsky conjectured that many chains of
distributions approach Benford’s law.
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distributions approach Benford’s law.
Consider X1 ∼ Unif(0, k), X2 ∼ Unif(0, X1), ...,
Xn ∼ Unif(0, Xn−1).
If fn,k(xn) is the probability density for Xn, then

fn,k(xn) =

{

logn−1(k/xn)
kΓ(n)

if xn ∈ [0, k ]

0 otherwise.

Theorem (JKKKM)
As n → ∞ the distribution of digits of Xn rapidly tends to
Benford’s Law.
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Uniform Density Example: n = 10 with 10,000 trials

Digit Observed Probability Expected Probability
1 0.298 0.301
2 0.180 0.176
3 0.127 0.125
4 0.097 0.097
5 0.080 0.079
6 0.071 0.067
7 0.056 0.058
8 0.048 0.051
9 0.044 0.046
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Sketch of the proof

First prove the claim for density fn,k by induction.

Use Mellin Transforms and Poisson Summation to
analyze probability.
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Proof by Induction: Base Case: Calculating CDF

F2,k(x2) =

∫ k

0
Prob (X2,k ∈ [0, x2]|X1,k = x1) Prob(X1,k = x1)dx1
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Differentiating yields f2,k(x2) = log(k/x2)
k .
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Further Comments

Other distributions: exponential, one-sided normal.

Weibull distribution: f (x ; γ) = γxγ−1 exp(−xγ).

Further areas of research - Two parameter
distribution, closed form for other single variable
distributions
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