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Preface

This book on modern number theory grew out of undergraduate research semi-
nars taught at Princeton University (2001–2003), and similar courses taught at New
York University, Ohio State, Brown University and a summer Research Experience
for Undergraduates at the American Institute of Mathematics. The purpose of these
classes was to expose undergraduates to current research topics in mathematics.
To supplement the standard lecture-homework classes, we wanted a course where
students could work on outstanding conjectures and open problems and experience
firsthand the kinds of problems mathematicians study. In the sciences and engineer-
ing, undergraduates are often exposed to state of the art problems in experimental
laboratories. We want to bring a similar experience to students interested in math-
ematics. This book is the outcome of that effort, providing the novice with hints as
to what we feel is a good path through the immense landscape of number theory,
as well as the needed background material. We have tried to give students and their
teachers a model which can be used to develop their own research program; to this
end, throughout the book are detailed descriptions of accessible open problems and
references to the literature. Though we encourage students and teachers to attempt
some of the open problems, the book stands alone and may be used for a standard
lecture course (especially for new subjects such as Random Matrix Theory where
there are not many introductory works accessible to undergraduates). Our goal is
to supplement the classic texts in the field by showing the connections between
seemingly diverse topics, as well as making some of the subjects more accessible
to beginning students and whetting their appetite for continuing in mathematics.

The book has five parts, though several themes run throughout the book.

• Part I deals with basic number theory (cryptography and basic group theory),
elementaryL-functions (including the connections between zeros ofζ(s) and
primes), and solutions to Diophantine equations. The material in this part is
fairly standard, and could serve as an introduction to number theory. In some
sections a little group theory and first semester complex analysis is assumed
for some advanced topics. Our purpose in the first chapter is not to write
a treatise on cryptography, but to review some of the background necessary
from basic number theory for later chapters. It is possible tomotivatethis
material in the context of cryptography; though these applications are very
important, this connection is meant only to interest the reader, as this is not
a exposition on cryptography. Similarly, elliptic curves are a terrific example
for some of the material in Chapter4 (and later in the book); as such, we
introduce just enough for these purposes. As there are numerous excellent
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books on both of these subjects, we have kept our treatments short and refer
the interested reader to these for more details. One theme in these chapters
is the search for efficient algorithms, which appears frequently in later parts
as well.

• Part II has two connected themes: approximating numbers with rationals,
and continued fractions. In the first, the basic properties of algebraic and
transcendental numbers are discussed, and a proof of Roth’s Theorem (on
how well algebraic numbers can be approximated by rationals) is given in
full detail. This is one of the great achievement of 20th century number the-
ory. Roth’s Theorem has now been greatly generalized, and there are a few
different ways to prove it. Our formulation and proof follow Roth’s original
proof. The proof we present here, though long and technical, requires only
knowledge of elementary calculus and linear algebra. The second part is an
introduction to continued fractions (a subject of interest in its own right, but
also of use in approximation theory) and culminates in several open prob-
lems; this chapter is independent of Roth’s Theorem and may serve as a
survey to the subject. Also, time and again (especially in Part III when we
study digit bias and spacings between terms in certain sequences), we see
that answers to many number theoretic questions depend on properties of the
numbers in the problem; often the continued fraction expansion highlights
these properties. There are references to open problems in continued frac-
tions, many of which concern the distribution of digits (see Part III).

• Part III encompasses three themes. The first is the distribution of the first
digit of several interesting sequences (for example, the Fibonacci numbers
and iterates of the3x + 1 map). We use this problem as a motivation for hy-
pothesis testing (whether or not numerical data supports or contradicts con-
jectured behavior). Hypothesis testing is an extremely important subject,
especially as computers are used more and more frequently in mathematics.
The second theme centers around the Gauss-Kuzmin Theorem for the dis-
tribution of digits of continued fractions. We then develop enough Fourier
Analysis to prove various basic results, including a sketch of the proof of
the Central Limit Theorem and Poisson Summation (one of the most used
tools in number theory). We use these results to investigate the behavior of
nkα mod 1 for fixed k, α (specifically, the spacings between these numbers
in [0, 1]; for manyk andα these spacings appear to be the same as the spac-
ings between adjacent primes); we study other spacing problems in Part V; in
fact, our results on the Fourier transform are needed in Chapter?? when we
investigate zeros ofL-functions. Numerous open problems and references to
the current literature are provided.

• Part IV is a brief introduction to the Circle Method, a powerful theory to
study questions in additive number theory (such as writing a number as a
sum of a fixed number ofkth powers or primes). After developing the basics
of the theory, we discuss in some detail why, using these methods, we cannot
(yet?) show that any even number is the sum of two primes but we can show
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any large odd number is the sum of three primes. We use the Circle Method
to predict how many Germain primes (p andp−1

2 both prime) are less thanx.
This example illustrates many of the key techniques of the theory, as well as
the problems that arise in applications. Further, the density of these primes
has recently been connected to fast primality testing algorithms. As usual we
conclude with some open problems.

• Part V is an introduction to Random Matrix Theory and its interplay with
number theory. What began as a model in the1950s for physicists to study
the energy levels of heavy nuclei has become a powerful tool after a chance
encounter one day at tea in the1970s (see [?] for an entertaining account
of the meeting) for predicting the behavior of zeros ofζ(s) and otherL-
functions; knowledge of these zeros is intimately connected to properties of
primes. The general result is that there is a striking similarity between the
spacings between energy levels of heavy nuclei, eigenvalues of sets of ma-
trices and zeros ofL-functions. We take a classical approach to the subject.
Results from linear algebra and occasionally first semester complex analysis
are used (especially in the final chapter); a review of enough of the back-
ground material is provided for students to follow the key ideas in the proofs.
There are numerous open problems requiring only elementary probability
theory and linear algebra (at the level covered in this book); many have al-
ready been successfully investigated by our students.

There are several chapters throughout the book covering background material
in basic number theory, algebra, Fourier analysis and probability theory, as well
as two appendices on needed calculus, analysis and linear algebra results. Clearly
our book is not meant to replace standard textbooks in these fields. We have two
reasons for including these background chapters (in addition to the material being
interesting in its own right). First, waiting for students to assemble such a back-
ground takes time, and the main purpose of our book is to show students in the
early stages of their education what mathematicians do, and the interplay between
the various parts of number theory and mathematics. Second, often very little of
the background subjects is needed to understand the basic formulation and set-up
of current work. Therefore a student who has not seen such material in a previ-
ous course can get a feel for these subjects by reading the review and background
chapters, and then move on to the current research chapters. We have, however,
written the chapters in such a way that there are often additional remarks or sec-
tions for students with stronger backgrounds. We have also included references
throughout the book showing how the same methods and techniques are used for
many different problems.

We have strived to keep the pre-requisites to a minimum: what is required is
more a willingness to explore than a familiarity with the landscape. Several times
we use results from later in the book in earlier investigations; our hope is that after
seeing how these theorems are used and needed the reader will be motivated and
interested enough to study the proofs. For most of the book one-variable calculus
is the only requirement. We have also tried to emphasize common techniques in
proofs (the reader is strongly encouraged to study thetechniquesentry in the index).
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The book breaks naturally into five parts. Depending on the background of the
students, and whether or not a class is going to explore open problems further, a
typical semester class would cover material from one part of the book (as well as
whatever background material is needed), though we recommend everyone at least
skim Chapter?? to ensure familiarity with the language and some of the motivating
influences and themes of number theory. Many topics (such as applications to
cryptography, algebraic structure of numbers and spacings between events) occur
in various forms throughout the book. In a two semester course, one can cover two
of the advanced parts and see these connections. We have also tried to give students
the opportunity to discover the theory by themselves by giving many exercises.
Mathematics is not meant to be a passive pursuit. Some of the problems are mere
warm-ups; others are real problems that require time and effort. The reader should
not be discouraged at being unable to work out all the problems. The value of an
exercise is often in the time and energy spent on it, rather than the final solution.
Many of the more difficult problems are standard theorems and can be seen proved
in other textbooks. In this regard our manuscript is in the spirit of [Mu2].In
Appendix B we have provided hints and further remarks to certain exercises;
these problems are marked with either an (h) or (hr) in the text.

We have assembled an extensive bibliography to aid the reader in further study.
In addition to the excellent texts [AZ, Apo, BS, Da1, Da2, EE, Est2, Fe, HW,
IR, IK, Kh, Kn, La2, Meh2, Na, NZM, ST, vdP6] on continued fractions, number
theory and random matrix theory, we recommend the recent work of Narkiewicz
[Nar] (where the reader will find proofs of many number theory results, as well as
over 1800 references) as well as [Guy] (where there are extensive bibliographies
for open problems). We conclude in Appendix C with some remarks on common
themes running through this book and number theory.

The students in our courses used computers to assemble large amounts of data
for some of the problems mentioned in the text, which then led us to appropriate
conjectures and in some cases even gave us ideas on how to prove them. For links
to previous student reports as well as some of the research papers mentioned in the
bibliography, please visit

http://www.math.princeton.edu/mathlab/book/index.html

These include student programs (mostly in C++, Maple, Mathematica, MATLAB,
or PARI) and detailed references for those interested in continuing these studies.
Students should also consult MathSciNet [AMS], the arXiv [Cor1] and Project
Euclid [Cor2] to find and download additional references.

It is a pleasure to thank the professors and teaching assistants who have helped
run the class over the years (Alex Barnett, Vitaly Bergelson, João Boavida, Alexan-
der Bufetov, Salman Butt, Brian Conrey, David Farmer, Harald Helfgott, Chris
Hughes, James Mailhot, Atul Pokharel, Michael Rubinstein, Peter Sarnak, Lior
Silberman, Yakov Sinai, Warren Sinnott, Florin Spinu and Andrew Wiles), as well
as the students.

We would also like to thank several of our colleagues. In particular, we thank Ed-
uardo Dueñez, Rob Gross and Amir Jafari for reviewing an early draft and provid-
ing numerous helpful suggestions to improve the presentation, and Timothy Abbot,
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Mike Buchanan, Scott Craver, Kevin Dayaratna, Dean Eiger, Manfred Einsiedler,
Dan File, Chris Hammond, Ted Hill, Alex Kontorovich, Josh Krantz, Matt Miche-
lini, Jeff Miller, Liz Miller, Paria Mirmonsef, C. J. Mozzochi, Anna Pierrehumbert,
Amitabha Roy, Zeév Rudnick, Eitan Sayag, Aaron Silberstein, Dan Stone, Howard
Straubing, Yuri Tschinkel, Akshay Venkatesh and Bill Zaboski for discussions and
comments on various chapters. The first author gave several lectures on the mater-
ial to a summer research group and the Ross Program at Ohio State (summer 2004),
and is indebted to the students for their comments and suggestions. We are grateful
to Nicole, Michelle and Leo Beaupre, Andrew and David Norris, Joe Silverman
and the staff at Princeton University Press for help with the illustrations, and to
Stephen Kudla for mutually productive LaTeX discussions.

We are extremely grateful to Princeton University Press, especially to our edi-
tor Vickie Kearn, our production editor Lucy Day W. Hobor and our copyeditor
Jennifer Slater, for all their help and aid, to Bob Gunning, for initiating contact
between us and PUP and encouraging us to write the book, and to the National
Science Foundation’s VIGRE program, which helped fund many of the classes at
Princeton, NYU and Ohio State.

The first author was partially supported by VIGRE post-doctoral fellowships at
Princeton, New York University, The Ohio State University and Brown Univer-
sity, and enjoyed the hospitality of Boston University during the final stages of the
project. The second author enjoyed the hospitality of the University of Maryland at
College Park, Johns Hopkins University and The Ohio State University at various
stages of working on the project. His work was partially supported by a Young
Investigator’s Award from the National Security Agency.

Steven J. Miller
Providence, RI

December 2005

Ramin Takloo-Bighash
Princeton, NJ

December 2005
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Notation

W : the set of whole numbers:{1, 2, 3, 4, . . . }.

N : the set of natural numbers:{0, 1, 2, 3, . . . }.

Z : the set of integers:{. . . ,−2,−1, 0, 1, 2, . . . }.

Q : the set of rational numbers:{x : x = p
q , p, q ∈ Z, q 6= 0}.

R : the set of real numbers.

C : the set of complex numbers:{z : z = x + iy, x, y ∈ R}.

<z,=z : the real and imaginary parts ofz ∈ C; if z = x+ iy,<z = x and=z = y.

Z/nZ : the additive group of integers modn: {0, 1, . . . , n− 1}.

(Z/nZ)∗ : the multiplicative group of invertible elements modn.

Fp : the finite field withp elements:{0, 1, . . . , p− 1}.

a|b : a dividesb.

pk||b : pk dividesb andpk+1 does not divideb.

(a, b) : greatest common divisor (gcd) ofa andb, also writtengcd(a, b).

prime, composite : a positive integera is prime ifa > 1 and the only divisors ofa
are1 anda; if a > 1 is not prime, we saya is composite.

coprime (relatively prime) :a andb are coprime (or relatively prime) if their great-
est common divisor is1.

x ≡ y mod n : there exists an integera such thatx = y + an.

∀ : for all.

∃ : there exists.
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xii NOTATION

Big-Oh notation :A(x) = O(B(x)), read “A(x) is of order (or big-Oh)B(x)”,
means∃C > 0 and anx0 such that∀x ≥ x0, |A(x)| ≤ C B(x). This is also
writtenA(x) ¿ B(x) or B(x) À A(x).

Little-Oh notation : A(x) = o(B(x)), read “A(x) is little-Oh of B(x)”, means
limx→∞A(x)/B(x) = 0.

|S| or #S : number of elements in the setS.

p : usually a prime number.

i, j, k, m, n : usually an integer.

[x] or bxc : the greatest integer less than or equal tox, read “the floor ofx”.

{x} : the fractional part ofx; notex = [x] + {x}.

supremum : given a sequence{xn}∞n=1, the supremum of the set, denotedsupn xn,
is the smallest numberc (if one exists) such thatxn ≤ c for all n, and for anyε > 0
there is somen0 such thatxn0 > c − ε. If the sequence has finitely many terms,
the supremum is the same as the maximum value.

infimum : notation as above, the infimum of a set, denotedinfn xn, is the largest
numberc (if one exists) such thatxn ≥ c for all n, and for anyε > 0 there is some
n0 such thatxn0 < c + ε. If the sequence has finitely many terms, the infimum is
the same as the minimum value.

2 : indicates the end of a proof.
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Chapter One

Introduction to Probability

In this chapter we give a quick introduction to the basic elements of Probability
Theory, which we use to describe the limiting behavior of many different systems;
for more details see [Du, Fe, Kel]. Consider all numbers in[0, 1]. Let p10,n(k) be
the probability that thenth decimal (base 10) digit isk for k ∈ {0, . . . , 9}. It is
natural to expect that each digit is equally likely. This leads us to conjecture that
p10,n(k) = 1

10 for all n. There is nothing special about base10 — the universe
does not care that we have ten fingers on our hands. Thus if we were to write our
numbers in baseb, thenk ∈ {0, 1, . . . , b − 1} and it is natural to conjecture that
pb,n(k) = 1

b . These statements can be easily proved. If we look at thenth digit
of 10 million randomly chosen numbers, we expect to see about1 million ones,
1 million twos, and so on; we will, of course, have to specify what we mean by
randomly. What about the fluctuations about the expected values? Would we be
surprised if we see1, 000, 053 ones? If we see1, 093, 127? The answer is given by
the Central Limit Theorem, stated in §1.4 and proved in §??.

Instead of choosing numbers randomly in[0, 1], what if we consider special se-
quences? For example, how is thefirst digit of 2n base 10 distributed? The possible
digit values are1, . . . , 9. Are all numbers equally likely to be the first digit of2n?
We see in Chapter 2 that the answer is a resounding no. Another possible experi-
ment is to investigate thenth decimal digit of

√
p asp varies through the primes.

Do we expect asn → ∞ that each number0 through9 occurs equally often? Do
numerical experiments support our conjecture? Building on this chapter, in Chapter
2 we discuss how to analyze such data.

The probability of observing a digit depends on the base we use. What if we in-
stead write the continued fraction expansion (see Chapter??) of numbers in[0, 1]?
The advantage of this expansion is that it does not depend on a baseas there is no
base!What is the probability that thenth digit of the continued fraction expansion
equalsk, k ∈ {1, 2, . . . }? How likely is it that thenth digit is large, say more than
a million? Small? We can already answer this question for certain numbersα. If
α is rational then it has a finite continued fraction expansion; ifα is a quadratic
irrational, it has a periodic expansion. What is true about the expansions of the
otherα ∈ (0, 1)? We answer such questions in Chapter??.

Let {x} denote the fractional part ofx. Thus{x} = x mod 1. Consider an
irrational numberα ∈ (0, 1). For eachN look at theN numbers{1α}, {2α}, . . . ,
{Nα}. Rearrange the above{nα} in increasing order, and for definiteness label
themβ1, . . . , βN :

0 ≤ β1 ≤ β2 ≤ · · · ≤ βN . (1.1)

As we haveN numbers in[0, 1], the average distance between numbers is about
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1
N . What does the spacing between adjacentβi’s look like? How often are two
adjacentβi’s twice the average spacing apart? Half the average spacing apart? We
prove some results and describe open problems in Chapter??, and then in Part??
we investigate the spacings between eigenvalues of matrices, energy levels of heavy
nuclei like Uranium and zeros ofL-functions, showing connections between these
very different systems!

1.1 PROBABILITIES OF DISCRETE EVENTS

We begin by studying the probabilities of discrete sets; for example, subsets of the
integers or rationals or any finite set. Many interesting systems are discrete. One
common example is flipping a coin a finite number of times; in this case we are
often interested in the number of heads or tails. Another is to have time discrete;
for example, people waiting in line at a bank, and every minute there is a chance a
teller will serve the next person in line.

In the last example, if instead of measuring time in minutes we measured time
in seconds or tenths of a second, for all practical purposes we would have a con-
tinuous process. While discrete sets are often good approximations to continuous
processes, sometimes we actually need the continuous case; we describe contin-
uous probability distributions in §1.2.3. We assume the reader is familiar with
elementary set operations and countable sets (see §??).

1.1.1 Introduction

Definition 1.1.1(Outcome Space, Outcomes). LetΩ = {ω1, ω2, ω3, . . . } be an at
most countable set. We callΩ the sample (or outcome) space, and the elements
ω ∈ Ω the outcomes.

Thus, the outcome space is the collection of possible outcomes.

Example 1.1.2.Flip a coin3 times. The possible outcomes are

Ω = {HHH,HHT, HTH, THH, HTT, THT, TTH, TTT}. (1.2)

If we flip a coin three times, how many heads do we expect to see? What is
the probability we observe exactly three heads? Exactly two heads? The answer
depends on the coin. If the coin is fair, for each flip we have a50% chance of
getting a head and a50% chance of getting a tail. The coin, however, need not be
fair. It could have some probabilityp of landing on heads, and then probability1−p
of landing on tails. For many investigations, we need more than just a collection of
possible outcomes: we need to know how likely each possible outcome is.

Definition 1.1.3 (Probability Function). We sayp(ω) is a (discrete) probability
function or distribution onΩ if

1. 0 ≤ p(ωi) ≤ 1 for all ωi ∈ Ω.

2.
∑

i p(ωi) = 1.
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The first statement says that each outcome has a non-negative probability of oc-
curring, and nothing can have a probability greater than1 (a probability of1 of
happening means the event happens); the second statement quantifies the observa-
tion that something definitely happens.

We callp(ω) the probability of the outcomeω. Given an outcome space with a
probability function, we can investigate functions of the outcomes.

Definition 1.1.4(Random Variable). LetX be a function fromΩ toR. That is, for
each outcomeω ∈ Ω we attach a real numberX(ω). We callX a random variable.

A random variable is essentially a function of the outcomes, assigning a number
to each outcome. As there are many functions that could convert outcomes to
numbers, for any outcome space there are many random variables. With the same
outcome space from Example 1.1.2, one possible random variable isX(ω) equals
the number of heads inω. Thus,X(HHT ) = 2 andX(TTT ) = 0. Additionally,
for i ∈ {1, 2, 3} let

Xi(ω) =

{
1 if the ith toss is a head

0 if the ith toss is a tail.
(1.3)

Note that

X(ω) = X1(ω) + X2(ω) + X3(ω). (1.4)

Remark 1.1.5(Important). The following situation occurs frequently. Consider the
case whenΩ ⊂ R andX is a random variable. We often adjust our notation and
write x for ω ∈ Ω; thus a capital letter denotes a random variable and a lowercase
letter denotes a value it attains. For example, consider a roll of a fair die. The
outcome space isΩ = {1, 2, 3, 4, 5, 6}, and the probability of eachω ∈ Ω is 1

6 .
Let X be the number rolled on the die. ThenX(1) = 1, X(2) = 2, and so on.
In this example, it is very convenient to call the outcome space the number rolled.
The outcomes are the numbers1, 2 and so on, rather then “the dice is a1,” “the
dice is a2”; X is the random variable that is the number rolled, taking on values
x ∈ {1, . . . , 6}. We shall mostly useX : Ω → R to represent a random variable
and emphasize that the outcome space need not be a subset ofR, though the reader
should be aware of both notations.

Example 1.1.6(Important). Given an outcome spaceΩ with eventsω with proba-
bility functionp, p is a random variable.

The terminology can be confusing, as a given random variableX is clearly not
random — it is what it is! The point is we can attach many different random
variable to a givenΩ.

1.1.2 Events

Definition 1.1.7(Events). We call a subsetA ⊂ Ω an event, and we write

Prob(A) =
∑

ω∈A

p(ω). (1.5)
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Note each outcome is also an event.

Definition 1.1.8 (Range ofX). The range of a random variableX is the set of
values it attains, denotedX(Ω):

X(Ω) = {r ∈ R : ∃ω ∈ Ω with X(ω) = r}. (1.6)

Note X(Ω) is the set of values attained byX(ω) as we varyω ∈ Ω. Given a
setS ⊂ X(Ω), we letX−1(S) = {ω ∈ Ω : X(ω) ∈ S}. This is the set of all
outcomes where the random variable assigns a number inS.

Exercise 1.1.9.Let Ω be the space of all tosses of a fair coin where all but the
last toss are tails, and the last is a head. ThusΩ = {H, TH, TTH, TTTH, . . . }.
One possible random variable isX equals the number of tails; another isY equals
the number of the flip which is a head. Calculate the probabilities of the following
outcomes inΩ. What is the probability thatX(ω) ≤ 3? What is the probability
thatY (ω) > 3? What events do these correspond to?

In general, we can associate events to any random variable. LetΩ be an outcome
space with outcomesω, and letX be a random variable. As we are assumingΩ is
countable, the random variableX takes on at most countably many distinct values,
so the rangeX(Ω) is at most countable. Letxi denote a typical value. For eachxi,
we can form the eventX(ω) = xi; let us denote this event byAi:

Ai = {ω ∈ Ω : X(ω) = xi} ⊂ Ω. (1.7)

Note that theAi’s are disjoint sets; ifω ∈ Ai ∩Aj , thenX(ω) = xi as well asxj .
Further,∪iAi = Ω, because given anyω ∈ Ω, X(ω) = xi for somei, henceω is
in some setAi. The setsAi form apartition of Ω (everyω ∈ Ω is in one and only
oneAi).

Remark 1.1.10(Important). By the above, given an outcome spaceΩ with out-
comesω and a probability functionp and a random variableX, we can form a new
outcome spacẽΩ with outcomesxi with probability functionp̃ given by

p̃(xi) =
∑
ω∈Ω

X(ω)=xi

p(ω). (1.8)

Remark 1.1.11(Important). In a convenient abuse of notation, we often write

p(xi) = p(X(ω) = xi) = Prob(ω ∈ Ω : X(ω) = xi). (1.9)

We also call the random variableX an event, as the subsets ofΩ corresponding
to different values ofX are events. Thus we can talk about the event “the value of
the first roll,” as the following example and Example 1.1.14 illustrate.

Example 1.1.12.Let Ω be the set of all possible pairs of rolls of a fair die, and
X(ω) equals the number of the first roll. We obtain eventsA1, . . . , A6. LetY (ω)
equal the number of the second roll, giving eventsB1, . . . , B6. If we consider the
sum rolled, we have eventsC2, . . . , C12. For example,C7 = {(1, 6), (2, 5), (3, 4),
(4, 3), (5, 2), (6, 1)}. See Chapter9 of [Sc] for a plethora of interesting problems
on dice.
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Exercise 1.1.13.Calculate the probabilities of the eventsC2, . . . , C12 for Example
1.1.12.

Example 1.1.14(Characteristic or Indicator Functions). We continue to reconcile
our two notions of an event, namely a subsetA ⊂ Ω and a random variableX. To
anyA ⊂ Ω we can associate acharacteristicor indicator random variable1A as
follows:

1A(ω) =

{
1 if ω ∈ A

0 if ω 6∈ A.
(1.10)

ThusA is the set ofω where1A(ω) = 1.

Definition 1.1.15(Complements). The complement of a setA ⊂ Ω is the set of all
ω 6∈ A. We denote this byAc:

Ac = {ω : ω ∈ Ω, ω 6∈ A}. (1.11)

Using complements, we can rewrite the definition of the indicator random vari-
ableXA:

XA(ω) =

{
1 if ω ∈ A

0 if ω ∈ Ac.
(1.12)

Lemma 1.1.16. Consider an outcome spaceΩ with outcomesω and probability
functionp. LetA ⊂ Ω be an event. Then

p(A) = 1− p(Ac). (1.13)

This simple observation is extremely useful for calculating many probabilities,
as sometimesp(Ac) is significantly easier to determine.

Exercise 1.1.17.Prove Lemma 1.1.16. Consider100 tosses of a fair coin. What is
the probability that at least three tosses are heads?

Exercise(hr) 1.1.18. Consider100 tosses of a fair coin. What is the probability that
at least three consecutive tosses are heads? What about at least five consecutive
tosses?

Given an outcome spaceΩ with outcomesω and random variableX, we can
define a new random variableY = aX, a ∈ R, by Y (ω) = a ·X(ω). This implies
p(Y (ω) = axi) = p(X(ω) = xi). Thus if X(ω) takes on the valuesxi with
probabilitiesp(xi), Y (ω) = a · X(ω) takes on the valuesaxi with probabilities
p(xi).

Exercise 1.1.19.Let X be a random variable on an outcome spaceΩ with prob-
ability functionp. Fix a constanta and letY (ω) = X(ω) + a. Determine the
probabilityY (ω) = yi.

Example 1.1.20(Geometric Series Formula). Alan and Barbara take turns shoot-
ing a basketball; first one to make a basket wins. Assume every time Alan shoots
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he has a probabilityp ∈ [0, 1] of making a basket, and each time Barbara shoots
she has a probabilityq ∈ [0, 1] of making a basket. For notational convenience let
r = (1−p)(1− q). We assume that at least one ofp andq is positive (as otherwise
the game never ends); thusr ∈ [0, 1). The probability that Alan wins on his first
shot isp, that he wins on his second shot isrp (he must miss his first shot, Barbara
must miss her first shot, and then he must make his second shot), and in general
that he wins on hisnth shot isrn−1p. Letting x equal the probability that Alan
wins, we find

x = p + rp + r2p + · · · = p

∞∑
n=0

rn. (1.14)

However, we also know that

x = p + (1− p)(1− q)x = p + rx. (1.15)

This follows from observing that, once Alan and Barbara miss their first shots, it
is as if we started the game all over; thus the probability that Alan wins after they
each miss their first shot is the same as the probability that Alan wins (we must
remember to add on the probability that Alan wins on his first shot, which isp).
Sincex = p + rx we findx = p/(1− r), so(1.14)becomes

∞∑
n=0

rn =
1

1− r
, (1.16)

the geometric series formula!

Exercise(h) 1.1.21. The above example provides a proof for the geometric series
formula, but only ifr ∈ [0, 1). If r < 0 show how we may deduce the geometric
series formula from ther ≥ 0 case.

Exercise(h) 1.1.22 (Gambler’s ruin). Alan and Barbara now play the following
game. Alan starts withn dollars and Barbara withm dollars (n andm are positive
integers). They flip a fair coin and every time they get heads Barbara pays Alan a
dollar, while every time they get a tail Alan pays Barbara a dollar. They continue
playing this game until one of them has all the money. Prove the following:

1. If n = m then the probability that Alan wins isn/(n + m) = 1/2.

2. If n + m = 2k for some positivek then the probability that Alan wins is
n/(n + m).

3. If m = 2 then the probability that Alan wins isn/(n + m), and if m = 1
then the probability that Alan wins isn/(n + m).

4. For 1 ≤ m,n the probability that Alan wins isn/(n + m).

Investigate what happens for smallm andn if the coin isnot fair.

Remark 1.1.23. Exercises 1.1.20 and 1.1.22 provide examples of a useful tech-
nique, namely finding a relation for a probabilityp of the formp = a + bp with a
andb known.
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Exercise(hr) 1.1.24. Consider a circle of unit radius and a square of diameter 2.
Assume we paintp percent of the perimeter blue and1 − p of the perimeter red.
Prove that ifp < 1/4 then theremustbe a way to position the square inside the
circle so that the four vertices are on the perimeter and all four vertices are on the
red parts of the circle. Generalize the problem to ann dimensions.

1.1.3 Conditional Probabilities

Consider two probability spacesΩ1 andΩ2 with outcomesω1 andω2. We can
define a new outcome space

Ω = {ω = (ω1, ω2) : ω1 ∈ Ω1 andω2 ∈ Ω2}, (1.17)

with outcomesω = (ω1, ω2). We need to define a probability functionp(ω), i.e.,
we need to assign probabilities to these outcomes. One natural way is as follows:
let pi be the probability function for outcomesωi ∈ Ωi. We define

p(ω) = p1(ω1) · p2(ω2) if ω = (ω1, ω2). (1.18)

Exercise 1.1.25.Show the above defines a probability function.

Of course, we could also define a probability functionp : Ω → R directly. We
again consider two tosses of a fair coin. We have outcomesω = (ω1, ω2). Let us
definep(ω) = 1

36 , i.e., each of the36 outcomes is equally likely. LetX(ω) = ω1,
the roll of the first die; similarly, setY (ω) = ω2, the roll of the second die.

Example 1.1.26.What isProb(X(ω) = 2)? There are6 pairs with first roll 2:
(2, 1), (2, 2), . . . , (2, 6). Each pair has probability1

36 . Thus,Prob(X(ω) = 2) =
6
36 = 1

6 .

More generally we have

Prob (X(ω) = xi) =
∑

ω=(ω1,ω2)
X(ω)=xi

p (ω) . (1.19)

The above is a simple recipe to findProb (X(ω) = a): it is the probability of all
pairs(ω1, ω2) such thatX(ω) = xi, ω2 arbitrary.

Let us consider a third random variable, the sum of the two rolls. Thus let
Z(ω) = ω1 + ω2, each outcomeω = (ω1, ω2) occurs with probability 1

36 . We
have just seen that, if we have no information about the second roll, the probability
that the first roll is a2 is 1

6 (what we would expect). What if, however, we know
the sum of the two rolls is2, or 7 or 10? Now what is the probability that the first
roll is a2? We are looking for pairs(ω1, ω2) such thatω1 = 2 andω1 + ω2 = 2, 7,
or 10. A quick inspection shows there are no pairs with sum2 or 10. For a sum of
7, only one pair works:(2, 5).

This leads us to the concept ofconditional probability : what is the probability
of an eventA, given an eventB has occurred?For an eventA we can write

Prob(A) =
∑

ω∈A p(w)∑
ω∈Ω p(ω)

. (1.20)
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Note the denominator is1. For conditional probabilities, we restrict toω ∈ B.
Thus, we have

Prob(A|B) =

∑
ω∈A
ω∈B

p(w)
∑

ω∈B p(ω)
. (1.21)

The numerator above may be regarded as the eventA∩B (as both must happen,ω
must be inA andB). Prob(A|B) is readthe probability ofA, givenB occurs(or
as the conditional probability ofA givenB). Thus,

Lemma 1.1.27. If Prob(B) 6= 0,

Prob(A|B) =
Prob(A ∩B)

Prob(B)
. (1.22)

In the example above, letA be the event that the first roll is a2 andB the event
that the sum of the rolls is7. As the die are fair, the probability of any pair(ω1, ω2)
is 1

36 . Then

A = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}
B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

A ∩B = {(2, 5)}

Prob(A|B) =
Prob(A ∩B)

Prob(B)
=

1
36

6 · 1
36

=
1
6
. (1.23)

Exercise 1.1.28.Let Ω be the results of two rolls of two dice, whereω1 is the
number rolled first andω2 the number rolled second. Forω = (ω1, ω2) ∈ Ω,
define the probabilities of the outcomes by

p(ω) =

{
1.5
36 if ω1 is even
.5
36 if ω1 is odd.

(1.24)

Show the above is a probability function ofΩ. LetX(ω) be the number of the first
roll, Y (ω) the number of the second roll. For eachk ∈ {1, . . . , 6}, what is the
probability thatY (ω) = k givenX(ω) = 2? GivenX(ω) = 1?

Exercise 1.1.29.Three players enter a room and a red or blue hat is placed on
each person’s head. The color of each hat is determined by a coin toss, with the
outcome of one coin toss having no effect on the others. Each person can see the
other players’ hats but not their own. No communication of any sort is allowed,
except for an initial strategy session before the game begins. Once they have had
a chance to look at the other hats, the players must simultaneously guess the color
of their own hats or pass. The group shares a $3 million prize if at least one player
guesses correctly and no players guess incorrectly. One can easily find a strategy
which gives them a 50% chance of winning; using conditional probability find one
where they win 75% of the time! More generally find a strategy for a group ofn
players that maximizes their chances of winning. See [Ber, LS] for more details, as
well as [CS, LS] for applications to error correcting codes.
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1.1.4 Independent Events

The concept ofindependenceis one of the most important in probability. Simply
put, two events are independent if knowledge of one gives no information about the
other. Explicitly, the probability ofA occurring given thatB has occurred is the
same as if we knew nothing about whether or notB occurred:

Prob(A|B) =
Prob(A ∩B)

Prob(B)
= Prob(A). (1.25)

Knowing eventB occurred gives no additional information on the probability that
eventA occurred.

Again, consider two rolls of a fair dice with outcome spaceΩ consisting of pairs
of rolls ω = (ω1, ω2). Let X(ω) = ω1 (the result of the first roll),Y (ω) = ω2 (the
result of the second roll) andZ(ω) = X(ω) + Y (ω) = ω1 + ω2 (the sum of the
two rolls). LetA be the event that the first roll is2 andB the event that the sum of
the two rolls is7. We have shown

Prob(A|B) =
1
6

= Prob(A); (1.26)

thus,A andB are independent events. If, however, we had takenB to be the event
that the sum of the two rolls is2 (or 10), we would have found

Prob(A|B) = 0 6= Prob(A); (1.27)

in this case, the two events are not independent.
We rewrite the definition of independence in a more useful manner. Since for

two independent eventsA andB,

Prob(A|B) =
Prob(A ∩B)

Prob(B)
= Prob(A), (1.28)

we have

Prob(A ∩B) = Prob(A)Prob(B). (1.29)

Note the more symmetric form of the above. In general, eventsA1, . . . , An are
independent if for any subset{i1, . . . , ik} of {1, . . . , n} we have

Prob(Ai1 ∩Ai2 ∩ · · · ∩Aik
) = Prob(Ai1)Prob(Ai2) · · ·Prob(Ail

). (1.30)

If eventsA1, . . . , An are pairwise independent, it is possible that the events are not
independent.

Exercise 1.1.30.Consider two tosses of a fair coin, each pair occurs with proba-
bility 1

4 . LetA be the event that the first toss is a head,B the event that the second
toss is a tail andC the event that the sum of the number of heads is odd. Prove the
events are pairwise independent, but not independent.

Example 1.1.31.Consider a fair die. LetA be the event that the first roll equalsa,
B be the event that the second roll equalsb andC be the event that the sum of the
two rolls isc, c ∈ {2, . . . , 12}. As each pair of rolls is equally likely, the probability
that the first roll isa is 1

6 (as six of the thirty-six pairs give a first roll ofa). Thus,
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for any choices ofa and b, the result of the first roll is independent of the second
roll. We say that the two rolls (or the eventsA andB) are independent.

Consider now eventC, the sum of the two rolls. If the sum of the rolls is7, then
the probability that the first roll equalsa is 1

6 for all a; however, in general the
conditional probabilities for the first rollwill depend on the sum. For example, if
the sum is2 then the probability that the first roll is1 is 1 and the probability that
the first roll is2 or more is0. Thus, eventsA andC (the first roll and the sum of
the rolls) are not independent.

Definition 1.1.32(Independent Random Variables). Let X andY be two random
variables. We can associate eventsAi = {ω ∈ Ω : X(ω) = xi} andBj = {ω ∈
Ω : Y (ω) = yj}. If for all i andj the eventsAi andBj are independent, we say the
random variablesX andY are independent:knowledge of the value ofY yields
no information about the value ofX.

Exercise 1.1.33.Again consider two tosses of a fair coin, withX(ω) the number
of the first toss andY (ω) the number of the second toss. ProveX and Y are
independent. LetZ be the random variable which is the number of heads in two
tosses. ProveX andZ are not independent.

The above exercise appears throughout probability investigations. For example,
if we choose a non-rationalα ∈ (0, 1) “at random,” we could letX(α) denote the
value of the first decimal digit, andY (α) denote the value of the second decimal
digit. Are X andY independent? The answer will depend on how we “randomly”
chooseα.

We give an example typical of the independence we will see in our later inves-
tigations. LetΩi = {0, 1} and for some finiteN considerΩ = Ω1 × · · · × ΩN .
For eachi, define probability functionspi(1) = qi andpi(0) = 1− qi, qi ∈ [0, 1],
and forω = (ω1, . . . , ωN ) ∈ Ω, let p(ω) =

∏
i pi(ωi). We may interpret this

as follows: we tossN coins, where coini has probabilityqi of being heads. The
outcome of each toss is independent of all the other tosses.

Exercise(hr) 1.1.34(The Birthday Problem). Assume each day of the year is equally
likely to be someone’s birthday, and no one is ever born on February29th. How
many people must there be in a room before there is at least a 50% chance that
two share a birthday? How many other people must there be before at least one
of them sharesyour birthday? Note the two questions have very different answers,
because in the first we do not specify beforehandwhich is the shared day, while in
the second we do. How many people must be in the room before at least two share
a birthday? See also Exercise A.4.8.Note: in the hint to this problem we show how
to approximate the number of people needed before there is a 50% chance that two
share a birthday.

Exercise 1.1.35.Redo the previous problem assuming that there are one-fourth as
many people born on February29th as on any other day.

Exercise(hr) 1.1.36. Two players roll die withk sides, with each side equally likely
of being rolled. Player one rollsm dice and player two rollsn dice. If player one’s
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highest roll exceeds the highest roll of player two then player one wins, otherwise
player two wins. Prove

Prob(Player one wins) =
1

km+n

k∑
a=2

[am − (a− 1)m] · (a− 1)n, (1.31)

which by the integral version of partial summation equals

1
km+n

[
km · (k − 1)n −

∫ k

1

[u]m · n(u− 1)n−1du

]
. (1.32)

If m,n andk are large and of approximately the same size, show

Prob(Player one wins) =
m

m + n
− m

2(m + n− 1)
n

k
; (1.33)

note if m = n = k the probability is much less than 50%. See [Mil7] for more
details.

1.1.5 Expectation

Definition 1.1.37(Expected Value). Consider an outcome spaceΩ with outcomes
ωi occurring with probabilitiesp(ωi) and a random variableX. The expected
value (or mean or average value) of the random variableX is defined by

X =
∑

i

X(ωi)p(ωi). (1.34)

We often writeE[X], read asthe expected valueor expectation ofX, for X.

Exercise 1.1.38.Show the mean of one roll of a fair dice is3.5. ConsiderN
tosses of a fair coin. LetX(ω) equal the number of heads inω = (ω1, . . . , ωN ).
DetermineE[X].

Remark 1.1.39. Remember we may regard random variables as events; thus it
makes sense to talk about the mean value of such events, as the events are real
numbers. If we considered an event not arising through a random variable, things
would not be as clear. For example, considerΩ = {HH, HT, TH, TT}, each with
probability 1

4 . We cannot add a head and a tail; however, if we assign a1 to a head
and a0 to the tail, we need only add numbers.

Exercise 1.1.40.Consider all finite fair tosses of a coin where all but the last toss
are tails (and the last toss is a head). We denote the outcome space by

Ω = {H,TH, TTH, TTTH, . . . }. (1.35)

Let X be the random variable equal to the number of the toss which is the head.
For example,X(TTH) = 3. Calculate the probability that the first head is theith

toss. CalculateE[X].

Definition 1.1.41(kth Moment). Thekth moment ofX is the expected value ofxk.
If X is a random variable on an outcome spaceΩ with eventsωi, we write

E[Xk] =
∑

ωi∈Ω

X(ωi)k · p(ωi). (1.36)
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Note the first moment is the expected value ofX, and the zeroth moment is
always 1.

Definition 1.1.42 (Moments of Probability Distributions). Let Ω ⊂ R; thus all
events are real numbers, which we shall denote byx ∈ Ω. Let p be a probability
distribution onΩ so that the probability ofx is justp(x). We can consider a random
variableX with X(x) = x; thus the probability that the random variable takes on
the valuex is p(x). Equivalently we can considerp as a random variable (see
Example 1.1.6). We define thekth moment ofp by

pk = E[Xk] =
∑

x∈Ω

xkp(x). (1.37)

Similar to how Taylor series coefficients can often determine a “nice” function, a
sequence of moments often uniquely determines a probability distribution. We will
use such a moment analysis in our Random Matrix Theory investigations in Part
??; see §?? for more details.

Exercise 1.1.43.Prove the zeroth moment of any probability distribution is 1.

Lemma 1.1.44(Additivity of the Means). If X andY are two random variables
onΩ with a probability functionp, they induce a joint probability functionP with

P (xi, yj) := Prob(X(ω) = xi, Y (ω) = yj). (1.38)

Consider the random variableZ, Z = X + Y . ThenE[Z] = E[X] + E[Y ].

Proof. First note

Prob(X(ω) = xi) =
∑

j

Prob(X(ω) = xi, Y (ω) = yj) =
∑

j

P (xi, yj).

(1.39)
Thus the expected value of the random variableX is

E[X] =
∑

i

xi

∑

j

P (xi, yj), (1.40)

and similarly for the random variableY . Therefore

E[X + Y ] =
∑

(i,j)

(xi + yj)P (xi, yj)

=
∑

i

∑

j

xiP (xi, yj) +
∑

i

∑

j

yjP (xi, yj)

=
∑

i

xi

∑

j

P (xi, yj) +
∑

j

yj

∑

i

P (xi, yj)

=E[X] + E[Y ]. (1.41)

2

The astute reader may notice that some care is needed to interchange the order
of summations. If

∑
i

∑
j |xi + yj |p(xi, yj) < ∞, then Fubini’s Theorem (Theo-

rem A.2.8) is applicable and we may interchange the summations at will. For an
example where the summations cannot be interchanged, see Exercise??.
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Lemma 1.1.45(Expectation Is Linear). Let X1 throughXN be a finite collection
of random variables. Leta1 throughaN be real constants. Then

E[a1X1 + · · ·+ aNXN ] = a1E[X1] + · · ·+ aNE[XN ]. (1.42)

See §?? for an application of the linearity of expected values to investigating
digits of continued fractions.

Exercise 1.1.46.Prove Lemma 1.1.45.

Lemma 1.1.47. Let X andY be independent random variables. ThenE[XY ] =
E[X]E[Y ].

Proof. From Definition 1.1.32, for alli andj the eventsAi = {ω : X(ω) = xi}
andBj = {ω : Y (ω) = yj} are independent. This implies

Prob(Ai ∩Bj) = Prob(Ai)Prob(Bj) = p(xi)q(yj). (1.43)

If r(xi, yj) is the probability that the random variableX is xi and the random vari-
ableY is yj , then independence impliesr(xi, yj) = p(xi)q(yj) for two probability
functionsp andq. Thus,

E[XY ] =
∑

i

∑

j

xiyjr(xi, yj)

=
∑

i

∑

j

xiyjp(xi)q(yj)

=
∑

i

xip(xi) ·
∑

j

yjq(yj)

= E[X] · E[Y ]. (1.44)

2

Exercise 1.1.48.Find two random variables such thatE[XY ] 6= E[X]E[Y ].

Exercise 1.1.49(Two Envelope Problem). Consider two sealed envelopes; one has
X dollars inside and the other has2X dollars,X > 0. You are randomly given an
envelope — you have an equal likelihood of receiving either. You calculate that you
have a 50% chance of having the smaller (larger) amount. LetY be the amount in
your envelope. If you keep this envelope you expect to receive sayY dollars; if you
switch your expected value is.5 · 2Y + .5 · Y

2 , or 1.25Y . But this is true without
ever looking inside the envelope, so you should switch again! What is wrong with
the above analysis?

Exercise(hr) 1.1.50. Consider a group ofm people. We choose a person at random
(thus each person is equally likely to be chosen); we do thisn times (at each step,
each person is equally likely to be chosen). Ifn < m then clearly there is at least
one person whom we haven’t chosen. How large mustn be so that we have a 50%
chance of having chosen everyone at least once? What is the average value ofn
such that everyone is chosen at least once? See the remarks for applications.
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1.1.6 Variances

The variance σ2
X and its square root, thestandard deviation σX measure how

spread out the values taken on by a random variable are: the larger the variance, the
more spread out the distribution.

Definition 1.1.51 (Variance). Given an outcome spaceΩ with outcomesωi with
probabilitiesp(ωi) and a random variableX : Ω → R, the varianceσ2

X is

σ2
X =

∑

i

(X(ωi)− E[X])2 p(ωi) = E
[
(X − E[X])2

]
. (1.45)

Exercise 1.1.52.LetΩ1 = {0, 25, 50, 75, 100}with probabilities{.2, .2, .2, .2, .2},
and letX be the random variableX(ω) = ω, ω ∈ Ω1. ThusX(0) = 0, X(25) =
25, and so on. LetΩ2 be the same outcome space but with probabilities{.1, .25,
.3, .25, .1}, and defineY (ω) = ω, ω ∈ Ω2. Calculate the means and the variances
of X andY .

For computing variances, instead of (1.45) one often uses

Lemma 1.1.53.For a random variableX we haveσ2
X = E[X2]− E[X]2.

Proof. RecallX = E[X]. Then

σ2
X =

∑

i

(Xi(ω)− E[X])2 p(ωi)

=
∑

i

(Xi(ω)2 − 2Xi(ω)E[X] + E[X]2)p(ωi)

=
∑

i

Xi(ω)2p(ωi)− 2E[X]
∑

i

Xi(ω)p(ωi) + E[X]2
∑

i

p(ωi)

=E[X2]− 2E[X]2 + E[X]2 = E[X2]− E[X]2. (1.46)

2

The main result on variances is

Lemma 1.1.54(Variance of a Sum). Let X and Y be two independent random
variables on an outcome spaceΩ. Thenσ2

X+Y = σ2
X + σ2

Y .

Proof. We use the fact that the expected value of a sum is the sum of expected
values (Lemma 1.1.45).

σ2
X+Y = E[(X + Y )2]− E[(X + Y )]2

= E[X2 + 2XY + Y 2]− (E[X] + E[Y ])2

=
(
E[X2] + 2E[XY ] + E[Y 2]

)− (
E[X]2 + 2E[X]E[Y ] + E[Y ]2

)

=
(
E[X2]− E[X]2

)
+

(
E[Y 2]− E[Y ]2

)
+ 2 (E[XY ]− E[X]E[Y ])

= σ2
X + σ2

Y + 2 (E[XY ]− E[X]E[Y ]) . (1.47)

By Lemma 1.1.47, asX andY are independent,E[XY ] = E[X]E[Y ], completing
the proof. 2
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Let Ω be an outcome space with outcomesω and a random variableX. For
i ≤ N let Ωi = Ω and letXi be the same random variable asX exceptXi lives
onΩi. For example, we could haveN rolls with Xi the outcome of theith roll. We
have seen in Lemma 1.1.45 that the mean of the random variableX1 + · · · + XN

is NE[X]. What is the variance?

Lemma 1.1.55.Notation as above,

σX1+···+XN
=
√

NσX . (1.48)

Exercise 1.1.56.Prove Lemma 1.1.55.

Lemma 1.1.57. Given an outcome spaceΩ with outcomesω with probabilities
p(ω) and a random variableX. Consider the new random variableaX + b. Then

σ2
aX+b = a2σ2

X . (1.49)

Exercise 1.1.58.Prove 1.1.57.

Note that if the random variableX has units of meters then the varianceσ2
X has

units ofmeters2, and the standard deviationσX and the meanX have units meters.
Thus it is the standard deviation that gives a good measure of the deviations ofX
around its mean.

There are, of course, alternate measures one can use. For example, one could
consider ∑

i

(xi −X)p(xi). (1.50)

Unfortunately this is a signed quantity, and large positive deviations can cancel with
large negatives. In fact, more is true.

Exercise 1.1.59.Show
∑

i(xi −X)p(xi) = 0.

This leads us to consider ∑

i

|xi −X|p(xi). (1.51)

While this has the advantage of avoiding cancellation of errors (as well as having
the same units as the events), the absolute value function is not a good function
analytically. For example, it is not differentiable. This is primarily why we consider
the standard deviation (the square root of the variance).

Exercise 1.1.60(Method of Least Squares). Consider the following set of data: for
i ∈ {1, . . . , n}, giventi one observesyi. Believing thatt andy are linearly related,
find the best fit straight line. Namely, determine constantsa andb that minimize the
error (calculated via the variance)

n∑

i=1

(yi − (ati + b))2 =
n∑

i=1

(Observedi − Predictedi)
2
. (1.52)

Hint: Use multi-variable calculus to find linear equations fora and b, and then
solve with linear algebra. If one requires thata = 0, show that theb leading to
least error isb = y = 1

n

∑
i yi.
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The method of proof generalizes to the case when one expectsy is a linearcom-
bination ofN fixed functions. The functions need not be linear; all that is required
is that we have a linear combination, saya1f1(t) + · · · + aNfN (t). One then
determines thea1, . . . , aN that minimize the variance (the sum of squares of the
errors) by calculus and linear algebra. If instead of measuring the total error by
the squares of the individual error we used another measure (for example, using
the absolute value), closed form expressions for theai become significantly harder,
even in the simple case of fitting a line.

Exercise 1.1.61.Consider the best fit line from the Method of Least Squares (Ex-
ercise 1.1.60). Is the point(x, y), wherex = 1

n

∑n
i=1 xi andy =

∑n
i=1 yi, on the

best fit line? In other words, does the best fit line go through the “average” point?

Exercise 1.1.62(Chebyshev’s Inequality). LetX be a random variable with mean
µ and finite varianceσ2. Prove Chebyshev’s inequality:

Prob(|X − µ| ≥ kσ) ≤ 1
k2

, (1.53)

whereProb(|X − µ| ≥ a) is the probability thatX takes on values at leasta
units from the mean. Chebyshev’s theorem holds for all nice distributions, and
provides bounds for being far away from the mean (where far is relative to the
natural spacing, namelyσ).

Exercise 1.1.63.Use Chebyshev’s Theorem to bound the probability of tossing a
fair coin 10000 times and observing at least6000 heads.

Exercise 1.1.64.Does there exist a probability distribution such that Chebyshev’s
Inequality is an equality for all positive integralk?

If the probability distribution decays sufficiently rapidly we can use the Cen-
tral Limit Theorem (Theorem 1.4.1) and obtain better estimates than those from
Chebyshev’s Theorem. See Exercise 1.4.3.

1.2 STANDARD DISTRIBUTIONS

We describe several common probability distributions. Consider the important case
when the outcome spaceΩ ⊂ R and is countable; thus the outcomes are real num-
bers. Letp be a probability function onΩ. For notational convenience we some-
times extendΩ to all of R and define the probabilities of the new outcomes as
0.

To eachx ∈ R we have attached a non-negative numberp(x), which is zero
except for at most countably manyX. We letxi denote a typical outcome where
p(x) 6= 0. Similar to calculating the means, variances and higher moments of a
random variable, we can compute these quantities for a probability distribution;
see Definition 1.1.42. For example, for a discrete probability distributionp the
mean is

∑
i xip(xi).
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1.2.1 Bernoulli Distribution

Recall the binomial coefficient
(
N
r

)
= N !

r!(N−r)! is the number of ways to choose
r objects fromN objects when order does not matter; see §A.1.3 for a review of
binomial coefficients. Considern independent repetitions of a process with only
two possible outcomes. We typically call one outcomesuccessand the otherfail-
ure, the event aBernoulli trial , and a collection of independent Bernoulli trials a
Bernoulli process. In each Bernoulli trial let there be probabilityp of success and
q = 1 − p of failure. Often we represent a success with1 and a failure with0. In
§1.2.4 we describe a Bernoulli trial to experimentally determineπ!

Exercise 1.2.1.Consider a Bernoulli trial with random variableX equal to 1 for
a success and 0 for a failure. ShowX = p, σ2

X = pq, andσX =
√

pq. NoteX is
also an indicator random variable (see Exercise 1.1.14).

Let YN be the number of successes inN trials. Clearly the possible values of
YN are{0, 1, . . . , N}. We analyzepN (k) = Prob(YN (ω) = k). Here the sample
spaceΩ is all possible sequences ofN trials, and the random variableYN : Ω → R
is given byYN (ω) equals the number of successes inω.

If k ∈ {0, 1, . . . , N}, we needk successes andN − k failures. We do not
care what order we have them (i.e., ifk = 4 andN = 6 thenSSFSSF and
FSSSSF both contribute equally). Each such string ofk successes andN − k
failures has probability ofpk · (1 − p)N−k. There are

(
N
k

)
such strings, which

impliespN (k) =
(
N
k

)
pk · (1− p)N−k if k ∈ {0, 1, . . . , N} and0 otherwise.

By clever algebraic manipulations, one can directly evaluate the meanYN and
the varianceσ2

YN
; however, Lemmas 1.1.45 and 1.1.55 allow one to calculate both

quantities immediately, once one knows the mean and variance for a single occur-
rence (see Exercise 1.2.1).

Lemma 1.2.2. For a Bernoulli process withN trials, each having probabilityp
of success, the expected number of successes isYN = Np and the variance is
σ2

YN
= Npq.

Lemma 1.2.2 states the expected number of successes is of sizeNp, and the
fluctuations aboutNp are of sizeσ2

YN
=
√

Npq. Thus, ifp = 1
2 andN = 106, we

expect 500,000 successes, with fluctuations on the order of 500. Note how much
smaller the fluctuations about the mean are than the mean itself (the mean is of size
N , the fluctuations of size

√
N ). This is an example of a general phenomenon,

which we describe in greater detail in §1.4.

Exercise 1.2.3.Prove Lemma 1.2.2. Prove the variance is largest whenp = q = 1
2 .

Consider the following problem: LetΩ = {S, FS, FFS, . . . } and letZ be the
number of trials before the first success. What isZ andσ2

Z?
First we determine theBernoulli distribution p(k) = Prob(Z(ω) = k), the

probability that the first success occurs afterk trials. Clearly this probability is
non-zero only fork a positive integer, in which case the string of results must be
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k − 1 failures followed by1 success. Therefore

p(k) =

{
(1− p)k−1 · p if k ∈ {1, 2, . . . }
0 otherwise.

(1.54)

To determine the meanZ we must evaluate

Z =
∞∑

k=1

k(1− p)k−1p = p

∞∑

k=1

kqk−1, 0 < q = 1− p < 1. (1.55)

Consider the geometric series

f(q) =
∞∑

k=0

qk =
1

1− q
. (1.56)

A careful analysis shows we can differentiate term by term if−1 ≤ q < 1. Then

f ′(q) =
∞∑

k=0

kqk−1 =
1

(1− q)2
. (1.57)

Recallingq = 1− p and substituting yields

Z = p

∞∑

k=1

kqk−1 =
p

(1− (1− p))2
=

1
p
. (1.58)

Remark 1.2.4. Differentiating under the summation sign is a powerful tool in
Probability Theory, and is a common technique for proving such identities. See
[Mil4] for more on differentiating identities, where the expected number of alter-
nations between heads and tails inn tosses of a coin with probabilityp of heads is
derived, along with other combinatorial and probability results.

Exercise 1.2.5.Calculateσ2
Z . Hint: Differentiatef(q) twice.

Exercise 1.2.6.Consider the normal distribution with mean0 and varianceσ2; its
density isf(x; σ) = (2πσ2)−

1
2 e−x2/2σ2

. Asf(x; σ) integrates to 1, we have

σ =
∫ ∞

−∞

e−x2/2σ2

√
2π

dx. (1.59)

By differentiating with respect toσ, show the second moment (and hence the vari-
ance since the mean is zero) isσ2. This argument may be generalized (it may
be easier to consider the operatorσ3d/dσ) and yields all even moments of the
Gaussian; the2mth moment is(2m−1)(2m−3) · · · 3 ·1 ·σ2m and is often denoted
(2m− 1)!! (here the double factorial means every other term; thus7!! = 7 · 5 · 3 · 1
and6!! = 6 · 4 · 2).

Exercise 1.2.7.The even moments of the Gaussian (see Exercise 1.2.6) have an
interesting combinatorial meaning. Show that the number of ways of pairing2m
objects intom pairs of two elements is(2m − 1)!!. We shall see these moments
again in §??, where we study the eigenvalues of real symmetric Toeplitz matrices.



ProbStat_Chaps8And9 June 7, 2007

INTRODUCTION TO PROBABILITY 21

1.2.2 Poisson Distribution

Divide the unit interval intoN equal pieces. ConsiderN independent Bernoulli
trials, one in each subinterval. If the probability of a success isλ

N , then by Lemma
1.2.2 the expected number of successes isN · λ

N = λ. We consider the limit
as N → ∞. We still expectλ successes in each unit interval, but what is the
probability of3λ successes? How long do we expect to wait between successes?

We call this aPoisson process with parameterλ. For example, look at the
midpoints of theN intervals. At each midpoint we have a Bernoulli trial with
probability of successλN and failure1− λ

N . We determine theN →∞ limits. For
fixedN , the probability ofexactlyk successes in a unit interval is

pN (k)=
(

N

k

)(
λ

N

)k (
1− λ

N

)N−k

=
N !

k!(N − k)!
λk

Nk

(
1− λ

N

)N−k

=
N · (N − 1) · · · (N − k + 1)

N ·N · · ·N
λk

k!

(
1− λ

N

)N (
1− λ

N

)−k

=1 ·
(

1− 1
N

)
· · ·

(
1− k − 1

N

)
λk

k!

(
1− λ

N

)N (
1− λ

N

)−k

. (1.60)

For fixed, finitek and λ, as N → ∞ the first k factors inpN (k) tend to1,(
1− λ

N

)N → e−λ, and
(
1− λ

N

)−k → 1 (see §?? for a review of properties of

e). ThuspN (k) → λk

k! e
−λ. We shall see similar calculations as these when we

investigate the properties ofxn = nkα mod 1 in Chapter??.
Using our investigations of Bernoulli trials as a motivation, we are led to the

Poisson Distribution: Given a parameterλ (interpreted as the expected number of
occurrences per unit interval), the probability ofk occurrences in a unit interval is
p(k) = λk

k! e
−λ for k ∈ {0, 1, 2, . . . }. This is a discrete, integer valued process.

Exercise 1.2.8.Check thatp(k) given above is a probability distribution. Namely,
show

∑
k≥0 p(k) = 1.

Exercise(h) 1.2.9. Calculate the mean and variance for the Poisson Distribution.

1.2.3 Continuous Distributions

Up to now we have only considered discrete probability distributions. We now
study a continuous example. We consider a generalization of a Bernoulli process
with λ successes in a unit interval. We divide the real line into subintervals of size
1
N and consider a Bernoulli trial at the midpoint of each subinterval with probability
λ
N of success. Start counting at0, and let the first success be atX. How is X
distributed asN → ∞ (i.e., how long do we expect to wait before seeing the first
success)? Denote this distribution bypS(x).

We have approximatelyx−0
1/N = Nx midpoints from0 to X (with N midpoints

per unit interval). Letdye be the smallest integer greater than or equal toy. Then we
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havedNxemidpoints, where the results of the Bernoulli trials of the firstdNxe−1
midpoints are all failures and the last is a success. Thus the probability of the first
success occurring in an interval of length1N containingX (with N divisions per
unit interval) is

pN,S(x) =
(

1− λ

N

)dNxe−1

·
(

λ

N

)1

. (1.61)

ForN large the above is approximatelye−λx λ
N .

Exercise 1.2.10.For large N , calculate the size ofN
(
pN,s(x)− e−λx λ

N

)
. Show

this difference tends to zero asN tends to infinity.

Definition 1.2.11(Continuous Probability Distribution). We sayp(x) is a continu-
ous probability distribution onR if

1. p(x) ≥ 0 for all x ∈ R.

2.
∫
R p(x)dx = 1.

3. Prob(a ≤ x ≤ b) =
∫ b

a
p(x)dx.

We callp(x) the probability density function or the density;p(x)dx is interpreted
as the probability of the interval[x, x + dx].

In the previous example, asN → ∞ we obtain the continuous probability den-
sity function

pS(x) =

{
λe−λx if x ≥ 0
0 if x < 0;

(1.62)

note 1
N is like dx for N large. In the special case ofλ = 1, we get the stan-

dard exponential decay,e−x. We will see this distribution in Chapter?? when we
investigate the fractional parts ofnkα (k, α fixed,n varying).

For instance, letπ(M) be the number of primes that are at mostM . The Prime
Number Theorem statesπ(M) = M

log M plus lower order terms. Thus the average
spacing between primes aroundM is aboutlog M . We can model the distribution
of primes as a Poisson Process, with parameterλ = λM = 1

log M (this is called the
Cramér model). While possible locations of primes (obviously) is discrete (it must
be an integer, and in fact the location of primes are not independent), a Poisson
model often gives very good heuristics; see for example [Sch].

We often renormalize so thatλ = 1. This is denotedunit mean spacing. For
example, one can show theM th primepM is aboutM log M , and spacings between
primes aroundpM is aboutlog M . Then the normalized primesqM ≈ pM

log M will
have unit mean spacing andλ = 1.

Example 1.2.12(Uniform Distribution on [a, b]). Let Ω = {x ∈ R : a ≤ x ≤
b}. The uniform distribution has probability density functionp(x) = 1

b−a . Note for
any[c, d] ⊂ [a, b],

Prob ([c, d]) =
∫ d

c

p(x)dx =
d− c

b− a
. (1.63)
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The uniform distribution is one of the most common (and best understood!) con-
tinuous distributions; the probability ofx ∈ [c, d] ⊂ [a, b] depends only on the
length of the subinterval[c, d].

Example 1.2.13(Gaussian Distribution). For x ∈ R, consider the probability den-
sity functionp(x) = 1√

2πσ2 e−(x−µ)2/2σ2
. This is called the Gaussian (or normal

or bell curve) distribution. By Exercise 1.2.14 it has meanµ and varianceσ2. If
µ = 0 andσ2 = 1, it is called the standard normal or the standard Gaussian. See
§1.4 for more details.

We sketch the main idea in the proof that the above is a probability distribution.
As it is clearly non-negative, we need only show it integrates to one. Consider

I =
∫ ∞

−∞
e−x2

dx. (1.64)

SquareI, and change from rectangular to polar coordinates, wheredxdy becomes
rdrdθ:

I2 =
∫ ∞

−∞
e−x2

dx ·
∫ ∞

−∞
e−y2

dy

=
∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dxdy

=
∫ 2π

0

dθ

∫ ∞

0

e−r2
rdr

=2π ·
[
−1

2
e−r2

]∞

0

= π. (1.65)

The reason the above works is that whilee−x2
dx is hard to integrate,re−r2

dr is
easy. ThusI =

√
π.

Exercise 1.2.14.Let p(x) = 1√
2πσ2 e−(x−µ)2/2σ2

. Prove
∫∞
−∞ p(x)dx = 1,∫∞

−∞xp(x)dx = µ and
∫∞
−∞(x−µ)2p(x)dx = σ2. This justifies our claim that the

Gaussian is a probability distribution with meanµ and varianceσ2.

Example 1.2.15(Cauchy Distribution). Consider

p(x) =
1
π

1
1 + x2

. (1.66)

This is a continuous distribution and is symmetric about zero. While we would like
to say it therefore has mean zero, the problem is the integral

∫∞
−∞xp(x)dx is not

well defined as it depends on how we take the limit. For example,

lim
A→∞

∫ A

−A

xp(x)dx = 0, lim
A→∞

∫ 2A

−A

xp(x)dx = ∞. (1.67)

Regardless,p(x) has infinite variance. We shall see the Cauchy distribution again
in Chapter??; see also Exercises??and??.
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–2s 2s–s s0

Figure 1.1 Buffon’s needle

Exercise 1.2.16.Prove the Cauchy distribution is a probability distribution by
showing

∫ ∞

−∞

1
π

1
1 + x2

dx = 1. (1.68)

Show the variance is infinite. See also Exercise??.

The Cauchy distribution shows that not all probability distributions have finite
moments. When the moments do exist, however, they are a powerful tool for un-
derstanding the distribution. The moments play a similar role as coefficients in
Taylor series expansions. We use moment arguments to investigate the properties
of eigenvalues in Chapters??and??; see in particular §??.

1.2.4 Buffon’s Needle andπ

We give a nice example of a continuous probability distribution in two dimensions.
Consider a collection of infinitely long parallel lines in the plane, where the spacing
between any two adjacent lines iss. Let the lines be located atx = 0,±s,±2s, . . . .
Consider a rod of length̀ where for convenience we assume` < s. If we were
to randomly throw the rod on the plane, what is the probability it hits a line? See
Figure 1.1. This question was first asked by Buffon in1733. For a truly elegant
solution which does not use calculus, see [AZ]; we present the proof below as it
highlights many of the techniques for investigating probability problems in several
variables.

Because of the vertical symmetry we may assume the center of the rod lies on
the linex = 0, as shifting the rod (without rotating it) up or down will not alter the
number of intersections. By the horizontal symmetry, we may assume− s

2 ≤ x <
s
2 . We posit that all values ofx are equally likely. Asx is continuously distributed,
we may add inx = s

2 without changing the probability. The probability density
function ofx is dx

s .



ProbStat_Chaps8And9 June 7, 2007

INTRODUCTION TO PROBABILITY 25

Let θ be the angle the rod makes with thex-axis. As each angle is equally likely,
the probability density function ofθ is dθ

2π . We assume thatx andθ are chosen
independently. Thus the probability density for(x, θ) is dxdθ

s·2π .
The projection of the rod (making an angle ofθ with thex-axis) along thex-axis

is ` · | cos θ|. If |x| ≤ ` · | cos θ|, then the rod hits exactly one vertical line exactly
once; ifx > ` · | cos θ|, the rod does not hit a vertical line. Note that if` > s, a rod
could hit multiple lines, making the arguments more involved. Thus the probability
a rod hits a line is

p =
∫ 2π

θ=0

∫ `·| cos θ|

x=−`·| cos θ|

dxdθ

s · 2π
= 2

∫ 2π

θ=0

` · | cos θ|
s

dθ

2π
=

2`

πs
. (1.69)

Exercise 1.2.17.Show

1
2π

∫ 2π

0

| cos θ|dθ =
2
π

. (1.70)

Let A be the random variable which is the number of intersections of a rod of
length` thrown against parallel vertical lines separated bys > ` units. Then

A =

{
1 with probability 2`

πs

0 with probability1− 2`
πs .

(1.71)

If we were to throwN rods independently, since the expected value of a sum is the
sum of the expected values (Lemma 1.1.45), we expect to observeN · 2`

πs intersec-
tions.

Turning this around, let us throwN rods, and letI be the number of observed
intersections of the rods with the vertical lines. Then

I ≈ N · 2`

πs
which implies π ≈ N

I
· 2`

s
. (1.72)

The above is anexperimentalformula forπ!

Exercise 1.2.18.Assume we are able to throw the rod randomly as described
above, and theN throws are independent. We then have a Bernoulli process with
N trials. We have calculated the expected number of successes; using the methods
of §1.2.1, calculate the variance (and hence the size of the fluctuations inI). For
eachN , give the range of values we expect to observe forπ.

1.3 RANDOM SAMPLING

We introduce the notion ofrandom sampling. Consider a countable setΩ ⊂ R
and a probability functionp on Ω; we can extendp to all ofR by settingp(r) = 0
if r 6∈ Ω. Using the probability functionp, we can choose elements fromR at
random. Explicitly, the probability that we chooseω ∈ Ω is p(ω).

For example, letΩ = {1, 2, 3, 4, 5, 6} with each event having probability16 (the
rolls of a fair die). If we were to roll a fair dieN times (forN large), we observe
a particular sequence of outcomes. It is natural to assume the rolls are independent
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of each other. LetXi denote the outcome of theith roll. TheXi’s all have the same
distribution (arising fromp). We call theXi i.i.d.r.v. (independent identically
distributed random variables), and we say theXi are asamplefrom the probability
distributionp. We say werandomly sample (with respect top) R. Often we
simply say we haverandomly chosenN numbers.

A common problem is to sample some mathematical or physical process and use
the observations to make inferences about the underlying system. For example, we
may be given a coin without being told what its probabilities for heads and tails are.
We can attempt to infer the probabilityp of a head by tossing the coin many times,
and recoding the outcomes. LetXi be the outcome of theith toss (1 for head, 0 for
tail). After N tosses we expect to see aboutNp heads; however, we observe some
number, saySN . Given that we observeSN heads afterN tosses, what is our best
guess forp? By Lemma 1.1.45, we guessp = SN

N . It is extremely unlikely that our
guess is exactly right. This leads us to a related question: given that we observeSN

heads, can we give a small interval about our best guess where we are extremely
confident the true valuep lies? The solution is given by the Central Limit Theorem
(see §1.4).

Exercise 1.3.1.For the above example, ifp is irrational show the best guess can
never be correct.

One can generalize the above to include the important case wherep is a contin-
uous distribution. For example, say we wish to investigate the digits of numbers
in [0, 1]. It is natural to put the uniform distribution on this interval, and choose
numbers at random relative to this distribution; we say we chooseN numbers ran-
domly with respect to the uniform distribution on[0, 1], or simply we chooseN
numbers uniformly from[0, 1]. Two natural problems are to consider thenth digit
in the base 10 expansion and thenth digit in the continued fraction expansion. By
observing many choices, we hope to infer knowledge about how these digits are
distributed. The first problem is theoretically straightforward. It is not hard to cal-
culate the probability that thenth digit is d; it is just 1

10 . The probabilities of the
digits of continued fractions are significantly harder (unlike decimal expansions,
anypositive integer can occur as a digit); see Chapter?? for the answer.

Exercise 1.3.2(Important for Computational Investigations). For any continuous
distributionp onR, the probability we chose a number in[a, b] is

∫ b

a
p(x)dx. If we

were to chooseN numbers,N large, then we expect approximatelyN
∫ b

a
p(x)dx

to be in[a, b]. Often computers have built in random number generators for certain
continuous distributions, such as the standard Gaussian or the uniform, but not for
less common ones. Show if one can randomly choose numbers from the uniform
distribution, one can use this to randomly choose from any distribution.Hint: Use
Cp(x) =

∫ x

−∞ p(x)dx, theCumulative Distribution Functionof p (see also §??);
it is the probability of observing a number at mostx.

Remark 1.3.3. The observant reader may notice a problem with sampling from
a continuous distribution: the probability of choosing any particular real number
is zero, but some number is chosen! One explanation is that, fundamentally, we
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cannot choose numbers from a continuous probability distribution. For example, if
we use computers to choose our numbers, all computers can do is a finite number of
manipulations of0’s and1’s; thus, they can only choose numbers from a countable
(actually finite) set. The other interpretation of the probability of anyr ∈ R is zero
is that, while at each stage some number is chosen, no number is ever chosen twice.
Thus, in some sense, any number we explicitly write down is “special.” See also
Exercise 1.1.49, where the resolution is that one cannot choose numbers uniformly
on all of (0,∞).

For our investigations, we approximate continuous distributions by discrete dis-
tributions with many outcomes. From a practical point of view, this suffices for
many experiments; however, one should note that while theoretically we can write
statements such as “choose a real number uniformly from[0, 1],” we can never
actually do this.

1.4 THE CENTRAL LIMIT THEOREM

We close our introduction to probability with a statement ofthemain theorem about
the behavior of a sum of independent events. We give a proof in an important
special case in §1.4.2 and sketch the proof in general in §??. For more details and
weaker conditions, see [Bi, CaBe, Fe]. We discuss applications of the Central Limit
Theorem to determining whether or not numerical experiments support a conjecture
in Chapter 2.

1.4.1 Statement of the Central Limit Theorem

Let Xi (i ∈ {1, . . . , N}) be independent identically distributed random variables
(i.i.d.r.v.) as in §1.3, all sampled from the same probability distributionp with mean
µ and varianceσ2; thusE[Xi] = µ andσ2

Xi
= σ2 for all i. LetSN =

∑N
i=1 Xi. We

are interested in the distribution of the random variableSN asN →∞. As eachXi

has expected valueµ, by Lemma 1.1.45E[SN ] = Nµ. We now consider a more
refined question: how isSN distributed aboutNµ? The Central Limit Theorem
answers this, and tells us what the correct scale is to study the fluctuations about
Nµ.

Theorem 1.4.1(Central Limit Theorem). For i ∈ {1, . . . , N}, let Xi be i.i.d.r.v.
with meanµ, finite varianceσ2 and finite third moment. LetSN = X1 + · · ·+XN .
AsN →∞

Prob(SN ∈ [α, β]) ∼ 1√
2πσ2N

∫ β

α

e−(t−µN)2/2σ2Ndt. (1.73)

In other words, the distribution ofSN converges to a Gaussian with meanµN and
varianceσ2N . We may re-write this as

lim
N→∞

Prob
(

SN − µN√
σ2N

∈ [a, b]
)

=
1√
2π

∫ b

a

e−t2/2dt. (1.74)

HereZN = SN−µN√
σ2N

converges to a Gaussian with mean 0 and variance 1.
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The probability density 1√
2π

e−t2/2 is thestandard Gaussian. It is theuniversal
curve of probability. Note how robust the Central Limit Theorem is: it does not
depend on fine properties of theXi, just that they all have the same distributions
and finite variance (and a bit more). While this is true in most situations, it fails
in some cases such as sampling from a Cauchy distribution (see Exercise?? for
another limit theorem which can handle such cases). Sometimes it is important to
know how rapidlyZN is converging to the Gaussian. The rate of convergencedoes
depend on the higher moments; see §??and [Fe].

Exercise 1.4.2.The Central Limit Theorem gives us the correct scale to study fluc-
tuations. For example, say we toss a fair coinN times (henceµ = 1

2 andσ2 = 1
4 ).

We expectSN to be aboutN2 . Find values ofa and b such that the probability of
SN −Nµ ∈ [a

√
N/2, b

√
N/2] converges to 95% (resp., 99%). For largeN , show

for any fixedδ > 0 that the probability ofSN − Nµ ∈ [aN
1
2+δ/2, bN

1
2+δ/2]

tends to zero. Thus we expect to observe half of the tosses as heads, and we expect
deviations from one-half to be of size2/

√
N .

Exercise 1.4.3.Redo Exercise 1.1.63 using the Central Limit Theorem and com-
pare the two bounds.

Exercise 1.4.4.For SN = X1+· · ·+XN , calculate the variance ofZN = SN−µN√
σ2N

;

this shows
√

σ2N is the correct scale to investigate fluctuations ofSN aboutµN .

One common application of the Central Limit Theorem is to test whether or not
we are sampling theXi independently from a fixed probability distribution with
meanµ and known standard deviationσ (if the standard deviation is not known,
there are other tests which depend on methods to estimateσ). ChooseN numbers
randomly from what we expect has meanµ. We formSN as before and investigate
SN−µN√

σ2N
. As SN =

∑N
i=1 Xi, we expectSN to be of sizeN . If the Xi are not

drawn from a distribution with meanµ, thenSN − Nµ will also be of sizeN .
Thus, SN−Nµ√

σ2N
will be of size

√
N if the Xi are not drawn from something with

meanµ. If, however, theXi are from sampling a distribution with meanµ, the
Central Limit Theorem states thatSN−Nµ√

σ2N
will be of size 1. See Chapter 2 for

more details and Exercise?? for an alternate sampling statistic.
Finally, we note that the Central Limit Theorem is an example of thePhilosophy

of Square Root Cancellation: the sum is of sizeN , but the deviations are of size√
N . We have already seen examples of such cancellation in Remark?? and §??,

and will see more in our investigations of writing integers as the sum of primes (see
§??).

1.4.2 Proof for Bernoulli Processes

We sketch the proof of the Central Limit Theorem for Bernoulli Processes where
the probability of success isp = 1

2 . Consider the random variableX that is 1 with
probability 1

2 and−1 with probability 1
2 (for example, tosses of a fair coin; the

advantage of making a tail−1 is that the mean is zero). Note the mean ofX is
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X = 0, the variance isσ2
X = 1 (as we have12 · 1

2 + (−1)2 · 1
2 ) and the standard

deviation isσX = 1.
Let X1, . . . , X2N be independent identically distributed random variables, dis-

tributed asX (it simplifies the expressions to consider an even number of tosses).
ConsiderS2N = X1 + · · ·+ X2N . Its mean is zero and its variance is2N , and we
expect fluctuations of size

√
2N . We show that forN large the distribution ofS2N

is approximately normal. We need

Lemma 1.4.5(Stirling’s Formula). For n large,
n! = nne−n

√
2πn (1 + O(1/n)) . (1.75)

For a proof, see [WW]. We show (1.75) is a reasonable approximation. It is often
easier to analyze a product by converting it to a sum; this is readily accomplished
by taking logarithms. We have

log n! =
n∑

k=1

log k ≈
∫ n

1

log tdt = (t log t− t)|n1 . (1.76)

Thuslog n! ≈ n log n− n, or n! ≈ nne−n.
We now consider the distribution ofS2N . We first note that the probability that

S2N = 2k + 1 is zero. This is becauseS2N equals the number of heads minus the
number of tails, which is always even: if we havek heads and2N − k tails then
S2N equals2N − 2k.

The probability thatS2N equals2k is just
(

2N
N+k

)
(1
2 )N+k( 1

2 )N−k. This is be-
cause forS2N to equal2k, we need2k more1’s (heads) than−1’s (tails), and the
number of1’s and−1’s add to2N . Thus we haveN + k heads (1’s) andN − k
tails (−1’s). There are22N strings of1’s and−1’s,

(
2N

N+k

)
have exactlyN + k

heads andN − k tails, and the probability of each string is( 1
2 )2N . We have writ-

ten ( 1
2 )N+k( 1

2 )N−k to show how to handle the more general case when there is a
probabilityp of heads and1− p of tails.

We use Stirling’s Formula to approximate
(

2N
N+k

)
. After elementary algebra we

find (
2N

N + k

)
≈ (2N)2N

(N + k)N+k(N − k)N−k

√
N

π(N + k)(N − k)

=
22N

√
πN

1
(1 + k

N )N+ 1
2+k(1− k

N )N+ 1
2−k

. (1.77)

We would like to use
(
1 + w

N

)N ≈ ew from §??; unfortunately, we must be a
little more careful as the values ofk we consider grow withN . For example, we
might believe that(1 + k

N )N → ek and(1− k
N )N → e−k, so these factors cancel.

As k is small relative toN we may ignore the factors of12 , and then say
(

1 +
k

N

)k

=
(

1 +
k

N

)N · k
N

→ ek2/N ; (1.78)

similarly, (1 − k
N )−k → ek2/N . Thus we would claim (and we shall see later in

Lemma 1.4.6 that this claim is in error!) that(
1 +

k

N

)N+ 1
2+k (

1− k

N

)N+ 1
2−k

→ e2k2/N . (1.79)
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We show that
(
1 + k

N

)N+ 1
2+k (

1− k
N

)N+ 1
2−k → ek2/N . The importance of

this calculation is that it highlights how crucial rates of convergence are. While it is
true that the main terms of(1± k

N )N aree±k, the error terms (in the convergence)
are quite important, and yield large secondary terms whenk is a power ofN . What
happens here is that the secondary terms from these two factors reinforce each

other. Instead of using
(
1 + w

N

)N ≈ ew from §??, it is better to take the logarithms
of the two factors, Taylor expand, and then exponentiate. This allows us to better
keep track of the error terms.

An immediate consequence of Chebyshev’s inequality (see Exercise 1.1.62) is
that we need only studyk where|k| is at mostN

1
2+ε. This is because the standard

deviation ofS2N is
√

2N . Specifically, see Exercise 1.4.8 for a proof that given
anyε > 0, the probability of observing ak with |k| À N

1
2+ε is negligible. Thus it

suffices to analyze the probability thatS2N = 2k for |k| ≤ N
1
2+ 1

9 .

Lemma 1.4.6. For anyε ≤ 1
9 , for N →∞ with k ¿ N

1
2+ε, we have

(
1 +

k

N

)N+ 1
2+k (

1− k

N

)N+ 1
2−k

→ ek2/NeO(N−1/6). (1.80)

Proof. Recall that for|x| < 1,

log(1 + x) =
∞∑

n=1

(−1)n+1xn

n
. (1.81)

As we are assumingk ¿ N
1
2+ε, note that any term below of sizek2/N2, k3/N2

or k4/N3 will be negligible. Thus we have

Pk,N =
(

1 +
k

N

)N+ 1
2+k (

1− k

N

)N+ 1
2−k

log Pk,N =
(

N +
1
2

+ k

)
log

(
1 +

k

N

)
+

(
N +

1
2
− k

)
log

(
1− k

N

)N+ 1
2−k

=
(

N +
1
2

+ k

)(
k

N
− k2

2N2
+ O

(
k3

N3

))

+
(

N +
1
2
− k

)(
− k

N
− k2

2N2
+ O

(
k3

N3

))

=
2k2

N
− 2

(
N +

1
2

)
k2

2N2
+ O

(
k3

N2
+

k4

N3

)

=
k2

N
+ O

(
k2

N2
+

k3

N2
+

k4

N3

)
. (1.82)

As k ¿ N
1
2+ε, for ε < 1

9 the big-Oh term is dominated byN−1/6, and we finally
obtain that

Pk,N = ek2/NeO(N−1/6), (1.83)

which completes the proof. 2
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Combining Lemma 1.4.6 with (1.77) yields
(

2N

N + k

)
1

22N
≈ 1√

πN
e−k2/N . (1.84)

The proof of the central limit theorem in this case is completed by some simple
algebra. We are studyingS2N = 2k, so we should replacek2 with (2k)2/4. Sim-
ilarly, since the variance ofS2N is 2N , we should replaceN with (2N)/2. We
find

Prob(S2N = 2k) =
(

2N

N + k

)
1

22N
≈ 2√

2π · (2N)
e−(2k)2/2(2N). (1.85)

RememberS2N is never odd. The factor of2 in the numerator of the normal-
ization constant above reflects this fact, namely the contribution from the prob-
ability that S2N is even is twice as large as we would expect, because it has to
account for the fact that the probability thatS2N is odd is zero. Thus the above
looks like a Gaussian with mean0 and variance2N . ForN large such a Gaussian
is slowly varying, and integrating from2k to 2k + 2 is basically2/

√
2π(2N) ·

exp−(2k)2/2(2N).

Exercise 1.4.7.Use the integral test to bound the error in(1.76), and then use that
to bound the error in the estimate ofn!.

Exercise 1.4.8.Prove the standard deviation ofS2N is
√

2N . Use this and Cheby-
shev’s inequality (Exercise 1.1.62) to prove

Prob(|S2N | ≥ N ε ·
√

2N) ≤ 1
N2ε

, (1.86)

which implies that it suffices to study values ofk with k ¿ N
1
2+ε.

Exercise 1.4.9.Prove(1.81).

Exercise 1.4.10.Can you generalize the above arguments to handle the case when
p 6= 1

2 .



ProbStat_Chaps8And9 June 7, 2007

Chapter Two

Applications of Probability: Benford’s Law and

Hypothesis Testing

The Gauss-Kuzmin Theorem (Theorem??) tells us that the probability that the
millionth digit of a randomly chosen continued fraction expansion isk is approx-

imately qk = log2

(
1 + 1

k(k+2)

)
. What if we chooseN algebraic numbers, say

the cube roots ofN consecutive primes: how often do we expect to observe the
millionth digit equal tok? If we believe that algebraic numbers other than rationals
and quadratic irrationals satisfy the Gauss-Kuzmin Theorem, we expect to observe
qkN digits equal tok, and probably fluctuations on the order of

√
N . If we observe

M digits equal tok, how confident are we (as a function ofM andN , of course)
that the digits are distributed according to the Gauss-Kuzmin Theorem? This leads
us to the subject ofhypothesis testing: if we assume some process has probability
p of success, and we observeM successes inN trials, does this provide support for
or against the hypothesis that the probability of success isp?

We develop some of the theory of hypothesis testing by studying a concrete
problem, the distribution of the first digit of certain sequences. In many problems
(for example,2n base 10), the distribution of the first digit is given by Benford’s
Law, described below. We first investigate situations where we can easily prove
the sequences are Benford, and then discuss how to analyze data in harder cases
where the proofs are not as clear (such as the famous3x + 1 problem). The error
analysis is, of course, the same as the one we would use to investigate whether or
not the digits of the continued fraction expansions of algebraic numbers satisfy the
Gauss-Kuzmin Theorem. In the process of investigating Benford’s Law, we en-
counter equidistributed sequences (Chapter??), logarithmic probabilities (similar
to the Gauss-Kuzmin probabilities in Chapter??), and Poisson Summation (Chap-
ter ??), as well as many of the common problems in statistical testing (such as
non-independent events and multiple comparisons).

2.1 BENFORD’S LAW

While looking through tables of logarithms in the late1800s, Newcomb noticed a
surprising fact: certain pages were significantly more worn out than others. Peo-
ple were looking up numbers whose logarithm started with1 more frequently than
other digits. In1938 Benford [Ben] observed the same digit bias in a variety of phe-
nomenon. See [Hi1, Rai] for a description and history, [Hi2, BBH, KonMi, LaSo,
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MN] for recent results, [Knu] for connections between Benford’s law and rounding
errors in computer calculations and [Nig1, Nig2] for applications of Benford’s Law
by the IRS to detect corporate tax fraud!

A sequence of positive numbers{xn} is Benford (baseb) if the probability of

observing the first digit ofxn in baseb is j is logb

(
1 + 1

j

)
. More precisely,

lim
N→∞

#{n ≤ N : first digit of xn in baseb is j}
N

= logb

(
1 +

1
j

)
. (2.1)

Note thatj ∈ {1, . . . , b − 1}. This is a probability distribution as one of theb − 1
events must occur, and the total probability is

b−1∑

j=1

logb

(
1 +

1
j

)
= logb

b−1∏

j=1

(
1 +

1
j

)
= logb

b−1∏

j=1

j + 1
j

= logb b = 1.

(2.2)

It is possible to be Benford to some bases but not others; we show the first digit of
2n is Benford base 10, but clearly it is not Benford base 2 as the first digit is always
1. For many processes, we obtain a sequence of points, and the distribution of the
first digits are Benford. For example, consider the3x+1 problem. Let a0 be any
positive integer, and consider the sequence where

an+1 =

{
3an + 1 if an is odd

an/2 if an is even.
(2.3)

For example, ifa0 = 13, we have

13 −→ 40 −→ 20 −→ 10 −→ 5 −→ 16 −→ 8 −→ 4 −→ 2 −→ 1
−→ 4 −→ 2 −→ 1 −→ 4 −→ 2 −→ 1 · · · . (2.4)

An alternate definition is to remove as many powers of two as possible in one step.
Thus

an+1 =
3an + 1

2k
, (2.5)

wherek is the largest power of 2 dividing3an + 1. It is conjectured that forany
a0, eventually the sequence becomes4 → 2 → 1 → 4 · · · (or in the alternate
definition 1 → 1 → 1 · · · ). While this is known for alla0 ≤ 260, the problem
has resisted numerous attempts at proofs (Kakutani has described the problem as
a conspiracy to slow down mathematical research because of all the time spent on
it). See [Lag1, Lag2] for excellent surveys of the problem. How do the first digits
behave fora0 large? Do numerical simulations support the claim that this process
is Benford? Does it matter which definition we use?

Exercise 2.1.1.Show the Benford probabilitieslog10

(
1 + 1

j

)
for j ∈ {1, . . . , 9}

are irrational. What if instead of base ten we work in based for some integerd?

Exercise 2.1.2.Below we use the definition of the3x + 1 map from(2.5). Show
there are arbitrarily large integersN such that ifa0 = N thena1 = 1. Thus,
infinitely often, one iteration is enough to enter the repeating cycle. More generally,
for each positive integerk does there exist arbitrarily large integersN such that if
a0 = N thenaj > 1 for j < k andak = 1?
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2.2 BENFORD’S LAW AND EQUIDISTRIBUTED SEQUENCES

As we can write any positivex asbu for someu, the following lemma shows that
it suffices to investigateu mod 1:

Lemma 2.2.1. The first digits ofbu and bv are the same in baseb if and only if
u ≡ v mod1.

Proof. We prove one direction as the other is similar. Ifu ≡ v mod 1, we may
write v = u + m, m ∈ Z. If

bu = ukbk + uk−1b
k−1 + · · ·+ u0 + u−1b

−1 + · · · , (2.6)

then

bv = bu+m

= bu · bm

= (ukbk + uk−1b
k−1 + · · ·+ u0 + u−1b

−1 + · · · )bm

= ukbk+m + · · ·+ u0b
m + u−1b

m−1 + · · · . (2.7)

Thus the first digits of each areuk, proving the claim. 2

Exercise 2.2.2.Prove the other direction of the if and only if.

Consider the unit interval[0, 1). Forj ∈ {1, . . . , b}, definepj by

bpj = j or equivalently pj = logb j. (2.8)

For j ∈ {1, . . . , b− 1}, let

I
(b)
j = [pj , pj+1) ⊂ [0, 1). (2.9)

Lemma 2.2.3. The first digit ofby baseb is j if and only ify mod1 ∈ I
(b)
j .

Proof. By Lemma 2.2.1 we may assumey ∈ [0, 1). Theny ∈ I
(b)
j = [pj , pj+1)

if and only if bpj ≤ y < bpj+1 , which from the definition ofpj is equivalent to
j ≤ by < j + 1, proving the claim. 2

The following theorem shows that the exponentials of equidistributed sequences
(see Definition??) are Benford.

Theorem 2.2.4. If yn = logb xn is equidistributed mod1 thenxn is Benford (base
b).

Proof. By Lemma 2.2.3,

{n ≤ N : yn mod 1 ∈ [logb j, logb(j + 1))}
= {n ≤ N : first digit of xn in baseb is j} . (2.10)

Therefore

lim
N→∞

# {n ≤ N : yn mod 1 ∈ [logb j, logb(j + 1))}
N

= lim
N→∞

# {n ≤ N : first digit of xn in baseb is j}
N

. (2.11)

If yn is equidistributed, then the left side of (2.11) islogb

(
1 + 1

j

)
which implies

xn is Benford baseb. 2
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Remark 2.2.5. One can extend the definition of Benford’s Law from statements
concerning the distribution of the first digit to the distribution of the firstk digits.
With such an extension, Theorem 2.2.4 becomesyn = logb xn mod 1 is equidis-
tributed if and only ifxn is Benford baseb. See [KonMi] for details.

Let{x} = x−[x] denote the fractional part ofx, where[x] as always is the great-
est integer at mostx. In Theorem?? we prove that forα 6∈ Q the fractional parts
of nα are equidistributed modulo1. From this and Theorem 2.2.4, it immediately
follows that geometric series are Benford (modulo the irrationality condition):

Theorem 2.2.6.Letxn = arn with logb r 6∈ Q. Thenxn is Benford (baseb).

Proof. Let yn = logb xn = n logb r + logb a. As logb r 6∈ Q, by Theorem?? the
fractional parts ofyn are equidistributed. Exponentiating byb, we obtain thatxn is
Benford (baseb) by Theorem 2.2.4. 2

Theorem 2.2.6 implies that2n is Benford base 10, but not surprisingly that it is
not Benford base2.

Exercise 2.2.7.Do the first digits ofen follow Benford’s Law? What abouten +
e−n?

2.3 RECURRENCE RELATIONS AND BENFORD’S LAW

We show many sequences defined by recurrence relations are Benford. For more on
recurrence relations, see Exercise??. The interested reader should see [BrDu, NS]
for more on the subject.

2.3.1 Recurrence Preliminaries

We consider recurrence relations of lengthk:

an+k = c1an+k−1 + · · ·+ ckan, (2.12)

wherec1, . . . , ck are fixed real numbers. If the characteristic polynomial

rk − c1r
k−1 − c2r

k−2 − · · · − ck−1r − ck = 0 (2.13)

hask distinct rootsλ1, . . . , λk, there existk numbersu1, . . . , uk such that

an = u1λ
n
1 + · · ·+ ukλn

k , (2.14)

where we have ordered the roots so that|λ1| ≥ · · · ≥ |λk|.
For the Fibonacci numbersk = 2, c1 = c2 = 1, u1 = −u2 = 1√

5
, andλ1 =

1+
√

5
2 , λ2 = 1−√5

2 (see Exercise??). If |λ1| = 1, we do not expect the first digit
of an to be Benford (baseb). For example, if we consider

an = 2an−1 − an−2 (2.15)

with initial valuesa0 = a1 = 1, everyan = 1! If we instead takea0 = 0, a1 = 1,
we getan = n. See [Kos] for many interesting occurrences of Fibonacci numbers
and recurrence relations.
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2.3.2 Recurrence Relations Are Benford

Theorem 2.3.1.Letan satisfy a recurrence relation of lengthk with k distinct real
roots. Assume|λ1| 6= 1 with |λ1| the largest absolute value of the roots. Further,
assume the initial conditions are such that the coefficient ofλ1 is non-zero. If
logb |λ1| 6∈ Q, thenan is Benford (baseb).

Proof. By assumption,u1 6= 0. For simplicity we assumeλ1 > 0, λ1 > |λ2|
andu1 > 0. Again letyn = logb xn. By Theorem 2.2.4 it suffices to showyn is
equidistributed mod1. We have

xn = u1λ
n
1 + · · ·+ unλn

k

xn = u1λ
n
1

[
1 + O

(
kuλn

2

λn
1

)]
, (2.16)

whereu = maxi |ui|+ 1 (soku > 1 and the big-Oh constant is1). As λ1 > |λ2|,
we “borrow” some of the growth fromλn

1 ; this is a very useful technique. Choose
a smallε and ann0 such that

1. |λ2| < λ1−ε
1 ;

2. for all n > n0, (ku)1/n

λε
1

< 1, which then impliesku
λnε

1
=

(
(ku)1/n

λε
1

)n

.

As ku > 1, (ku)1/n is decreasing to1 asn tends to infinity. Noteε > 0 if λ1 > 1
andε < 0 if λ1 < 1. Letting

β =
(ku)1/n0

λε
1

|λ2|
λ1−ε

1

< 1, (2.17)

we find that the error term above is bounded byβn for n > n0, which tends to0.
Therefore

yn = logb xn

= logb(u1λ
n
1 ) + O (logb(1 + βn))

= n logb λ1 + logb u1 + O(βn), (2.18)

where the big-Oh constant is bounded byC say. Aslogb λ1 6∈ Q, the fractional
parts ofn logb λ1 are equidistributed modulo1, and hence so are the shifts obtained
by adding the fixed constantlogb u1.

We need only show that the error termO(βn) is negligible. It is possible for the
error term to change the first digit; for example, if we had999999 (or 1000000),
then if the error term contributes2 (or−2), we would change the first digit base10.
However, forn sufficiently large, the error term will change a vanishingly small
number of first digits. Sayn logb λ1 + logb u1 exponentiates baseb to first digit j,
j ∈ {1, . . . , b− 1}. This means

n logb λ1 + logb u1 ∈ I
(b)
j = [pj−1, pj). (2.19)

The error term is at mostCβn andyn exponentiates to a different first digit than
n logb λ1 + logb u1 only if one of the following holds:
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1. n logb λ1 + logb u1 is within Cβn of pj , and adding the error term pushes us
to or pastpj ;

2. n logb λ1 + logb u1 is within Cβn of pj−1, and adding the error term pushes
us beforepj−1.

The first set is contained in[pj − Cβn, pj), of lengthCβn. The second is con-
tained in[pj−1, pj−1 + Cβn), also of lengthCβn. Thus the length of the interval
wheren logb λ1 + logb u1 andyn could exponentiate baseb to different first digits
is of size2Cβn. If we chooseN sufficiently large then for alln > N we can make
these lengths arbitrarily small. Asn logb λ1 + logb u1 is equidistributed modulo1,
we can control the size of the subsets of[0, 1) wheren logb λ1 + logb u1 andyn

disagree. The Benford behavior (baseb) of xn now follows in the limit. 2

Exercise 2.3.2.Weaken the conditions of Theorem 2.3.1 as much as possible. What
if several roots equalλ1? What does a general solution to(2.12) look like now?
What ifλ1 is negative? Can anything be said if there are complex roots?

Exercise(hr) 2.3.3. Consider the recurrence relationan+1 = 5an−8an−1+4an−2.
Show there is a choice of initial conditions such that the coefficient ofλ1 (a largest
root of the characteristic polynomial) is non-zero but the sequence does not satisfy
Benford’s Law.

Exercise(hr) 2.3.4. Assume all the roots of the characteristic polynomial are dis-
tinct, and letλ1 be the largest root in absolute value. Show for almost all initial
conditions that the coefficient ofλ1 is non-zero, which implies that our assumption
thatu1 6= 0 is true most of the time.

2.4 RANDOM WALKS AND BENFORD’S LAW

Consider the following (colorful) problem: A drunk starts off at time zero at a
lamppost. Each minute he stumbles with probabilityp one unit to the right and
with probabilityq = 1− p one unit to the left. Where do we expect the drunk to be
afterN tosses? This is known as aRandom Walk. By the Central Limit Theorem
(Theorem 1.4.1), his distribution afterN tosses is well approximated by a Gaussian
with mean1 · pN + (−1) · (1 − p)N = (2p − 1)N and variancep(1 − p)N . For
more details on Random Walks, see [Re].

For us, aGeometric Brownian Motion is a process such that its logarithm is
a Random Walk (see [Hu] for complete statements and applications). We show
below that the first digits of Geometric Brownian Motions are Benford. In [KonSi]
the3x+1 problem is shown to be an example of Geometric Brownian Motion. For
heuristic purposes we use the first definition of the3x + 1 map, though the proof is
for the alternate definition. We have two operators:T3 andT2, with T3(x) = 3x+1
andT2(x) = x

2 . If an is odd,3an + 1 is even, soT3 must always be followed by
T2. Thus, we have really have two operatorsT2 andT3/2, with T3/2(x) = 3x+1

2 . If
we assume each operator is equally likely, half the time we go fromx → 3

2x + 1,
and half the time to12x.
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If we take logarithms,log x goes tolog 3
2x = log x + log 3

2 half the time and
log 1

2x = log x + log 1
2 the other half. Hence on average we sendlog x → log x +

1
2 log 3

4 . As log 3
4 < 0, on average our sequence is decreasing (which agrees with

the conjecture that eventually we reach4 → 2 → 1). Thus we might expect our
sequence to look likelog xk = log x + k

2 log 3
4 . As log 3

4 6∈ Q, its multiples are
equidistributed modulo 1, and thus when we exponentiate we expect to see Benford
behavior. Note, of course, that this is simply a heuristic, suggesting we might see
Benford’s Law. A better heuristic is sketched in Exercise 2.4.1.

While we can consider Random Walks or Brownian Motion with non-zero means,
for simplicity below we assume the means are zero. Thus, in the example above,
p = 1

2 .

Exercise(hr) 2.4.1. Give a better heuristic for the Geometric Brownian Motion of
the 3x + 1 map by considering the alternate definition:an+1 = 3an+1

2k , where
2k||3x + 1. In particular, calculate the expected value oflog an+1. To do so, we
need to estimate the probabilityk = ` for each` ∈ {1, 2, 3, . . . }; notek 6= 0 as for
x odd,3x + 1 is always even and thus divisible by at least one power of2. Show it
is reasonable to assume thatProb(k = `) = 2−`.

2.4.1 Needed Gaussian Integral

Consider a sequence of GaussiansGσ with mean 0 and varianceσ2, with σ2 →∞.
The following lemma shows that for anyδ > 0 as σ → ∞ almost all of the
probability is in the interval[−σ1+δ, σ1+δ]. We will use this lemma to show that it
is enough to investigate Gaussians in the range[−σ1+δ, σ1+δ].

Lemma 2.4.2.

2√
2πσ2

∫ ∞

σ1+δ

e−x2/2σ2
dx ¿ e−σ2δ/2. (2.20)

Proof. Change the variable of integration tow = x
σ
√

2
. Denoting the above integral

by I, we find

I =
2√

2πσ2

∫ ∞

σδ/
√

2

e−w2 · σ
√

2dw =
2√
π

∫ ∞

σδ/
√

2

e−w2
dw. (2.21)

The integrand is monotonically decreasing. Forw ∈
[

σδ√
2
, σδ√

2
+ 1

]
, the integrand

is bounded by substituting in the left endpoint, and the region of integration is of
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length1. Thus,

I < 1 · 2√
π

e−σ2δ/2 +
2√
π

∫ ∞

σδ√
2
+1

e−w2
dw

=
2√
π

e−σ2δ/2 +
2√
π

∫ ∞

σδ√
2

e−(u+1)2du

=
2√
π

e−σ2δ/2 +
2√
π

∫ ∞

σδ√
2

e−u2
e−2ue−1du

<
2√
π

e−σ2δ/2 +
2

e
√

π
e−σ2δ/2

∫ ∞

σδ√
2

e−2udu

<
2(e + 1)√

π
e−σ2δ/2

< 4e−σ2δ/2. (2.22)

2

Exercise 2.4.3.Prove a similar result for intervals of the form[−σg(σ), σg(σ)]
whereg(σ) is a positive increasing function andlimσ→∞ g(σ) = +∞.

2.4.2 Geometric Brownian Motions Are Benford

We investigate the distribution of digits of processes that are Geometric Brownian
Motions. By Theorem 2.2.4 it suffices to show that the Geometric Brownian Motion
converges to being equidistributed modulo1. Explicitly, we have the following:
afterN iterations, by the Central Limit Theorem the expected value converges to
a Gaussian with mean0 and variance proportional to

√
N . We must show that the

Gaussian with growing variance is equidistributed modulo1.
For convenience we assume the mean is0 and the variance isN/2π. This cor-

responds to a fair coin where for each head (resp., tail) we move1√
4π

units to the
right (resp., left). By the Central Limit Theorem the probability of beingx units to
the right of the origin afterN tosses is asymptotic to

pN (x) =
e−πx2/N

√
N

. (2.23)

For ease of exposition, we assume that rather than being asymptotic to a Gaussian,
the distribution is a Gaussian. For our example of flipping a coin, this cannot be
true. If every minute we flip a coin and record the outcome, afterN minutes there
are2N possible outcomes, a finite number. To each of these we attach a number
equal to the excess of heads to tails. There are technical difficulties in working with
discrete probability distributions; thus we study instead continuous processes such
that at timeN the probability of observingx is given by a Gaussian with mean0
and varianceN/2π. For complete details see [KonMi].

Theorem 2.4.4. AsN → ∞, pN (x) = e−πx2/N√
N

becomes equidistributed modulo
1.
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Proof. For eachN we calculate the probability that forx ∈ R, x mod 1 ∈ [a, b] ⊂
[0, 1). This is

∫ ∞

x=−∞
x mod 1∈[a,b]

pN (x)dx =
1√
N

∑

n∈Z

∫ b

x=a

e−π(x+n)2/Ndx. (2.24)

We need to show the above converges tob− a asN →∞. Forx ∈ [a, b], standard
calculus (Taylor series expansions, see §A.2.3) gives

e−π(x+n)2/N = e−πn2/N + O

(
max(1, |n|)

N
e−n2/N

)
. (2.25)

We claim that in (2.24) it is sufficient to restrict the summation to|n| ≤ N5/4.
The proof is immediate from Lemma 2.4.2: we increase the integration by expand-
ing to x ∈ [0, 1], and then trivially estimate. Thus, up to negligible terms, all the
contribution is from|n| ≤ N5/4.

In §??we prove the Poisson Summation formula, which in this case yields

1√
N

∑

n∈Z
e−πn2/N =

∑

n∈Z
e−πn2N . (2.26)

The beauty of Poisson Summation is that it converts one infinite sum withslow
decay to another sum withrapid decay; because of this, Poisson Summation is an
extremely useful technique for a variety of problems. The exponential terms on the
left of (2.26) are all of size 1 forn ≤ √

N , and do not become small untiln À √
N

(for instance, oncen >
√

N log N , the exponential terms are small for largeN );
however, almost all of the contribution on the right comes fromn = 0. The power
of Poisson Summation is it often allows us to approximate well long sums with
short sums. We therefore have

1√
N

∑

|n|≤N5/4

∫ b

x=a

e−π(x+n)2/Ndx

=
1√
N

∑

|n|≤N5/4

∫ b

x=a

[
e−πn2/N + O

(
max(1, |n|)

N
e−n2/N

)]
dx

=
b− a√

N

∑

|n|≤N5/4

e−πn2/N + O


 1

N

N5/4∑
n=0

n + 1√
N

e−π(n/
√

N)2




=
b− a√

N

∑

|n|≤N5/4

e−πn2/N + O

(
1
N

∫ N3/4

w=0

(w + 1)e−πw2√
Ndw

)

=
b− a√

N

∑

|n|≤N5/4

e−πn2/N + O
(
N−1/2

)
. (2.27)

By Lemma 2.4.2 we can extend all sums ton ∈ Z in (2.27) with negligible error.
We now apply Poisson Summation and find that up to lower order terms,

1√
N

∑

n∈Z

∫ b

x=a

e−π(x+n)2/Ndx ≈ (b− a) ·
∑

n∈Z
e−πn2N . (2.28)
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Forn = 0 the right hand side of (2.28) isb−a. For all othern, we trivially estimate
the sum:

∑

n 6=0

e−πn2N ≤ 2
∑

n≥1

e−πnN ≤ 2e−πN

1− e−πN
, (2.29)

which is less than4e−πN for N sufficiently large. 2

We can interpret the above arguments as follows: for eachN , consider a Gaussian
pN (x) with mean0 and varianceN/2π. AsN →∞ for eachx (which occurs with
probabilitypN (x)) the first digit of10x converges to the Benford base 10 probabil-
ities.

Remark 2.4.5. The above framework is very general and applicable to a variety of
problems. In [KonMi] it is shown that these arguments can be used to prove Ben-
ford behavior in discrete systems such as the3x + 1 problem as well as continuous
systems such as the absolute values of the Riemann zeta function (and any “good”
L-function) near the critical line! For these number theory results, the crucial in-
gredients are Selberg’s result (near the critical line,log |ζ(s + it)| for t ∈ [T, 2T ]
converges to a Gaussian with variance tending to infinity inT ) and estimates by
Hejhal on the rate of convergence. For the3x + 1 problem the key ingredients are
the structure theorem (see [KonSi]) and the approximation exponent of Definition
??; see [LaSo] for additional results on Benford behavior of the3x + 1 problem.

2.5 STATISTICAL INFERENCE

Often we have reason to believe that some process occurs with probabilityp of suc-
cess andq = 1− p of failure. For example, consider the3x + 1 problem. Choose
a largea0 and look at the first digit of thean’s. There is reason to believe the
distribution of the first digits is given by Benford’s Law for mosta0 asa0 → ∞.
We describe how to test this and similar hypotheses. We content ourselves with
describing one simple test; the interested reader should consult a statistics text-
book (for example, [BD, CaBe, LF, MoMc]) for the general theory and additional
applications.

2.5.1 Null and Alternative Hypotheses

Suppose we think some population has a parameter with a certain value. If the
population is small, it is possible to investigate every element; in general this is not
possible.

For example, say the parameter is how often the millionth decimal or continued
fraction digit is 1 in two populations: all rational numbers in[0, 1) with denomina-
tor at most5, and all real numbers in[0, 1). In the first, there are only 10 numbers,
and it is easy to check them all. In the second, as there are infinitely many num-
bers, it is impossible to numerically investigate each. What we do in practice is
we sample a large number of elements (sayN elements) in[0, 1), and calculate the
average value of the parameter for this sample.
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We thus have twopopulations, theunderlying population (in the second case,
all numbers in[0, 1)), and thesample population (in this case, theN sampled
elements).

Our goal is to test whether or not the underlying population’s parameter has a
given value, sayp. To this end, we want to compare the sample population’s value
to p. The null hypothesis, denotedH0, is the claim that there is no difference
between the sample population’s value and the underlying population’s value; the
alternative hypothesis, denotedHa, is the claim that there is a difference between
the sample population’s value and the underlying population’s value.

When we analyze the data from the sample population, either we reject the null
hypothesis, or we fail to reject the null hypothesis. It is important to note that
we neverprove the null or alternative hypothesis is true or false. We are always
rejecting or failing to reject the null hypothesis, we are never accepting it. If we
flip a coin 100 times and observe all heads, this does not mean the coin is not fair:
it is possible the coin is fair but we had a very unusual sample (though, of course,
it is extremely unlikely).

We now discuss how to test the null hypothesis. Our main tool is the Central
Limit Theorem. This is just one of many possible inference tests; we refer the
reader to [BD, CaBe, LF, MoMc] for more details.

2.5.2 Bernoulli Trials and the Central Limit Theorem

Assume we have some process where we expect a probabilityp of observing a
given value. For example, if we choose numbers uniformly in[0, 1) and look at
the millionth decimal digit, we believe that the probability this digit is 1 is1

10 . If
we look at the continued fraction expansion, by Theorem?? the probability that
the millionth digit is 1 is approximatelylog2

4
3 . What if we restrict to algebraic

numbers? What is the probability the millionth digit (decimal or continued fraction
expansion) equals 1?

In general, once we formalize our conjecture we test it by choosingN elements
from the population independently at random (see §1.3). Consider the claim that a
process has probabilityp of success. We haveN independent Bernoulli trials (see
§1.2.1). The null hypothesis is the claim thatp percent of the sample are a success.
Let SN be the number of successes; if the null hypothesis is correct, by the Central
Limit Theorem (see §1.4) we expectSN to have a Gaussian distribution with mean
pN and variancepqN (see Exercise 1.2.1 for the calculations of the mean and
variance of a Bernoulli process). This means that if we were to look at many
samples withN elements, on average each sample would havepN ± O(

√
pqN)

successes. We calculate the probability of observing a difference|SN − pN | as
large or larger thana. This is given by the area under the Gaussian with meanpN
and variancepqN :

1√
2πpqN

∫

|s−pN |≥a

e−(s−pN)2/2pqNds. (2.30)

If this integral is small, it is extremely unlikely that we chooseN independent trials
from a process with probabilityp of success and we reject the null hypothesis; if
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the integral is large, we do not reject the null hypothesis, and we have support for
our claim that the underlying process does have probabilityp of success.

Unfortunately, the Gaussian is a difficult function to integrate, and we would
need to tabulate these integrals foreverydifferent pair of mean and variance. It is
easier, therefore, to renormalize and look at a new statistic which should also be
Gaussian, but with mean 0 and variance 1. The advantage is that we need only
tabulateonespecial Gaussian, the standard normal.

Let Z = SN−pN√
pqN

. This is known as thez-statistic. If SN ’s distribution is a
Gaussian with meanpN and variancepqN , noteZ will be a Gaussian with mean
0 and variance 1.

Exercise 2.5.1.Prove the above statement about the distribution ofz.

Let

I(a) =
1√
2π

∫

|z|≥a

e−z2/2dz, (2.31)

the area under the standard normal (mean 0, standard deviation 1) that is at leasta
units from the mean. We consider differentconfidence intervals. If we were to ran-
domly choose a numberz from such a Gaussian, what is the probability (as a func-
tion of a) thatz is at mosta units from the mean? Approximately68% of the time
|z| ≤ 1 (I(1) ≈ .32), approximately95% of the timez ≤ 1.96 (I(1.96) ≈ .05),
and approximately99% of the time|z| ≤ 2.57 (I(2.57) = .01). In other words,
there is only about a1% probability of observing|z| ≥ 2.57. If |z| ≥ 2.57, we have
strong evidence against the hypothesis that the process occurs with probabilityp,
and we would be reasonably confident in rejecting the null hypothesis; of course, it
is possible we were unlucky and obtained an unrepresentative set of data (but it is
extremely unlikely that this occurred; in fact, the probability is at most 1%).

Remark 2.5.2. For a Gaussian with meanµ and standard deviationσ, the prob-
ability that |X − µ| ≤ σ is approximately.68. Thus if X is drawn from a nor-
mal with meanµ and standard deviationσ, then approximately68% of the time
µ ∈ [x− σ, x + σ] (wherex is the observed value of the random variableX).

To test the claim that some process occurs with probabilityp, we observeN
independent trials, calculate thez-statistic, and see how likely it is to observe|Z|
that large or larger. We give two examples below.

2.5.3 Digits of the3x + 1 Problem

Consider again the3x + 1 problem. Choose a large integera0, and look at the
iterates:a1, a2, a3, . . . . We study how often the first digit of terms in the sequence
equald ∈ {1, . . . , 9}. We can regard the first digit of a term as a Bernoulli trial with
a success (or1) if the first digit isd and a failure (or0) otherwise. If the distribution
of digits is governed by Benford’s Law, the theoretical prediction is that the fraction
of the first digits that equald is p = log10(

d+1
d ). Assume there areN terms in our

sequence (before we hit the pattern4 → 2 → 1 → 4 · · · ), and sayM of them have
first digit d. For whatM does this experiment provide support that the digits follow
Benford’s Law?
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Exercise 2.5.3.The terms in the sequence generated bya0 are not independent, as
an+1 is determined byan. Show that if the first digit ofan is 2 then the first digit
of an+1 cannot be a2.

The above exercise shows that the first digit of the termscannotbe considered
independent Bernoulli trials. As the sequence is completely determined by the first
term, this is not surprising. If we look at an enormous number of terms, however,
these effects “should” average out. Another possible experiment is to look at the
first digit of the millionth term forN differenta0’s.

Let a0 = 333 . . . 333 be the integer that is 10,000 threes. There are 177,857
terms in the sequence before we hit4 → 2 → 1. The following data comparing the
number of first digits equal tod to the Benford predictions are from [Min]:

digit observed predicted variancez-statistic I(z)
1 53425 53540 193.45 −0.596 0.45
2 31256 31310 160.64 −0.393 0.31
3 22257 22220 139.45 0.257 0.21
4 17294 17230 124.76 0.464 0.36
5 14187 14080 113.88 0.914 0.63
6 11957 11900 105.40 0.475 0.36
7 10267 10310 98.57 −0.480 0.37
8 9117 9090 92.91 0.206 0.16
9 8097 8130 88.12 −0.469 0.36

As the values of thez-statistics are all small (well below1.96 and2.57), the above
table provides evidence that the first digits in the3x + 1 problem follow Benford’s
Law, and we would not reject the null hypothesis for any of the digits. If we had
obtained largez-statistics, say 4, we would reject the null hypothesis and doubt that
the distribution of digits follow Benford’s Law.

Remark 2.5.4(Important). One must be very careful when analyzing all the digits.
Once we know how many digits are in{1, . . . , 8}, then the number of9’s is forced:
these are not nine independent tests, and a different statistical test (a chi-square
test with eight degrees of freedom) should be done. Our point here is not to write a
treatise on statistical inference, but merely highlight some of the tools and concepts.
See [BD, CaBe, LF, MoMc] for more details, and [Mil5] for an amusing analysis
of a baseball problem involving chi-square tests.

Additionally, if we have many different experiments, then “unlikely” events
should happen. For example, if we have100 different experiments we would not be
surprised to see an outcome which only has a1% chance of occurring (see Exercise
2.5.5). Thus, if there are many experiments, the confidence intervals need to be
adjusted. One common method is the Bonferroni adjustment method for multiple
comparisons. See [BD, MoMc].

Exercise 2.5.5.Assume for each trial there is a95% chance of observing the frac-
tion of first digits equal to1 is in [log10 2 − 1.96σ, log10 2 + 1.96σ] (for some
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σ). If we have 10 independent trials, what is the probability thatall the observed
percentages are in this interval? If we have 14 independent trials?

Remark 2.5.6. How does one calculate with10, 000 digit numbers? Such large
numbers are greater than the standard number classes (int, long, double) of many
computer programming languages. The solution is to represent numbers as arrays.
To go froman to 3an +1, we multiply the array by 3, carrying as needed, and then
add 1; we leave space-holding zeros at the start of the array. For example,

3 · [0, . . . , 0, 0, 5, 6, 7] = [0, . . . , 0, 1, 7, 0, 1]. (2.32)

We need only do simple operations on the array. For example,3 · 7 = 21, so the
first entry of the product array is1 and we carry the 2 for the next multiplication.
We must also computean/2 if an is even. Note this is the same as5an divided by
10. The advantage of this approach is that it is easy to calculate5an, and asan is
even, the last digit of5an is zero, hence array division by 10 is trivial.

Exercise 2.5.7.Consider the first digits of the3x + 1 problem (defined as in(2.3))
in base 6. Choose a large integera0, and look at the iteratesa1, a2, a3, . . . . As
a0 →∞, is the distribution of digits Benford base6?

Exercise 2.5.8(Recommended). Here is another variant of the3x + 1 problem:

an+1 =

{
3an + 1 if an is odd

an/2k if an is even and2k||an;
(2.33)

2k||an means2k dividesan, but 2k+1 does not. Consider the distribution of first
digits of this sequence for variousa0. What is the null hypothesis? Do the data sup-
port the null hypothesis, or the alternative hypothesis? Do you think these numbers
also satisfy Benford’s Law? What if instead we define

an+1 =
3an + 1

2k
, 2k||an. (2.34)

2.5.4 Digits of Continued Fractions

Let us test the hypothesis that the digits of algebraic numbers are given by the
Gauss-Kuzmin Theorem (Theorem??). Let us look at how often the1000th digit
equals 1. By the Gauss-Kuzmin Theorem this should be approximatelylog2

4
3 .

Let pn be thenth prime. In the continued fraction expansions of3
√

pn for n ∈
{100000, 199999}, exactly 41565 have the1000th digit equal to 1. Assuming we
have a Bernoulli process with probability of success (a digit of 1) ofp = log2

4
3 ,

the z-statistic is.393. As thez-statistic is small (95% of the time we expect to
observe|z| ≤ 1.96), we do not reject the null hypothesis, and we have obtained
evidence supporting the claim that the probability that the1000th digit is 1 is given
by the Gauss-Kuzmin Theorem. See Chapter?? for more detailed experiments on
algebraic numbers and the Gauss-Kuzmin Theorem.
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2.6 SUMMARY

We have chosen to motivate our presentation of statistical inference by investigat-
ing the first digits of the3x + 1 problem, but of course the methods apply to a
variety of problems. Our main tool is the Central Limit Theorem: if we have a
process with probabilityp (resp.,q = 1 − p) of success (resp., failure), then inN
independent trials we expect aboutpN successes, with fluctuations of size

√
pqN .

To test whether or not the underlying probability isp we formed thez-statistic:
SN−pN√

pqN
, whereSN is the number of successes observed in theN trials.

If the process really does have probabilityp of success, then by the Central Limit
Theorem the distribution ofSN is approximately a Gaussian with meanpN and
standard deviation

√
pqN , and we then expect thez-statistic to be of size 1. If,

however, the underlying process occurs not with probabilityp butp′, then we expect
SN to be approximately a Gaussian with meanp′N and standard deviation

√
p′q′N .

We now expect thez-statistic to be of size(p
′−p)N√
p′q′N . This is of size

√
N , much larger

than 1.
We see thez-statistic is very sensitive top′ − p: if p′ is differs fromp, for large

N we quickly observe large values ofz. Note, of course, that statistical tests can
only provide compelling evidence in favor or against a hypothesis, never a proof.
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Appendix A

Analysis Review

A.1 PROOFS BY INDUCTION

Assume for each positive integern we have a statementP (n) which we desire to
show is true.P (n) is true for all positive integersn if the following two statements
hold:

• Basis Step:P (1) is true;

• Inductive Step: wheneverP (n) is true,P (n + 1) is true.

This technique is calledProof by Induction , and is a very useful method for prov-
ing results; we shall see many instances of this in this appendix and Chapter??
(indeed, throughout much of the book). The reason the method works follows from
basic logic. We assume the following two sentences are true:

P (1) is true

∀n ≥ 1, P (n) is true impliesP (n + 1) is true. (A.1)

Setn = 1 in the second statement. AsP (1) is true, andP (1) impliesP (2), P (2)
must be true. Now setn = 2 in the second statement. AsP (2) is true, andP (2)
impliesP (3), P (3) must be true. And so on, completing the proof. Verifying the
first statement thebasis stepand the second theinductive step. In verifying the
inductive step, note we assumeP (n) is true; this is called theinductive assump-
tion. Sometimes instead of starting atn = 1 we start atn = 0, although in general
we could start at anyn0 and then prove for alln ≥ n0, P (n) is true.

We give three of the more standard examples of proofs by induction, and one
false example; the first example is the most typical.

A.1.1 Sums of Integers

Let P (n) be the statement

n∑

k=1

k =
n(n + 1)

2
. (A.2)

Basis Step:P (1) is true, as both sides equal1.
Inductive Step:AssumingP (n) is true, we must showP (n + 1) is true. By the
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inductive assumption,
∑n

k=1 k = n(n+1)
2 . Thus

n+1∑

k=1

k = (n + 1) +
n∑

k=1

k

= (n + 1) +
n(n + 1)

2

=
(n + 1)(n + 1 + 1)

2
. (A.3)

Thus, givenP (n) is true, thenP (n + 1) is true.

Exercise A.1.1.Prove
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
. (A.4)

Find a similar formula for the sum ofk3. See also Exercise??.

Exercise A.1.2.Show the sum of the firstn odd numbers isn2, i.e.,

n∑

k=1

(2k − 1) = n2. (A.5)

Remark A.1.3. We define the empty sum to be 0, and the empty product to be 1.
For example,

∑
n∈N,n<0 1 = 0.

See [Mil4] for an alternate derivation of sums of powers that does not use induc-
tion.

A.1.2 Divisibility

Let P (n) be the statement133 divides11n+1 + 122n−1.

Basis Step:A straightforward calculation showsP (1) is true: 111+1 + 122−1 =
121 + 12 = 133.
Inductive Step:AssumeP (n) is true, i.e.,133 divides11n+1 + 122n−1. We must
showP (n + 1) is true, or that133 divides11(n+1)+1 + 122(n+1)−1. But

11(n+1)+1 + 122(n+1)−1 = 11n+1+1 + 122n−1+2

= 11 · 11n+1 + 122 · 122n−1

= 11 · 11n+1 + (133 + 11)122n−1

= 11
(
11n+1 + 122n−1

)
+ 133 · 122n−1. (A.6)

By the inductive assumption133 divides11n+1 + 122n−1; therefore,133 divides
11(n+1)+1 + 122(n+1)−1, completing the proof.

Exercise A.1.4.Prove4 divides1 + 32n+1.
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A.1.3 The Binomial Theorem

We prove the Binomial Theorem. First, recall that

Definition A.1.5 (Binomial Coefficients). Letn andk be integers with0 ≤ k ≤ n.
We set (

n

k

)
=

n!
k!(n− k)!

. (A.7)

Note that0! = 1 and
(
n
k

)
is the number of ways to choosek objects fromn (with

order not counting).

Lemma A.1.6. We have(
n

k

)
=

(
n

n− k

)
,

(
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
. (A.8)

Exercise A.1.7.Prove Lemma A.1.6.

Theorem A.1.8(The Binomial Theorem). For all positive integersn we have

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (A.9)

Proof. We proceed by induction.
Basis Step:Forn = 1 we have

1∑

k=0

(
1
k

)
x1−kyk =

(
1
0

)
x +

(
1
1

)
y = (x + y)1. (A.10)

Inductive Step:Suppose

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (A.11)

Then using Lemma A.1.6 we find that

(x + y)n+1 = (x + y)(x + y)n

= (x + y)
n∑

k=0

(
n

k

)
xn−kyk

=
n∑

k=0

(
n

k

)
xn+1−kyk +

(
n

k

)
xn−kyk+1

= xn+1 +
n∑

k=1

{(
n

k

)
+

(
n

k − 1

)}
xn+1−kyk + yn+1

=
n+1∑

k=0

(
n + 1

k

)
xn+1−kyk. (A.12)

This establishes the induction step, and hence the theorem. 2
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A.1.4 False Proofs by Induction

Consider the following: letP (n) be the statement that in any group ofn people,
everyone has the same name. We give a (false!) proof by induction thatP (n) is
true for alln!

Basis Step:Clearly, in any group with just1 person, every person in the group
has the same name.

Inductive Step:AssumeP (n) is true, namely, in any group ofn people, everyone
has the same name. We now proveP (n + 1). Consider a group ofn + 1 people:

{1, 2, 3, . . . , n− 1, n, n + 1}. (A.13)

The firstn people form a group ofn people; by the inductive assumption, they all
have the same name. So, the name of1 is the same as the name of2 is the same as
the name of3 . . . is the same as the name ofn.

Similarly, the lastn people form a group ofn people; by the inductive assump-
tion they all have the same name. So, the name of2 is the same as the name of3
. . . is the same as the name ofn is the same as the name ofn + 1. Combining
yields everyone has the same name! Where is the error?

If n = 4, we would have the set{1, 2, 3, 4, 5}, and the two sets of4 people
would be{1, 2, 3, 4} and{2, 3, 4, 5}. We see that persons2, 3 and4 are in both
sets, providing the necessary link.

What about smallern? What ifn = 1? Then our set would be{1, 2}, and the
two sets of1 person would be{1} and{2}; there is no overlap! The error was that
we assumedn was “large” in our proof ofP (n) ⇒ P (n + 1).

Exercise A.1.9. Show the above proof thatP (n) impliesP (n + 1) is correct for
n ≥ 2, but fails forn = 1.

Exercise A.1.10.Similar to the above, give a false proof that any sum ofk integer
squares is an integer square, i.e.,x2

1 + · · · + x2
n = x2. In particular, this would

prove all positive integers are squares asm = 12 + · · ·+ 12.

Remark A.1.11. There is no such thing asProof By Example. While it is often
useful to check a special case and build intuition on how to tackle the general case,
checking a few examples is not a proof. For example, because16

64 = 1
4 and 19

95 = 1
5 ,

one might think that in dividing two digit numbers if two numbers on a diagonal are
the same one just cancels them. If that were true, then12

24 should be1
4 . Of course

this isnot how one divides two digit numbers!

A.2 CALCULUS REVIEW

We briefly review some of the results from Differential and Integral Calculus. We
recall some notation:[a, b] = {x : a ≤ x ≤ b} is the set of allx betweena andb,
includinga andb; (a, b) = {x : a < x < b} is the set of allx betweena andb, not
including the endpointsa andb. For a review of continuity see §A.3.
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A.2.1 Intermediate Value Theorem

Theorem A.2.1(Intermediate Value Theorem (IVT)). Letf be a continuous func-
tion on [a, b]. For all C betweenf(a) andf(b) there exists ac ∈ [a, b] such that
f(c) = C. In other words, all intermediate values of a continuous function are
obtained.

Sketch of the proof.We proceed byDivide and Conquer. Without loss of gener-
ality, assumef(a) < C < f(b). Let x1 be the midpoint of[a, b]. If f(x1) = C we
are done. Iff(x1) < C, we look at the interval[x1, b]. If f(x1) > C we look at
the interval[a, x1].

In either case, we have a new interval, call it[a1, b1], such thatf(a1) < C <
f(b1) and the interval has half the size of[a, b]. We continue in this manner, re-
peatedly taking the midpoint and looking at the appropriate half-interval.

If any of the midpoints satisfyf(xn) = C, we are done. If no midpoint works,
we divide infinitely often and obtain a sequence of pointsxn in intervals[an, bn].
This is where rigorous mathematical analysis is required (see §A.3 for a brief re-
view, and [Rud] for complete details) to showxn converges to anx ∈ (a, b).

For eachn we havef(an) < C < f(bn), andlimn→∞ |bn − an| = 0. As f is
continuous, this implieslimn→∞ f(an) = limn→∞ f(bn) = f(x) = C.

A.2.2 Mean Value Theorem

Theorem A.2.2 (Mean Value Theorem (MVT)). Let f(x) be differentiable on
[a, b]. Then there exists ac ∈ (a, b) such that

f(b)− f(a) = f ′(c) · (b− a). (A.14)

We give an interpretation of the Mean Value Theorem. Letf(x) represent the
distance from the starting point at timex. The average speed froma to b is the dis-
tance traveled,f(b)−f(a), divided by the elapsed time,b−a. Asf ′(x) represents
the speed at timex, the Mean Value Theorem says that there is some intermediate
time at which we are traveling at the average speed.

To prove the Mean Value Theorem, it suffices to consider the special case when
f(a) = f(b) = 0; this case is known as Rolle’s Theorem:

Theorem A.2.3(Rolle’s Theorem). Let f be differentiable on[a, b], and assume
f(a) = f(b) = 0. Then there exists ac ∈ (a, b) such thatf ′(c) = 0.

Exercise A.2.4. Show the Mean Value Theorem follows from Rolle’s Theorem.
Hint: Consider

h(x) = f(x)− f(b)− f(a)
b− a

(x− a)− f(a). (A.15)

Noteh(a) = f(a)− f(a) = 0 andh(b) = f(b)− (f(b)− f(a))− f(a) = 0. The
conditions of Rolle’s Theorem are satisfied forh(x), and

h′(c) = f ′(c)− f(b)− f(a)
b− a

. (A.16)
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Proof of Rolle’s Theorem.Without loss of generality, assumef ′(a) andf ′(b) are
non-zero. If either were zero we would be done. Multiplyingf(x) by−1 if needed,
we may assumef ′(a) > 0. For convenience, we assumef ′(x) is continuous.This
assumption simplifies the proof, but is not necessary. In all applications in this book
this assumption will be met.

Case 1: f ′(b) < 0: As f ′(a) > 0 and f ′(b) < 0, the Intermediate Value
Theorem applied tof ′(x) asserts that all intermediate values are attained. As
f ′(b) < 0 < f ′(a), this implies the existence of ac ∈ (a, b) such thatf ′(c) = 0.

Case 2:f ′(b) > 0: f(a) = f(b) = 0, and the functionf is increasing ata and
b. If x is real close toa thenf(x) > 0 if x > a. This follows from the fact that

f ′(a) = lim
x→a

f(x)− f(a)
x− a

. (A.17)

As f ′(a) > 0, the limit is positive. As the denominator is positive forx > a,
the numerator must be positive. Thusf(x) must be greater thanf(a) for suchx.
Similarly f ′(b) > 0 impliesf(x) < f(b) = 0 for x slightly less thanb.

Therefore the functionf(x) is positive forx slightly greater thana and negative
for x slightly less thanb. If the first derivative were always positive thenf(x)
could never be negative as it starts at0 at a. This can be seen by again using the
limit definition of the first derivative to show that iff ′(x) > 0 then the function
is increasing nearx. Thus the first derivative cannot always be positive. Either
there must be some pointy ∈ (a, b) such thatf ′(y) = 0 (and we are then done) or
f ′(y) < 0. By the Intermediate Value Theorem, as0 is betweenf ′(a) (which is
positive) andf ′(y) (which is negative), there is somec ∈ (a, y) ⊂ [a, b] such that
f ′(c) = 0.

A.2.3 Taylor Series

Using the Mean Value Theorem we prove a version of thenth Taylor series Ap-
proximation: iff is differentiable at leastn+1 times on[a, b], then for allx ∈ [a, b],
f(x) =

∑n
k=0

f(k)(a)
k! (x−a)k plus an error that is at mostmaxa≤c≤x |f (n+1)(c)| ·

|x− a|n+1.
Assumingf is differentiablen + 1 times on[a, b], we apply the Mean Value

Theorem multiple times to bound the error betweenf(x) and its Taylor Approxi-
mations. Let

fn(x) =
n∑

k=0

f (k)(a)
k!

(x− a)k

h(x) = f(x)− fn(x). (A.18)

fn(x) is thenth Taylor series Approximation tof(x). Notefn(x) is a polynomial
of degreen and its firstn derivatives agree with the derivatives off(x) at x = 0.
We want to bound|h(x)| for x ∈ [a, b]. Without loss of generality (basically, for
notational convenience), we may assumea = 0. Thush(0) = 0. Applying the
Mean Value Theorem toh yields
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h(x) = h(x)− h(0)
= h′(c1) · (x− 0) with c1 ∈ [0, x]
= (f ′(c1)− f ′n(c1))x

=

(
f ′(c1)−

n∑

k=1

f (k)(0)
k!

· k(c1 − 0)k−1

)
x

=

(
f ′(c1)−

n∑

k=1

f (k)(0)
(k − 1)!

ck−1
1

)
x

= h1(c1)x. (A.19)

We now apply the Mean Value Theorem toh1(u). Note thath1(0) = 0. Therefore

h1(c1) = h1(c1)− h1(0)
= h′1(c2) · (c1 − 0) with c2 ∈ [0, c1] ⊂ [0, x]
= (f ′′(c2)− f ′′n (c2)) c1

=

(
f ′′(c2)−

n∑

k=2

f (k)(0)
(k − 1)!

· (k − 1)(c2 − 0)k−2

)
c1

=

(
f ′′(c2)−

n∑

k=2

f (k)(0)
(k − 2)!

ck−2
2

)
c1

= h2(c2)c1. (A.20)

Therefore,

h(x) = f(x)− fn(x) = h2(c2)c1x, c1, c2 ∈ [0, x]. (A.21)

Proceeding in this way a total ofn times yields

h(x) =
(
f (n)(cn)− f (n)(0)

)
cn−1cn−2 · · · c2c1x. (A.22)

Applying the Mean Value Theorem tof (n)(cn) − f (n)(0) givesf (n+1)(cn+1) ·
(cn − 0). Thus

h(x) = f(x)− fn(x) = f (n+1)(cn+1)cn · · · c1x, ci ∈ [0, x]. (A.23)

Therefore

|h(x)| = |f(x)− fn(x)| ≤ Mn+1|x|n+1 (A.24)

where

Mn+1 = max
c∈[0,x]

|f (n+1)(c)|. (A.25)

Thus if f is differentiablen + 1 times then thenth Taylor series approximation to
f(x) is correct within a multiple of|x|n+1; further, the multiple is bounded by the
maximum value off (n+1) on [0, x].

Exercise A.2.5.Prove(A.22) by induction.
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Exercise A.2.6. Calculate the first few terms of the Taylor series expansions at0
of cos(x), sin(x), ex, and2x3 − x + 3. Calculate the Taylor series expansions of
the above functions atx = a Hint: There is a fast way to do this.

Exercise A.2.7(Advanced). Showall the Taylor coefficients for

f(x) =

{
e−1/x2

if x 6= 0
0 if x = 0

(A.26)

expanded about the origin vanish. What does this imply about the uniqueness of
a Taylor series expansion?Warning: be careful differentiating at zero. More is
strangely true. Borel showed that if{an} is any sequence of real numbers then
there exists an infinitely differentiablef such that∀n ≥ 0, f (n)(0) = an (for a
constructive proof see [GG]). Ponder the Taylor series froman = (n!)2.

A.2.4 Advanced Calculus Theorems

For the convenience of the reader we record exact statements of several standard
results from advanced calculus that are used at various points of the text.

Theorem A.2.8(Fubini). Assumef is continuous and
∫ b

a

∫ d

c

|f(x, y)|dxdy < ∞. (A.27)

Then
∫ b

a

[∫ d

c

f(x, y)dy

]
dx =

∫ d

c

[∫ b

a

f(x, y)dx

]
dy. (A.28)

Similar statements hold if we instead have

N1∑

n=N0

∫ d

c

f(xn, y)dy,

N1∑

n=N0

M1∑

m=M0

f(xn, ym). (A.29)

For a proof in special cases, see [BL, VG]; an advanced, complete proof is given
in [Fol]. See Exercise?? for an example where the orders of integration cannot be
changed.

Theorem A.2.9(Green’s Theorem). Let C be a simply closed, piecewise-smooth
curve in the plane, oriented clockwise, bounding a regionD. If P (x, y) andQ(x, y)
have continuous partial derivatives on some open set containingD, then

∫

C

P (x, y)dx + Q(x, y)dy =
∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy. (A.30)

For a proof, see [Rud], Theorem 9.50 as well as [BL, La5, VG].

Exercise A.2.10.Prove Green’s Theorem. Show it is enough to prove the theorem
for D a rectangle, which is readily checked.
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Theorem A.2.11(Change of Variables). Let V and W be bounded open sets in
Rn. Leth : V → W be a 1-1 and onto map, given by

h(u1, . . . , un) = (h1(u1, . . . , un), . . . , hn(u1, . . . , un)) . (A.31)

Letf : W → R be a continuous, bounded function. Then∫
· · ·

∫

W

f(x1, . . . , xn)dx1 · · · dxn

=
∫
· · ·

∫

V

f (h(u1, . . . , un))J(u1, . . . , uv)du1 · · · dun. (A.32)

whereJ is theJacobian

J =

∣∣∣∣∣∣∣

∂h1
∂u1

· · · ∂h1
∂un

...
.. .

...
∂hn

∂u1
· · · ∂hn

∂un

∣∣∣∣∣∣∣
. (A.33)

For a proof, see [La5, Rud].

A.3 CONVERGENCE AND CONTINUITY

We recall some needed definitions and results from real analysis. See [Rud] for
more details.

Definition A.3.1 (Convergence). A sequence{xn}∞n=1 converges tox if given any
ε > 0 there exists anN (possibly depending onε) such that for alln > N , |xn −
x| < ε. We often writexn → x.

Exercise A.3.2. If xn = 3n2

n2+1 , provexn → 3.

Exercise A.3.3. If {xn} converges, show it converges to a unique number.

Exercise A.3.4. Let α > 0 and setxn+1 = 1
2

(
xn + α

xn

)
. If x0 = α, provexn

converges to
√

α. Can you generalize this to findpth roots? This formula can be
derived by Newton’s Method (see §??).

Definition A.3.5 (Continuity). A functionf is continuous at a pointx0 if given an
ε > 0 there exists aδ > 0 (possibly depending onε) such that if|x− x0| < δ then
|f(x)− f(x0)| < ε.

Definition A.3.6 (Uniform Continuity). A continuous function is uniformly con-
tinuous if given anε > 0 there exists aδ > 0 such that|x − y| < δ implies
|f(x)− f(y)| < ε. Note that the sameδ works for allx.

Usually we will work with functions that are uniformly continuous on some
fixed, finite interval.

Theorem A.3.7. Any continuous function on a closed, finite interval is uniformly
continuous.
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Exercise A.3.8.Showx2 is uniformly continuous on[a, b] for −∞ < a < b < ∞.
Show1

x is not uniformly continuous on(0, 1), even though it is continuous. Show
x2 is not uniformly continuous on[0,∞).

Exercise A.3.9. Show the sum or product of two uniformly continuous functions
is uniformly continuous. In particular, show any finite polynomial is uniformly
continuous on[a, b].

We sketch a proof of Theorem A.3.7. We first prove

Theorem A.3.10(Bolzano-Weierstrass). Let {xn}∞n=1 be a sequence in a finite
closed interval. Then there is a subsequence{xnk

}∞k=1 such thatxnk
converges.

Sketch the proof.Without loss of generality, assume the finite closed interval is
[0, 1]. We proceed by divide and conquer. Consider the two intervalsI1 = [0, 1

2 ]
andI2 = [ 12 , 1]. At least one of these (possibly both) must have infinitely many
points of the original sequence as otherwise there would only be finitely manyxn’s
in the original sequence. Choose a subinterval (sayIa) with infinitely manyxn’s,
and choose any element of the sequence in that interval to bexn1 .

Consider allxn with n > n1. Divide Ia into two subintervalsIa1 andIa2 as
before (each will be half the length ofIa). Again, at least one subinterval must
contain infinitely many terms of the original sequence. Choose such a subinterval,
sayIab, and choose any element of the sequence in that interval to bexn2 (note
n2 > n1). We continue in this manner, obtaining a sequence{xnk

}. Fork ≥ K,
xnk

is in an interval of size1
2K . We we leave it as an exercise to the reader to show

how this implies there is anx such thatxnk
→ x.

Proof of Theorem A.3.7.If f(x) is not uniformly continuous, givenε > 0 for each
δ = 1

2n there exist pointsxn andyn with |xn − yn| < 1
2n and|f(xn)− f(yn)| >

ε. By the Bolzano-Weierstrass Theorem, we construct sequencesxnk
→ x and

ynkj
→ y. One can showx = y, and |f(xnkj

) − f(ynkj
)| > ε violates the

continuity off atx.

Exercise A.3.11.Fill in the details of the above proof.

Definition A.3.12 (Bounded). We sayf(x) is bounded (byB) if for all x in the
domain off , |f(x)| ≤ B.

Theorem A.3.13.Letf(x) be uniformly continuous on[a, b]. Thenf(x) is bounded.

Exercise A.3.14.Prove the above theorem. Hint: Givenε > 0, divide [a, b] into
intervals of lengthδ.

A.4 DIRICHLET’S PIGEON-HOLE PRINCIPLE

Theorem A.4.1(Dirichlet’s Pigeon-Hole Principle). LetA1, A2, . . . , An be a col-
lection of sets with the property thatA1 ∪ · · · ∪ An has at leastn + 1 elements.
Then at least one of the setsAi has at least two elements.
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This is called the Pigeon-Hole Principle for the following reason: ifn+1 pigeons
go ton holes, at least one of the holes must be occupied by at least two pigeons.
Equivalently, if we distributek objects inn boxes andk > n, one of the boxes
contains at least two objects. The Pigeon-Hole Principle is also known as the Box
Principle. One application of the Pigeon-Hole Principle is to find good rational
approximations to irrational numbers (see Theorem??). We give some examples
to illustrate the method.

Example A.4.2. If we choose a subsetS from the set{1, 2, . . . , 2n} with |S| =
n + 1, thenS contains at least two elementsa, b with a|b.

Write each elements ∈ S ass = 2σs0 with s0 odd. There aren odd numbers
in the set{1, 2, . . . , 2n}, and as the setS hasn + 1 elements, the Pigeon-Hole
Principle implies that there are at least two elementsa, b with the same odd part;
the result is now immediate.

Exercise A.4.3. If we choose55 numbers from{1, 2, 3, . . . , 100} then among the
chosen numbers there are two whose difference is ten (from [Ma]).

Exercise A.4.4.Leta1, . . . , an+1 be distinct integers in{1, . . . , 2n}. Prove two of
them add to a number divisible by2n.

Exercise A.4.5.Leta1, . . . , an be integers. Prove that there is a subset whose sum
is divisible byn.

Example A.4.6. Let{a1, a2, a3, a4, a5} be distinct real numbers. There are indices
i, j with 0 < ai − aj < 1 + aiaj .

As the functiontan : (−π
2 , π

2 ) → R is surjective, there are anglesθi ∈ (−π
2 , π

2 )
with ai = tan θi, 1 ≤ i ≤ 5. Divide the interval(−π

2 , π
2 ) into four equal pieces,

each of lengthπ
4 . As we have five angles, at least two of them must lie in the same

small interval, implying that there arei, j with 0 < θi − θj < π
4 . Applying tan to

the last inequality and using the identity

tan(x− y) =
tan x− tan y

1 + tan x tan y
(A.34)

gives the result.

Exercise A.4.7. Let φ1, φ2, . . . , φK be angles. Then for anyε > 0 there are infi-
nitely manyn ∈ N such that∣∣∣∣∣∣

K −
K∑

j=1

cos(nφk)

∣∣∣∣∣∣
< ε. (A.35)

Exercise(h) A.4.8. The Pigeon-Hole Principle ensures that, if there areN boxes
and N + 1 objects, then at least one box has two objects. What if we lower our
sites and ask only that there is a high probability of having a box with two elements;
see for example the birthday problem (Exercise 1.1.34). Specifically, let us assume
that each object is equally likely to be in any of theN boxes. For each fixedk,
show there is a positive probability of having at leastk objects in a box if there are
N

k−1
k objects.
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A.5 MEASURES AND LENGTH

We discuss sizes of subsets of[0, 1]. It is natural to define the length of an interval
I = [a, b] (or [a, b) and so on) asb − a. We denote this by|I|, and refer to this
as thelength or measureof I. Our definition implies a pointa has zero length.
What about more exotic sets, such as the rationals and the irrationals? What are the
measures of these sets? A proper explanation is given by measure theory (see [La5,
Rud]); we introduce enough for our purposes. We assume the reader is familiar
with countable sets (see Chapter??).

Let I be a countable union of disjoint intervalsIn ⊂ [0, 1); thusIn∩Im is empty
if n 6= m. It is natural (but see §?? as a warning for hownatural statements are
often wrong) to say

|I| =
∑

n

|In|. (A.36)

It is important to take a countable union. Consider an uncountable union with
Ix = {x} for x ∈ [0, 1]. As each singleton{x} has length zero, we expect their
union to also have length zero; however, their union is[0, 1], which has length 1. If
A ⊂ B, it is natural to say|A| (the length ofA) is at most|B| (the length ofB).
Note our definition implies[a, b) and[a, b] have the same length.

A.5.1 Measure of the Rationals

Our assumptions imply that the rationals in[0, 1] have zero length (hence the irra-
tionals in[0, 1] have length 1).

Theorem A.5.1. The rationalsQ have zero measure.

Sketch of the proof.We claim it suffices to showQ = Q ∩ [0, 1] has measure zero.
To prove|Q| = 0 we show that given anyε > 0 we can find a countable set of
intervalsIn such that

1. |Q| ⊂ ∪nIn;

2.
∑

n |In| < ε.

As the rationals are countable, we can enumerateQ, sayQ = {xn}∞n=0. For each
n let

In =
[
xn − ε

4 · 2n
, xn +

ε

4 · 2n

]
, |In| =

ε

2 · 2n
. (A.37)

ClearlyQ ⊂ ∪nIn. The intervalsIn are not necessarily disjoint, but

|∪nIn| ≤
∑

n

|In| = ε, (A.38)

which completes the proof.

Exercise A.5.2.Show that ifQ = Q∩ [0, 1] has measure zero, thenQ has measure
zero.
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Exercise A.5.3.Show any countable set has measure zero; in particular, the alge-
braic numbers have length zero.

Definition A.5.4 (Almost all). Let Ac be the compliment ofA ⊂ R: Ac = {x :
x 6∈ A}. If Ac is of measure zero, we say almost allx are inA.

Thus the above theorem shows that not only are almost all real numbers are
irrational but almost all real numbers are transcendental.

A.5.2 Measure of the Cantor Set

The Cantor set is a fascinating subset of[0, 1]. We construct it in stages. Let
C0 = [0, 1]. We remove the middle third ofC0 and obtainC1 = [0, 1

3 ] ∪ [ 23 , 1].
NoteC1 is a union of two closed intervals (we keep all endpoints). To constructC2

we remove the middle third of all remaining intervals and obtain

C2 =
[
0,

1
9

] ⋃ [
2
9
,

3
9

] ⋃ [
6
9
,

7
9

] ⋃ [
8
9
, 1

]
. (A.39)

We continue this process. NoteCn is the union of2n closed intervals, each of size
3−n, and

C0 ⊃ C1 ⊃ C2 ⊃ · · · . (A.40)

Definition A.5.5 (Cantor Set). The Cantor setC is defined by

C =
∞⋂

n=1

Cn = {x ∈ R : ∀n, x ∈ Cn}. (A.41)

Exercise A.5.6.Show the length of the Cantor set is zero.

If x is an endpoint ofCn for somen, thenx ∈ C. At first, one might expect that
these are the only points, especially as the Cantor set has length zero.

Exercise A.5.7.Show1
4 and 3

4 are inC, but neither is an endpoint.Hint: Proceed
by induction. To constructCn+1 fromCn, we removed the middle third of intervals.
For each sub-interval, what is left looks like the union of two pieces, each one-
third the length of the previous. Thus, we have shrinking maps fixing the left and
right parts L,R : R → R given byL(x) = x

3 and R(x) = x+2
3 , andCn+1 =

R(Cn) + L(Cn).

Exercise A.5.8.Show the Cantor set is also the set of all numbersx ∈ [0, 1] which
have no1’s in their base three expansion. For rationals such as1

3 , we may write
these by using repeating2’s: 1

3 = .02222 . . . in base three. By considering base
two expansions, show there is a one-to-one and onto map from[0, 1] to the Cantor
set.

Exercise A.5.9(From theAmerican Mathematical Monthly). Use the previous ex-
ercise to show that everyx ∈ [0, 2] can be written as a sumy + z with y, z ∈ C.
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Remark A.5.10. The above exercises show the Cantor set is uncountable and is in
a simple correspondence to all of[0, 1], but it has length zero! Thus, the notion of
“length” is different from the notion of “cardinality”: two sets can have the same
cardinality but very different lengths.

Exercise A.5.11(Fat Cantor Sets). Instead of removing the middle third in each
step, remove the middle1m . Is there a choice ofm which yields a set of positive
length? What if at stagen we remove the middle1an

. For what sequencesan are we
left with a set of positive length? If thean are digits of a simple continued fraction,
what do you expect to be true for “most” such numbers?

For more on the Cantor set, including dynamical interpretations, see [Dev, Edg,
Fal, SS3].

A.6 INEQUALITIES

The first inequality we mention here is the Arithmetic Mean and Geometrically
Mean Inequality (AM–GM); see [Mil3] for some proofs. For positive numbers
a1, . . . , an, the arithmetic mean isa1+···+an

n and the geometric mean isn
√

a1 · · · an.

Theorem A.6.1(AM-GM) . Leta1, . . . , an be positive real numbers. Then

n
√

a1 · · · an ≤ a1 + · · ·+ an

n
, (A.42)

with equality if and only ifa1 = · · · = an.

Exercise A.6.2. Prove the AM-GM whenn = 2. Hint: For x ∈ R, x2 ≥ 0; this
is one of the most useful inequalities in mathematics. We will see it again when we
prove the Cauchy-Schwartz inequality.

Exercise A.6.3.Prove the AM-GM using mathematical induction.

There is an interesting generalization of the AM-GM; AM-GM is the casep1 =
· · · = pn = 1

n of the following theorem.

Theorem A.6.4. Let a1, . . . , an be as above, and letp1, . . . , pn be positive real
numbers. SetP = p1 + · · ·+ pn. Then

ap1
1 . . . apn

n ≤
(

p1a1 + · · ·+ pnan

P

)P

, (A.43)

and equality holds if and only ifa1 = · · · = an.

This inequality is in turn a special case of the following important theorem:

Theorem A.6.5(Jensen’s Inequality). Letf be a real continuous function on[a, b]
with continuous second derivative on(a, b). Suppose thatf ′′(x) ≤ 0 for all x ∈
(a, b). Then fora1, . . . , an ∈ [a, b] andp1, . . . , pn positive real numbers, we have

f

(
p1a1 + · · ·+ pnan

p1 + · · ·+ pn

)
≤ p1f(a1) + · · ·+ pnf(an)

p1 + · · ·+ pn
. (A.44)
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Exercise A.6.6. Prove Jensen’s inequality.Hint: Draw a picture; carefully exam-
ine the casen = 2, p1 = p2 = 1

2 . What doesf ′′(x) ≤ 0 mean in geometric
terms?

Exercise A.6.7. Investigate the cases where Jensen’s inequality is an equality.

Exercise A.6.8. Show that Jensen’s inequality implies the AM-GM and its gener-
alization Theorem A.6.4.Hint: Examine the functionf(x) = − log x, x > 0.

Our final inequality is theCauchy-Schwarz inequality. There are a number of
inequalities that are referred to as the Cauchy-Schwarz inequality. A useful version
is the following:

Lemma A.6.9(Cauchy-Schwarz). For complex-valued functionsf andg,
∫ 1

0

|f(x)g(x)|dx ≤
(∫ 1

0

|f(x)|2dx

) 1
2

·
(∫ 1

0

|g(x)|2dx

) 1
2

. (A.45)

Proof. For notational simplicity, assumef andg are non-negative functions. Work-
ing with |f | and|g| we see there is no harm in the above assumption. As the proof
is immediate if either of the integrals on the right hand side of (A.45) is zero or
infinity, we assume both integrals are non-zero and finite. Let

h(x) = f(x)− λg(x), λ =

∫ 1

0
f(x)g(x)dx∫ 1

0
g(x)2dx

. (A.46)

As
∫ 1

0
h(x)2dx ≥ 0 we have

0 ≤
∫ 1

0

(f(x)− λg(x))2 dx

=
∫ 1

0

f(x)2dx − 2λ

∫ 1

0

f(x)g(x)dx + λ2

∫ 1

0

g(x)2dx

=
∫ 1

0

f(x)2dx − 2

(∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

+

(∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

=
∫ 1

0

f(x)2dx −

(∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

. (A.47)

This implies (∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

≤
∫ 1

0

f(x)2dx, (A.48)

or equivalently
(∫ 1

0

f(x)g(x)dx

)2

≤
∫ 1

0

f(x)2dx ·
∫ 1

0

g(x)2dx. (A.49)

Taking square roots completes the proof. 2

Again, note that both the AG-GM and the Cauchy-Schwartz inequalities are
clever applications ofx2 ≥ 0 for x ∈ R.
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Exercise A.6.10.For whatf andg is the Cauchy-Schwarz Inequality an equality?

Exercise A.6.11.One can also prove the Cauchy-Schwartz inequality as follows:

considerh(x) = af(x) + bg(x) wherea =
√∫ 1

0
|f(x)|2dx, b =

√∫ 1

0
|g(x)|2dx,

and then integrateh(x)2.

Remark A.6.12. The Cauchy-Schwarz Inequality is often useful wheng(x) = 1.
In this special case, it is important that we integrate over a finite interval.

Exercise A.6.13. Supposea1, . . . , an and b1, . . . , bn are two sequences of real
numbers. Prove the following Cauchy-Schwarz inequality:

|a1b1 + a2b2 + · · ·+ anbn| ≤ (a2
1 + . . . a2

n)
1
2 (b2

1 + · · ·+ b2
n)

1
2 . (A.50)

Exercise A.6.14.Letf, g : R→ C be such that
∫
R |f(x)|2dx,

∫
R |g(x)|2dx < ∞.

Prove the following Cauchy-Schwarz inequality:
∣∣∣∣
∫ ∞

−∞
f(x)g(x)dx

∣∣∣∣
2

≤
∫ ∞

−∞
|f(x)|2dx ·

∫ ∞

−∞
|g(x)|2dx. (A.51)
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Hints and Remarks on the Exercises

Chapter 8: Introduction to Probability

Exercise 1.1.18:Hint: Let an be the probability that there are at least3 consecutive
heads inn tosses. Showan satisfies the recurrence relation

an =
1
2
an−1 +

1
4
an−2 +

1
8
an−3 +

1
8
. (B.1)

The presence of the final term,1
8 , greatly complicates matters; we cannot use the

methods of Exercise?? or §2.3 to solve the recurrence relation. It is much easier
to studybn, the probability that there are not3 consecutive heads inn tosses; note
an = 1− bn. Showbn satisfies

bn =
1
2
bn−1 +

1
4
bn−2 +

1
8
bn−3. (B.2)

More generally, determine the probability of observing at leastk heads inn tosses
of a coin with probabilityp of heads. Ifp = 1

2 show that the roots of the char-

acteristic polynomial of the recurrence relation are at most
(
1− 2−k

)1/k
. One

application of this is to roulette, where the probability of getting red (or black) is
16/38 because there are two green spaces. This shows there is a large enough prob-
ability of consecutive losses so that the strategy of double plus one (bet $1 on the
first spin; if you lose bet $2 on the second, if you lose again bet $4 on the third, if
you lose again bet $8 on the fourth, and so on; it does not matter when your color
finally comes up – you always win $1) will fail in general, as too quickly you reach
the house limit (maximum allowable bet) and lose a lot.

Exercise 1.1.36:Hint: Let X[m] denote the largest of player one’s rolls, andY[n]

the largest of player two’s rolls. Fora ∈ {1, . . . , k},

Prob(X[m] = a) =
am − (a− 1)m

km
; (B.3)

this follows from

Prob(X[m] = a) =
m∑

`=1

(
m

`

)
1
k`

(
a− 1

k

)m−`

, (B.4)

the binomial theorem and noticing we have a telescoping sum. The proof is com-
pleted by noting that

Prob(Player one wins)=
k∑

a=2

Prob(X[m] = a) · Prob(Y[n] ≤ a− 1). (B.5)
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X[m] andY[n] are examples of order statistics; see also Exercise??.

Exercise 1.2.9:Hint: Let

f(λ) =
∞∑

k=0

λk

k!
= eλ. (B.6)

Differentiate once to determine the mean, twice to determine the variance.

Chapter 9: Applications of Probability: Benford’s Law and Hypothesis
Testing

Exercise 2.3.3:Hint: Considera0 = a1 = a2 = 1. This recurrence relation was
constructed by starting with the characteristic polynomial(r− 2)2(r− 1) and then
finding initial conditions so that the coefficients of theλ1 = λ2 = 2 eigenvalues
vanish. In searching for counter-examples, it is significantly easier here to specify
the roots of the characteristic polynomial first, and find the actual recurrence rela-
tion second.

Exercise 2.3.4:Hint: Consider a recurrence relation of lengthk with k distinct
roots. By specifyingk terms (saya0, . . . , ak−1), the coefficients of the rootsλi are
determined. We must solve

u1λ
n
1 + · · ·+ ukλn

k = an, n ∈ {0, . . . , k − 1}. (B.7)

We may write this in matrix form as




1 1 · · · 1
λ1 λ2 · · · λk

λ2
1 λ2

2 · · · λ2
k

...
...

. . .
...

λk−1
1 λk−1

2 · · · λk−1
k







u1

u2

u3

...
uk




=




a0

a1

a2

...
ak−1




. (B.8)

The matrix of eigenvalues is a Vandermonde matrix; by Exercise?? its determinant
is non-zero whenλi 6= λj . Thus its inverse exists, and the initial conditions which
lead tou1 = 0 are a hyperplane inCk, which shows that almost all initial conditions
lead tou1 6= 0.
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Appendix C

Concluding Remarks

This book is meant as an introduction to a vast, active subject. It is our hope
that the reader will pursue these topics further through the various projects and
references mentioned in the introduction and chapters above. We also hope that we
have shown how similar tools, techniques and concepts arise in different parts of
mathematics. We briefly summarize some of what we have seen.

The first is the Philosophy of Square Root Cancellation. As a general principle,
many “nice” sums ofN terms of absolute value1 are approximately of size

√
N .

Examples range from the Gauss sums of §?? (which were then used in our investi-
gations of the number of solutions to Diophantine equations in §??) to the average
value of generating functions encountered in the Circle Method in Chapters??and
?? to the Central Limit Theorem of §1.4 (which shows that for a wide class of pop-
ulations, the distribution of the mean of a large sample is independent of the fine
properties of the underlying distribution).

Similar to the universality of the Central Limit Theorem, many different systems
after normalization follow the same spacing laws. We have seen numerical and
theoretical evidence showing that spacings between primes, the fractional parts of
nkα (for certaink andα) and numbers uniformly chosen in[0, 1] are the same (see
Chapter??), while in Chapters?? to ?? we see similar behavior in energy levels
of heavy nuclei, eigenvalues of matrices (of random matrix ensembles as well as
adjacency matrices attached tod-regular graphs) and zeros ofL-functions.

Throughout our investigations, certain viewpoints have consistently proven use-
ful. Among the most important are Fourier Analysis (Chapter??) and the structure
of numbers (Chapters?? and??). From Fourier Analysis we obtain Poisson Sum-
mation and the Fourier Transform (which are useful for investigating problems as
varied as the first digits of sequences (§2.4.2), the functional equation ofζ(s) (§??)
and in Chapter?? the zeros ofL-functions). Other applications range from Weyl’s
Theorem (Chapter??) on the equidistribution of sequences to the Circle Method
and representing numbers as the sum of primes or integer powers (§??and??). We
have used the structure of numbers in finding good rational approximations (§??),
Roth’s Theorem (Chapter??), and studying the properties ofnkα mod 1 (Chapter
??).

Finally, we have tried to emphasize in the text which techniques appear through-
out mathematics. Some of the most common are adding zero or multiplying by one,
divide and conquer, dyadic decomposition, no integers are in(0, 1), the Pigeon-
Hole Principle, positivity, and splitting integrals or sums; see thetechniquesentry
in the index for more details.
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