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Preface

This book on modern number theory grew out of undergraduate research semi-
nars taught at Princeton University (2001-2003), and similar courses taught at New
York University, Ohio State, Brown University and a summer Research Experience
for Undergraduates at the American Institute of Mathematics. The purpose of these
classes was to expose undergraduates to current research topics in mathematics.
To supplement the standard lecture-homework classes, we wanted a course where
students could work on outstanding conjectures and open problems and experience
firsthand the kinds of problems mathematicians study. In the sciences and engineer-
ing, undergraduates are often exposed to state of the art problems in experimental
laboratories. We want to bring a similar experience to students interested in math-
ematics. This book is the outcome of that effort, providing the novice with hints as
to what we feel is a good path through the immense landscape of number theory,
as well as the needed background material. We have tried to give students and their
teachers a model which can be used to develop their own research program; to this
end, throughout the book are detailed descriptions of accessible open problems and
references to the literature. Though we encourage students and teachers to attempt
some of the open problems, the book stands alone and may be used for a standard
lecture course (especially for new subjects such as Random Matrix Theory where
there are not many introductory works accessible to undergraduates). Our goal is
to supplement the classic texts in the field by showing the connections between
seemingly diverse topics, as well as making some of the subjects more accessible
to beginning students and whetting their appetite for continuing in mathematics.
The book has five parts, though several themes run throughout the book.

e Part | deals with basic number theory (cryptography and basic group theory),
elementary.-functions (including the connections between zerag of and
primes), and solutions to Diophantine equations. The material in this part is
fairly standard, and could serve as an introduction to number theory. In some
sections a little group theory and first semester complex analysis is assumed
for some advanced topics. Our purpose in the first chapter is not to write
a treatise on cryptography, but to review some of the background necessary
from basic number theory for later chapters. It is possibleativatethis
material in the context of cryptography; though these applications are very
important, this connection is meant only to interest the reader, as this is not
a exposition on cryptography. Similarly, elliptic curves are a terrific example
for some of the material in Chaptér(and later in the book); as such, we
introduce just enough for these purposes. As there are numerous excellent
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books on both of these subjects, we have kept our treatments short and refer
the interested reader to these for more details. One theme in these chapters
is the search for efficient algorithms, which appears frequently in later parts
as well.

Part 1l has two connected themes: approximating numbers with rationals,
and continued fractions. In the first, the basic properties of algebraic and
transcendental numbers are discussed, and a proof of Roth’s Theorem (on
how well algebraic numbers can be approximated by rationals) is given in
full detail. This is one of the great achievement of 20th century number the-
ory. Roth’s Theorem has now been greatly generalized, and there are a few
different ways to prove it. Our formulation and proof follow Roth’s original
proof. The proof we present here, though long and technical, requires only
knowledge of elementary calculus and linear algebra. The second part is an
introduction to continued fractions (a subject of interest in its own right, but
also of use in approximation theory) and culminates in several open prob-
lems; this chapter is independent of Roth’s Theorem and may serve as a
survey to the subject. Also, time and again (especially in Part Il when we
study digit bias and spacings between terms in certain sequences), we see
that answers to many number theoretic questions depend on properties of the
numbers in the problem; often the continued fraction expansion highlights
these properties. There are references to open problems in continued frac-
tions, many of which concern the distribution of digits (see Part IlI).

Part 1l encompasses three themes. The first is the distribution of the first
digit of several interesting sequences (for example, the Fibonacci numbers
and iterates of thez + 1 map). We use this problem as a motivation for hy-
pothesis testing (whether or not numerical data supports or contradicts con-
jectured behavior). Hypothesis testing is an extremely important subject,
especially as computers are used more and more frequently in mathematics.
The second theme centers around the Gauss-Kuzmin Theorem for the dis-
tribution of digits of continued fractions. We then develop enough Fourier
Analysis to prove various basic results, including a sketch of the proof of
the Central Limit Theorem and Poisson Summation (one of the most used
tools in number theory). We use these results to investigate the behavior of
n*a mod 1 for fixed k, o (specifically, the spacings between these numbers
in [0, 1]; for manyk anda these spacings appear to be the same as the spac-
ings between adjacent primes); we study other spacing problems in Part V; in
fact, our results on the Fourier transform are needed in Chaptehen we
investigate zeros af-functions. Numerous open problems and references to
the current literature are provided.

Part IV is a brief introduction to the Circle Method, a powerful theory to
study questions in additive number theory (such as writing a number as a
sum of a fixed number df" powers or primes). After developing the basics
of the theory, we discuss in some detail why, using these methods, we cannot
(yet?) show that any even number is the sum of two primes but we can show
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any large odd number is the sum of three primes. We use the Circle Method
to predict how many Germain primqsz@nd% both prime) are less than

This example illustrates many of the key techniques of the theory, as well as
the problems that arise in applications. Further, the density of these primes
has recently been connected to fast primality testing algorithms. As usual we
conclude with some open problems.

e Part V is an introduction to Random Matrix Theory and its interplay with
number theory. What began as a model in 1A&0s for physicists to study
the energy levels of heavy nuclei has become a powerful tool after a chance
encounter one day at tea in th@70s (see P] for an entertaining account
of the meeting) for predicting the behavior of zeros¢d§) and otherL-
functions; knowledge of these zeros is intimately connected to properties of
primes. The general result is that there is a striking similarity between the
spacings between energy levels of heavy nuclei, eigenvalues of sets of ma-
trices and zeros af-functions. We take a classical approach to the subject.
Results from linear algebra and occasionally first semester complex analysis
are used (especially in the final chapter); a review of enough of the back-
ground material is provided for students to follow the key ideas in the proofs.
There are numerous open problems requiring only elementary probability
theory and linear algebra (at the level covered in this book); many have al-
ready been successfully investigated by our students.

There are several chapters throughout the book covering background material
in basic number theory, algebra, Fourier analysis and probability theory, as well
as two appendices on needed calculus, analysis and linear algebra results. Clearly
our book is not meant to replace standard textbooks in these fields. We have two
reasons for including these background chapters (in addition to the material being
interesting in its own right). First, waiting for students to assemble such a back-
ground takes time, and the main purpose of our book is to show students in the
early stages of their education what mathematicians do, and the interplay between
the various parts of number theory and mathematics. Second, often very little of
the background subjects is needed to understand the basic formulation and set-up
of current work. Therefore a student who has not seen such material in a previ-
ous course can get a feel for these subjects by reading the review and background
chapters, and then move on to the current research chapters. We have, however,
written the chapters in such a way that there are often additional remarks or sec-
tions for students with stronger backgrounds. We have also included references
throughout the book showing how the same methods and techniques are used for
many different problems.

We have strived to keep the pre-requisites to a minimum: what is required is
more a willingness to explore than a familiarity with the landscape. Several times
we use results from later in the book in earlier investigations; our hope is that after
seeing how these theorems are used and needed the reader will be motivated and
interested enough to study the proofs. For most of the book one-variable calculus
is the only requirement. We have also tried to emphasize common techniques in
proofs (the reader is strongly encouraged to studygbleniqueentry in the index).
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The book breaks naturally into five parts. Depending on the background of the
students, and whether or not a class is going to explore open problems further, a
typical semester class would cover material from one part of the book (as well as
whatever background material is needed), though we recommend everyone at least
skim Chapte?to ensure familiarity with the language and some of the motivating
influences and themes of number theory. Many topics (such as applications to
cryptography, algebraic structure of numbers and spacings between events) occur
in various forms throughout the book. In a two semester course, one can cover two
of the advanced parts and see these connections. We have also tried to give students
the opportunity to discover the theory by themselves by giving many exercises.
Mathematics is not meant to be a passive pursuit. Some of the problems are mere
warm-ups; others are real problems that require time and effort. The reader should
not be discouraged at being unable to work out all the problems. The value of an
exercise is often in the time and energy spent on it, rather than the final solution.
Many of the more difficult problems are standard theorems and can be seen proved
in other textbooks. In this regard our manuscript is in the spirit of [MuRj.
Appendix B we have provided hints and further remarks to certain exercises;

these problems are marked with either an (h) or (hr) in the text.

We have assembled an extensive bibliography to aid the reader in further study.
In addition to the excellent texts [AZ, Apo, BS, Dal, Da2, EE, Est2, Fe, HW,
IR, IK, Kh, Kn, La2, Meh2, Na, NZM, ST, vdP6] on continued fractions, number
theory and random matrix theory, we recommend the recent work of Narkiewicz
[Nar] (where the reader will find proofs of many number theory results, as well as
over 1800 references) as well as [Guy] (where there are extensive bibliographies
for open problems). We conclude in Appendix C with some remarks on common
themes running through this book and number theory.

The students in our courses used computers to assemble large amounts of data
for some of the problems mentioned in the text, which then led us to appropriate
conjectures and in some cases even gave us ideas on how to prove them. For links
to previous student reports as well as some of the research papers mentioned in the
bibliography, please visit

http://www.math.princeton.edu/mathlab/book/index.html

These include student programs (mostly in C++, Maple, Mathematica, MATLAB,
or PARI) and detailed references for those interested in continuing these studies.
Students should also consult MathSciNet [AMS], the arXiv [Corl] and Project
Euclid [Cor2] to find and download additional references.

It is a pleasure to thank the professors and teaching assistants who have helped
run the class over the years (Alex Barnett, Vitaly Bergelson, Jodo Boavida, Alexan-
der Bufetov, Salman Butt, Brian Conrey, David Farmer, Harald Helfgott, Chris
Hughes, James Mailhot, Atul Pokharel, Michael Rubinstein, Peter Sarnak, Lior
Silberman, Yakov Sinai, Warren Sinnott, Florin Spinu and Andrew Wiles), as well
as the students.

We would also like to thank several of our colleagues. In particular, we thank Ed-
uardo Duefiez, Rob Gross and Amir Jafari for reviewing an early draft and provid-
ing numerous helpful suggestions to improve the presentation, and Timothy Abbot,
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Mike Buchanan, Scott Craver, Kevin Dayaratna, Dean Eiger, Manfred Einsiedler,
Dan File, Chris Hammond, Ted Hill, Alex Kontorovich, Josh Krantz, Matt Miche-
lini, Jeff Miller, Liz Miller, Paria Mirmonsef, C. J. Mozzochi, Anna Pierrehumbert,
Amitabha Roy, Zeév Rudnick, Eitan Sayag, Aaron Silberstein, Dan Stone, Howard
Straubing, Yuri Tschinkel, Akshay Venkatesh and Bill Zaboski for discussions and
comments on various chapters. The first author gave several lectures on the mater-
ial to a summer research group and the Ross Program at Ohio State (summer 2004),
and is indebted to the students for their comments and suggestions. We are grateful
to Nicole, Michelle and Leo Beaupre, Andrew and David Norris, Joe Silverman
and the staff at Princeton University Press for help with the illustrations, and to
Stephen Kudla for mutually productive LaTeX discussions.

We are extremely grateful to Princeton University Press, especially to our edi-
tor Vickie Kearn, our production editor Lucy Day W. Hobor and our copyeditor
Jennifer Slater, for all their help and aid, to Bob Gunning, for initiating contact
between us and PUP and encouraging us to write the book, and to the National
Science Foundation’s VIGRE program, which helped fund many of the classes at
Princeton, NYU and Ohio State.

The first author was partially supported by VIGRE post-doctoral fellowships at
Princeton, New York University, The Ohio State University and Brown Univer-
sity, and enjoyed the hospitality of Boston University during the final stages of the
project. The second author enjoyed the hospitality of the University of Maryland at
College Park, Johns Hopkins University and The Ohio State University at various
stages of working on the project. His work was partially supported by a Young
Investigator's Award from the National Security Agency.

Steven J. Miller
Providence, RI
December 2005

Ramin Takloo-Bighash
Princeton, NJ
December 2005
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Notation

W : the set of whole numberg1,2,3,4,...}.

N : the set of natural number$0,1,2,3,...}.

Z : the set of integersf. .., —2,—1,0,1,2,... }.

Q : the set of rational numbergzx : x = g,p, q€Z,q#0}.

R : the set of real numbers.

C : the set of complex number$z : z = z + iy, =,y € R}.

Rz, Sz : the real and imaginary parts ofc C; if z = x+iy, Rz = z and3z = y.
Z/nZ : the additive group of integers med {0,1,...,n — 1}.
(Z/nZ)* : the multiplicative group of invertible elements mad

F, : the finite field withp elements{0,1,...,p — 1}.

alb: a dividesb.

p*||b: p* dividesb andp*! does not divide.

(a,b) : greatest common divisor (gcd) efandb, also writtenged(a, b).

prime, composite : a positive integelis prime ifa > 1 and the only divisors of
arel anda; if @ > 1 is not prime, we say is composite.

coprime (relatively prime) « andb are coprime (or relatively prime) if their great-
est common divisor i$.

x =y mod n : there exists an integersuch thatc = y + an.
v : for all.

3 : there exists.
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Big-Oh notation : A(x) = O(B(z)), read “A(x) is of order (or big-Oh)B(x)”",
means3C > 0 and anx, such thatvz > zg, |A(z)| < C B(z). This is also
written A(z) < B(z) or B(z) > A(z).

Little-Oh notation : A(z) = o(B(z)), read “A(z) is little-Oh of B(z)", means
lim, 0 A(x)/B(z) = 0.

|S| or #S : number of elements in the s&t

p : usually a prime number.

i, J, k, m, n : usually an integer.

[z] or |z] : the greatest integer less than or equat.teead “the floor ofc”.
{z} : the fractional part of; notex = [z] + {z}.

supremum : given a sequenge, } > ;, the supremum of the set, denoteg,, x.,,
is the smallest number(if one exists) such that,, < ¢ for all n, and for any > 0

there is somey, such thatz,,, > ¢ — e. If the sequence has finitely many terms,
the supremum is the same as the maximum value.

infimum : notation as above, the infimum of a set, dendtéd =,,, is the largest
numbere (if one exists) such that,, > ¢ for all n, and for any > 0 there is some
ng such thate,,, < c + e. If the sequence has finitely many terms, the infimum is
the same as the minimum value.

O : indicates the end of a proof.
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Chapter One

Introduction to Probability

In this chapter we give a quick introduction to the basic elements of Probability
Theory, which we use to describe the limiting behavior of many different systems;
for more details see [Du, Fe, Kel]. Consider all numberfir]. Let p1g (k) be

the probability that thex™ decimal (base 10) digit i& for k£ € {0,...,9}. Itis
natural to expect that each digit is equally likely. This leads us to conjecture that
pron(k) = 1—10 for all n. There is nothing special about bake&— the universe

does not care that we have ten fingers on our hands. Thus if we were to write our
numbers in basé, thenk € {0,1,...,b — 1} and it is natural to conjecture that
Pon(k) = % These statements can be easily proved. If we look atthdigit

of 10 million randomly chosen numbers, we expect to see abautllion ones,

1 million twos, and so on; we will, of course, have to specify what we mean by
randomly. What about the fluctuations about the expected values? Would we be
surprised if we seg, 000, 053 ones? If we see, 093, 127? The answer is given by

the Central Limit Theorem, stated in §1.4 and provedia.§

Instead of choosing numbers randomly@n1], what if we consider special se-
quences? For example, how is firet digit of 2" base 10 distributed? The possible
digit values ard, ..., 9. Are all numbers equally likely to be the first digit 2f?

We see in Chapter 2 that the answer is a resounding no. Another possible experi-
ment is to investigate the™ decimal digit of,/p asp varies through the primes.

Do we expect as — oo that each numbei through9 occurs equally often? Do
numerical experiments support our conjecture? Building on this chapter, in Chapter
2 we discuss how to analyze such data.

The probability of observing a digit depends on the base we use. What if we in-
stead write the continued fraction expansion (see Ch&fesf numbers ino, 1]?

The advantage of this expansion is that it does not depend on addisere is no
base!What is the probability that the™ digit of the continued fraction expansion
equalsk, k € {1,2,...}? How likely is it that then™ digit is large, say more than

a million? Small? We can already answer this question for certain numbdfs

« is rational then it has a finite continued fraction expansiony i§ a quadratic
irrational, it has a periodic expansion. What is true about the expansions of the
othera € (0,1)? We answer such questions in Chafer

Let {«} denote the fractional part of. Thus{z} = x mod 1. Consider an
irrational numbery € (0,1). For eachVN look at theN numbers{1a}, {2a}, ...,
{Na}. Rearrange the abovewa} in increasing order, and for definiteness label

themgy, ..., On:
0<p < B <o < fBn. (1.1)
As we haveN numbers inf0, 1], the average distance between numbers is about
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%. What does the spacing between adjagg# look like? How often are two
adjacents;’s twice the average spacing apart? Half the average spacing apart? We
prove some results and describe open problems in Chagtend then in Pare?

we investigate the spacings between eigenvalues of matrices, energy levels of heavy
nuclei like Uranium and zeros di-functions, showing connections between these
very different systems!

1.1 PROBABILITIES OF DISCRETE EVENTS

We begin by studying the probabilities of discrete sets; for example, subsets of the
integers or rationals or any finite set. Many interesting systems are discrete. One
common example is flipping a coin a finite number of times; in this case we are
often interested in the number of heads or tails. Another is to have time discrete;
for example, people waiting in line at a bank, and every minute there is a chance a
teller will serve the next person in line.

In the last example, if instead of measuring time in minutes we measured time
in seconds or tenths of a second, for all practical purposes we would have a con-
tinuous process. While discrete sets are often good approximations to continuous
processes, sometimes we actually need the continuous case; we describe contin-
uous probability distributions in §1.2.3. We assume the reader is familiar with
elementary set operations and countable sets (3®e §

1.1.1 Introduction

Definition 1.1.1(Outcome Space, Outcomed)et2 = {w;,ws, ws, ... } be an at
most countable set. We cdll the sample (or outcome) space, and the elements
w € () the outcomes.

Thus, the outcome space is the collection of possible outcomes.

Example 1.1.2. Flip a coin 3 times. The possible outcomes are
Q={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}. (1.2)

If we flip a coin three times, how many heads do we expect to see? What is
the probability we observe exactly three heads? Exactly two heads? The answer
depends on the coin. If the coin is fair, for each flip we hav#®% chance of
getting a head and %% chance of getting a tail. The coin, however, need not be
fair. It could have some probabilifyof landing on heads, and then probability p
of landing on tails. For many investigations, we need more than just a collection of
possible outcomes: we need to know how likely each possible outcome is.

Definition 1.1.3 (Probability Function) We sayp(w) is a (discretg probability
function or distribution orf? if

1. 0 < p(w;) < 1forall w; € Q.

2. 3, p(wi) =1.
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The first statement says that each outcome has a non-negative probability of oc-
curring, and nothing can have a probability greater thga probability of1 of
happening means the event happens); the second statement quantifies the observa-
tion that something definitely happens.

We callp(w) the probability of the outcome. Given an outcome space with a
probability function, we can investigate functions of the outcomes.

Definition 1.1.4(Random Variable) Let X be a function fronf2 to R. That is, for
each outcome € 2 we attach a real numbeX (w). We callX a random variable.

A random variable is essentially a function of the outcomes, assigning a number
to each outcome. As there are many functions that could convert outcomes to
numbers, for any outcome space there are many random variables. With the same
outcome space from Example 1.1.2, one possible random variaBlé.i equals
the number of heads in. Thus, X (HHT) = 2 and X (TTT) = 0. Additionally,
fori € {1,2,3} let

1 ifthe " toss is a head
X; = . . ] 1.3
) {0 if the i toss is a tail. (1.3)
Note that
X(w) = Xi(w) + Xo(w) + X3(w). (1.4)

Remark 1.1.5(Important) The following situation occurs frequently. Consider the
case wherf) C R and X is a random variable. We often adjust our notation and
write z for w € Q; thus a capital letter denotes a random variable and a lowercase
letter denotes a value it attains. For example, consider a roll of a fair die. The
outcome space i€ = {1,2,3,4,5,6}, and the probability of eaclh € Q2 is %.

Let X be the number rolled on the die. Théf(1) = 1, X(2) = 2, and so on.

In this example, it is very convenient to call the outcome space the number rolled.
The outcomes are the numbdrs2 and so on, rather then “the dice islA “the

dice is a2”; X is the random variable that is the number rolled, taking on values
x € {1,...,6}. We shall mostly us&X : & — R to represent a random variable
and emphasize that the outcome space need not be a suls¢hotigh the reader
should be aware of both notations.

Example 1.1.6(Important) Given an outcome spaégwith eventso with proba-
bility functionp, p is a random variable.

The terminology can be confusing, as a given random vari&bie clearly not
random — it is what it is! The point is we can attach many different random
variable to a giveif).

1.1.2 Events
Definition 1.1.7 (Events) We call a subsefl C 2 an event, and we write

Prob(4) = ) p(w). (1.5)

weA
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Note each outcome is also an event.

Definition 1.1.8 (Range ofX). The range of a random variabl¥ is the set of
values it attains, denotefl (2):

X(Q) = {reR:3we Qwith X (w) =r}. (1.6)

Note X (Q2) is the set of values attained by(w) as we varyw € Q. Given a
setS C X(Q2), we letX1(S) = {w € O : X(w) € S}. This is the set of all
outcomes where the random variable assigns a numlger in

Exercise 1.1.9.Let Q) be the space of all tosses of a fair coin where all but the
last toss are tails, and the last is a head. Thus- {H,TH,TTH,TTTH,...}.

One possible random variable ’§ equals the number of tails; another¥sequals

the number of the flip which is a head. Calculate the probabilities of the following
outcomes 2. What is the probability tha (w) < 3? What is the probability
thatY (w) > 3? What events do these correspond to?

In general, we can associate events to any random variabl€. hetn outcome
space with outcomes, and letX be a random variable. As we are assumihip
countable, the random variahkée takes on at most countably many distinct values,
so the rangeX (?) is at most countable. Let; denote a typical value. For each
we can form the evenX (w) = x;; let us denote this event b¥;:

A = {we: X(w)=mz} C Q. (1.7)

Note that the4,’s are disjoint sets; ilv € A; N A;, thenX (w) = x; as well ast;.
Further,U; A; = Q, because given any € Q, X (w) = z; for somei, hencew is
in some set4;. The sets4; form apartition of Q (everyw € Q isin one and only
oneA;).

Remark 1.1.10(Important) By the above, given an outcome spdeevith out-
comesw and a probability functiop and a random variabl&, we can form a new
outcome spacf with outcomese; with probability functionp given by

pla:i) = Y plw) (1.8)

weQ
X (w)=a;

Remark 1.1.11(Important) In a convenient abuse of notation, we often write
p(z;) = p(X(w) =x;) = Prob(w € Q: X(w) = x;). (1.9)

We also call the random variable X an event as the subsets 6f corresponding
to different values of{ are events. Thus we can talk about the event “the value of
the first roll,” as the following example and Example 1.1.14 illustrate.

Example 1.1.12.Let Q) be the set of all possible pairs of rolls of a fair die, and
X (w) equals the number of the first roll. We obtain evests. .., 4s. LetY (w)
equal the number of the second roll, giving evelits. . ., Bg. If we consider the
sum rolled, we have everts, . .., Co. For exampleC7 = {(1,6), (2,5), (3,4),
(4,3), (5,2), (6,1)}. See Chapte9 of [Sc] for a plethora of interesting problems
on dice.
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Exercise 1.1.13.Calculate the probabilities of the everts, . . . , C;2 for Example
1.1.12.

Example 1.1.14(Characteristic or Indicator FunctionsjVe continue to reconcile
our two notions of an event, namely a subdet 2 and a random variableX. To
any A C ) we can associate eharacteristicor indicator random variablel 4 as
follows:

1 ifwed
1“‘(”){Oifu}gm. (1.10)

ThusA is the set ofv wherel 4 (w) = 1.

Definition 1.1.15(Complements) The complement of a sdt C 2 is the set of all
w ¢ A. We denote this byl©:

A = {w:weQuw¢g A} (1.12)

Using complements, we can rewrite the definition of the indicator random vari-
ableX 4:

1 ifwed
X = 1.12
W) {Oﬁw€A9 (1.12)
Lemma 1.1.16. Consider an outcome spaékwith outcomesv and probability
functionp. Let A C Q2 be an event. Then

p(A) = 1—p(A°), (113)

This simple observation is extremely useful for calculating many probabilities,
as sometimeg( A°) is significantly easier to determine.

Exercise 1.1.17.Prove Lemma 1.1.16. Consid&y0 tosses of a fair coin. What is
the probability that at least three tosses are heads?

Exercisé™ 1.1.18. Consider100 tosses of a fair coin. What is the probability that
at least three consecutive tosses are heads? What about at least five consecutive
tosses?

Given an outcome spade with outcomesv and random variabl&’, we can
define a new random variable = a X, a € R, by Y (w) = a - X(w). This implies
p(Y(w) = az;) = p(X(w) = =;). Thus if X(w) takes on the values; with
probabilitiesp(z;), Y (w) = a - X(w) takes on the valuesz; with probabilities
p(xi).

Exercise 1.1.19.Let X be a random variable on an outcome sp&tevith prob-
ability functionp. Fix a constantz and letY (w) = X(w) + a. Determine the
probability Y (w) = ;.

Example 1.1.20(Geometric Series Formulaplan and Barbara take turns shoot-
ing a basketball; first one to make a basket wins. Assume every time Alan shoots
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he has a probability € [0, 1] of making a basket, and each time Barbara shoots
she has a probability € [0, 1] of making a basket. For notational convenience let
r = (1-p)(1—q). We assume that at least onepadndg is positive (as otherwise
the game never ends); thusc [0,1). The probability that Alan wins on his first
shot isp, that he wins on his second shot-js(he must miss his first shot, Barbara
must miss her first shot, and then he must make his second shot), and in general
that he wins on his:" shot isr™~'p. Letting = equal the probability that Alan
wins, we find

T =p+rp+rip+--- :er”. (1.14)

n=0

However, we also know that
z=p+(1-pA—-qx = p+ra. (1.15)

This follows from observing that, once Alan and Barbara miss their first shots, it
is as if we started the game all over; thus the probability that Alan wins after they
each miss their first shot is the same as the probability that Alan wins (we must
remember to add on the probability that Alan wins on his first shot, whigh.is
Sincer = p + rx we findx = p/(1 — r), so(1.14)becomes

> 1
d o= —, (1.16)
n=0

the geometric series formula!

Exercis€™ 1.1.21. The above example provides a proof for the geometric series
formula, but only ifr € [0,1). If » < 0 show how we may deduce the geometric
series formula from the > 0 case.

Exercisé" 1.1.22(Gambler’s ruin) Alan and Barbara now play the following
game. Alan starts with dollars and Barbara withn dollars (» andm are positive
integers). They flip a fair coin and every time they get heads Barbara pays Alan a
dollar, while every time they get a tail Alan pays Barbara a dollar. They continue
playing this game until one of them has all the money. Prove the following:

1. If n = m then the probability that Alan wins is/(n +m) = 1/2.

2. If n +m = 2F for some positivé: then the probability that Alan wins is
n/(n+m).

3. If m = 2 then the probability that Alan wins i8/(n + m), and ifm = 1
then the probability that Alan wins is/(n + m).

4. For 1 < m,n the probability that Alan wins ig/(n + m).
Investigate what happens for smallandn if the coin isnotfair.

Remark 1.1.23. Exercises 1.1.20 and 1.1.22 provide examples of a useful tech-
nique, namely finding a relation for a probabiljyof the formp = a + bp with a
andb known.
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Exercisé™ 1.1.24. Consider a circle of unit radius and a square of diameter 2.
Assume we paint percent of the perimeter blue arid— p of the perimeter red.
Prove that ifp < 1/4 then theremustbe a way to position the square inside the
circle so that the four vertices are on the perimeter and all four vertices are on the
red parts of the circle. Generalize the problem toradimensions.

1.1.3 Conditional Probabilities

Consider two probability space®, and 2, with outcomesv; andw,. We can
define a new outcome space

Q = {w=(wi,ws) : w1 € Q1 andwy € Qs}, (1.17)

with outcomesv = (w1, ws). We need to define a probability functigiw), i.e.,
we need to assign probabilities to these outcomes. One natural way is as follows:
let p; be the probability function for outcomes € 2,. We define

p(w) = p1(wr) - pa(we) If w=(w1,ws). (1.18)
Exercise 1.1.25.Show the above defines a probability function.

Of course, we could also define a probability functipn Q) — R directly. We
again consider two tosses of a fair coin. We have outcames(wq,w2). Let us
definep(w) = 4, i.e., each of th&6 outcomes is equally likely. LeX (w) = wy,
the roll of the first die; similarly, st (w) = ws, the roll of the second die.

Example 1.1.26. What isProb(X (w) = 2)? There are6 pairs with first roll 2:

(627 1),1(2,2), ..., (2,6). Each pair has probability-. Thus,Prob(X (w) = 2) =
36— 6°

More generally we have

Prob(X(w)=z;) = Y  p(w). (1.19)

w=(w1,w2)
X(w)=wz;

The above is a simple recipe to filtob (X (w) = a): it is the probability of all
pairs(w1, ws) such thatX (w) = z;, wo arbitrary.

Let us consider a third random variable, the sum of the two rolls. Thus let
Z(w) = wy + wy, each outcomey = (wy,w2) occurs with probabilityz-. We
have just seen that, if we have no information about the second roll, the probability
that the first roll is & is % (what we would expect). What if, however, we know
the sum of the two rolls i&, or 7 or 10? Now what is the probability that the first
roll is a2? We are looking for pair&u;,ws) such thatv; = 2 andw; + we = 2, 7,
or 10. A quick inspection shows there are no pairs with suor 10. For a sum of
7, only one pair works(2, 5).

This leads us to the concept ofnditional probability : what is the probability
of an event4, given an evenB has occurred#or an evend we can write

2wea P(w)

Prob(4) = m

(1.20)
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Note the denominator i$. For conditional probabilities, we restrict to € B.
Thus, we have

Prob(A|B) 2zgp ) (1.21)

ro = = .
ZWEB p(w)

The numerator above may be regarded as the etenB (as both must happew,
must be in4 and B). Prob(A|B) is readthe probability ofA, given B occurs(or
as the conditional probability of given B). Thus,

Lemma 1.1.27.1f Prob(B) # 0,

Prob(AnN B)

Prob(A|B) = Prob(B)

(1.22)

In the example above, let be the event that the first roll is2aand B the event
that the sum of the rolls i8. As the die are fair, the probability of any p&is; , w)
is 5=. Then

A= {(2,1),( ) )7(273)7( VAR R SA RN )}
B = {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
ANB ={(2,5}
Prob(A|B) = Pr;‘:él‘:(;f) _ 6?; _ % (1.23)

Exercise 1.1.28.Let Q2 be the results of two rolls of two dice, wherg is the
number rolled first andv, the number rolled second. Fay = (w1,w2) € Q,
define the probabilities of the outcomes by

36 (1.24)

2 if wy is odd.

L5 jf ), is even
plw) =
Show the above is a probability function{f Let X (w) be the number of the first
roll, Y (w) the number of the second roll. For eagthe {1,...,6}, what is the
probability thatY (w) = k givenX (w) = 2? GivenX (w) = 1?

Exercise 1.1.29.Three players enter a room and a red or blue hat is placed on
each person’s head. The color of each hat is determined by a coin toss, with the
outcome of one coin toss having no effect on the others. Each person can see the
other players’ hats but not their own. No communication of any sort is allowed,
except for an initial strategy session before the game begins. Once they have had
a chance to look at the other hats, the players must simultaneously guess the color
of their own hats or pass. The group shares a $3 million prize if at least one player
guesses correctly and no players guess incorrectly. One can easily find a strategy
which gives them a 50% chance of winning; using conditional probability find one
where they win 75% of the time! More generally find a strategy for a group of
players that maximizes their chances of winning. See [Ber, LS] for more details, as
well as [CS, LS] for applications to error correcting codes.
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1.1.4 Independent Events

The concept oindependenceds one of the most important in probability. Simply
put, two events are independent if knowledge of one gives no information about the
other. Explicitly, the probability ofA occurring given tha3 has occurred is the
same as if we knew nothing about whether or Badccurred:

Prob(AN B)
Prob(B)

Knowing eventB occurred gives no additional information on the probability that
eventA occurred.

Again, consider two rolls of a fair dice with outcome sp&reonsisting of pairs
of rollsw = (w1,ws). Let X (w) = wy (the result of the first roll)} (w) = ws (the
result of the second roll) and(w) = X (w) + Y (w) = w1 + we (the sum of the
two rolls). LetA be the event that the first roll isand B the event that the sum of
the two rolls is7. We have shown

Prob(A|B) = = Prob(A). (1.25)

Prob(A|B) = é = Prob(A); (1.26)

thus, A and B are independent events. If, however, we had takea be the event
that the sum of the two rolls & (or 10), we would have found

Prob(A|B) = 0 # Prob(A); (1.27)

in this case, the two events are not independent.
We rewrite the definition of independence in a more useful manner. Since for
two independent event$ and B,

Prob(AN B)

rob(A|B) Prob(B) rob(A), (1.28)
we have
Prob(AN B) = Prob(A)Prob(B). (1.29)
Note the more symmetric form of the above. In general, evdnts. ., A,, are
independent if for any subséty, ..., i} of {1,...,n} we have
Prob(A;; N A;, N---NA;, ) = Prob(4;,)Prob(A;,)---Prob(4;,). (1.30)
If eventsAq, ..., A, are pairwise independent, it is possible that the events are not
independent.

Exercise 1.1.30.Consider two tosses of a fair coin, each pair occurs with proba-
bility +. Let A be the event that the first toss is a heatthe event that the second
toss is a tail and”' the event that the sum of the number of heads is odd. Prove the
events are pairwise independent, but not independent.

Example 1.1.31.Consider a fair die. Le#d be the event that the first roll equals
B be the event that the second roll equand C be the event that the sum of the
tworollsise, ¢ € {2,...,12}. As each pair of rolls is equally likely, the probability
that the first roll isa is % (as six of the thirty-six pairs give a first roll af). Thus,
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for any choices ofi and b, the result of the first roll is independent of the second
roll. We say that the two rolls (or the evertsand B) are independent.

Consider now event’, the sum of the two rolls. If the sum of the rollFighen
the probability that the first roll equals is % for all a; however, in general the
conditional probabilities for the first rolill depend on the sum. For example, if
the sum i then the probability that the first roll i$ is 1 and the probability that
the first roll is2 or more is0. Thus, eventsgl and C (the first roll and the sum of
the rolls) are not independent.

Definition 1.1.32(Independent Random Variabled)et X andY” be two random
variables. We can associate everis= {w € Q : X(w) = z;} andB; = {w €

Q2 :Y(w) =y;}. Ifforall ¢ andyj the events; and B; are independent, we say the
random variablesX andY are independentknowledge of the value of yields
no information about the value of.

Exercise 1.1.33.Again consider two tosses of a fair coin, with(w) the number

of the first toss and”(w) the number of the second toss. Pra¥eand Y are
independent. LeZ be the random variable which is the number of heads in two
tosses. Prov&X and Z are not independent.

The above exercise appears throughout probability investigations. For example,
if we choose a non-rational € (0,1) “at random,” we could lefX («)) denote the
value of the first decimal digit, antl («) denote the value of the second decimal
digit. Are X andY independent? The answer will depend on how we “randomly”
choosen.

We give an example typical of the independence we will see in our later inves-
tigations. Let2; = {0,1} and for some finiteV consider? = Q; x --- x Q.

For eachi, define probability functions;(1) = ¢; andp;(0) = 1 — ¢;, ¢; € [0,1],
and forw = (wi,...,wy) € Q, letp(w) = [], pi(w;). We may interpret this
as follows: we tossV coins, where coini has probabilityy; of being heads. The
outcome of each toss is independent of all the other tosses.

Exercisé™ 1.1.34(The Birthday Problem)Assume each day of the year is equally
likely to be someone’s birthday, and no one is ever born on Febrgify How

many people must there be in a room before there is at least a 50% chance that
two share a birthday? How many other people must there be before at least one
of them sharegour birthday? Note the two questions have very different answers,
because in the first we do not specify beforehatith is the shared day, while in

the second we do. How many people must be in the room before at least two share
a birthday? See also Exercise A.4Npte: in the hint to this problem we show how

to approximate the number of people needed before there is a 50% chance that two
share a birthday.

Exercise 1.1.35.Redo the previous problem assuming that there are one-fourth as
many people born on Februadp™ as on any other day.

Exercisé™ 1.1.36. Two players roll die with sides, with each side equally likely
of being rolled. Player one rolls: dice and player two rolls dice. If player one’s
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highest roll exceeds the highest roll of player two then player one wins, otherwise
player two wins. Prove
k

Prob(Player one wins) = k:m% Z [a™ —(a—=1)"] - (a—1)", (1.31)
a=2
which by the integral version of partial summation equals
1 k
— k" (k—1)" — / [u]™ - n(u—1)""du| . (1.32)
km—i—n 1
If m,n andk are large and of approximately the same size, show
m m n

Prob(Player one wins) = (1.33)

m+n  2m+n— 1)E;
note ifm = n = k the probability is much less than 50%. See [Mil7] for more
details.

1.1.5 Expectation

Definition 1.1.37(Expected Value) Consider an outcome spa€ewith outcomes
w; occurring with probabilitiesp(w;) and a random variableX. The expected
value (or mean or average value) of the random variallés defined by

X = ZX(wi)p(wi). (1.34)

We often writeE[ X ], read aghe expected valueor expectation of X, for X.

Exercise 1.1.38.Show the mean of one roll of a fair dice 3s5. ConsiderN
tosses of a fair coin. LeX (w) equal the number of heads in= (w1, ...,wn).
DetermineE[X].

Remark 1.1.39. Remember we may regard random variables as events; thus it
makes sense to talk about the mean value of such events, as the events are real
numbers. If we considered an event not arising through a random variable, things
would not be as clear. For example, consiter {HH, HT,TH,TT}, each with
probability%. We cannot add a head and a tail; however, if we assigtoa head

and a0 to the tail, we need only add numbers.

Exercise 1.1.40.Consider all finite fair tosses of a coin where all but the last toss
are tails (and the last toss is a head). We denote the outcome space by

Q ={H,THTTHTTTH,...}. (1.35)
Let X be the random variable equal to the number of the toss which is the head.

For example X (T'TH) = 3. Calculate the probability that the first head is &
toss. CalculatéE[ X ].

Definition 1.1.41(k™ Moment) Thek™ moment ofX is the expected value of .
If X is a random variable on an outcome spdeevith eventsy;, we write

EX* = > X(w)* - p(w:). (1.36)

w; €Q
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Note the first moment is the expected valueX6f and the zeroth moment is
always 1.

Definition 1.1.42 (Moments of Probability Distributions)Let @ C R; thus all
events are real numbers, which we shall denote: by . Letp be a probability
distribution on( so that the probability of is justp(z). We can consider a random
variable X with X (z) = «; thus the probability that the random variable takes on
the valuez is p(z). Equivalently we can consider as a random variable (see
Example 1.1.6). We define th€ moment op by

P = ]E[Xk'] = Zxkp(x). (1.37)
e

Similar to how Taylor series coefficients can often determine a “nice” function, a
sequence of moments often uniquely determines a probability distribution. We will
use such a moment analysis in our Random Matrix Theory investigations in Part
?7?, see ®?for more details.

Exercise 1.1.43.Prove the zeroth moment of any probability distribution is 1.

Lemma 1.1.44(Additivity of the Means) If X andY are two random variables
on 2 with a probability functiorp, they induce a joint probability functioff with

P(z;,y;) = Prob(X(w) =z;,Y(w) = y,). (1.38)
Consider the random variablg, 7 = X + Y. ThenE[Z] = E[X] + E[Y].

Proof. First note
Prob(X(w) = ;) = ZProb(X(w) =z;,Y(w)=y;) = ZP(mi,yj).
J J

(1.39)
Thus the expected value of the random varia¥les
E[X] = inzp(ﬂ%yj), (1.40)
i J
and similarly for the random variabké. Therefore
EX +Y]=> (2 +y;)P(xi,y))
()]
7 J 7 7
:in ZP(%%) + Zyj ZP(Ii,yj)
7 7 7 %
=E[X]+E[Y]. (1.412)
O

The astute reader may notice that some care is needed to interchange the order
of summatigns. IfZZ. > T +y; |p($i,'yj) < oo, then Fubini's Theorem (Theo-
rem A.2.8) is applicable and we may interchange the summations at will. For an
example where the summations cannot be interchanged, see Ex@&cise
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Lemma 1.1.45(Expectation Is Linear)Let X; through Xy be a finite collection
of random variables. Let; throughay be real constants. Then

E[ale + -+ aNXN] = alE[Xl] R CLN]E[XN]. (142)

See 87 for an application of the linearity of expected values to investigating
digits of continued fractions.

Exercise 1.1.46.Prove Lemma 1.1.45.

Lemma 1.1.47.Let X andY be independent random variables. THEIXY| =
E[X]E[Y].

Proof. From Definition 1.1.32, for all andj the event4; = {w : X(w) = z;}
andB; = {w : Y(w) = y,} are independent. This implies

Prob(A4; N Bj) = Prob(A4;)Prob(B;) = p(zi)q(y;). (1.43)

If r(z;,y;) is the probability that the random variabteis z; and the random vari-
ableY isy;, then independence impliesx;, y;) = p(x;)q(y;) for two probability
functionsp andgq. Thus,

EIXY] = 3> wir(@iy;)
— Z inyjp(-ri)Q(yj)
= szp(xl) . Zij(yj)

= E[X]-E[Y]. (1.44)

O
Exercise 1.1.48.Find two random variables such thE{XY| # E[X|E[Y].

Exercise 1.1.494Two Envelope Problem)Consider two sealed envelopes; one has
X dollars inside and the other hasX dollars, X > 0. You are randomly given an
envelope — you have an equal likelihood of receiving either. You calculate that you
have a 50% chance of having the smaller (larger) amountYLbe the amount in
your envelope. If you keep this envelope you expect to receivé dallars; if you
switch your expected value i5- 2Y + .5 - ¥, or 1.25Y. But this is true without
ever looking inside the envelope, so you should switch again! What is wrong with
the above analysis?

Exercisé™ 1.1.50. Consider a group ofn people. We choose a person at random
(thus each person is equally likely to be chosen); we dorthimes (at each step,
each person is equally likely to be chosen) I& m then clearly there is at least
one person whom we haven’t chosen. How large mus# so that we have a 50%
chance of having chosen everyone at least once? What is the average value of
such that everyone is chosen at least once? See the remarks for applications.
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1.1.6 Variances

The variance c% and its square root, thetandard deviation ox measure how
spread out the values taken on by a random variable are: the larger the variance, the
more spread out the distribution.

Definition 1.1.51 (Variance) Given an outcome spade with outcomesv; with
probabilitiesp(w;) and a random variableX : Q — R, the variancer% is

% = > (X(w) ~E[X])*pw) = E[(X ~EIX])’].  (145)
Exercise 1.1.52LetQ; = {0, 25,50, 75, 100} with probabilities{.2, .2, .2, .2, .2},
and letX be the random variabl& (w) = w, w € Q. ThusX(0) = 0, X(25) =
25, and so on. Lef), be the same outcome space but with probabilifids .25,

.3,.25, .1}, and defind” (w) = w, w € 2. Calculate the means and the variances
of X andY.

For computing variances, instead of (1.45) one often uses

Lemma 1.1.53. For a random variableX we haver3, = E[X?] — E[X]?.
Proof. RecallX = E[X]. Then

ok =3 (Xi(w) — EIX))’ plws)

- Z<Xi<w>2 ~ 2X()ELX] + E[X[)p(w:)

=3 Xi(w)?plws) — 2E[X ZX p(w:) + E[X 2prz

=E[X?] - 2E[X]? + E[X]? = E[X?] - E[X]. (1.46)
a

The main result on variances is

Lemma 1.1.54(Variance of a Sum)Let X andY be two independent random
variables on an outcome spate Theno%,, = 0% + 0.

Proof. We use the fact that the expected value of a sum is the sum of expected
values (Lemma 1.1.45).

%y = E[(X +Y)’] ~E[(X +Y))?
= E[X? +2XY +Y?] — (E[X] + E[Y])’
= (E[X?] + 2E[XY] +E[Y?]) — (E[X]* + 2E[X]E[Y] + E[Y]?)
= (E[X®] - E[X]?) + (E[Y?] - (
= 0% + 0% +2(E[XY] - E[X]E[Y]). (1.47)

By Lemma 1.1.47, aX andY are independenE[XY] = E[X]E[Y], completing
the proof. a
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Let  be an outcome space with outcomesand a random variabl&'. For
1 < NletQ; = Q and letX; be the same random variable dsexceptX; lives
on ;. For example, we could havg rolls with X; the outcome of thé" roll. We
have seen in Lemma 1.1.45 that the mean of the random vatigble - - - + X
is NE[X]. What is the variance?

Lemma 1.1.55. Notation as above,
OXi4-+XNy — \/NO’_)(. (148)
Exercise 1.1.56.Prove Lemma 1.1.55.

Lemma 1.1.57. Given an outcome spade with outcomesv with probabilities
p(w) and a random variableéX. Consider the new random variabieX + b. Then

Oixip = a°0%. (1.49)
Exercise 1.1.58.Prove 1.1.57.

Note that if the random variabl& has units of meters then the variancg has
units ofmeters?, and the standard deviation, and the meatX have units meters.
Thus it is the standard deviation that gives a good measure of the deviatighs of
around its mean.

There are, of course, alternate measures one can use. For example, one could
consider

> (i = X)p(x:). (1.50)

Unfortunately this is a signed quantity, and large positive deviations can cancel with
large negatives. In fact, more is true.

Exercise 1.1.59.Show) . (z; — X)p(x;) = 0.

This leads us to consider

Dl = Xlp(a:). (1.51)

While this has the advantage of avoiding cancellation of errors (as well as having
the same units as the events), the absolute value function is not a good function
analytically. For example, it is not differentiable. This is primarily why we consider
the standard deviation (the square root of the variance).

Exercise 1.1.6qMethod of Least SquaresiConsider the following set of data: for
i € {1,...,n}, givent; one observes;. Believing that andy are linearly related,
find the best fit straight line. Namely, determine constartisdb that minimize the
error (calculated via the variance)
> (yi — (at; +b))* = > (Observed— Predicted)” . (1.52)
i=1 1=1
Hint: Use multi-variable calculus to find linear equations forand b, and then
solve with linear algebra. If one requires that= 0, show that the) leading to
leasterrorisb =g = £ 3 ;.
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The method of proof generalizes to the case when one expicédinearcom-
bination of NV fixed functions. The functions need not be linear; all that is required
is that we have a linear combination, sayf;(t) + --- + any fn(t). One then
determines the,, ..., ax that minimize the variance (the sum of squares of the
errors) by calculus and linear algebra. If instead of measuring the total error by
the squares of the individual error we used another measure (for example, using
the absolute value), closed form expressions foutheecome significantly harder,
even in the simple case of fitting a line.

Exercise 1.1.61.Consider the best fit line from the Method of Least Squares (Ex-
ercise 1.1.60). Is the poitE,y), wherez = L 3" | z; andy = >_7" , y;, on the
best fit line? In other words, does the best fit line go through the “average” point?

Exercise 1.1.64Chebyshev’s Inequality)Let X be a random variable with mean
u and finite variancer?. Prove Chebyshev’s inequality:

1
ﬁv
whereProb(|X — u| > a) is the probability thatX takes on values at least
units from the mean. Chebyshev’s theorem holds for all nice distributions, and

provides bounds for being far away from the mean (where far is relative to the
natural spacing, namely).

Prob(|X — p| > ko) < (1.53)

Exercise 1.1.63.Use Chebyshev's Theorem to bound the probability of tossing a
fair coin 10000 times and observing at leas®00 heads.

Exercise 1.1.64.Does there exist a probability distribution such that Chebyshev’s
Inequality is an equality for all positive integraf?

If the probability distribution decays sufficiently rapidly we can use the Cen-
tral Limit Theorem (Theorem 1.4.1) and obtain better estimates than those from
Chebyshev's Theorem. See Exercise 1.4.3.

1.2 STANDARD DISTRIBUTIONS

We describe several common probability distributions. Consider the important case
when the outcome spa€eC R and is countable; thus the outcomes are real num-
bers. Letp be a probability function of2. For notational convenience we some-
times extend to all of R and define the probabilities of the new outcomes as
0.

To eachz € R we have attached a non-negative numpfr), which is zero
except for at most countably mady. We letz; denote a typical outcome where
p(z) # 0. Similar to calculating the means, variances and higher moments of a
random variable, we can compute these quantities for a probability distribution;
see Definition 1.1.42. For example, for a discrete probability distribytidie
mean isy . x;p(z;).
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1.2.1 Bernoulli Distribution

Recall the binomial coeﬁ‘icier(tzrv) = T,(NLLT), is the number of ways to choose

r objects fromN objects when order does not matter; see 8A.1.3 for a review of
binomial coefficients. Considet independent repetitions of a process with only
two possible outcomes. We typically call one outcasnecessand the othefail-

ure, the event @ernoulli trial , and a collection of independent Bernoulli trials a
Bernoulli process In each Bernoulli trial let there be probabilipyof success and

g = 1 — p of failure. Often we represent a success witand a failure with0. In
§1.2.4 we describe a Bernoulli trial to experimentally determihe

Exercise 1.2.1.Consider a Bernoulli trial with random variablé& equal to 1 for
a success and 0 for a failure. Show= p, % = pq, andox = \/pg. Note X is
also an indicator random variable (see Exercise 1.1.14).

Let Y be the number of successeshhtrials. Clearly the possible values of
Yy are{0,1,...,N}. We analyzeoy (k) = Prob(Yx(w) = k). Here the sample
space is all possible sequences dftrials, and the random variablgy, : Q@ — R
is given byYy (w) equals the number of successesin

If £ € {0,1,...,N}, we needk successes any — k failures. We do not
care what order we have them (i.e.,kif= 4 and N = 6 thenSSFSSF and
FSSSSFE both contribute equally). Each such stringiofuccesses any — k
failures has probability op* - (1 — p)N—*. There are(%) such strings, which
impliespy (k) = (Y)p* - (1 — p)N=*if k € {0,1,..., N} and0 otherwise.

By clever algebraic manipulations, one can directly evaluate the igaand
the variancery, ; however, Lemmas 1.1.45 and 1.1.55 allow one to calculate both
guantities immediately, once one knows the mean and variance for a single occur-
rence (see Exercise 1.2.1).

Lemma 1.2.2. For a Bernoulli process withV trials, each having probability

of success, the expected number of successgg is= Np and the variance is
2

oy, = Npg.

Lemma 1.2.2 states the expected number of successes is aVpjzand the
fluctuations aboup are of sizesy = \/Npq. Thus, ifp = § andN = 10°, we
expect 500,000 successes, with fluctuations on the order of 500. Note how much
smaller the fluctuations about the mean are than the mean itself (the mean is of size
N, the fluctuations of size/N). This is an example of a general phenomenon,
which we describe in greater detail in §1.4.

Exercise 1.2.3.Prove Lemma 1.2.2. Prove the variance is largest wheng = %

Consider the following problem: L& = {S, F'S, FF'S,...} and letZ be the
number of trials before the first success. What iando%?

First we determine th8ernoulli distribution p(k) = Prob(Z(w) = k), the
probability that the first success occurs aftetrials. Clearly this probability is
non-zero only fork a positive integer, in which case the string of results must be
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k — 1 failures followed byl success. Therefore

1-pk-t.p ifke{l,2,...}
k) = 1.54
p(k) {0 otherwise. ( )
To determine the meali we must evaluate
Z = Zk(l —p)klp = kaqk_l, 0<g=1-—-p<1l. (1.55)
k=1 k=1
Consider the geometric series
= 1
fla) =) d" = (1.56)
—4q
k=0
A careful analysis shows we can differentiate term by termlif< ¢ < 1. Then
> 1
/ k—1
q) = k"= = : 1.57
'(a) kZ:O (e (1.57)
Recallingg = 1 — p and substituting yields
Z=p> ki* ' = ——— — = =, (1.58)
; (1-(1-p)* P

Remark 1.2.4. Differentiating under the summation sign is a powerful tool in
Probability Theory, and is a common technique for proving such identities. See
[Mil4] for more on differentiating identities, where the expected number of alter-
nations between heads and tailsitosses of a coin with probability of heads is
derived, along with other combinatorial and probability results.

Exercise 1.2.5.Calculatec?. Hint: Differentiatef(q) twice.

Exercise 1.2.6.Consider the normal distribution with me&rand variances?; its
1

density isf (z; 0) = (2m0%)~"2e~*"/2" As f(z; o) integrates to 1, we have
0 e—w2/202
—o V21

By differentiating with respect te, show the second moment (and hence the vari-
ance since the mean is zero)dd. This argument may be generalized (it may
be easier to consider the operatefd/do) and yields all even moments of the
Gaussian; them™™ moment ig2m —1)(2m —3) ---3-1-¢%™ and is often denoted
(2m — 1)!! (here the double factorial means every other term; thlis= 7-5-3 -1
and6!! =6-4-2).

dz. (1.59)

g =

Exercise 1.2.7.The even moments of the Gaussian (see Exercise 1.2.6) have an
interesting combinatorial meaning. Show that the number of ways of pdalring
objects intom pairs of two elements im — 1)!l. We shall see these moments
again in 87?, where we study the eigenvalues of real symmetric Toeplitz matrices.
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1.2.2 Poisson Distribution

Divide the unit interval intoNV equal pieces. Considéy independent Bernoulli
trials, one in each subinterval. If the probability of a succe%,iﬂshen by Lemma
1.2.2 the expected number of successed’is - = A. We consider the limit
asN — oo. We still expecth successes in each unit interval, but what is the
probability of 3\ successes? How long do we expect to wait between successes?

We call this aPoisson process with parameter\. For example, look at the
midpoints of theN intervals. At each midpoint we have a Bernoulli trial with
probability of succesg;: and failurel — $-. We determine thé — oo limits. For
fixed IV, the probability ofexactlyk successes in a unit interval is

= (1) (5) (-7) "

N Nk
_k!(N—k)!Nk< _N>

N (N1 (N k1) (l_A)N(l_A)"“

N-N---N K N N

:1.<1_Jb)...(1_’€];1>2’:(1_§>N<1_Jff)_k. (1.60)

For fixed, finitek and A\, as N — oo the firstk factors inpy (k) tend to1,
(1- %)N — e, and(1— %)7’“ — 1 (see ®7? for a review of properties of
e). Thuspy(k) — Ak—fe”. We shall see similar calculations as these when we
investigate the properties of, = n*a mod 1 in Chapter??.

Using our investigations of Bernoulli trials as a motivation, we are led to the
Poisson Distribution: Given a parametex (interpreted as the expected number of
occurrences per unit interval), the probabilitykobccurrences in a unit interval is

p(k) = ),“—,Te_)‘ fork € {0,1,2,...}. Thisis a discrete, integer valued process.

Exercise 1.2.8.Check thap(k) given above is a probability distribution. Namely,
show)_, -, p(k) = 1.

Exercisé™ 1.2.9. Calculate the mean and variance for the Poisson Distribution.

1.2.3 Continuous Distributions

Up to now we have only considered discrete probability distributions. We now
study a continuous example. We consider a generalization of a Bernoulli process
with X successes in a unit interval. We divide the real line into subintervals of size
% and consider a Bernoulli trial at the midpoint of each subinterval with probability
% of success. Start counting @t and let the first success be &t How is X
distributed asV — oo (i.e., how long do we expect to wait before seeing the first
success)? Denote this distribution ty(x).

We have approximatelf/@]\? = Nz midpoints from0 to X (with N midpoints
per unitinterval). Lefy] be the smallest integer greater than or equal fthen we
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have[ Nz] midpoints, where the results of the Bernoulli trials of the fji¥t:] — 1
midpoints are all failures and the last is a success. Thus the probability of the first
success occurring in an interval of Ieng;th containingX (with N divisions per

unit interval) is
[Nz]-1 1
A A

H H x A
For N large the above is approximately * X

Exercise 1.2.10.For large N, calculate the size a¥ (py,s(z) — e **%). Show
this difference tends to zero &stends to infinity.

Definition 1.2.11(Continuous Probability Distribution)We sayp(x) is a continu-
ous probability distribution orR if

1. p(xz) > 0forall z € R.
2. [pp(z)de =1.
3. Prob(a <z <b) = fab p(x)dz.

We callp(z) the probability density function or the densipy(z)dz is interpreted
as the probability of the intervdls, = + dz].

In the previous example, @ — oo we obtain the continuous probability den-
sity function

0 if z <O0;

note % is like dx for NV large. In the special case of = 1, we get the stan-
dard exponential decay, *. We will see this distribution in Chapt&? when we
investigate the fractional parts of o (k, o fixed, n varying).

For instance, letr(M) be the number of primes that are at mast The Prime
Number Theorem stateg M) = bfg‘ﬁ plus lower order terms. Thus the average
spacing between primes around is aboutlog M. We can model the distribution
of primes as a Poisson Process, with parameteri,,; = @ this is called the
Cramér model). While possible locations of primes (obviously) is discrete (it must
be an integer, and in fact the location of primes are not independent), a Poisson
model often gives very good heuristics; see for example [Sch].

We often renormalize so that = 1. This is denotedinit mean spacing For
example, one can show tiié" primep,, is aboutM log M, and spacings between
primes aroungh,, is aboutlog M. Then the normalized primegs, ~ 2L will

i i log M
have unit mean spacing and= 1.

Example 1.2.12(Uniform Distribution on [a,b]). LetQ = {r e R:a <z <
b}. The uniform distribution has probability density functjefx) = ;. Note for
any|e,d] C [a,b],

pste) = {Aem ey (162)

d
Prob ([¢,d]) = / p(x)dr = . (1.63)
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The uniform distribution is one of the most common (and best understood!) con-
tinuous distributions; the probability of € [¢,d] C [a,b] depends only on the
length of the subintervdt, d].

Example 1.2.13Gaussian Distribution)For x € R, consider the probability den-

sity functionp(z) = ﬁ e~(@=m?/20" This is called the Gaussian (or normal

or bell curve) distribution. By Exercise 1.2.14 it has mgaand variances?. If
pu=0ando? = 1, itis called the standard normal or the standard Gaussian. See
81.4 for more details.

We sketch the main idea in the proof that the above is a probability distribution.
As itis clearly non-negative, we need only show it integrates to one. Consider

I :/ e dz. (1.64)

Squarel, and change from rectangular to polar coordinates, wiiedg becomes
rdrdf:
I? :/ e da - / e_dey

:/ / e*IZ*yZdwdy
t 727r - 00 R
:/ d0/ e " rdr
0 0
1 2]
=27 - [—e " } = . (1.65)
2 0

The reason the above works is that while*”dz is hard to integratev;e—Ter is
easy. Thud = /7.

Exercise 1.2.14.Letp(z) = L e~ (#=m?*/20% " Prove [ p(z)dr = 1,
[ xp(x)de = pand [ _(x — p)?p(z)de = 0. This justifies our claim that the

Gaussian is a probability distribution with meanand variances2.

Example 1.2.15Cauchy Distribution) Consider

p(x) = o

1422
This is a continuous distribution and is symmetric about zero. While we would like
to say it therefore has mean zero, the problem is the inteﬁ@xp(x)dz is not
well defined as it depends on how we take the limit. For example,

(1.66)

A 24
lim / zp(z)der = 0, lim xp(z)dr = oo. (1.67)
A—o0 _A A—oo _A

Regardlessp(z) has infinite variance. We shall see the Cauchy distribution again
in Chapter??; see also Exercise&? and ??.



ProbStat Chaps8And9 June 7, 2007

24 CHAPTER 1

Figure 1.1 Buffon’s needle

Exercise 1.2.16.Prove the Cauchy distribution is a probability distribution by

showing
1 1
———dr = 1. 1.68

/_Ooﬂ'l—l—xQ * (1.68)

Show the variance is infinite. See also Exer€i8e

The Cauchy distribution shows that not all probability distributions have finite
moments. When the moments do exist, however, they are a powerful tool for un-
derstanding the distribution. The moments play a similar role as coefficients in
Taylor series expansions. We use moment arguments to investigate the properties
of eigenvalues in Chapte®? and??; see in particular &2.

1.2.4 Buffon’s Needle andr

We give a nice example of a continuous probability distribution in two dimensions.
Consider a collection of infinitely long parallel lines in the plane, where the spacing
between any two adjacent linessisLet the lines be located at= 0, +s, +2s, .. ..
Consider a rod of length where for convenience we assurec s. If we were

to randomly throw the rod on the plane, what is the probability it hits a line? See
Figure 1.1. This question was first asked by Bufforl#33. For a truly elegant
solution which does not use calculus, see [AZ]; we present the proof below as it
highlights many of the techniques for investigating probability problems in several
variables.

Because of the vertical symmetry we may assume the center of the rod lies on
the linex = 0, as shifting the rod (without rotating it) up or down will not alter the
number of intersections. By the horizontal symmetry, we may assufnel r <
5- We posit that all values aof are equally likely. Asr is continuously distributed,
we may add inc = § without changing the probability. The probability density
function ofx is 4.
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Let A be the angle the rod makes with theaxis. As each angle is equally likely,
the probability density function of is %. We assume that andf are chosen
independently. Thus the probability density far; 0) is 4242

The projection of the rod (making an anglefofiith the z-axis) along the:-axis
is{-|cos|. If |x| < £-|cosf|, then the rod hits exactly one vertical line exactly
once; ifz > £ - | cos |, the rod does not hit a vertical line. Note that i s, a rod
could hit multiple lines, making the arguments more involved. Thus the probability

arod hits a line is

27 L] cosf)| dxdb EL 0| do 2¢
p:/ v :2/ C-feosbldd 26 ) g
0=0 =—{-| cos 0| s-2m 6=0 s 2m T

Exercise 1.2.17.Show
1 [ 2
— |cosf|dd = —. (1.70)
27 Jo T
Let A be the random variable which is the number of intersections of a rod of
length/ thrown against parallel vertical lines separatedby ¢ units. Then
B {1 with probability 2¢
- 2/

. . (1.71)
0 with probability1 — ==,

TS

If we were to throwN rods independently, since the expected value of a sum is the
sum of the expected values (Lemma 1.1.45), we expect to obAér\gé; intersec-
tions.

Turning this around, let us throw rods, and letl be the number of observed
intersections of the rods with the vertical lines. Then

2 L . N 2
I ~ N- 2 which implies & = T f (1.72)

TS S
The above is aexperimentaformula for 7!

Exercise 1.2.18.Assume we are able to throw the rod randomly as described
above, and theV throws are independent. We then have a Bernoulli process with

N trials. We have calculated the expected number of successes; using the methods
of §1.2.1, calculate the variance (and hence the size of the fluctuatians or

eachN, give the range of values we expect to observerfor

1.3 RANDOM SAMPLING

We introduce the notion afandom sampling. Consider a countable s@t C R
and a probability functiop on Q2; we can exteng to all of R by settingp(r) = 0
if r ¢ Q. Using the probability functiop, we can choose elements frdkat
random. Explicitly, the probability that we choose € Q2 is p(w).
For example, lef2 = {1,2, 3,4, 5,6} with each event having probabili%' (the
rolls of a fair die). If we were to roll a fair diév times (for NV large), we observe
a particular sequence of outcomes. It is natural to assume the rolls are independent
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of each other. LeK; denote the outcome of thi# roll. The X;’s all have the same
distribution (arising fromp). We call theX; i.i.d.rv. (independent identically
distributed random variables), and we say ¥eare asamplefrom the probability
distributionp. We say werandomly sample (with respect top) R. Often we
simply say we haveandomly chosenN numbers.

A common problem is to sample some mathematical or physical process and use
the observations to make inferences about the underlying system. For example, we
may be given a coin without being told what its probabilities for heads and tails are.
We can attempt to infer the probabilityof a head by tossing the coin many times,
and recoding the outcomes. L&t be the outcome of th#” toss (1 for head, 0 for
tail). After N tosses we expect to see abdp heads; however, we observe some
number, saysy. Given that we observ8y heads aftelV tosses, what is our best
guess fop? By Lemma 1.1.45, we guegs= SWN It is extremely unlikely that our
guess is exactly right. This leads us to a related question: given that we olSserve
heads, can we give a small interval about our best guess where we are extremely
confident the true valuglies? The solution is given by the Central Limit Theorem
(see §1.4).

Exercise 1.3.1.For the above example, ifis irrational show the best guess can
never be correct.

One can generalize the above to include the important case wl&gecontin-
uous distribution. For example, say we wish to investigate the digits of numbers
in [0,1]. Itis natural to put the uniform distribution on this interval, and choose
numbers at random relative to this distribution; we say we chddseimbers ran-
domly with respect to the uniform distribution d@, 1], or simply we choosev
numbers uniformly fronjo, 1]. Two natural problems are to consider thf digit
in the base 10 expansion and th# digit in the continued fraction expansion. By
observing many choices, we hope to infer knowledge about how these digits are
distributed. The first problem is theoretically straightforward. It is not hard to cal-
culate the probability that the™ digit is d; it is just %. The probabilities of the
digits of continued fractions are significantly harder (unlike decimal expansions,
any positive integer can occur as a digit); see Chap®or the answer.

Exercise 1.3.2Important for Computational Investigationdjor any continuous
distributionp onRR, the probability we chose a number|in b] is f; p(z)dz. If we

were to chooséV numbers,N large, then we expect approximately ff p(x)dx

to be infa, b]. Often computers have built in random number generators for certain
continuous distributions, such as the standard Gaussian or the uniform, but not for
less common ones. Show if one can randomly choose numbers from the uniform
distribution, one can use this to randomly choose from any distributitimt: Use

Cp(z) = [*__ p(x)dz, theCumulative Distribution Functionof p (see also 8?);

it is the probability of observing a number at mast

Remark 1.3.3. The observant reader may notice a problem with sampling from
a continuous distribution: the probability of choosing any particular real number
is zero, but some number is chosen! One explanation is that, fundamentally, we
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cannot choose numbers from a continuous probability distribution. For example, if
we use computers to choose our numbers, all computers can do is a finite number of
manipulations of)’s and1'’s; thus, they can only choose numbers from a countable
(actually finite) set. The other interpretation of the probability of armyR is zero

is that, while at each stage some number is chosen, no number is ever chosen twice.
Thus, in some sense, any number we explicitly write down is “special.” See also
Exercise 1.1.49, where the resolution is that one cannot choose numbers uniformly
on all of (0, c0).

For our investigations, we approximate continuous distributions by discrete dis-
tributions with many outcomes. From a practical point of view, this suffices for
many experiments; however, one should note that while theoretically we can write
statements such as “choose a real number uniformly fi@rt,” we can never
actually do this.

1.4 THE CENTRAL LIMIT THEOREM

We close our introduction to probability with a statementhamain theorem about

the behavior of a sum of independent events. We give a proof in an important
special case in 81.4.2 and sketch the proof in genergft Bor more details and
weaker conditions, see [Bi, CaBe, Fe]. We discuss applications of the Central Limit
Theorem to determining whether or not numerical experiments support a conjecture
in Chapter 2.

1.4.1 Statement of the Central Limit Theorem

Let X; (« € {1,...,N}) be independent identically distributed random variables
(i.i.d.r.v.) asin §81.3, all sampled from the same probability distriqubiwith mean

pand variance?; thusE[X,] = pando% = o foralli. LetSy = S0 | X,. We

are interested in the distribution of the random varighleasN — oco. As eachX;

has expected value, by Lemma 1.1.4FE[Sy] = Nu. We now consider a more
refined question: how i$y distributed aboutVu? The Central Limit Theorem
answers this, and tells us what the correct scale is to study the fluctuations about
N .

Theorem 1.4.1(Central Limit Theorem) For ¢ € {1,..., N}, let X; be i.i.d.r.v.
with meary, finite variances? and finite third moment. Lefy = X, +-- -+ Xy.
AsN — oo

Prob(Sy € [, 3]) ~ —(b=pN)* /207N gy (1.73)

vV 27T02N /
In other words, the distribution &8y converges to a Gaussian with meafv and
variances? N. We may re-write this as

. SN — uN ) 1 /b —2/2
hm Prob | ———— € [a,b] | = —— e dt. 1.74
< VoIN 2.8 V2r (74

Here Z SNU%N converges to a Gaussian with mean 0 and variance 1.
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The probability density%27 e~t*/2 is thestandard Gaussian Itis theuniversal
curve of probability. Note how robust the Central Limit Theorem is: it does not
depend on fine properties of thé;, just that they all have the same distributions
and finite variance (and a bit more). While this is true in most situations, it fails
in some cases such as sampling from a Cauchy distribution (see Exerdise
another limit theorem which can handle such cases). Sometimes it is important to
know how rapidlyZ y is converging to the Gaussian. The rate of convergenes
depend on the higher moments; s& 8nd [Fe].

Exercise 1.4.2.The Central Limit Theorem gives us the correct scale to study fluc-
tuations. For example, say we toss a fair caintimes (hence: = % ando? = %).

We expecSy to be about%. Find values of: and b such that the probability of

Sy — Nu € [av/N/2,bv/N /2] converges to 95% (resp., 99%). For largg show

for any fixeds > 0 that the probability ofSy — Ny € [aN219/2,bN 218 /9]

tends to zero. Thus we expect to observe half of the tosses as heads, and we expect
deviations from one-half to be of si2¢v/N.

Exercise 1.4.3.Redo Exercise 1.1.63 using the Central Limit Theorem and com-
pare the two bounds.

Exercise 1.4.4 For Sy = X+ -+ X, calculate the variance dfy = S¥—4X;

this showsV/o2 N is the correct scale to investigate fluctuationsSaf aboutu V.

One common application of the Central Limit Theorem is to test whether or not
we are sampling th&; independently from a fixed probability distribution with
meany and known standard deviatien (if the standard deviation is not known,
there are other tests which depend on methods to estimatéhooseN numbers
randomly from what we expect has meanWe form Sy as before and investigate
% As Sy = 32N X;, we expectSy to be of sizeN. If the X; are not
drawn from a distribution with meap, then Sy — Ny will also be of sizeV.

Thus, S\f}%” will be of size /N if the X; are not drawn from something with
meany. If, however, theX; are from sampling a distribution with mean the
Central Limit Theorem states théw will be of size 1. See Chapter 2 for
more details and Exerci&® for an alternate sampling statistic.

Finally, we note that the Central Limit Theorem is an example ofPthilosophy
of Square Root Cancellation the sum is of sizeV, but the deviations are of size
V/N. We have already seen examples of such cancellation in Re?Rarkd &7,
and will see more in our investigations of writing integers as the sum of primes (see

§77).

1.4.2 Proof for Bernoulli Processes

We sketch the proof of the Central Limit Theorem for Bernoulli Processes where
the probability of success js= 3 1. Consider the random variablé that is 1 with
probability £ and —1 with probablllty (for example, tosses of a fair coin; the

advantage of making a tait1 is that the mean is zero). Note the mean'ois
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X =0, the variance is% = 1 (as we hava? - 1 + (—1)? - 1) and the standard
deviation isocx = 1.

Let X1,..., Xon be independent identically distributed random variables, dis-
tributed asX (it simplifies the expressions to consider an even number of tosses).
ConsiderSsy = X7 +--- + Xon. Its mean is zero and its variance2iy, and we
expect fluctuations of siz¢2N. We show that forV large the distribution 05
is approximately normal. We need

Lemma 1.4.5(Stirling’s Formula) For n large,
n! = n"e "V2mn (1+0(1/n)). (1.75)

For a proof, see [WW]. We show (1.75) is a reasonable approximation. It is often
easier to analyze a product by converting it to a sum; this is readily accomplished
by taking logarithms. We have

logn! = ZIng A / logtdt = (tlogt —t)|T. (1.76)
k=1 1
Thuslog n! ~ nlogn —n, orn! ~ n"e™".

We now consider the distribution ¢f,. We first note that the probability that
Son = 2k + 1is zero. This is becaus®,y equals the number of heads minus the
number of tails, which is always even: if we halvdeads an@N — £k tails then
Son equal2N — 2k.

The probability thatS,y equals2k is just (ﬁfk)(%)N““(%)N—k. This is be-
cause forSyy to equal2k, we need2k morel’s (heads) than-1's (tails), and the
number ofl’s and—1's add to2N. Thus we haveV + k heads {’s) and N — k
tails (—1's). There are2?V strings of1's and—1's, (,¢%,) have exactlyN + k
heads andV — k tails, and the probability of each string G%)QN. We have writ-
ten (3)N*(3)V~* to show how to handle the more general case when there is a
probabilityp of heads and — p of tails.

We use Stirling’s Formula to approxima((;?fk). After elementary algebra we
find

2N\ _ (2N)2V N
(N + k) T (N + kNN —k)N=k\| 7(N + k)(N — k)

22N 1
= NS T NI 2.77)
TN (14 F)V Tzt — §)N 2
We would like to use(l + %)N ~ ev from §?7?, unfortunately, we must be a
little more careful as the values éfwe consider grow withV. For example, we
might believe thafl + £)¥ — e# and(1 — £)N — e~*, so these factors cancel.

As k is small relative taV we may ignore the factors @f and then say

E\F AN )
<1+N> = <1+N> — M/, (1.78)

similarly, (1 — £)=% — ¢**/N_ Thus we would claimdnd we shall see later in
Lemma 1.4.6 that this claim is in errgrthat

E\NTiHE E\NT:k i
1+ — 1-— — 2K /N, 1.7
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k p\N+3-k K2 /N .

We show that(l + 5 (1 — N) — eF /N The importance of
this calculation is that it highlights how crucial rates of convergence are. While itis
true that the main terms ¢t + %)N areet”, the error terms (in the convergence)
are quite important, and yield large secondary terms whisra power ofN. What
happens here is that the secondary terms from these two factors reinforce each
other. Instead of usingl + %)N ~ e from §?7, it is better to take the logarithms
of the two factors, Taylor expand, and then exponentiate. This allows us to better
keep track of the error terms.

An immediate consequence of Chebyshev’s inequality (see Exercise 1.1.62) is
that we need only study where|k| is at most\ z <. This is because the standard
deviation of Syy is vV2N. Specifically, see Exercise 1.4.8 for a proof that given
anye > 0, the probability of observing & with |k| > Nz*< is negligible. Thus it
suffices to analyze the probability théity = 2k for |k| < N3+3,

)N+§+k

Lemma 1.4.6. For anye < é for N — oo with k < N3+¢, we have

k N+3+k k N+i-k ) 1
(1 + N> (1 - N) — /NGO (1.80)

Proof. Recall that forjz| < 1,

(_1)n+1xn
771 .

log(1+2) = i (1.81)
n=1

As we are assuming < Nz '€, note that any term below of sizé€ /N2, k3 /N2
or k* /N3 will be negligible. Thus we have

k N+1i+k i N+i-k
r=(1ry) (1%
log Py v = N+1+k 1 1+£ + N—i—1 k|1 1 E e
og I’k N = B og N 2 0og N
k k2 k3
) (5w +o(w))

N 2 ) 2N2 N2 ' N3
k2 K2 K k4

Ask < Nzte fore < % the big-Oh term is dominated by —'/6, and we finally

obtain that
Py = F/NOWNT0) (1.83)

which completes the proof. a
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Combining Lemma 1.4.6 with (1.77) yields

2N\ 11 e
<N+k)22NN\/We : (1.84)

The proof of the central limit theorem in this case is completed by some simple
algebra. We are studyinghy = 2k, so we should replack? with (2k)? /4. Sim-
ilarly, since the variance of,y is 2N, we should replac&v with (2V)/2. We

find

Copy = (VYL L2 epreen
Prob(San = 2k) = (N N k:) v ¥ o e . (1.85)

RemembelS, y is never odd. The factor of in the numerator of the normal-
ization constant above reflects this fact, namely the contribution from the prob-
ability that S, is even is twice as large as we would expect, because it has to
account for the fact that the probability théfy is odd is zero. Thus the above
looks like a Gaussian with mednand variancN. For N large such a Gaussian
is slowly varying, and integrating frordk to 2k + 2 is basically2/./27(2N) -
exp —(2k)2/2(2N).

Exercise 1.4.7.Use the integral test to bound the error(ih.76), and then use that
to bound the error in the estimate of.

Exercise 1.4.8.Prove the standard deviation 6% is v2N. Use this and Cheby-
shev’s inequality (Exercise 1.1.62) to prove

1
PrOb(|S2N| 2 N¢. \/2N) S ﬁ’

which implies that it suffices to study valuescafith k < Nz +e,

(1.86)

Exercise 1.4.9.Prove(1.81)

Exercise 1.4.10.Can you generalize the above arguments to handle the case when

p# 3
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Chapter Two

Applications of Probability: Benford’s Law and

Hypothesis Testing

The Gauss-Kuzmin Theorem (Theoreé?f) tells us that the probability that the
millionth digit of a randomly chosen continued fraction expansioh is approx-

imately ¢, = log, (1 + M) What if we chooseV algebraic numbers, say

the cube roots ofV consecutive primes: how often do we expect to observe the
millionth digit equal tok? If we believe that algebraic numbers other than rationals
and quadratic irrationals satisfy the Gauss-Kuzmin Theorem, we expect to observe
¢ N digits equal tok, and probably fluctuations on the ordendiN. If we observe
M digits equal tok, how confident are we (as a function &f and NV, of course)
that the digits are distributed according to the Gauss-Kuzmin Theorem? This leads
us to the subject diiypothesis testing if we assume some process has probability
p of success, and we obser¥€ successes iV trials, does this provide support for
or against the hypothesis that the probability of succes? is

We develop some of the theory of hypothesis testing by studying a concrete
problem, the distribution of the first digit of certain sequences. In many problems
(for example,2™ base 10), the distribution of the first digit is given by Benford’s
Law, described below. We first investigate situations where we can easily prove
the sequences are Benford, and then discuss how to analyze data in harder cases
where the proofs are not as clear (such as the farBous 1 problem). The error
analysis is, of course, the same as the one we would use to investigate whether or
not the digits of the continued fraction expansions of algebraic numbers satisfy the
Gauss-Kuzmin Theorem. In the process of investigating Benford’s Law, we en-
counter equidistributed sequences (ChaRf®r logarithmic probabilities (similar
to the Gauss-Kuzmin probabilities in Chap®), and Poisson Summation (Chap-
ter ??), as well as many of the common problems in statistical testing (such as
non-independent events and multiple comparisons).

2.1 BENFORD’S LAW

While looking through tables of logarithms in the 1dt&00s, Newcomb noticed a
surprising fact: certain pages were significantly more worn out than others. Peo-
ple were looking up numbers whose logarithm started withore frequently than
other digits. In1938 Benford [Ben] observed the same digit bias in a variety of phe-
nomenon. See [Hil, Rai] for a description and history, [Hi2, BBH, KonMi, LaSo,
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MN] for recent results, [Knu] for connections between Benford’s law and rounding
errors in computer calculations and [Nig1, Nig2] for applications of Benford's Law
by the IRS to detect corporate tax fraud!

A sequence of positive numbefs,, } is Benford (baseb) if the probability of

observing the first digit of,, in baseb is j is log, (1 + %) More precisely,
< N : first digit of z,, in baseb is j 1
i 2AS gr otz b g, <1+j>. 2.1)

m N
Note thatj € {1,...,b— 1}. This is a probability distribution as one of the- 1
events must occur, and the total probability is

b—1 1 b—1 1 b—1 i1
Zlogb (1+,> = long(l—l—,) = 1ongj7_ = log, b = 1.
j=1 J i=1 J =1 7

(2.2)

It is possible to be Benford to some bases but not others; we show the first digit of
2™ is Benford base 10, but clearly it is not Benford base 2 as the first digit is always
1. For many processes, we obtain a sequence of points, and the distribution of the
first digits are Benford. For example, consider 8x&-1 problem. Let ag be any
positive integer, and consider the sequence where

3a, +1 if a,isodd
(079 - . .
1 an /2 if a,, is even.
For example, ilng = 13, we have

3—40 — 20 — 10 — 5 — 16 — 8 — 4 — 2 — 1

(2.3)

— 4 — 2 — 1 —4— 2 —1---. (2.4)

An alternate definition is to remove as many powers of two as possible in one step.
Thus

iy = 2L 25)
wherek is the largest power of 2 dividinga,, + 1. It is conjectured that foany
ag, eventually the sequence becomes» 2 — 1 — 4--- (or in the alternate
definitonl — 1 — 1---). While this is known for allag < 29°, the problem
has resisted numerous attempts at proofs (Kakutani has described the problem as
a conspiracy to slow down mathematical research because of all the time spent on
it). See [Lagl, Lag2] for excellent surveys of the problem. How do the first digits
behave fom large? Do numerical simulations support the claim that this process
is Benford? Does it matter which definition we use?

Exercise 2.1.1.Show the Benford probabilitidsg (1 + Jl) forj e {1,...,9}
are irrational. What if instead of base ten we work in bader some integet/?

Exercise 2.1.2.Below we use the definition of tlBe + 1 map from(2.5). Show
there are arbitrarily large integersV such that ifag = N thena; = 1. Thus,
infinitely often, one iteration is enough to enter the repeating cycle. More generally,
for each positive integet does there exist arbitrarily large integerg such that if

ap = N thena; > 1for j < kanda; = 1?
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2.2 BENFORD’S LAW AND EQUIDISTRIBUTED SEQUENCES

As we can write any positive asb" for someu, the following lemma shows that
it suffices to investigate mod 1:

Lemma 2.2.1. The first digits ofh* and bV are the same in baskif and only if
u = v modl.

Proof. We prove one direction as the other is similar.ulf= v mod 1, we may
writev =u+m, m € Z. If

b = b b g u b (2.6)
then
bv — bu+m
="
= (upb® +up BN g Fu b )™
= wb" T ugh™ u BT 4 (2.7)
Thus the first digits of each atg,, proving the claim. a

Exercise 2.2.2.Prove the other direction of the if and only if.
Consider the unit intervadl, 1). Forj € {1,...,b}, definep; by
bPi = j orequivalently p; = log, j. (2.8)
Forje{1,...,b—1},let
1Y = [pj,pj+1) < [0,1). (2.9)

Lemma 2.2.3. The first digit oft¥ baseb is j if and only ify mod1 € IJ(.b).

Proof. By Lemma 2.2.1 we may assurgec [0,1). Theny € Ij(.b) = [pj,pj+1)
if and only if b»7 < y < bPi+1, which from the definition op; is equivalent to
Jj < b¥ < j+1,proving the claim. O
The following theorem shows that the exponentials of equidistributed sequences
(see Definitior??) are Benford.

Theorem 2.2.4.1f y,, = log, x,, is equidistributed mod thenzx,, is Benford (base
b).

Proof. By Lemma 2.2.3,
{n <N :y, mod 1 € [log, j,log, (5 + 1))}

= {n < N :firstdigit of z,, in basebis j} . (2.10)
Therefore
i AR S N yo mod 1 € [log, j,log, (j +1))}
N—oo N
< N :fi igi ol is §
_ th #{n < N :first dlg]I\t]Ofx in baseb IS]}' 2.11)

If y, is equidistributed, then the left side of (2.11)lg;, (1 n ;) which implies
., IS Benford basé. O
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Remark 2.2.5. One can extend the definition of Benford’'s Law from statements
concerning the distribution of the first digit to the distribution of the firgtigits.
With such an extension, Theorem 2.2.4 becomes= log, =, mod 1 is equidis-
tributed if and only ifz,, is Benford basé. See [KonMi] for details.

Let{z} = z—[x] denote the fractional part af where[z] as always is the great-
est integer at most. In Theorem?? we prove that forx ¢ Q the fractional parts
of na are equidistributed modulb. From this and Theorem 2.2.4, it immediately
follows that geometric series are Benford (modulo the irrationality condition):

Theorem 2.2.6. Letz,, = ar™ with log, r € Q. Thenz,, is Benford (basé).

Proof. Lety,, = log, z,, = nlog, r + log, a. Aslog, r ¢ Q, by Theoren??the
fractional parts ofy,, are equidistributed. Exponentiating bywe obtain that:,, is
Benford (basé) by Theorem 2.2.4. ]

Theorem 2.2.6 implies that* is Benford base 10, but not surprisingly that it is
not Benford base.

Exercise 2.2.7.Do the first digits ok™ follow Benford's Law? What about® +
e "?

2.3 RECURRENCE RELATIONS AND BENFORD’S LAW
We show many sequences defined by recurrence relations are Benford. For more on

recurrence relations, see Exerci& The interested reader should see [BrDu, NS]
for more on the subject.

2.3.1 Recurrence Preliminaries

We consider recurrence relations of length

Otk = ClOp+k—1 + -+ + Crlp, (2.12)
wherecy, . .., ¢; are fixed real numbers. If the characteristic polynomial
PP e =, = 0 (2.13)
hask distinct roots\q, . . ., Ag, there exist numbersuy, . .., u; such that
p, = WAL + - F UL, (2.14)
where we have ordered the roots so that > --- > | x|
For the Fibonacci numbels = 2,¢; = ¢ = 1, u; = —up = =, and\; =

\/g!
1+T\/5, Ao = 1*7‘/5 (see Exercis@?). If |\;| = 1, we do not expect the first digit
of a,, to be Benford (bask). For example, if we consider

Ap = 2051 — Qp_o (2.15)

with initial valuesag = a1 = 1, everya,, = 1! If we instead takeiy = 0, a; = 1,
we geta,, = n. See [Kos] for many interesting occurrences of Fibonacci numbers
and recurrence relations.
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2.3.2 Recurrence Relations Are Benford

Theorem 2.3.1. Leta,, satisfy a recurrence relation of lengthwith & distinct real
roots. Assume\,| # 1 with || the largest absolute value of the roots. Further,
assume the initial conditions are such that the coefficienk,ofs non-zero. If
log; |A\1] € Q, thena,, is Benford (basé).

Proof. By assumptionu; # 0. For simplicity we assume; > 0, A; > |\
andu; > 0. Again lety,, = log, =,,. By Theorem 2.2.4 it suffices to shayy, is
equidistributed mod. We have

Tp = WAT + - F U AL
, ku\y
Tn = A [1+o( Y 2)} : (2.16)
AT
whereu = max; |u;| + 1 (S0ku > 1 and the big-Oh constantig. As A; > |\,

we “borrow” some of the growth from?; this is a very useful technique. Choose
a smalle and anng such that

1 Ao < ATTS

(kuw)'/™

2. foralln > ng, =
1

: H H ku __ (ku)l/n "
< 1, which then implies{z: = (T) :

As ku > 1, (ku)Y/™ is decreasing t@ asn tends to infinity. Note: > 0if A\; > 1

ande < 0if A\; < 1. Letting

(ku)'/mo X
AN

we find that the error term above is boundedd®yfor n > ng, which tends ta.

Therefore

8 =

<1, (2.17)

Yn = 1Ogb Tn
log, (u1AY) + O (logy, (1 + 3"))
= nlog, \1 + log, u1 + O(8"), (2.18)

where the big-Oh constant is bounded @ysay. Aslog, A1 ¢ Q, the fractional
parts ofn log, A1 are equidistributed modulg and hence so are the shifts obtained
by adding the fixed constahig;, u;.

We need only show that the error tet{3™) is negligible. It is possible for the
error term to change the first digit; for example, if we 88999 (or 1000000),
then if the error term contribut&s(or —2), we would change the first digit base.
However, forn sufficiently large, the error term will change a vanishingly small
number of first digits. Say log, A1 + log, u1 exponentiates bageto first digit j,
j€{1,...,b—1}. This means

nlog, \i +logyur € 1" = [pj_1,p;). (2.19)

The error term is at mogt' 5™ andy,, exponentiates to a different first digit than
nlog, A1 + log, u; only if one of the following holds:
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1. nlogy, A1 +logy, vy is within C 8™ of p;, and adding the error term pushes us
to or past;;

2. nlogy A1 + logy, uy is within C5™ of p;_;, and adding the error term pushes
us beforep;_;.

The first set is contained ip; — C 5™, p;), of lengthC'5". The second is con-
tained in[p;_1,p;—1 + CB™), also of lengthC'5™. Thus the length of the interval
wheren log, A1 + log;, u1 andy,, could exponentiate basdo different first digits
is of size2C 3. If we chooseN sufficiently large then for alh > N we can make
these lengths arbitrarily small. Aslog, A1 + log; u; is equidistributed moduld,
we can control the size of the subsetg@fl) wheren log, A1 + log, u1 andy,,
disagree. The Benford behavior (b&3®f x,, now follows in the limit. O

Exercise 2.3.2.Weaken the conditions of Theorem 2.3.1 as much as possible. What
if several roots equah;? What does a general solution (8.12) look like now?
What if \; is negative? Can anything be said if there are complex roots?

Exercisé™ 2.3.3. Consider the recurrence relatian, | = 5a,,—8a,_1+4a, _o.

Show there is a choice of initial conditions such that the coefficieht ¢& largest

root of the characteristic polynomial) is non-zero but the sequence does not satisfy
Benford’s Law.

Exercisé™ 2.3.4. Assume all the roots of the characteristic polynomial are dis-
tinct, and let\; be the largest root in absolute value. Show for almost all initial
conditions that the coefficient af is non-zero, which implies that our assumption
thatu; # 0 is true most of the time.

2.4 RANDOM WALKS AND BENFORD’S LAW

Consider the following (colorful) problem: A drunk starts off at time zero at a
lamppost. Each minute he stumbles with probabilitpne unit to the right and
with probabilityg = 1 — p one unit to the left. Where do we expect the drunk to be
after N tosses? This is known asRandom Walk. By the Central Limit Theorem
(Theorem 1.4.1), his distribution aft&f tosses is well approximated by a Gaussian
with meanl - pN + (—1) - (1 — p)N = (2p — 1)N and variance)(1 — p)N. For
more details on Random Walks, see [Re].

For us, aGeometric Brownian Motion is a process such that its logarithm is
a Random Walk (see [Hu] for complete statements and applications). We show
below that the first digits of Geometric Brownian Motions are Benford. In [KonSi]
the3z + 1 problem is shown to be an example of Geometric Brownian Motion. For
heuristic purposes we use the first definition of 3kret- 1 map, though the proof is
for the alternate definition. We have two operatdrgandT;, with T53(z) = 3z+1
andTy(x) = 5. If a, is 0dd,3a, + 1 is even, sdl’; must always be followed by
T;. Thus, we have really have two operat@ksandT} », With T /o (x) = 255 If
we assume each operator is equally likely, half the time we go from %a: +1,
and half the time td, .
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If we take logarithms]og z goes tolog 32 = log z + log 3 half the time and
log %x = logz + log % the other half. Hence on average we séngr — logx +
%log %. As log§ < 0, on average our sequence is decreasing (which agrees with
the conjecture that eventually we reath— 2 — 1). Thus we might expect our
sequence to look likeog zj, = logz + 4log 2. Aslog 2 ¢ Q, its multiples are
equidistributed modulo 1, and thus when we exponentiate we expect to see Benford
behavior. Note, of course, that this is simply a heuristic, suggesting we might see
Benford’s Law. A better heuristic is sketched in Exercise 2.4.1.

While we can consider Random Walks or Brownian Motion with non-zero means,
for simplicity below we assume the means are zero. Thus, in the example above,

p=73.

Exercisé™ 2.4.1. Give a better heuristic for the Geometric Brownian Motion of
the 3z + 1 map by considering the alternate definition,,; = % where
2|3z + 1. In particular, calculate the expected valuelog a,, 1. To do so, we
need to estimate the probability= ¢ for each? € {1,2,3,... }; notek # 0 as for

x odd,3z + 1 is always even and thus divisible by at least one power &how it

is reasonable to assume thatob(k = ¢) = 274,

2.4.1 Needed Gaussian Integral

Consider a sequence of Gaussiahswith mean 0 and varianeg?, with 02 — oo.
The following lemma shows that for any > 0 asoc — oo almost all of the
probability is in the interval—o'*9, o1 +9]. We will use this lemma to show that it
is enough to investigate Gaussians in the rgage 9, o1*7].

Lemma 2.4.2.
2 e _12/202 _025/2
55 | e dr < e . (2.20)
\V 2TTO o

Proof. Change the variable of integrationdo= Uﬂ”ﬁ. Denoting the above integral
by I, we find

o0

2
I -
ﬁ 05/\/§

L oV2dw = e dw. (2.21)

2 /OO
= — e
V2mwo? Jas /3

The integrand is monotonically decreasing. koe [%, f/—; + 1}, the integrand

is bounded by substituting in the left endpoint, and the region of integration is of
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lengthl. Thus,

26
I <1- e 2 4 / e dw
ﬁ \f 1

_ 2 e/ 4 / —(ut1)? g,
f f

2 520
_ /2 4 —u? —2u,—1
VY / !
2 520 2 26
/2 —0o /2/ e~ 2u
< e e du
Nz eﬁ =
< 2(€+ 1)6_025/2
T
< 4e=97 /2, (2.22)

O

Exercise 2.4.3.Prove a similar result for intervals of the forfa-og(0), og(o)]
whereg(o) is a positive increasing function aftn, ., g(o) = +oo.

2.4.2 Geometric Brownian Motions Are Benford

We investigate the distribution of digits of processes that are Geometric Brownian
Motions. By Theorem 2.2.4 it suffices to show that the Geometric Brownian Motion
converges to being equidistributed modulo Explicitly, we have the following:
after N iterations, by the Central Limit Theorem the expected value converges to
a Gaussian with meahand variance proportional tg’ N. We must show that the
Gaussian with growing variance is equidistributed modulo

For convenience we assume the meaf &d the variance i%//27. This cor-
responds to a fair coin where for each head (resp., tail) we r%&eeunlts to the
right (resp., left). By the Central Limit Theorem the probability of beingnits to
the right of the origin aftefV tosses is asymptotic to

ef‘n'a:z/N

pn () Wi
For ease of exposition, we assume that rather than being asymptotic to a Gaussian,

the distribution is a Gaussian. For our example of flipping a coin, this cannot be
true. If every minute we flip a coin and record the outcome, dfteninutes there
are2” possible outcomes, a finite number. To each of these we attach a number
equal to the excess of heads to tails. There are technical difficulties in working with
discrete probability distributions; thus we study instead continuous processes such
that at timeN the probability of observing: is given by a Gaussian with meén
and varianceV/2x. For complete details see [KonMi].

2

Theorem 2.4.4.AsN — oo, py(z) = % becomes equidistributed modulo
1.

(2.23)



ProbStat Chaps8And9 June 7, 2007

40 CHAPTER 2

Proof. For eachV we calculate the probability that fare R,  mod 1 € [a,b] C
[0,1). Thisis
o0 1 b 2
/ py(z)dr = — Z/ e @ E)T/N gy, (2.24)
e VN 15 Je=a
We need to show the above converges toa asN — oo. Forz € [a, b], standard
calculus (Taylor series expansions, see 8A.2.3) gives

677T(CE+TL)2/N _ efﬂnQ/N +0 (max(]\lfﬂ |7L|) en2/N> ) (225)
We claim that in (2.24) it is sufficient to restrict the summatiorrtp< N°/4,
The proof is immediate from Lemma 2.4.2: we increase the integration by expand-
ing tox € [0,1], and then trivially estimate. Thus, up to negligible terms, all the
contribution is from|n| < N5/4,
In §?? we prove the Poisson Summation formula, which in this case yields

—mn /N N7 gt (2.26)
WL

The beauty of Poisson Summation is that it converts one infinite sumslyitia
decay to another sum witlapid decay; because of this, Poisson Summation is an
extremely useful technique for a variety of problems. The exponential terms on the
left of (2.26) are all of size 1 for < /N, and do not become small until>> N
(for instance, once > /N log N, the exponential terms are small for lary®);
however, almost all of the contribution on the right comes from 0. The power
of Poisson Summation is it often allows us to approximate well long sums with
short sums. We therefore have

Z / —7r(m+n) /Nde

|71\<N5/4

B Lo (e

|7L\<N>/4
5/4
_boa S oem™N 40 NZ n“ e~/ VN)?
VN In|<N3/4
b—a 2 1 N/
— —Tn /N _ —Tw
= Z e +O< / (w+1)e” ™ VNdw
\/ﬁ In|<N5/4 N w=0
b— 2
-y e /N+0(N*1/2). (2.27)
| |<No/4

By Lemma 2.4.2 we can extend all sumsitee Z in (2.27) with negligible error.
We now apply Poisson Summation and find that up to lower order terms,

1 /b —w(etn)?/N —wn?N
—> et Ndy &~ (b—a)- Y e N, (2.28)
\/NnEZ r=a nez
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Forn = 0 the right hand side of (2.28) ts— a. For all othem, we trivially estimate
the sum:

SN < 2y e < 2 (2.29)
= = 1—e N '
n#0 n>1
which is less thade~™" for N sufficiently large. ]

We can interpret the above arguments as follows: for @aatonsider a Gaussian
pn (z) with mean0 and varianceV/2x. As N — oo for eache (which occurs with
probabilityp y (z)) the first digit of 10* converges to the Benford base 10 probabil-
ities.
Remark 2.4.5. The above framework is very general and applicable to a variety of
problems. In [KonMi] it is shown that these arguments can be used to prove Ben-
ford behavior in discrete systems such ashe- 1 problem as well as continuous
systems such as the absolute values of the Riemann zeta function (and any “good
L-function) near the critical line! For these number theory results, the crucial in-
gredients are Selberg’s result (near the critical ling|( (s + it)| for t € [T, 2T
converges to a Gaussian with variance tending to infinity’Jrand estimates by
Hejhal on the rate of convergence. For the+ 1 problem the key ingredients are
the structure theorem (see [KonSi]) and the approximation exponent of Definition
??, see [LaSo] for additional results on Benford behavior ofdhet 1 problem.

2.5 STATISTICAL INFERENCE

Often we have reason to believe that some process occurs with probabiflisyic-

cess and = 1 — p of failure. For example, consider tle + 1 problem. Choose

a largeay and look at the first digit of the,,’s. There is reason to believe the
distribution of the first digits is given by Benford’s Law for magf asay — oc.

We describe how to test this and similar hypotheses. We content ourselves with
describing one simple test; the interested reader should consult a statistics text-
book (for example, [BD, CaBe, LF, MoMc]) for the general theory and additional
applications.

2.5.1 Null and Alternative Hypotheses

Suppose we think some population has a parameter with a certain value. If the
population is small, it is possible to investigate every element; in general this is not
possible.

For example, say the parameter is how often the millionth decimal or continued
fraction digit is 1 in two populations: all rational numbergin1) with denomina-
tor at most, and all real numbers ifd, 1). In the first, there are only 10 numbers,
and it is easy to check them all. In the second, as there are infinitely many num-
bers, it is impossible to numerically investigate each. What we do in practice is
we sample a large number of elements (8aglements) irf0, 1), and calculate the
average value of the parameter for this sample.
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We thus have twgopulations, theunderlying population (in the second case,
all numbers in[0,1)), and thesample population (in this case, theV sampled
elements).

Our goal is to test whether or not the underlying population’s parameter has a
given value, say. To this end, we want to compare the sample population’s value
to p. Thenull hypothesis denotedH,, is the claim that there is no difference
between the sample population’s value and the underlying population’s value; the
alternative hypothesis denotedH,,, is the claim that there is a difference between
the sample population’s value and the underlying population’s value.

When we analyze the data from the sample population, either we reject the null
hypothesis, or we fail to reject the null hypothesis. It is important to note that
we neverprove the null or alternative hypothesis is true or false. We are always
rejecting or failing to reject the null hypothesis, we are never accepting it. If we
flip a coin 100 times and observe all heads, this does not mean the coin is not fair:
it is possible the coin is fair but we had a very unusual sample (though, of course,
it is extremely unlikely).

We now discuss how to test the null hypothesis. Our main tool is the Central
Limit Theorem. This is just one of many possible inference tests; we refer the
reader to [BD, CaBe, LF, MoMc] for more details.

2.5.2 Bernoulli Trials and the Central Limit Theorem

Assume we have some process where we expect a probabitifyobserving a
given value. For example, if we choose numbers uniformlj0iri) and look at
the millionth decimal digit, we believe that the probability this digit is ]1—1('55 If
we look at the continued fraction expansion, by TheofZhthe probability that
the millionth digit is 1 is approximateljpg, %. What if we restrict to algebraic
numbers? What is the probability the millionth digit (decimal or continued fraction
expansion) equals 17?

In general, once we formalize our conjecture we test it by choaSirdements
from the population independently at random (see §1.3). Consider the claim that a
process has probabiliy of success. We haw independent Bernoulli trials (see
81.2.1). The null hypothesis is the claim thegtercent of the sample are a success.
Let Sy be the number of successes; if the null hypothesis is correct, by the Central
Limit Theorem (see §1.4) we expegl; to have a Gaussian distribution with mean
pN and variancepgN (see Exercise 1.2.1 for the calculations of the mean and
variance of a Bernoulli process). This means that if we were to look at many
samples withV elements, on average each sample would ha&Vet O(y/pgN)
successes. We calculate the probability of observing a differgfi¢ce- pN| as
large or larger than. This is given by the area under the Gaussian with meén
and varianceqN:

! / —(s—pN)?/2pgN
R — e\ ds. (2.30)
\% 277qu |s—pN|>a

If this integral is small, it is extremely unlikely that we chodSeéndependent trials
from a process with probability of success and we reject the null hypothesis; if
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the integral is large, we do not reject the null hypothesis, and we have support for
our claim that the underlying process does have probabiliti/success.

Unfortunately, the Gaussian is a difficult function to integrate, and we would
need to tabulate these integrals éwerydifferent pair of mean and variance. Itis
easier, therefore, to renormalize and look at a new statistic which should also be
Gaussian, but with mean 0 and variance 1. The advantage is that we need only
tabulateonespecial Gaussian, the standard normal.

Let Z = sz;%v. This is known as the-statistic. If Sy’s distribution is a
Gaussian with mean/N and variancevg N, note Z will be a Gaussian with mean
0 and variance 1.

Exercise 2.5.1.Prove the above statement about the distribution. of
Let

I(a =224, (2.31)

=]
V21 Ji2)2a
the area under the standard normal (mean 0O, standard deviation 1) that is at least
units from the mean. We consider differeohnfidence intervals If we were to ran-
domly choose a numberfrom such a Gaussian, what is the probability (as a func-
tion of a) that 2 is at mosta units from the mean? Approximatebg% of the time
|z] < 1(I(1) ~ .32), approximately95% of the timez < 1.96 (I(1.96) ~ .05),
and approximately9% of the time|z| < 2.57 (I(2.57) = .01). In other words,
there is only about &% probability of observingz| > 2.57. If |z| > 2.57, we have
strong evidence against the hypothesis that the process occurs with prohability
and we would be reasonably confident in rejecting the null hypothesis; of course, it
is possible we were unlucky and obtained an unrepresentative set of data (but it is
extremely unlikely that this occurred; in fact, the probability is at most 1%).

Remark 2.5.2. For a Gaussian with meain and standard deviation, the prob-
ability that | X — u| < o is approximately.68. Thus if X is drawn from a nor-
mal with meanu and standard deviatios, then approximately8% of the time
w € [z — o,z + o] (wherez is the observed value of the random variaklg

To test the claim that some process occurs with probabilitwe observeN
independent trials, calculate thestatistic, and see how likely it is to obser\&|
that large or larger. We give two examples below.

2.5.3 Digits of the3z + 1 Problem

Consider again th8z + 1 problem. Choose a large integey, and look at the
iterates:ay, as, as, . . .. We study how often the first digit of terms in the sequence
equald € {1,...,9}. We can regard the first digit of a term as a Bernoulli trial with
a success (ar) if the first digit isd and a failure (00) otherwise. If the distribution

of digits is governed by Benford’s Law, the theoretical prediction is that the fraction
of the first digits that equal is p = log;,(%52). Assume there ar& terms in our
sequence (before we hit the pattera- 2 — 1 — 4--.), and sayM of them have
first digitd. For whatM does this experiment provide support that the digits follow
Benford's Law?
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Exercise 2.5.3.The terms in the sequence generatedbgre not independent, as
an+1 is determined byi,,. Show that if the first digit o, is 2 then the first digit
of a,,11 cannot be &.

The above exercise shows that the first digit of the tecammnotbe considered
independent Bernoulli trials. As the sequence is completely determined by the first
term, this is not surprising. If we look at an enormous number of terms, however,
these effects “should” average out. Another possible experiment is to look at the
first digit of the millionth term forV differentag’s.

Let ap = 333...333 be the integer that is 10,000 threes. There are 177,857
terms in the sequence before wehit- 2 — 1. The following data comparing the
number of first digits equal td to the Benford predictions are from [Min]:

digit | observed predicted variancez-statistic 1(z)
1 53425 53540 193.45 -0.596 0.45
2 31256 31310 160.64 -0.393 0.31
3 22257 22220 139.45 0.257 0.21
4 17294 17230 124.76 0.464 0.36
5 14187 14080 113.88 0.914 0.63
6 11957 11900 105.40 0.475 0.36
7 10267 10310 98.57 -0.480 0.37
8 9117 9090 92.91 0.206 0.16
9 8097 8130 88.12 —-0.469 0.36

As the values of the-statistics are all small (well below96 and2.57), the above
table provides evidence that the first digits in 8ae+ 1 problem follow Benford's
Law, and we would not reject the null hypothesis for any of the digits. If we had
obtained large-statistics, say 4, we would reject the null hypothesis and doubt that
the distribution of digits follow Benford’s Law.

Remark 2.5.4(Important) One must be very careful when analyzing all the digits.
Once we know how many digits are{n, . . ., 8}, then the number df’s is forced:

these are not nine independent tests, and a different statistical test (a chi-square
test with eight degrees of freedom) should be done. Our point here is not to write a
treatise on statistical inference, but merely highlight some of the tools and concepts.
See [BD, CaBe, LF, MoMc] for more details, and [Mil5] for an amusing analysis

of a baseball problem involving chi-square tests.

Additionally, if we have many different experiments, then “unlikely” events
should happen. For example, if we haw® different experiments we would not be
surprised to see an outcome which only ha&@chance of occurring (see Exercise
2.5.5). Thus, if there are many experiments, the confidence intervals need to be
adjusted. One common method is the Bonferroni adjustment method for multiple
comparisons. See [BD, MoMc].

Exercise 2.5.5.Assume for each trial there is®% chance of observing the frac-
tion of first digits equal tal is in [log;y, 2 — 1.960,log,, 2 + 1.960] (for some
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o). If we have 10 independent trials, what is the probability thhthe observed
percentages are in this interval? If we have 14 independent trials?

Remark 2.5.6. How does one calculate witt, 000 digit numbers? Such large
numbers are greater than the standard number classes (int, long, double) of many
computer programming languages. The solution is to represent numbers as arrays.
To go froma,, to 3a,, + 1, we multiply the array by 3, carrying as needed, and then
add 1; we leave space-holding zeros at the start of the array. For example,

3.00,...,0,0,5,6,7 = [0,...,0,1,7,0,1]. (2.32)

We need only do simple operations on the array. For examipl&,= 21, so the
first entry of the product array isand we carry the 2 for the next multiplication.
We must also compute, /2 if a,, is even. Note this is the same &s, divided by
10. The advantage of this approach is that it is easy to calcbdgteand as,, is
even, the last digit ofa,, is zero, hence array division by 10 is trivial.

Exercise 2.5.7.Consider the first digits of th&r + 1 problem (defined as i(2.3))
in base 6. Choose a large integeg, and look at the iterateg, as, as,.... As
ag — 00, Is the distribution of digits Benford ba$@

Exercise 2.5.§Recommended)Here is another variant of thgz + 1 problem:
3a, +1 if a, isodd
tns1 = { nl Ma (2.33)

a, /2% if a, is even an@*||a,;

2%||a,, means2* dividesa,,, but2¥*! does not. Consider the distribution of first
digits of this sequence for varioug. What is the null hypothesis? Do the data sup-
port the null hypothesis, or the alternative hypothesis? Do you think these numbers
also satisfy Benford's Law? What if instead we define

3a, +1

any1 = —o—, 2"lan. (2.34)

2.5.4 Digits of Continued Fractions

Let us test the hypothesis that the digits of algebraic numbers are given by the
Gauss-Kuzmin Theorem (Theore®). Let us look at how often th&000™" digit
equals 1. By the Gauss-Kuzmin Theorem this should be approximbt@)y%.

Let p,, be then™ prime. In the continued fraction expansions @p,, for n ¢
{100000, 199999}, exactly 41565 have the000" digit equal to 1. Assuming we
have a Bernoulli process with probability of success (a digit of 1)) ef log, %,

the z-statistic is.393. As the z-statistic is small §5% of the time we expect to
observelz| < 1.96), we do not reject the null hypothesis, and we have obtained
evidence supporting the claim that the probability thatlbeo™ digit is 1 is given

by the Gauss-Kuzmin Theorem. See Chaftefor more detailed experiments on
algebraic numbers and the Gauss-Kuzmin Theorem.
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2.6 SUMMARY

We have chosen to motivate our presentation of statistical inference by investigat-
ing the first digits of the3z + 1 problem, but of course the methods apply to a
variety of problems. Our main tool is the Central Limit Theorem: if we have a
process with probability (resp.,g = 1 — p) of success (resp., failure), then
independent trials we expect abau¥ successes, with fluctuations of sig@q V.

To test whether or not the underlying probabilityyisve formed thez-statistic:
Sy}%\’, whereS )y is the number of successes observed inthiials.

If the process really does have probabifitgf success, then by the Central Limit
Theorem the distribution of is approximately a Gaussian with mea and
standard deviatioR/pgN, and we then expect thestatistic to be of size 1. If,
however, the underlying process occurs not with probabilliytp’, then we expect
Sy to be approximately a Gaussian with meédlN and standard deviatiofip’q’ N.

We now expect the-statistic to be of sizé%. This is of size// N, much larger
than 1.

We see the-statistic is very sensitive to' — p: if p’ is differs fromp, for large
N we quickly observe large values of Note, of course, that statistical tests can
only provide compelling evidence in favor or against a hypothesis, never a proof.
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Analysis Review

A.1 PROOFS BY INDUCTION

Assume for each positive integerwe have a statemetit(n) which we desire to
show is true.P(n) is true for all positive integers if the following two statements
hold:

e Basis Step:P(1) is true;
¢ Inductive Step: wheneverP(n) is true, P(n + 1) is true.

This technique is calleBroof by Induction, and is a very useful method for prov-
ing results; we shall see many instances of this in this appendix and Ch&pter
(indeed, throughout much of the book). The reason the method works follows from
basic logic. We assume the following two sentences are true:

P(1)is true
Vn > 1, P(n) is true impliesP(n + 1) is true. (A1)

Setn = 1 in the second statement. A1) is true, andP(1) implies P(2), P(2)
must be true. Now set = 2 in the second statement. A¥2) is true, andP(2)
implies P(3), P(3) must be true. And so on, completing the proof. Verifying the
first statement théasis stepand the second thieaductive step. In verifying the
inductive step, note we assuni¥n) is true; this is called thenductive assump-
tion. Sometimes instead of startingrat= 1 we start at» = 0, although in general
we could start at anyg and then prove for alb > ng, P(n) is true.

We give three of the more standard examples of proofs by induction, and one
false example; the first example is the most typical.

A.1.1 Sums of Integers

Let P(n) be the statement

n(n+1)
—

k =

M=

(A.2)
k=1

Basis StepP(1) is true, as both sides equial
Inductive Step:AssumingP(n) is true, we must showP(n + 1) is true. By the
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i ; ; +1
inductive assumptiory ;_, k = 2%t Thus

n+1 n
dk=m+1)+> k
k=1 k=1
n(n+1)
2
n+1)(n+14+1)

= . . (A.3)

Thus, givenP(n) is true, thenP(n + 1) is true.

=(n+1)+

Exercise A.1.1. Prove

. 2 n(n+1)(2n—|—1). AL
kz:; 6 (A.4)

Find a similar formula for the sum df®. See also Exercise?.

Exercise A.1.2. Show the sum of the firstodd numbers is?, i.e.,

zn:(% —1) = n? (A.5)

k=1

Remark A.1.3. We define the empty sum to be 0, and the empty product to be 1.

For exampley _, . ,.o 1 = 0.

See [Mil4] for an alternate derivation of sums of powers that does not use induc-
tion.

A.1.2 Divisibility
Let P(n) be the statement33 divides11"+1 4 12271,

Basis Step:A straightforward calculation show8(1) is true: 1111 + 12271 =
121 +12 = 133.

Inductive StepAssumeP(n) is true, i.e.,133 divides11"+! 4 1227~ We must
showP(n + 1) is true, or thatl 33 divides11(+1)+1 4 122(n+1)=1 Byt

17(ntD+1 + 192(n+1)=1 _ qqnt+l+l 4 192n—1+2
= 11-11"Ft 4122 . 122771
11- 11T 4+ (133 + 11)122" !
= 11 (11" +12°"71) 4133 - 12°"~1. (A.6)

By the inductive assumptio33 divides11+! + 1227~1; therefore,133 divides
11D+ 4 192(n+1) =1 completing the proof.

Exercise A.1.4. Prove4 dividesl + 321,
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A.1.3 The Binomial Theorem
We prove the Binomial Theorem. First, recall that

Definition A.1.5 (Binomial Coefficients) Letn andk be integers witl) < k& < n.
We set

n n!
k) T Ho—Rr .
() K(n— ! (A7)

Note that0! = 1 and (Z) is the number of ways to choogeobjects fromn (with
order not counting).

Lemma A.1.6. We have
n n n n n—+1
W =0 )rGm) =) e
Exercise A.1.7. Prove Lemma A.1.6.
Theorem A.1.8(The Binomial Theorem)For all positive integers: we have

(z+y)" = zn: (Z) g hyk, (A.9)

k=0

Proof. We proceed by induction.
Basis StepForn = 1 we have

ZI: Gf)xl_kyk N (é)x * G)y = (z+y)" (A.10)

k=0
Inductive StepSuppose

(@+y)" = (Z) a"Ryk (A.11)
k=0
Then using Lemma A.1.6 we find that
(@+y)"" = (z+y)(z+y)"
n n o
= (z +y)z (k)x kyk
k=0
_ —~ (n n+l—k, k N\ n—k, k+1
= (e (1)
k=0
- n n _ "
e (AR S
k=1
n+1
= Z (n _]: 1) VL (A.12)
k=0

This establishes the induction step, and hence the theorem. O
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A.1.4 False Proofs by Induction

Consider the following: le’(n) be the statement that in any groupropeople,
everyone has the same name. We give a (false!) proof by inductiorPthgtis
true for alln!

Basis StepClearly, in any group with just person, every person in the group
has the same name.

Inductive StepAssumeP(n) is true, namely, in any group afpeople, everyone
has the same name. We now pra¥e: + 1). Consider a group af + 1 people:

{1,2,3,...,n—1,n,n+ 1}. (A.13)

The firstn people form a group of people; by the inductive assumption, they all
have the same name. So, the name isfthe same as the nameDis the same as
the name o ... is the same as the nameraf

Similarly, the lastn people form a group of people; by the inductive assump-
tion they all have the same name. So, the namisfthe same as the name f

. is the same as the name wfis the same as the name wf+ 1. Combining
yields everyone has the same name! Where is the error?

If n = 4, we would have the s€fl, 2,3,4,5}, and the two sets of people
would be{1,2,3,4} and{2,3,4,5}. We see that persorgs 3 and4 are in both
sets, providing the necessary link.

What about smallen? What ifn = 1? Then our set would bgl, 2}, and the
two sets ofl person would bg1} and{2}; there is no overlap! The error was that
we assumed was “large” in our proof ofP(n) = P(n + 1).

Exercise A.1.9. Show the above proof thd(n) implies P(n + 1) is correct for
n > 2, but fails forn = 1.

Exercise A.1.10.Similar to the above, give a false proof that any surk ofteger
squares is an integer square, i.e3 + --- + x2 = z2. In particular, this would
prove all positive integers are squaresmas= 12 + - - - + 12,

Remark A.1.11. There is no such thing a@roof By Example While it is often
useful to check a special case and build intuition on how to tackle the general case,
checking a few examples is not a proof. For example, becglise} and$2 = 1,
one might think that in dividing two digit numbers if two numbers on a diagonal are
the same one just cancels them. If that were true, g%eshould be}I. Of course

this isnothow one divides two digit numbers!

A.2 CALCULUS REVIEW

We briefly review some of the results from Differential and Integral Calculus. We
recall some notationfa, b] = {z : a < x < b} is the set of alk: betweern: andb,
includinga andb; (a,b) = {x : a < z < b} is the set of all- betweer: andb, not
including the endpointg andb. For a review of continuity see 8A.3.
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A.2.1 Intermediate Value Theorem

Theorem A.2.1(Intermediate Value Theorem (IVT))Let f be a continuous func-
tion on[a,b]. For all C betweenf(a) and f(b) there exists & € [a, b] such that
f(e) = C. In other words, all intermediate values of a continuous function are
obtained.

Sketch of the proofWe proceed byivide and Conquer. Without loss of gener-
ality, assumef(a) < C < f(b). Letz; be the midpoint ofa, b]. If f(z1) = C we
are done. Iff(z1) < C, we look at the intervalxy, b]. If f(x1) > C we look at
the intervalla, z1].

In either case, we have a new interval, callit, b;], such thatf(a;) < C <
f(b1) and the interval has half the size fof b]. We continue in this manner, re-
peatedly taking the midpoint and looking at the appropriate half-interval.

If any of the midpoints satisfy (z,,) = C, we are done. If no midpoint works,
we divide infinitely often and obtain a sequence of pointsn intervals|a,, b,].
This is where rigorous mathematical analysis is required (see 8A.3 for a brief re-
view, and [Rud] for complete details) to shawy converges to am < (a, b).

For eachn we havef(a,) < C < f(by,), andlim,, .o |b, — a,| = 0. As f is
continuous, this implielim,, . f(a,) = lim, . f(b,) = f(z) = C. O

A.2.2 Mean Value Theorem

Theorem A.2.2 (Mean Value Theorem (MVT)) Let f(x) be differentiable on
[a,b]. Then there existsa€ (a,b) such that

f) = fla) = f'(c)- (b—a). (A.14)

We give an interpretation of the Mean Value Theorem. fgt) represent the
distance from the starting point at time The average speed fromto b is the dis-
tance traveledf (b) — f(a), divided by the elapsed timé;— a. As f'(x) represents
the speed at time, the Mean Value Theorem says that there is some intermediate
time at which we are traveling at the average speed.

To prove the Mean Value Theorem, it suffices to consider the special case when
f(a) = f(b) = 0; this case is known as Rolle’s Theorem:

Theorem A.2.3(Rolle’s Theorem) Let f be differentiable orja, b], and assume
f(a) = f(b) = 0. Then there existsac (a, b) such thatf’(c) = 0.

Exercise A.2.4. Show the Mean Value Theorem follows from Rolle’s Theorem.
Hint: Consider

nw) = 1) - 1Oy pia) (15)

Noteh(a) = f(a) — f(a) = 0 andh(b) = £(5) — (f(b) — f(a)) — f(a) = 0. The

conditions of Rolle’s Theorem are satisfied fdr:), and

h/(c) — f/(c) _ f(b) _f(a)'

. (A.16)
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Proof of Rolle’'s TheoremWithout loss of generality, assunyé(a) and f’(b) are
non-zero. If either were zero we would be done. Multiplyif{g:) by —1 if needed,

we may assumg’(a) > 0. For convenience, we assurfiz) is continuousThis
assumption simplifies the proof, but is not necessary. In all applications in this book
this assumption will be met.

Case 1: f/(b) < 0: As f'(a) > 0 and f'(b) < 0, the Intermediate Value
Theorem applied tg’(z) asserts that all intermediate values are attained. As
f'(b) < 0 < f'(a), this implies the existence ofac (a, b) such thatf’(c) = 0.

Case 2:f'(b) > 0: f(a) = f(b) = 0, and the functiory is increasing at and
b. If z is real close ta then f(x) > 0 if > a. This follows from the fact that

f'(a) = lim fl) = fla), (A.17)
r—a xr—a
As f'(a) > 0, the limit is positive. As the denominator is positive fer> a,
the numerator must be positive. Thfi§c) must be greater thafi(a) for suchz.
Similarly f'(b) > 0 implies f(z) < f(b) = 0 for z slightly less tharb.

Therefore the functiorf () is positive forz slightly greater tham and negative
for z slightly less tharb. If the first derivative were always positive theifx)
could never be negative as it start)ait a. This can be seen by again using the
limit definition of the first derivative to show that jf’ (z) > 0 then the function
is increasing neat. Thus the first derivative cannot always be positive. Either
there must be some poigte (a, b) such thatf’(y) = 0 (and we are then done) or
f'(y) < 0. By the Intermediate Value Theorem, @ss betweenf’(a) (which is
positive) andf’(y) (which is negative), there is somec (a,y) C [a, b] such that
f'(e)=0. O

A.2.3 Taylor Series

Using the Mean Value Theorem we prove a version ofitlieTaylor series Ap-
proximation: if f is differentiable at least+1 times on[a, b], then for allz € [a, b],
flx) =30, f(’z,(“) (z —a)* plus an error that is at mostax, <.<, | f"+V)(c)| -
|z — a|? L.

Assumingf is differentiablen + 1 times onla, b], we apply the Mean Value
Theorem multiple times to bound the error betwgén) and its Taylor Approxi-
mations. Let

k!
h(z) = f(x) = fa(z). (A.18)

fn(z) is then'™ Taylor series Approximation tg(z). Note f,,(z) is a polynomial
of degreen and its firstn derivatives agree with the derivatives pfz) atz = 0.
We want to boundh(z)| for = € [a, b]. Without loss of generality (basically, for
notational convenience), we may assume- 0. Thush(0) = 0. Applying the
Mean Value Theorem th yields

n ) (g
fula) = S L@ gy
k=0



ProbStat Chaps8And9 June 7, 2007

ANALYSIS REVIEW 53
h(z) = h(z) — h(0)
= h'(c1) - (x—0) withey €0, 2]
= (f'(cr) = fuler)) =
k)
- (f’(q) S5 ke o ) -
. ~ fM0)
- <f (Cl) - ~ (k‘ _ 1)|Cll€ ) x
= hl(Cl)(E. (Alg)

We now apply the Mean Value Theorem/tg(u). Note thath; (0) = 0. Therefore

hl(Cl) = hl(cl) — hl(O)
= hi(c2) - (c1 —0) withes €[0,¢1] C [0, 7]
= (f"(c2) = frl(c2))

npk)
— (f”(cz) -y / (O)! (k= 1)(c2 — o)k—2> a

" (k—2)!
= ha(c2)cq. (A.20)
Therefore,
h(z) = f(x) — fu(x) = ha(ca)crz, c1,co €0, z]. (A.21)
Proceeding in this way a total aftimes yields
h(z) = (f(")(cn) —fm (O)) Cn—1Cn—2 - - C2C1Z. (A.22)

Applying the Mean Value Theorem t6(")(c,,) — f(™(0) gives f**D (¢, 1) -
(¢n —0). Thus

hzx) = f(x) = fule) = fO D (cpir)en - aw, ¢ €[0,2]. (A.23)
Therefore

(h(@)| = [f(x) = fu()] < Myilz["*! (A.24)
where
My = m{gx]lf(”“)(cn. (A.25)
ce|0,x

Thus if f is differentiablen + 1 times then the:" Taylor series approximation to
f(x) is correct within a multiple ofz|"**; further, the multiple is bounded by the
maximum value off **+1) on [0, z].

Exercise A.2.5. Prove(A.22) by induction.
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Exercise A.2.6. Calculate the first few terms of the Taylor series expansiolfs at
of cos(x), sin(z), e®, and2z® — x + 3. Calculate the Taylor series expansions of
the above functlons at = a Hint: There is a fast way to do this.

Exercise A.2.7(Advanced) Showall the Taylor coefficients for
e~V if g #0
= A.26
/() {0 S (A.26)

expanded about the origin vanish. What does this imply about the uniqueness of
a Taylor series expansionWarning: be careful differentiating at zero. More is
strangely true. Borel showed that {f.,,} is any sequence of real numbers then
there exists an infinitely differentiable such thatvn > 0, f(0) = a,, (for a
constructive proof see [GG]). Ponder the Taylor series fiom= (n!)2.

A.2.4 Advanced Calculus Theorems

For the convenience of the reader we record exact statements of several standard
results from advanced calculus that are used at various points of the text.

Theorem A.2.8(Fubini). Assumef is continuous and

b d
// |f(z,y)|dzdy < oc. (A.27)

/ab Ucdf(x,y)dy] dr = /Cd l/abf(x,y)dx] dy. (A.28)

Similar statements hold if we instead have

Ny
3 / oot S0 S femm). (A29)

n=~Ny n=No m=DMj

Then

For a proof in special cases, see [BL, VG]; an advanced, complete proof is given
in [Fol]. See Exercis@?for an example where the orders of integration cannot be
changed.

Theorem A.2.9(Green’s Theorem)Let C' be a simply closed, piecewise-smooth
curve in the plane, oriented clockwise, bounding a redionf P(x, y) andQ(z, y)
have continuous partial derivatives on some open set contaibirthen

/ P(x,y)dx + Q(x,y)d // (0@ 8];) dxdy. (A.30)

For a proof, see [Rud], Theorem 9.50 as well as [BL, La5, VG].

Exercise A.2.10.Prove Green’s Theorem. Show it is enough to prove the theorem
for D a rectangle, which is readily checked.
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Theorem A.2.11(Change of Variables)Let VV and W be bounded open sets in
R™. Leth:V — W be a 1-1 and onto map, given by

h(ug, ... un) = (ha(ur, .. cytn)y ooy hn(ug, .. up)) . (A.31)
Let f : W — R be a continuous, bounded function. Then

/.../Wf(xl,...,mn)dml~--d$n

= /---/Vf(h(ul,...,un))J(ul,...,uv)dul---dun. (A.32)

where.J is theJacobian

6h1 R ahl
ouq Ounp,
J=1 - (A.33)
Ohy ., Ohy
ouq Oun,

For a proof, see [La5, Rud].

A.3 CONVERGENCE AND CONTINUITY

We recall some needed definitions and results from real analysis. See [Rud] for
more details.

Definition A.3.1 (Convergence)A sequencézx,, }°° ; converges ta: if given any
e > 0 there exists anV (possibly depending o¢) such that for alln. > N, |z, —
x| < e. We often writer,, — z.

Exercise A.3.2.1f z,, = provez,, — 3.

3n
n2+1’
Exercise A.3.3.1f {z,,} converges, show it converges to a unique number.
Exercise A.3.4.Leta > 0 and setz,,.1 = % (1n + %) If xg = «, provex,

converges tg/a. Can you generalize this to find" roots? This formula can be
derived by Newton’s Method (se@3.

Definition A.3.5 (Continuity). A functionf is continuous at a point, if given an
e > 0 there exists & > 0 (possibly depending of) such that iflx — | < 6 then

[f(z) = f(zo)| <e.

Definition A.3.6 (Uniform Continuity) A continuous function is uniformly con-
tinuous if given are > 0 there exists & > 0 such that|lx — y| < § implies
|f(z) = f(y)| < e. Note that the samé&works for allz.

Usually we will work with functions that are uniformly continuous on some
fixed, finite interval.

Theorem A.3.7. Any continuous function on a closed, finite interval is uniformly
continuous.
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Exercise A.3.8. Showz? is uniformly continuous ofu, b] for —co < a < b < oo,
Show is not uniformly continuous of, 1), even though it is continuous. Show
22 is not uniformly continuous ojt), co).

Exercise A.3.9. Show the sum or product of two uniformly continuous functions
is uniformly continuous. In particular, show any finite polynomial is uniformly
continuous ofja, b].

We sketch a proof of Theorem A.3.7. We first prove

Theorem A.3.10(Bolzano-Weierstrass)Let {z,,}52; be a sequence in a finite
closed interval. Then there is a subsequeficg, } 7 , such that,,, converges.

Sketch the proofWithout loss of generality, assume the finite closed interval is
[0,1]. We proceed by divide and conquer. Consider the two intedals [0, 1]
andI, = [3,1]. Atleast one of these (possibly both) must have infinitely many
points of the original sequence as otherwise there would only be finitely mgdsy
in the original sequence. Choose a subinterval (gayvith infinitely manyz,,’s,
and choose any element of the sequence in that interval tq be

Consider allz,, with n > n,. Divide I, into two subintervald,; andI,, as
before (each will be half the length df). Again, at least one subinterval must
contain infinitely many terms of the original sequence. Choose such a subinterval,
say I, and choose any element of the sequence in that interval 19, bénote
ny > n1). We continue in this manner, obtaining a sequeficg, }. Fork > K,
zn, isin aninterval of size-. We we leave it as an exercise to the reader to show
how this implies there is an such thatz,,, — =. O

Proof of Theorem A.3.7If f(z) is not uniformly continuous, givea> 0 for each
§ = 5 there exist points,, andy,, with |z, — y,| < 5 and|f(z,) — f(yn)| >

e. By the Bolzano-Weierstrass Theorem, we construct sequenges— « and
Yn., — Y- One can show = y, and|f(acnkj) — f(ynkj)| > e violates the

continuity of f atzx. O
Exercise A.3.11.Fill in the details of the above proof.

Definition A.3.12 (Bounded) We sayf(x) is bounded (byB) if for all z in the
domain off, | f(z)| < B.

Theorem A.3.13.Let f(x) be uniformly continuous dja, b]. Thenf (x) is bounded.

Exercise A.3.14.Prove the above theorem. Hint: Giver> 0, divide [a, b] into
intervals of lengthd.

A.4 DIRICHLET'S PIGEON-HOLE PRINCIPLE

Theorem A.4.1(Dirichlet’'s Pigeon-Hole Principle)Let Ay, Ao, ..., A,, be a col-
lection of sets with the property that, U --- U A,, has at least» + 1 elements.
Then at least one of the sefs has at least two elements.
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This is called the Pigeon-Hole Principle for the following reasom:-fl pigeons
go ton holes, at least one of the holes must be occupied by at least two pigeons.
Equivalently, if we distribute: objects inn boxes andk > n, one of the boxes
contains at least two objects. The Pigeon-Hole Principle is also known as the Box
Principle. One application of the Pigeon-Hole Principle is to find good rational
approximations to irrational numbers (see Theof&n We give some examples
to illustrate the method.

Example A.4.2. If we choose a subsét from the set{1,2,...,2n} with |S| =
n + 1, thenS contains at least two elementsb with a|b.

Write each element € S ass = 295, with sg odd. There are odd numbers
in the set{1,2,...,2n}, and as the sef hasn + 1 elements, the Pigeon-Hole
Principle implies that there are at least two elementswith the same odd part;
the result is now immediate.

Exercise A.4.3.If we choose&5 numbers from{1,2,3,...,100} then among the
chosen numbers there are two whose difference is ten (from [Ma]).

Exercise A.4.4.Leta,, ..., a,41 be distinctintegersid1,...,2n}. Prove two of
them add to a number divisible RBy..

Exercise A.4.5.Leta,, ..., a, be integers. Prove that there is a subset whose sum
is divisible byn.

Example A.4.6. Let{ay, as, a3, a4, a5 } be distinct real numbers. There are indices
Z,jWIthO <a; —a; < 1—|—aiaj.

As the functiontan : (-7, 5) — R is surjective, there are anglése (-7, 7)

with a; = tan6;, 1 <4 < 5. Divide the interval(—7, 7) into four equal pieces,
each of length;. As we have five angles, at least two of them must lie in the same
small interval, implying that there aigj with 0 < 0; — 6; < 7. Applying tan to

the last inequality and using the identity

tanz — tany

tan(z —y) = (A.34)

1+ tanztany
gives the result.

Exercise A.4.7.Let ¢y, @2, ..., ¢k be angles. Then for aryy> 0 there are infi-
nitely manyn € N such that

K
K = cos(ngy)| < e (A.35)
j=1

Exercisé™ A.4.8. The Pigeon-Hole Principle ensures that, if there afeboxes
and N + 1 objects, then at least one box has two objects. What if we lower our
sites and ask only that there is a high probability of having a box with two elements;
see for example the birthday problem (Exercise 1.1.34). Specifically, let us assume
that each object is equally likely to be in any of theboxes. For each fixed,

show there is a positive probability of having at le&sibjects in a box if there are
N objects.
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A.5 MEASURES AND LENGTH

We discuss sizes of subsets[@f1]. It is natural to define the length of an interval
I = [a,b] (or [a,b) and so on) a$ — a. We denote this byI|, and refer to this
as thelength or measureof I. Our definition implies a poiné has zero length.
What about more exotic sets, such as the rationals and the irrationals? What are the
measures of these sets? A proper explanation is given by measure theory (see [La5,
Rud]); we introduce enough for our purposes. We assume the reader is familiar
with countable sets (see Chap®s).

Let I be a countable union of disjoint intervdls C [0, 1); thusI,, N1, is empty
if n # m. Itis natural (but see 8?7 as a warning for howatural statements are
often wrong) to say

1] = > L. (A.36)

It is important to take a countable union. Consider an uncountable union with
I, = {z} for x € [0,1]. As each singletofz} has length zero, we expect their
union to also have length zero; however, their uniofdj4], which has length 1. If

A C B, itis natural to sayA| (the length ofA) is at most B| (the length ofB).

Note our definition impliesa, b) and[a, b] have the same length.

A.5.1 Measure of the Rationals

Our assumptions imply that the rationalg[in1] have zero length (hence the irra-
tionals in[0, 1] have length 1).

Theorem A.5.1. The rationalsQ have zero measure.

Sketch of the proofWe claim it suffices to show) = Q N [0, 1] has measure zero.
To prove|@Q| = 0 we show that given any > 0 we can find a countable set of
intervalsI,, such that

1. |Q| CU,I,;

2. %, n| <e

As the rationals are countable, we can enumefateay@ = {z,,}2,. For each
n let

€ € €
In = [ n 5 L :|7 In = . A.37
g Ot ) Ml = o (A-37)
Clearly@ cC U, I,,. The intervald,, are not necessarily disjoint, but
Unn| < > |l = ¢ (A.38)
which completes the proof. O

Exercise A.5.2.Show that il = QN [0, 1] has measure zero, théhhas measure
zero.
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Exercise A.5.3. Show any countable set has measure zero; in particular, the alge-
braic numbers have length zero.

Definition A.5.4 (Almost all). Let A° be the complimentofi C R: A° = {z :
x ¢ A}. If A¢is of measure zero, we say almostakire in A.

Thus the above theorem shows that not only are almost all real numbers are
irrational but almost all real numbers are transcendental.

A.5.2 Measure of the Cantor Set

The Cantor set is a fascinating subset[@fl]. We construct it in stages. Let
Co = [0,1]. We remove the middle third af, and obtainC; = [0,1] U [2,1].
Note C; is a union of two closed intervals (we keep all endpoints). To constraict
we remove the middle third of all remaining intervals and obtain

o pURUE UG

We continue this process. Notg, is the union of2™ closed intervals, each of size
37", and

Co DCy DCy Do (A40)

Definition A.5.5 (Cantor Set) The Cantor se€ is defined by

C=()Cn={zeR:VnzeCy} (A.41)

n=1

Exercise A.5.6. Show the length of the Cantor set is zero.

If x is an endpoint of”,, for somen, thenz € C'. At first, one might expect that
these are the only points, especially as the Cantor set has length zero.

Exercise A.5.7. Showi and% are inC', but neither is an endpointlint: Proceed

by induction. To construet,,; fromC,,, we removed the middle third of intervals.
For each sub-interval, what is left looks like the union of two pieces, each one-
third the length of the previous. Thus, we have shrinking maps fixing the left and
right parts L, R : R — R given byL(z) = £ and R(z) = 2£2, andCy,q1 =
R(Cy) + L(Cy).

Exercise A.5.8.Show the Cantor set is also the set of all numhees|0, 1] which
have nol’s in their base three expansion. For rationals suchéaswe may write
these by using repeatirjs: ; = .02222... in base three. By considering base
two expansions, show there is a one-to-one and onto map|fraito the Cantor

set.

Exercise A.5.9(From theAmerican Mathematical Monthly Use the previous ex-
ercise to show that every € [0, 2] can be written as a sum+ z withy, z € C.



ProbStat Chaps8And9 June 7, 2007

60 APPENDIX A

Remark A.5.10. The above exercises show the Cantor set is uncountable and is in
a simple correspondence to all [6f 1], but it has length zero! Thus, the notion of
“length” is different from the notion of “cardinality”: two sets can have the same
cardinality but very different lengths.

Exercise A.5.11(Fat Cantor Sets)Instead of removing the middle third in each
step, remove the middi&. Is there a choice ofn which yields a set of positive
length? What if at stagﬁ we remove the mlddlé For what sequences, are we
left with a set of positive length? If the, are dIgItS of a simple continued fraction,
what do you expect to be true for “most” such numbers?

For more on the Cantor set, including dynamical interpretations, see [Dev, Edg,
Fal, SS3].

A.6 INEQUALITIES

The first inequality we mention here is the Arithmetic Mean and Geometrically
Mean Inequality (AM—GM); see [Mil3] for some proofs. For positive numbers
ai, ... ,an, the arithmetic mean i$-+-+2= and the geometric mean iga; - - - a,.

Theorem A.6.1(AM-GM). Letay,...,a, be positive real numbers. Then
Yai---ay S u, (A42)
with equality if and only iti; = - - - = ay,.

Exercise A.6.2. Prove the AM-GM when, = 2. Hint: For z € R, 2 > 0; this
is one of the most useful inequalities in mathematics. We will see it again when we
prove the Cauchy-Schwartz inequality.

Exercise A.6.3. Prove the AM-GM using mathematical induction.

There is an interesting generalization of the AM-GM; AM-GM is the case-
- = pn, = = of the following theorem.

Theorem A.6.4. Letay,...,a, be as above, and let;, ..., p, be positive real
numbers. SeP = p; + -+ + p,. Then
P
Pt abn < (p““ i - +p”““) , (A.43)
and equality holds ifand only if; = - - - = a,,.

This inequality is in turn a special case of the following important theorem:

Theorem A.6.5(Jensen’s Inequality)Let f be a real continuous function da, ]
with continuous second derivative 6m, b). Suppose thaf”(z) < 0forall = €
(a,b). Thenforay,...,a, € [a,b] andpy, ..., p, positive real numbers, we have

f<p1a1+--'+pnan> < p1flar) +--- +puflan)
pitecton )T P+t pn

(A.44)
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Exercise A.6.6. Prove Jensen’s inequalitydint: Draw a picture; carefully exam-
1

ine the caser = 2, p; = p» = 5. What doesf”(x) < 0 mean in geometric
terms?
Exercise A.6.7. Investigate the cases where Jensen’s inequality is an equality.

Exercise A.6.8. Show that Jensen’s inequality implies the AM-GM and its gener-
alization Theorem A.6.4Hint: Examine the functiorf(xz) = —logz, z > 0.

Our final inequality is theCauchy-Schwarz inequality There are a number of
inequalities that are referred to as the Cauchy-Schwarz inequality. A useful version
is the following:

Lemma A.6.9(Cauchy-Schwarz)For complex-valued functiongandg,

/Ollf(x)g(a:)ldas < (/Olf(a:)l%igg)é : </01 g(aj)Zda:>é. (A.45)

Proof. For notational simplicity, assumgandg are non-negative functions. Work-
ing with | f| and|g| we see there is no harm in the above assumption. As the proof
is immediate if either of the integrals on the right hand side of (A.45) is zero or
infinity, we assume both integrals are non-zero and finite. Let

1
hz) = f(x) = Ag(z), A = M. (A.46)
As [ h(z)*dz > 0 we have

0 < / (F(z) — Ag(x))? dz

1 1
i /0 e - 2A/ f@)g(x)dz + A2/O g(x)2dz
= /O1 f(x)de — (fo x)g(x dm) . (fo f(l’)g(a:)dx)

fo x)?dx ([01 g(z)?%dx
1 (f (x)g(x) dx)2
- / fl2)2dn — . (A.47)
0 fo x)?dx
This implies
(J F@)g(@)dz
Jiy 9(x) 2d9¢ / e (.49

or equivalently

(/f ) /f da:/ g(x)*dz. (A.49)

Taking square roots completes the proof. m|

Again, note that both the AG-GM and the Cauchy-Schwartz inequalities are
clever applications af? > 0 for z € R.
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Exercise A.6.10.For what f and g is the Cauchy-Schwarz Inequality an equality?

Exercise A.6.11.0ne can also prove the Cauchy-Schwartz inequality as follows:

considerh(z) = af (x) + b(x) wherea = \/ [ |f(x)2de, b = \/ [ lg(a)|2de,
and then integraté(x)?.

Remark A.6.12. The Cauchy-Schwarz Inequality is often useful wigén) = 1.
In this special case, it is important that we integrate over a finite interval.

Exercise A.6.13. Supposez,...,a, andby, ..., b, are two sequences of real
numbers. Prove the following Cauchy-Schwarz inequality:

layby + asbs + -+ anby| < (@2 +...a2)T (B3 +---+b2)7.  (A50)

Exercise A.6.14.Let f, g : R — C be such thatfy, | f(z)[*dx, [; [g(x)*dz < cc.
Prove the following Cauchy-Schwarz inequality:

’/_Z f(@)g(x)da 2 < /OO |f(at)|2dx-/oo lg()[2dz. (A.51)

— 00 — 0o
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Hints and Remarks on the Exercises

Chapter 8: Introduction to Probability

Exercise 1.1.18Hint: Leta,, be the probability that there are at ledsionsecutive

heads im tosses. Show,, satisfies the recurrence relation
1 1 1 1

ap = ianfl + Zan72 + §Qn73 + g (Bl)

The presence of the final terré, greatly complicates matters; we cannot use the
methods of Exercis@? or §2.3 to solve the recurrence relation. It is much easier
to studyb,,, the probability that there are ndtconsecutive heads imtosses; note
a, = 1 —b,,. Showd,, satisfies

b, = %bn_l + %bn_g + %bn_g. (B.2)
More generally, determine the probability of observing at Iédstads i tosses
of a coin with probabilityp of heads. Ifp = % show that the roots of the char-

acteristic polynomial of the recurrence relation are at n{ast 2*’“)1/]“. One
application of this is to roulette, where the probability of getting red (or black) is
16/38 because there are two green spaces. This shows there is a large enough prob-
ability of consecutive losses so that the strategy of double plus one (bet $1 on the
first spin; if you lose bet $2 on the second, if you lose again bet $4 on the third, if
you lose again bet $8 on the fourth, and so on; it does not matter when your color
finally comes up — you always win $1) will fail in general, as too quickly you reach
the house limit (maximum allowable bet) and lose a lot.

Exercise 1.1.36Hint: Let X|,,) denote the largest of player one’s rolls, arig,
the largest of player two's rolls. Fare {1,...,k},

m_(a_l)m-

Prob(X,; = a) = - = : (B.3)

this follows from

m m—~
Prot(X[m] = CL) = Z (7;); (ak_1> ) (B-4)

=1
the binomial theorem and noticing we have a telescoping sum. The proof is com-
pleted by noting that
k
Prob(Player one wins)= Z Prol( Xp,,,) = a) - ProY,,) <a—1). (B.5)
a=2
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X andYy,) are examples of order statistics; see also Exeftse

Exercise 1.2.9Hint: Let

=> % = (B.6)
k=0

Differentiate once to determine the mean, twice to determine the variance.

Chapter 9: Applications of Probability: Benford’s Law and Hypothesis
Testing

Exercise 2.3.3Hint: Consideray = a1 = as = 1. This recurrence relation was
constructed by starting with the characteristic polynorpiat 2)%(r — 1) and then
finding initial conditions so that the coefficients of the = A\, = 2 eigenvalues
vanish. In searching for counter-examples, it is significantly easier here to specify
the roots of the characteristic polynomial first, and find the actual recurrence rela-
tion second.

Exercise 2.3.4:Hint: Consider a recurrence relation of lengthwith k distinct
roots. By specifying: terms (sayo, . . ., ax_1), the coefficients of the roots; are
determined. We must solve

WAL+ uRAl = an, ne{0,...,k—1} (B.7)

We may write this in matrix form as

1 1 e 1 uq ao
)\1 )\2 e )\k (15} a1
A2 A2 A2 U a
1 2 k 3 = 2 . (B.8)
PV e D L i ar_1

The matrix of eigenvalues is a Vandermonde matrix; by Exetsts determinant

is non-zero when,; # A;. Thus its inverse exists, and the initial conditions which
lead tou; = 0 are a hyperplane i6*, which shows that almost all initial conditions
lead tou; # 0.
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Appendix C

Concluding Remarks

This book is meant as an introduction to a vast, active subject. It is our hope
that the reader will pursue these topics further through the various projects and
references mentioned in the introduction and chapters above. We also hope that we
have shown how similar tools, techniques and concepts arise in different parts of
mathematics. We briefly summarize some of what we have seen.

The first is the Philosophy of Square Root Cancellation. As a general principle,
many “nice” sums ofV terms of absolute valuk are approximately of siz¢/N.
Examples range from the Gauss sums?? 8vhich were then used in our investi-
gations of the number of solutions to Diophantine equation®®) & the average
value of generating functions encountered in the Circle Method in Cha@f2ensd
??to the Central Limit Theorem of §1.4 (which shows that for a wide class of pop-
ulations, the distribution of the mean of a large sample is independent of the fine
properties of the underlying distribution).

Similar to the universality of the Central Limit Theorem, many different systems
after normalization follow the same spacing laws. We have seen numerical and
theoretical evidence showing that spacings between primes, the fractional parts of
n*a (for certaink and«) and numbers uniformly chosen ii, 1] are the same (see
Chapter??), while in Chapter£?? to ?? we see similar behavior in energy levels
of heavy nuclei, eigenvalues of matrices (of random matrix ensembles as well as
adjacency matrices attacheddwegular graphs) and zeros bffunctions.

Throughout our investigations, certain viewpoints have consistently proven use-
ful. Among the most important are Fourier Analysis (Chap®rand the structure
of numbers (Chapterd? and??). From Fourier Analysis we obtain Poisson Sum-
mation and the Fourier Transform (which are useful for investigating problems as
varied as the first digits of sequences (§2.4.2), the functional equatigr)of§??)
and in ChapteR? the zeros of_-functions). Other applications range from Weyl's
Theorem (Chapte??) on the equidistribution of sequences to the Circle Method
and representing numbers as the sum of primes or integer pove&rar{§??). We
have used the structure of numbers in finding good rational approximati®f (8
Roth’s Theorem (Chapté&?), and studying the properties of o mod 1 (Chapter
??).

Finally, we have tried to emphasize in the text which techniques appear through-
out mathematics. Some of the most common are adding zero or multiplying by one,
divide and conquer, dyadic decomposition, no integers af®,ih), the Pigeon-

Hole Principle, positivity, and splitting integrals or sums; seetéohniquesentry
in the index for more details.
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infimum, xii
integers, xi
Intermediate Value Theorem, 51

Jacobian, 55
Jensen'’s Inequality, 60

length, 58
Little-Oh, xii

matrices

Vandermonde, 64
mean value, 13
Mean Value Theorem, 51
measure, 58
Method of Least Squares, 17
moments, 13

probability distribution, 14
multiplicative group of integers, xi

natural numbers, xi
normal distribution, 23
number

Fibonacci, 35

order of approximation, 41

order of approximation, 41
order statistics, 64
outcome, 4

outcome space, 4

partition, 6

philosophy of square root cancellation, 28

Pigeon-Hole Principle, 56
population, 42
sample, 42
underlying, 42
prime, xi
probability, 3
Central Limit Theorem, 27
complements, 7
conditional, 9
density function, 22
distribution, 4
Bernoulli, 19
continuous, 22
discrete, 4
moments, 14
Poisson, 21
events, 5
expected value, 13
function, 4

cumulative distribution function, 26

discrete, 4
Gaussian, 23
iid.rv, 26
independence, 11

independent random variables, 12

INDEX

moments, 13
normal distribution, 23
outcome, 4
outcome space, 4
partition, 6
random sampling, 25
random variable, 5
indicator, 7, 19

range, 6
sample space, 4
standard deviation, 16
standard Gaussian, 28
two envelope problem, 15
variance, 16

process
Bernoulli, 19
Poisson, 21

proof by example, 50

random variable, 5

random walk, 37

rational numbers, xi

real numbers, xi

real part, xi

recurrence relation, 35
characteristic polynomial, 35

relatively prime, xi

Rolle’s Theorem, 51

sample space, 4
square root cancellation, 28
standard deviation, 16
statistical inference, 41
Stirling’s formula, 29
summation
Poisson Summation formula
application to Benford’s Law, 40
supremum, Xii

Taylor series, 52

techniques
borrowing decay, 36
differentiating identities, 20
differentiating under the summation sign, 20
divide and conquer, 51, 56
logarithms, 29
Poisson Summation, 40
positivity, 60, 61
probability relations, 8
proof by induction, 47
square root cancellation, 28

Two Envelope Problem, 15

unit mean spacing, 22

Vandermonde, 64
variance, 16
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z-statistic, 43
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