
HOMEWORK PROBLEMS FROM STRANG’S LINEAR
ALGEBRA AND ITS APPLICATIONS (4TH EDITION)

PROFESSOR STEVEN MILLER: BROWN UNIVERSITY: SPRING 2007

1. CHAPTER 1: MATRICES AND GAUSSIAN ELIMINATION

Page 9, # 3: Describe the intersection of the three planesu+v +w+z = 6,
u + w + z = 4 andu + w = 2 (all in four dimensional space). Is it a line,
point, or an empty set? What is the intersection if the fourth planeu = −1
is included? Find a fourth equation so that there is no solution.

Page 11: # 22: If(a, b) is a multiple of(c, d) with abcd 6= 0, show that(a, c)

is a multiple of(b, d). This leads to the observation that ifA =

(
a b
c d

)

has dependent rows then it has dependent columns.

Page 16: # 11: Apply elimination (circle the pivots) and back substitution
to solve

2x− 3y + 0z = 3

4x− 5y + 1z = 7

2x− 1y − 3z = 5.

List the three operations involved: subtract times row from row
.

Page 17, # 18: It is impossible for a system of linear equations to have
exactly two solutions.Explain why. (a) If (x, y, z) and(X,Y, Z) are two
solutions, what is another one? (b) if 25 planes meet at two points, where
else do they meet?
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Page 27, #10: True or false? Give a specific counterexample when false. (a)
If columns 1 and 3 ofB are the same, so are columns 1 and 3 ofAB. (b) If
rows 1 and 3 ofB are the same, so are rows 1 and 3 ofAB. (c) If rows 1
and 3 ofA are the same, so are rows 1 and 3 ofAB. (d) (AB)2 = A2B2.

Page 27, #12: The product of two lower triangular matrices is lower trian-
gular. Confirm this with a3 × 3 example, and then explain how it follows
from the laws of matrix multiplication.

Page 28, # 20: The matrix that rotates thex − y plane by an angleθ is

A(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. Verify thatA(θ1)A(θ2) = A(θ1 +θ2) from the

identities forcos(θ1 + θ2) andsin(θ1 + θ2). What isA(θ) timesA(−θ)?

Page 40, #5: FactorA into LU and write down the upper triangular system
Ux = c which appears after elimination, where

Ax =




2 3 3
0 5 7
6 9 8







u
v
w


 =




2
2
5


 .

Page 42, # 25: When zero appears in a pivot position,A = LU is not
possible. Show why these are both impossible:
(

0 1
2 3

)
=

(
1 0
` 1

)(
d e
0 f

)
,




1 1 0
1 1 2
1 2 1


 =




1 0 0
` 1 0
m n 1







d e g
0 f h
0 0 i


 .

Page 43, # 29: ComputeL andU for the symmetric matrix

A =




a a a a
a b b b
a b c c
a b c d


 .

Page 44, # 41: How many exchanges will permute(5, 4, 3, 2, 1) back to
(1, 2, 3, 4, 5)? How may exchanges to change(6, 5, 4, 3, 2, 1) to (1, 2, 3, 4, 5, 6)?
One is even and one is odd. For(n, . . . , 1) to (1, . . . , n), show thatn = 100
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and101 are even andn = 102 and103 are odd.

Page 44, # 42: IfP1 andP2 are permutation matrices, so isP1P2. This still
has the rows ofI in some order. Give examples withP1P2 6= P2P1 and
P3P4 = P4P3.

Page 45, # 45: If you take powers of a permutation, why is someP k even-
tually equal toI? Find a5 × 5 permutationP so that the smallest power
equal toI is P 6. (This is challenge question. Combine a2× 2 block with a
3× 3 block).

Page 45, #47: IfP is any permutation, find a non-zero vectorx so that
(I − P )x = 0. (This will mean thatI − P has no inverse, and has determi-
nant zero.)

Page 52, # 6: Use the Gauss-Jordan method to invert

A1 =




1 0 0
1 1 1
0 0 1


 , A2 =




2 −1 0
−1 2 −1
0 −1 2


 , A3 =




0 0 1
0 1 1
1 1 1


 .

Page 53, # 11: Give examples ofA andB such that (a)A + B is not in-
vertible althoughA andB are invertible; (b)A + B is invertible although
A andB are not invertible; (c) all ofA, B andA + B are invertible. In the
last case useA−1(A + B)B−1 = B−1 + A−1 to show thatC = A−1 + B−1

is also invertible, and find a formula forC−1.

Page 53, # 19: Compute theLDLT factorization of

A =




1 3 5
3 12 18
5 18 30


 , B =

(
a b
b d

)
.

Page 55, # 40: True or false (with a counterexample if false and a reason if
true): (a) A4 × 4 matrix with a row of zeros is not invertible; (b) a matrix
with 1’s along the main diagonal is invertible; (c) ifA is invertible thenA−1

is invertible; (d) ifAT is invertible thenA is invertible.
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Page 56, # 43: This matrix has a remarkable inverse. FindA−1 by elimina-
tion on [AI]. Extend to a5× 5 “alternating matrix” and guess its inverse:

A =




1 −1 1 −1
0 0 −1 1
0 0 1 −1
0 0 0 1


 .

Page 56, # 52: LetA be a matrix which is not identically zero. ShowA2 = 0
is possible butAT A = 0 is not.

Page 58, # 65: Agroupof matrices includesAB andA−1 if it includesA
andB. “Products and inverses stay in the group.” Which of these sets are
groups? Lower triangular matricesL with 1’s on the diagonal, symmetric
matricesS, positive matricesM , diagonal invertible matricesD, permuta-
tion matricesP . Invent two more matrix groups.

Page 65, #1.6: (a) There are 162 × 2 matrices whose entries are 1’s and
0’s. How many are invertible? (b) (Much harder) If you put 1’s and 0’s at
random into the entries of a10× 10 matrix, is it more likely to be invertible
or singular?

Page 66, # 1.20. Then× n permutation matrices are an important example
of a “group”. If you multiply them you stay inside the group; they have
inverses in the group; the identity is in the group; and the lawP1(P2P3) =
(P1P2)P3 is true (because it is true for all matrices). (a) How many mem-
bers belong to the groups of4×4 andn×n permutation matrices? (b) Find
a powerk so that all3× 3 permutation matrices satisfyP k = I.
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2. CHAPTER 2: VECTORSPACES

Page 73, # 1 Construct a subset of thex− y plane inR that is (a) closed un-
der vector addition and subtraction, but not scalar multiplication; (b) closed
under scalar multiplication but not under vector addition.Hint: starting
with u andv, add and subtract for (a). Trycu andcv for (b).

Page 74, #4: What is the smallest subspace of3×3 matrices that contains all
symmetric matricesand all lower triangular matrices? What is the largest
subspace that is contained in both of those subspaces?

Page 74, #7: Which of the following are subsequences ofR∞: (a) all sub-
sequences like(1, 0, 1, 0, . . . ) that include infinitely many zeros; (b) all se-
quences(x1, x2, . . . ) with xj = 0 from some point onward; (c) all decreas-
ing sequences:xj+1 ≤ xj for eachj; (d) al convergent sequences: thexj

have a limit asj → ∞; (e) all arithmetic progressions:xj+1 − xj is the
same for allj; (f) all geometric progressions(x, kx, k2x, . . . ) allowing all
x andk.

Page 76, #25: If we add an extra columnb to a matrixA, then the column
space gets larger unless . Give an example in which the column space
gets larger and an example in which it doesn’t. Why isAx = b solvable
exactly when the column spacedoesn’tget larger by includingb?

Page 77, # 29: Construct a3 × 3 matrix whose column space contains
(1, 1, 0) and(1, 0, 1) but not(1, 1, 1). Construct a3 × 3 matrix whose col-
umn space is only a line.

Page 85, # 2: ReduceA andB to echelon form, to find their ranks. Which
variables are free?

A =




1 2 0 1
0 1 1 0
1 2 0 1


 , B =




1 2 3
4 5 6
7 8 9


 .

Page 87, # 24: Every column ofAB is a combination of columns ofA. Then
the dimension of the column spaces giverank(AB) ≤ rank(A). Prove also
thatrank(AB) ≤ rank(B).
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Page 87, #25: SupposeA andB aren × n matrices, andAB = I. Prove
from rank(AB) ≤ rank(A) that the rank ofA is n. SoA is invertible and
B must be its two-sided inverse. ThereforeBA = I (which is not so obvi-
ous!).

Page 87, #26: IfA is 2× 3 andC is 3× 2, show from its rank thatCA 6= I.
Give an example in whichAC = I. Form < n, a right inverse is not a left
inverse.

Page 88, # 34: Under what conditions onb1, b2, b3 is the following system
solvable? Includeb as a fourth column in[Ab]. Find all solutions when that
condition holds:

1x + 2y − 2z = b1

2x + 5y − 4z = b2

4x + 9y − 8z = b3.

Page 89, #37: Why can’t a1 × 3 system havexp = (2, 4, 0) andxn any
multiple of (1, 1, 1).

Page 89, # 44: Give examples of matricesA for which the number of solu-
tions toAx = b is (a) 0 or 1, depending onb; (b)∞, regardless ofb; (c) 0
or∞, depending onb; (d) 1, regardless ofb.

Page 90, # 48: Reduce toUx = c (Gaussian elimination) and thenRx = d:

Ax =




1 0 2 3
1 3 2 0
2 0 4 9







x1

x2

x3

x4


 =




2
5
10


 = b.

Page 90, #54: True or false (give a reason if true, or a counterexample if
false): (a) a square matrix has no free variables; (b) an invertible matrix has
no free variables; (c) anm × n matrix has no more thann pivot variables;
(d) anm× n matrix has no more thanm pivot variables.

Page 91, #61: Construct a matrix whose nullspace consists of all multiples
of (4, 3, 2, 1).
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Page 91, #65: Construct a2 × 2 matrix whose nullspace equals its column
space.

Page 98, #1: Show thatv1 =




1
0
0


, v2 =




1
1
0


, v3 =




1
1
1




are independent butv1, v2, v3 and v4 =




2
3
4


 are dependent. Solve

c1v1 + · · ·+ c4v4 = 0 or Ac = 0. Thev’s go into the columns ofA.

Page 99, #14: Choosex = (x1, x2, x3, x4) in R4. It has 24 rearrangements
like (x2, x1, x3, x4). Those 24 vectors, includingx itself, span a subspace
S. Find specific vectorsx so that the dimension ofS is (a) 0, (b) 1, (c) 3,
(d) 4.

Page 102, #39: The cosine spaceF3 contains all combinationsy(x) =
A cos x + B cos 2x + C cos 3x. Find a basis for the subspace that has
y(0) = 0.

Page 102, #40: Find a basis for the space of functions that satisfy (a)
dy/dx− 2y = 0; (b) dy/dx− y/x = 0.

Page 102, #43: Write the3×3 identity matrix as a combination of the other
five permutation matrices! Then show that those five matrices are linearly
independent. (Assume a combination gives zero, and check entries to prove
each term is zero.) The five permutations are a basis for the subspace of
3× 3 matrices with row and column sums all equal.

Page 110, #3: Find the dimension and a basis for the four fundamental
subspaces for

A =




1 2 0 1
0 1 1 0
1 2 0 1


 , U =




1 2 0 1
0 1 1 0
0 0 0 0


 .
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Page 110, #5: If the productAB is the zero matrix, show that the column
space ofB is contained in the nullspace ofA. (Also the row space ofA is in
the left nullspace ofB, since each row ofA multipliesB to give a zero row.)

Page 111, # 16 (A paradox) SupposeA has a right-inverseB. ThenAB = I
leads toAT AB = AT or B = (AT A)−1AT . But that satisfiesBA = I; it is
a left-inverse. Which step is not justified?

Page 112, # 20 (a) If a7× 9 matrix has rank 5, what are the dimensions of
the four subspaces? What is the sum of the four dimensions? (b) If a3× 4
matrix has rank 3, what are its column space and left nullspace?

Page 112, # 27:A is anm × n matrix of rankr. Suppose there are right-
hand sidesb for whichAx = b hasno solution. (a) What inequalities (< or
≤) must be true betweenm,n andr? (b) How do you know thatAT y = 0
has a non-zero solution?

Page 113, #37: True or false (with a reason or a counterexample): (a)A
andAT have the same number of pivots; (b)A andAT have the same left
nullspace; (c) if the row space equals the column space thenA = AT ; (d) if
AT = −A then the row space ofA equals the column space.

Page 133, # 6: Which3 × 3 matrices represent the transformations that (a)
project every vector onto thex − y plane; (b) reflect every vector through
thex − y plane; (c) rotate thex − y plane through 90 degrees, leaving the
z-axis alone; (d) rotate thex− y plane, then thex− z plane, then they− z
plane, each through 90 degrees; (e) carry out the same rotations, but each
through 180 degrees?

Page 133, #7: On the spaceP3 of cubic polynomials, what matrix represents
d2/dt2? Construct the4× 4 matrix from the standard basis1, t, t2, t3. Find
its nullspace and column space. What do they mean in terms of polynomi-
als?

Page 134, #14: Prove thatT 2 is a linear transformation ifT is linear (from
R3 toR3).
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Page 135, #36: (a) What matrix transforms(1, 0) into (2, 5) and transforms
(0, 1) to (1, 3)? (b) What matrix transforms(2, 5) to (1, 0) and (1, 3) to
(0, 1)? (c) Why does no matrix transform(2, 6) to (1, 0) and(1, 3) to (0, 1)?

Page 136, #46: Show that the productST of two reflections is a rotation.
Multiply these reflection matrices to find the rotation angle:(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
,

(
cos 2α sin 2α
sin 2α − cos 2α

)
.

Page 136, #47: The4× 4 Hadamard matrix is entirely+1 and−1:

H =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1.




FindH−1 and write(7, 5, 3, 1) as a combination of the columns ofH.

Page 137, #50: Suppose all vectorsx in the unit square0 ≤ x1, x2 ≤ 1 are
transformed toAx (A is a2× 2 matrix). (a) What is the shape of the trans-
formed region (allAx)? (b) For which matricesA is the region a square?
(c) For whichA is it a line? (d) For whichA is the new area still1?

Page 138, #2.10: Invent a vector space that contains all linear transforma-
tions fromRn to Rn. You have to decide on a rule of addition. What is its
dimension?

Page 139, # 2.23: How can you construct a matrix that transforms the co-
ordinate vectorse1, e2, e3 into three given vectorsv1, v2, v3. When will that
matrix be invertible?
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3. CHAPTER 3: ORTHOGONALITY

Page 148, # 2: Give an example inR2 of linearly independent vectors that
are not orthogonal. Also, give an example of orthogonal vectors that are not
independent.

Page 149, # 11: The fundamental theorem is often stated in the form of
Fredholm’s alternative:For anyA andb one and only one of the following
systems has a solution: (i)Ax = b; (ii) AT y = 0 andyT b 6= 0. Eitherb is in
the column spaceC(A) or there is ay in N(AT ) such thatyT b 6= 0. Show
that it is contradictory for (i) and (ii) to both hold.

Page 149, # 14: Show thatx − y is orthogonal tox + y if and only if
||x|| = ||y||.

Page 149, # 19: Why are these statements false? (a) IfV is orthogonal to
W thenV ⊥ is orthogonal toW⊥. (b) If V is orthogonal toW andW is
orthogonal toZ thenV is orthogonal toZ.

Page 150, # 32: Draw Figure 3.4 to show each subspace for

A =

(
1 2
3 6

)
, B =

(
1 0
3 0

)
.

Page 151, # 36: Extend Problem 35 to ap-dimensional subspaceV and a
q-dimensional subspaceW of Rn. What inequality onp+ q guarantees that
V intersectsW in a non-zero vector? These subspaces cannot be orthogo-
nal.

Page 151, # 47: Construct a3 × 3 matrix A with no zero entries whose
columns are mutually perpendicular. ComputeAT A. Why is it a diagonal
matrix.

Page 152, # 49. Why is each of these statements false? (a)(1, 1, 1) is per-
pendicular to(1, 1,−2) so the planesx + y + z = 0 andx + y − 2z = 0
are orthogonal subspaces. (b) The subspace spanned by(1, 1, 0, 0, 0) and
(0, 0, 0, 1, 1) is the orthogonal complement of the subspace spanned by
(1,−1, 0, 0, 0) and(2,−2, 3, 4,−4). (c) Two subspaces that meet only in
the zero vector are orthogonal.
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Page 152, # 51. Suppose thatA is 3 × 4, B is 4 × 5 andAB = 0. Prove
rank(A) + rank(B) ≤ 4.

Page 157, # 1 (a) Given any two positive numbersx andy, choose the vec-
tor b = (

√
x,
√

y) anda = (
√

y,
√

x). Apply the Schwarz inequality to
compare the arithmetic mean(x + y)/2 with the geometric mean

√
xy. (b)

Suppose we start with a vector from the origin to the pointx, and then add
a vector of length||y|| connectingx to x + y. The third side of the triangle
goes from the origin tox + y. The triangle inequality asserts that this dis-
tance cannot be greater than the sum of the first two:||x+y|| ≤ ||x||+||y||.
After squaring both sides, and expanding(x + y)T (x + y), reduce this to
the Schwarz inequality.

Page 158, # 9: Square the matrixP = aaT /aT a, which projects onto a line,
and show thatP 2 = P . (Note the numberaT a in the middle of the matrix
aaT aaT .)

Page 158, # 10: Is the projection matrixP invertible? Why or why not?

Page 158, # 12: Find the matrix that projects every point in the line plane
onto the linex + 2y = 0.

Page 158, #13: Prove that thetraceof P = aaT /aT a – which is the sum of
its diagonal entries – always equals 1.

Page 159, # 15: Show that the length ofAx equals the length ofAT x if
AAT = AT A.

Page 159, #17: Project the vectorb onto the line througha. Check thate is

perpendicular toa: (a) b =




1
2
2


 anda =




1
1
1


; (b) b =




1
3
1


 and

a =



−1
−3
−1


.
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Page 170, #6: Find the projection ofb onto the column space ofA:

A =




1 1
1 −1
−2 4


 , b =




1
2
7


 . (1)

Split b into p + q with p in the column space andq perpendicular to that
space. Which of the four subspaces containsq?

Page 171, #13: Find the best straight-line fit (least squares) to the measure-
mentsb = 4 at t = −2, b = 3 at t = −1, b = 1 at t = 0 andb = 0 at t = 2.
Then find the projection ofb = (4, 3, 1, 0)T onto the column space of

A =




1 −2
1 −1
1 0
1 2


 . (2)

Page 185, # 2: Projectb = (0, 3, 0) onto each of the orthonormal vectors
a1 = (2/3, 2/3,−1/3) anda2 = (−1/3, 2/3, 2/3), and then find its projec-
tion p onto the plane ofa1 anda2.

Page 186, # 3: Find also the projection ofb = (0, 3, 0) ontoa3 = (2/3,−1/3, 2/3),
and add the three projections (see previous problem). Why isP = a1a

T
1 +

a2a
T
2 + a3a

T
3 equal toI?

Page 186, # 9: If the vectorsq1, q2, q3 are orthonormal, what combination
of q1 andq2 is closest toq3?

Page 186, # 13: Apply the Gram-Schmidt process toa =




1
1
0


, b =




1
0
1


, c =




1
1
1


, and write the result in the formA = QR.

Page 187, # 21: What is the closest functiona cos x+ b sin x to the function
f(x) = sin 2x on the interval from−π to π? What is the closest straight
line c + dx?
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Page 187, # 24: Find the fourth Legendre polynomial. It is a cubicx3 +
ax2 + bx + c that is orthogonal to1, x andx2 − 1

3
over the interval−1 ≤

x ≤ 1.

Page 188, # 31: True or false (give an example in either case): (a)Q−1 is an
orthogonal matrix whenQ is an orthogonal matrix; (b) IfQ (a3×2 matrix)
has orthonormal columns then||Qx|| always equals||x||.
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4. CHAPTER 4: DETERMINANTS

Page 206, # 1: If a4 × 4 matrix hasdet A = 1/2, find det(2A), det(−A),
det(A2) anddet(A−1).

Page 206, # 4: By applying row operations to produce an upper triangular
U , compute ∣∣∣∣∣∣∣∣

1 2 −2 0
2 3 −4 1
−1 −2 0 2
0 2 5 3

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 −2

∣∣∣∣∣∣∣∣
.

Page 207, # 10: IfQ is an orthogonal matrix, so thatQT Q = I, prove that
det Q = ±1. What kind of box is formed from the rows (or columns) ofQ?

Page 208, # 12: Use row operations to verify that the3× 3 “Vandermonde
determinant” is ∣∣∣∣∣∣

1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣
= (b− a)(c− a)(c− b).

Page 208, # 14: True or false, with a reason if true and a counterexam-
ple if false. (a) If A and B are identical except thatb11 = 2a11, then
det B = 2 det A. (b) The determinant is the product of the pivots. (c) IfA
is invertible andB is singular, thenA+B is invertible. (d) IfA is invertible
andB is singular thenAB is singular. (e) The determinantAB−BA is zero.

Page 208, #19: Suppose thatCD = −DC, and find the flaw in the follow-
ing argument: Taking determinants givesdet C det D = − det D det C, so
eitherdet C = 0 or det D = 0. ThusCD = −DC is possible only ifC or
D is singular.

Page 209, # 26: Ifaij is i · j, show thatdet A = 0 (except whenA = (1)).

Page 210, # 30: Show that the partial derivatives ofln(det a) give A−1: if
f(a, b, c, d) = ln(ad− bc) then

A−1 =

(
∂f/∂a ∂f/∂c
∂f/∂b ∂f/∂d

)
.
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Page 215, # 3: True or false? (a) The determinant ofS−1AS equals the
determinant ofA. (b) If det A = 0 then at least one of the cofactors must
be zero. (c) A matrix whose entries are 0’s and 1’s has determinant 0, 1 or
-1.

Page 215, # 4 (a) Find theLU factorization, the pivots and the determinant
of the4×4 matrix whose entries areaij = min(i, j). (Write out the matrix.)
(b) Find the determinant ifaij = min(ni, nj), wheren1 = 2, n2 = 6, n3 = 8
andn4 = 10. Can you give a general rule for anyn1 ≤ n2 ≤ n3 ≤ n4?

Page 215, # 6: SupposeAn is then × n tridiagonal matrix with 1’s on the
three diagonals:

A1 = (1), A2 =

(
1 1
1 1

)
, A3 =




1 1 0
1 1 1
0 1 1


 , . . . .

Let Dn = det An; we want to find it. (a) Expand in cofactors along the
first row to show thatDn = Dn−1 − Dn−2. (b) Starting fromD1 = 1 and
D2 = 0, find D3, . . . , D8. By noticing how these numbers cycle around
(with what period?), findD1000.

Page 216, #9: How many multiplications to find ann × n determinant
from (a) the big formula (6):det A =

∑
all P ′s(a1αa2β · · · anν) det P ; (b)

the cofactor formula (10), building from the count forn − 1: det A =
ai1Ci1 + · · ·+ainCin, where the cofactorCij is the determinant ofMij with
the correct sign (delete rowi and columnj: Cij = (−1)i+j det Mij); (c) the
product of pivots formula (including the elimination steps).

Page 217, # 18: Place the smallest number of zeros in a4 × 4 matrix that
will guaranteedet A = 0. Place as many zeros as possible while still allow-
ing det A 6= 0.

Page 218, #28: Then×n determinantCn has 1’s above and below the main
diagonal:

C1 = |0|, C2 =

∣∣∣∣
0 1
1 0

∣∣∣∣ , C3 =

∣∣∣∣∣∣

0 1 0
1 0 1
0 1 0

∣∣∣∣∣∣
.
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(a) What are the determinantsC1, C2, C3, C4? (b) By cofactors find the re-
lation betweenCn andCn−1 andCn−2. FindC10.

Page 219, # 34: With2 × 2 blocks, you cannot always use block determi-
nants!∣∣∣∣

A B
0 D

∣∣∣∣ = |A||D|, but

∣∣∣∣
A B
0 D

∣∣∣∣ 6= |A||D| − |C||B|.

(a) Why is the first statement true? SomehowB does not enter. (b) Show
by example that the first equality fails (as shown) whenC enters. (c) Show
by example that the answerdet(AD − CB) is also wrong.

Page 227, # 16:Quick proof of Cramer’s rule.The determinant is a linear
function of column 1. It is zero if two columns are equal. Whenb = Ax =
x1a1 + x2a2 + x3a3 goes into column 1 to produceB1, the determinant is

|ba2a3| = |x1a1 + x2a2 + x3a3a2a3| = x1|a1a2a3| = x1 det A.

(a) What formula forx1 comes from the left side equals the right side? (b)
What steps lead to the middle equation?

Page 228, # 32: If the columns of a4 × 4 matrix have lengthsL1, L2, L3

andL4, what is the largest possible value of the determinant (based on vol-
ume)? If all entries are 1 or -1, what are those lengths and the maximum
determinant?

Page 230, #4.5: If the entries ofA andA−1 are integers, how do you know
that both determinants are 1 or -1?Hint: What isdet A timesdet A−1?

Page 230, # 4.9: IfP1 is an even permutation matrix andP2 is odd, deduce
from P1 + P2 = P1(P

T
1 + P T

2 )P2 thatdet(P1 + P2) = 0.

Page 231, # 4.16: The circular shift permutes(1, 2, . . . , n) into (2, 3, . . . , 1).
What is the corresponding permutation matrixP and (depending onn) what
is its determinant?
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5. CHAPTER 5: EIGENVALUES AND EIGENVECTORS

Page 240, # 1: Find the eigenvalues and eigenvectors ofA =

(
1 −1
2 4

)
.

Verify that the trace equals the sum of the eigenvalues and the determinant
equals their product.

Page 241, # 4: Solvedu/dt = Pu, whenP is a projection:

du

dt
=

(
1/2 1/2
1/2 1/2

)
u, u(0) =

(
5
3

)
.

Part ofu(0) increases exponentially while the nullspace part stays fixed.

Page 241, # 6: Give an example to show that the eigenvalues can be changed
when a multiple of one row is subtracted from another. Why is a zero eigen-
valuenot changed by the steps of elimination?

Page 242, # 14: Find the rank and all four eigenvalues for both the matrix
of ones and the checkboard matrix:

A =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , C =




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 .

Which eigenvectors correspond to nonzero eigenvalues?

Page 242, # 18: SupposeA has eigenvalues 0, 3 and 5 with corresponding
independent eigenvectorsu, v, andw. (a) Give a basis for the nullspace and
a basis for the column space. (b) Find a particular solution toAx = v + w.
Find all solutions. (c) Show thatAx = u has no solution. (If it had a solu-
tion, then would be in the column space.)

Page 243, # 26: Solvedet(Q − λI) = 0 by the quadratic formula to reach
λ = cos θ ± i sin θ:

Q =

(
cos θ − sin θ
sin θ cos θ

)

rotates thexy-plane by the angleθ. Find the eigenvectors ofQ by solving
(Q− λI)x = 0. Usei2 = −1.

Page 244, # 39:Is there a real2 × 2 matrix (other thanI) with A3 = I?
Its eigenvalues must satisfyλ3 = I. They can bee2πi/3 ande−2πi/3. What
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trace and determinant would give this? ConstructA.

Page 244, # 40: There are six3× 3 permutation matricesP . What numbers
can be thedeterminantof P? What numbers can bepivots? What numbers
can be thetraceof P? Whatfour numberscan be eigenvalues ofP?

Page 250, #1: Factor the following matrices intoSΛS−1:

A =

(
1 1
1 1

)
, A =

(
2 1
0 0

)
.

Page 250, #7: IfA =

(
4 3
2 1

)
, find A100 by diagonalizingA.

Page 251, # 9: Show by direct calculation thatAB andBA have the same
trace when

A =

(
a b
c d

)
, B =

(
q r
s t

)
.

Deduce thatAB −BA = I is impossible (except in infinite dimensions).

Page 251, #19: True or false: if then columns ofS (eigenvectors ofA)
are independent, then (a)A is invertible; (b)A is diagonalizable; (c)S is
invertible; (d)S is diagonalizable.

Page 252, #25: True or false: if the eigenvalues ofA are 2, 2, 5 then the
matrix is certainly (a) invertible; (b) diagonalizable; (c) not diagonalizable.

Page 254, #44: IfA is 5 × 5, thenAB − BA is the zero matrix gives 25
equations for the 25 entries inB. Show the25 × 25 matrix is singular by
noticing a simple non-zero solutionB.

Page 263, #8: Suppose there is an epidemic in which every month half of
those who are well become sick, and a quarter of those who are sick become
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dead. Find the steady state solution to the corresponding Markov process



dk+1

ss+1

wk+1


 =




1 1/4 0
0 3/4 1/2
0 0 1/2







dk

ss

wk


 .

Page 264, # 15: IfA is a Markov matrix, show that the sum of the compo-
nents ofAx equals the sum of the components ofx. Deduce that ifAx = λx
with λ 6= 1, the components of the eigenvector add to zero.

Page 265, # 19: Multiplying term by term, check that(I−A)(I +A+A2 +
· · · ) = I. This series represents(I − A)−1. It is nonnegative whenA is
nonnegative, provided it has a finite sum; the condition for that isλmax < 1.
Add up the infinite series, and confirm that it equals(I − A)−1, for the
consumption matrix

A =




0 1 1
0 0 1
0 0 0




which hasλmax < 1.

Page 266, # 29: The powersAk approach zero if all|λi| < 1, and they
blow up if any |λi| > 1. Peter Lax gives four striking examples in his

bookLinear Algebra: A =

(
3 2
1 4

)
, B = 32−5−3, C =

(
5 7
−3 −4

)
,

D =

(
5 6.9
−3 −4

)
, where||A1024|| > 10700, B1024 = I, C1−24 = −C,

||D1024|| < 10−78. Find the eigenvaluesλ = eiθ of B andC to show that
B4 = I andC3 = −I.

Page 275, # 1: Following the first example in this section, find the eigenval-

ues and eigenvectors, and the exponentialeAt, forA =

( −1 1
1 −1

)
.

Page 276, #4: IfP is a projection matrix, show from the infinite series that
eP ≈ I + 2.718P .
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Page 276, # 6: The higher order equationy′′ + y = 0 can be written as a
first-order system by introducing the velocityy′ as another unknown:

d

dt

(
y
y′

)
=

(
y′

y′′

)
=

(
y′

−y

)
.

If this is du/dt = Au, what is the2× 2 matrixA? Find its eigenvalues and
eigenvectors, and compute the solution that starts fromy(0) = 2, y′(0) = 0.

Page 279, # 38. GenerallyeAeB is different fromeBeA. They are both

different from eA+B (in general). Check this withA =

(
1 1
0 0

)
and

B =

(
0 −1
0 0

)
.

Page 280, # 41: Give two reasons why the matrix exponentialeAt is never
singular: (a) write its inverse; (b) write its eigenvalues: ifAx = λx then
eAtx = x.

Page 290, #12: Give a reason if true or a counterexample if false: (a) ifA
is Hermitian thenA + iI is invertible; (b) ifQ is orthogonal thenQ + 1

2
I is

invertible; (c) ifA is real thenA + iI is invertible.

Page 291, # 21: Describe all3× 3 matrices that are simultaneously Hermit-
ian, unitary and diagonal. How many are there?

Page 292, # 41: IfA = R + iS is a Hermitian matrix, are the real matrices
R andS symmetric?

Page 292, # 44: How are the eigenvalues ofAH (square matrix) related to
the eigenvalues ofA?

Page 304, #24a: Show by direct multiplication that every triangular ma-
trix T , say3 × 3, satisfies its own characteristic equation:(T − λ1I)(T −
λ2I)(T − λ3I) = 0.
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Page 304, # 30: ShowA and B are similar by findingM so thatB =

M−1AM : (a) A =

(
1 0
1 0

)
, B =

(
0 1
0 1

)
; (b) A =

(
1 1
1 1

)
,

B =

(
1 −1
−1 1

)
; (c) A =

(
1 2
3 4

)
, B =

(
4 3
2 1

)
.

Page 304, # 32: There are 162 × 2 matrices whose entries are 0’s and 1’s.
Similar matrices go into the same family. How many families? How many
matrices (total of 16) in each family?

Page 304, # 34: IfA andB have exactly the same eigenvalues and eigenvec-
tors, doesA = B? With n independent eigenvectors, we do haveA = B.
Find A 6= B whenλ = 0, 0 (repeated), but there is only one line of eigen-
vectors(x, 0).

Page 305, # 42: ProveAB andBA have the same eigenvalues.

Page 307, # 5.5: Does there exist a matrixA such that the entire family
A + cI is invertible for all complex numbersc? Find a real matrixA with
A + rI invertible for all realr.

Page 308,# 5.11: IfP is the matrix that projectsRn onto a subspaceS, ex-
plain why every vector inS is an eigenvector, and so is every vector inS⊥.
What are the eigenvalues? (Note the connection toP 2 = P , which means
thatλ2 = λ.)

Page 308, # 5.12: Show that every matrix of order greater than 1 is the sum
of two singular matrices.

Page 309, # 5.25: (a) Find a non-zero matrixN such thatN3 = 0. (b) If
Nx = λx show thatλ = 0. (c) Prove thatN (called a nilpotent matrix)
cannot be symmetric.

Page 309, # 5.30: What is the limit ask →∞ (the Markov steady state) of(
.4 .3
.6 .7

)k (
a
b

)
?
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6. CHAPTER 6: POSITIVE DEFINITE MATRICES

Page 316, #1: The quadraticf(x, y) = x2 + 4xy + 2y2 has a saddle point
at the origin, despite the fact that its coefficients are positive. Writef(x, y)
as the difference of two squares.

Page 316, #4: Decide between a minimum, maximum or saddle point for
the following functions: (a)F (x, y) = −1 + 4(ex − x)− 5x sin y + 6y2 at
the pointx = y = 0; (b) F (x, y) = (x2− 2x) cos y, with stationary point at
x = 1 andy = π.

Page 316, #8: IfA =

(
a b
b c

)
is positive definite, testA−1 =

(
p q
q r

)

for positive definiteness.

Page 326, #1: For what range of numbersa andb are the matricesA andB
positive definite:

A =




a 2 2
2 a 2
2 2 a


 , B =




1 2 4
2 b 8
4 8 7


 . (3)

Page 329, #26: Draw the titled ellipsex2 + xy + y2 = 1 and find the half-
lengths of its axes from the eigenvalues of the correspondingA.

Page 330, #37: IfC is non-singular, show thatA andCT AC have the same
rank. Thus they have the same number of zero eigenvalues.

Page 330: #43: A group of non-singular matrices includesAB andA−1 if it
includesA andB (products and inverses stay in the group). Which of these
sets are groups: (a) positive definite symmetric matricesA; (b) orthogonal
matricesQ; (c) all exponentialsetA of a fixed matrixA; (d) matricesP with
positive eigenvalues; (e) matricesD with determinant1. Invent a group
containing only positive definite matrices.

Page 345, #5: For any symmetric matrixA, compute the ratioR(x) for the
special choicex = (1, 1, . . . , 1)T . How is the sum of all entriesaij related
to λ1 andλn?
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Page 345, #7: IfB is positive definite, show from the Rayleigh quotient that
the smallest eigenvalue ofA+B is larger than the smallest eigenvalue ofA.

Page 345, #8: Ifλ1 andµ1 are the smallest eigenvalues ofA andB, show
that the smallest eigenvalueθ1 of A + B is at least as large asλ1 + µ1. (Try
the corresponding eigenvectorx in the Rayleigh quotients.)

Note: Problems 7 and 8 are perhaps the most typical and most important
results that come easily from Rayleigh’s principle, but only with great dif-
ficulty from the eigenvalue equations themselves.

Page 346, #16 (recommended): LetA be then × n matrix such that the
upper(n− 1)× (n− 1) block is all zeros, the last row is1, 2, . . . , n and the
last column is1, 2, . . . , n. Decide the signs of then eigenvalues.

7. CHAPTER 7: COMPUTATIONS WITH MATRICES

Page 357, #3: Explain why||ABx|| ≤ ||A|| · ||B|| · ||x||, and deduce from
||A|| = maxx6=0 ||Ax||/||x|| that ||AB|| ≤ ||A|| · ||B||. Show that this also
impliesc(AB) ≤ c(A)c(B).

Page 357, #4: For the positive definite

(
2 −1
−1 2

)
, compute||A−1|| =

1/λ1, ||A|| = λ2 andc(A) = λ2/λ1. Find a right-hand sideb and a pertur-
bation∂b such that the error is worst possible,||∂x||/||x|| = c||∂b||/||b||.

Page 357, #9: Show thatmax |λ| is not a true norm by finding a2 × 2
counterexample toλmax(A + B) ≤ λmax(A) + λmax(B) andλmax(AB) ≤
λmax(A)λmax(B).

Page 358, #18: Thè1 norm is ||x||1 = |x1| + |x2| + · · · + |xn|. The
`∞ norm is||x||∞ = max |xi|. Compute||x||, ||x||1, ||x||∞ for the vectors
(1, 1, 1, 1, 1) and(.1, .7, .3, .4, .5).

Page 358, #19: Prove that||x||∞ ≤ ||x|| ≤ ||x||1. Show from the Cauchy-
Schwarz inequality that the ratios||x||/||x||∞ and||x||1/||x|| are never larger
than

√
n. Which vector(x1, . . . , xn) gives ratios equal to

√
n?
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Page 358, #20: All vector norms must satisfy the triangle inequality. Prove
that||x + y||∞ ≤ ||x||∞ + ||y||∞ and||x + y||1 ≤ ||x||1 + ||y||1.

Page 365, #1: For the matrix

(
2 −1
−1 2

)
with eigenvaluesλ1 = 1 and

λ2 = 3, apply the power methodu + k + 1 = Auk three times to the initial

guessu0 =

(
1
0

)
. What is the limiting vectoru∞?

Page 366, #2: For the sameA and initial guessu0 =

(
3
4

)
, compare three

inverse power steps to one shifted step withα = uT
0 Au0/u

T
0 u0:

uk+1 = A−1uk =
1

3

(
2 1
1 2

)
uk or u = (A− αI)−1u0. (4)

The limiting vectoru∞ is now a multiple of the other eigenvector

(
1
1

)
.

Page 366, #4: The Markov matrixA =

(
.9 .3
.1 .7

)
hasλ = 1 and.6, and

the power methoduk = Aku0 converges to

(
.75
.25

)
. Find the eigenvectors

of A−1. What does the inverse power methodu−k = A−ku0 converge to
(after you multiply by.6k)?


