
The Method of Least Squares

Steven J. Miller∗

Mathematics Department
Brown University

Providence, RI 02912

Abstract

The Method of Least Squares is a procedure to determine the best fit line to data; the
proof uses simple calculus and linear algebra. The basic problem is to find the best fit
straight liney = ax + b given that, forn ∈ {1, . . . , N}, the pairs(xn, yn) are observed.
The method easily generalizes to finding the best fit of the form

y = a1f1(x) + · · ·+ cKfK(x); (0.1)

it is not necessary for the functionsfk to be linearly inx – all that is needed is thaty is to
be a linear combination of these functions.

Contents

1 Description of the Problem 1

2 Probability and Statistics Review 2

3 The Method of Least Squares 4

1 Description of the Problem

Often in the real world one expects to find linear relationships between variables. For example,
the force of a spring linearly depends on the displacement of the spring:y = kx (herey is
the force,x is the displacement of the spring from rest, andk is the spring constant). To test
the proposed relationship, researchers go to the lab and measure what the force is for various
displacements. Thus they assemble data of the form(xn, yn) for n ∈ {1, . . . , N}; hereyn is
the observed force in Newtons when the spring is displacedxn meters.
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Figure 1: 100 “simulated” observations of displacement and force (k = 5).

Unfortunately, it is extremely unlikely that we will observe a perfect linear relationship.
There are two reasons for this. The first is experimental error; the second is that the underlying
relationship may not be exactly linear, but rather only approximately linear. See Figure 1 for
a simulated data set of displacements and forces for a spring with spring constant equal to5.

The Method of Least Squares is a procedure, requiring just some calculus and linear alge-
bra, to determine what the “best fit” line is to the data. Of course, we need to quantify what
we mean by “best fit”, which will require a brief review of some probability and statistics.

A careful analysis of the proof will show that the method is capable of great generaliza-
tions. Instead of finding the best fit line, we could find the best fit given byanyfinite linear
combinations of specified functions. Thus the general problem is given functionsf1, . . . , fK ,
find values of coefficientsa1, . . . , aK such that thelinear combination

y = a1f1(x) + · · ·+ aKfK(x) (1.1)

is the best approximation to the data.

2 Probability and Statistics Review

We give a quick introduction to the basic elements of probability and statistics which we need
for the Method of Least Squares; for more details see [BD, CaBe, Du, Fe, Kel, LF, MoMc].

Given a sequence of datax1, . . . , xN , we define themean (or theexpected value) to be
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(x1 + · · ·+ xN)/N . We denote this by writing a line abovex: thus

x =
1

N

N∑
n=1

xn. (2.2)

The mean is the average value of the data.
Consider the following two sequences of data:{10, 20, 30, 40, 50} and{30, 30, 30, 30, 30}.

Both sets have the same mean; however, the first data set has greater variation about the mean.
This leads to the concept of variance, which is a useful tool to quantify how much a set of data
fluctuates about its mean. The variance of{x1, . . . , xN}, denoted byσ2

x, is

σ2
x =

1

N

N∑
n=1

(xi − x)2; (2.3)

the standard deviationσx is the square root of the variance:

σx =

√√√√ 1

N

N∑
n=1

(xi − x)2. (2.4)

Note that if thex’s have units of meters then the varianceσ2
x has units ofmeters2, and the

standard deviationσx and the meanx have units of meters. Thus it is the standard deviation
that gives a good measure of the deviations of thex’s around their mean.

There are, of course, alternate measures one can use. For example, one could consider

1

N

N∑
n=1

(xn − x). (2.5)

Unfortunately this is a signed quantity, and large positive deviations can cancel with large
negatives. In fact, the definition of the mean immediately implies the above is zero! This,
then, would be a terrible measure of the variability in data, as it is zero regardless of what the
values of the data are.

We can rectify this problem by using absolute values. This leads us to consider

1

N

N∑
n=1

|xn − x|. (2.6)

While this has the advantage of avoiding cancellation of errors (as well as having the same
units as thex’s), the absolute value function is not a good function analytically. It is not
differentiable. This is primarily why we consider the standard deviation (the square root of
the variance) – this will allow us to use the tools from calculus.
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We can now quantify what we mean by “best fit”. If we believey = ax+b, theny−(ax+b)
should be zero. Thus given observations

{(x1, y1), . . . , (xN , yN)}, (2.7)

we look at
{y1 − (ax1 + b), . . . , yN − (axN + b)}. (2.8)

The mean should be small (if it is a good fit), and the variance will measure how good of a fit
we have.

Note that the variance for this data set is

σ2
y−(ax+b) =

1

N

N∑
n=1

(yn − (axn + b))2 . (2.9)

Large errors are given a higher weight than smaller errors (due to the squaring). Thus our pro-
cedure favors many medium sized errors over a few large errors. If we used absolute values to
measure the error (see equation (2.6)), then all errors are weighted equally; however, the ab-
solute value function is not differentiable, and thus the tools of calculus become inaccessible.

3 The Method of Least Squares

Given data{(x1, y1), . . . , (xN , yN)}, we may define the error associated to sayingy = ax + b
by

E(a, b) =
N∑

n=1

(yn − (axn + b))2 . (3.10)

This is justN times the variance of the data set{y1−(ax1 +b), . . . , yn−(axN +b)}. It makes
no difference whether or not we study the variance orN times the variance as our error, and
note that the error is a function of two variables.

The goal is to find values ofa andb that minimize the error. In multivariable calculus we
learn that this requires us to find the values of(a, b) such that

∂E

∂a
= 0,

∂E

∂b
= 0. (3.11)

Note we do not have to worry about boundary points: as|a| and|b| become large, the fit will
clearly get worse and worse. Thus we do not need to check on the boundary.

DifferentiatingE(a, b) yields

∂E

∂a
=

N∑
n=1

2 (yn − (axn + b)) · (−xn)

∂E

∂b
=

N∑
n=1

2 (yn − (axn + b)) · 1. (3.12)
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Setting∂E/∂a = ∂E/∂b = 0 (and dividing by 2) yields
N∑

n=1

(yn − (axn + b)) · xn = 0

N∑
n=1

(yn − (axn + b)) = 0. (3.13)

We may rewrite these equations as
(

N∑
n=1

x2
n

)
a +

(
N∑

n=1

xn

)
b =

N∑
n=1

xnyn

(
N∑

n=1

xn

)
a +

(
N∑

n=1

1

)
b =

N∑
n=1

yn. (3.14)

We have obtained that the values ofa andb which minimize the error (defined in (3.10))
satisfy the following matrix equation:




∑N
n=1 x2

n

∑N
n=1 xn

∑N
n=1 xn

∑N
n=1 1







a

b


 =




∑N
n=1 xnyn

∑N
n=1 yn


 . (3.15)

We will show the matrix is invertible, which implies



a

b


 =




∑N
n=1 x2

n

∑N
n=1 xn

∑N
n=1 xn

∑N
n=1 1



−1 


∑N

n=1 xnyn

∑N
n=1 yn


 . (3.16)

Denote the matrix byM . The determinant ofM is

det M =
N∑

n=1

x2
n ·

N∑
n=1

1−
N∑

n=1

xn ·
N∑

n=1

xn. (3.17)

As

x =
1

N

N∑
n=1

xn, (3.18)

we find that

det M = N

N∑
n=1

x2
n − (Nx)2

= N2

(
1

N

N∑
n=1

x2
n − x2

)

= N2 · 1

N

N∑
n=1

(xn − x)2, (3.19)
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where the last equality follows from simple algebra. Thus, as long as all thexn are not equal,
det M will be non-zero andM will be invertible.

Thus we find that, so long as thex’s are not all equal, the best fit values ofa and b are
obtained by solving a linear system of equations; the solution is given in(3.16).

Remark 3.1. The data plotted in Figure 1 was obtained by lettingxn = 5 + .2n and then
lettingyn = 5xn plus an error randomly drawn from a normal distribution with mean zero and
standard deviation4 (n ∈ {1, . . . , 100}). Using these values, we find a best fit line of

y = 4.99x + .48; (3.20)

thusa = 4.99 andb = .48. As the expected relation isy = 5x, we expected a best fit value of
a of 5 andb of 0.

While our value fora is very close to the true value, our value ofb is significantly off.
We deliberately chose data of this nature to indicate the dangers in using the Method of Least
Squares. Just because we know4.99 is the best value for the slope and.48 is the best value
for they-intercept doesnot mean that these are good estimates of the true values. The theory
needs to be supplemented with techniques which provide error estimates. Thus we want to
know something like, given this data, there is a99% chance that the true value ofa is in
(4.96, 5.02) and the true value ofb is in (−.22, 1.18); this is far more useful than just knowing
the best fit values.

If instead we used

Eabs(a, b) =
N∑

n=1

|yn − (axn + b)| , (3.21)

then numerical techniques yield that the best fit value ofa is 5.03 and the best fit value ofb
is less than10−10 in absolute value. The difference between these values and those from the
Method of Least Squares is in the best fit value ofb (the least important of the two parameters),
and is due to the different ways of weighting the errors.

Exercise 3.2.Generalize the method of least squares to find the best fit quadratic toy = ax2+
bx+c (or more generally the best fit degreem polynomial toy = amxm+am−1x

m−1+· · ·+a0).

While for any real world problem, direct computation determines whether or not the re-
sulting matrix is invertible, it is nice to be able to prove the determinant is always non-zero
for the best fit line (if all thex’s are not equal).

Exercise 3.3.If the x’s are not all equal, must the determinant be non-zero for the best fit
quadratic or the best fit cubic?

Looking at our proof of the Method of Least Squares, we note that it was not essential that
we havey = ax + b; we could have hady = af(x) + bg(x), and the arguments would have
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proceeded similarly. The difference would be that we would now obtain




∑N
n=1 f(xn)2

∑N
n=1 f(xn)g(xn)

∑N
n=1 f(xn)g(xn)

∑N
n=1 g(xn)2







a

b


 =




∑N
n=1 f(xn)yn

∑N
n=1 g(xn)yn


 . (3.22)

Exercise 3.4.Consider the generalization of the Method of Least Squares given in(3.22).
Under what conditions is the matrix invertible?

Exercise 3.5.The method of proof generalizes further to the case when one expectsy is a
linearcombination ofK fixed functions. The functions need not be linear; all that is required
is that we have a linear combination, saya1f1(x) + · · · + aKfK(x). One then determines
thea1, . . . , aK that minimize the variance (the sum of squares of the errors) by calculus and
linear algebra. Find the matrix equation that the best fit coefficients(a1, . . . , aK) must satisfy.

Exercise 3.6.Consider the best fit line from the Method of Least Squares, so the best fit values
are given by(3.16). Is the point(x, y), wherex = 1

n

∑N
n=1 xn andy =

∑N
n=1 yn, on the best

fit line? In other words, does the best fit line go through the “average” point?
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