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Chapter 1

Introduction to the Circle Method

The Circle Method is a beautiful idea for investigating many problems in additive number theory. It
originated in investigations by Hardy and Ramanujan ([HR],8) on the partition functionP(n). We

start our study of the Circle Method in 81.1 by reviewing the basic propertig3(of via generating
functions, and then exploring generating functions of a variety of problems. In §1.2 we state the mair
ideas of the Circle Method, and then in 81.3 we sketch its applications to writing numbers as the sums c
primes. We then perform the detailed analysis, handling most of the technicalities, for Germain primes ir
Chapter 2.

Our goal is to describe the key features of the Circle Metiwittiout handling all of the technical
complications that arise in its use; we refer the reader to the excellent books [EE, Na] for complete
details. We highlight the main ideas and needed ingredients for its application, and describe the types «
problems it either solves or predicts the answer.

1.1 Origins

In this section we study various problems of additive number theory that motivated the development o
the Circle Method. For example, consider the problem of writings a sum of perfectk-powers. If
k = 1, we have seen a combinatorial solution (s@8 &d LemmeP?): the number of ways of writing
as a sum of non-negative integers {§*°"). Unfortunately, this argument does not generalize to higher
k (it is easy to partition a set inte subsets; it is not clear how to partition it intosubsets where the
number of elements in each subset is a perfect square). There is another method, an analytical approa
which solves thé = 1 case and can be generalized.

For|z| < 1, define thegenerating function

fla) = > am = ! (1.1)

1—2a

m=0
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Letr, (n) denote the number of solutionsie, + - - - +my = n where eachn; is a non-negative integer.

We claim
_ (Z $m> (Z xm) S (e, (1.2)
ms=0

m1=0 n=0

This follows by expanding the productin (1.1). We have terms suaft'as: - 2+, which isz™*tms =
2™ for somen. Assuming everything converges, when we expand the product we affitamany times,

once for each choice of,, ..., m, that adds taow. Thus the coefficient af” in the expansion i8; ;(m).
On the other hand, we have
1 # 1 st 1
5 = = ) 1.3
/(@) (1—:10) (s—Dldes—11—x (1.3)

Substituting the geometric series expansionﬁgr gives

flx) = |dxs dr—1 Z Z (n ::j; 1) ", (1.4)

which yieldsr ,(n) = ("1°;"). Itis this second method of proof that we generalize. Below we describe
a variety of problems and show how to find their generating functions. In most cases, exact formulas suc
as (1.3) are unavailable; we develop sufficient machinery to analyze the generating functions in a mor
general setting.

Exercise 1.1.1.Justify the arguments above. Show all series converge, and (k@&)and (1.4).

1.1.1 Partitions

We describe several problems where we can identify the generating functions. ¥, P(n) is the
partition function , the number of ways of writing: as a sum of positive integers where we do not
distinguish re-orderings. For examplepnit= 4 then

4 = 4
= 3+1
— 2472
= 24141
= 1+141+1, (1.5)

andP(4) = 5. Note we do not count both+ 1 and1 + 3. If we add the requirement that no two parts
can be equal, there are only two ways to partitiod and3 + 1.
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Proposition 1.1.2 (Euler). We have as an identity of formal power series

1 (0.)
F@):(1—mu_xau—fg”.:1+Z;PWW” (1.6)

An identity of formal power series means that, without worrying about convergence, the two sides
have the same coefficients of for all n. For this example, if we use the geometric series expansion
on eachﬁ and then collect terms with the same powerzpfve would have the series on the right;
however, we do not know that the series on the right is finite forzany

Exercise 1.1.3.Prove the above proposition. Do the product or series converge forany? Hint: the
combinatorial bounds from® might be a useful starting point.

F(x) is called the generating function of the partition functionf (f.) is an arithmetic function (see
Chapter??), we can associate a generating functiorf through a power series:

Fr(z) = 1+ ) f(n)a" (1.7)

Exercise 1.1.4. 1. Fixm € N. For eachn, let p,,(n) be the number of partitions of into numbers
less than or equal to the given number Show that

[e.o]

1
=1 m " 1.8
T D +§;p(MI (1.8)
Does the series converge for any> 0?
2. Show that .
L+a)(1+2”)(1+a%) - = 1+ q(n)a". (1.9)
n=1
whereg(n) is the number of partitions of into non-equal parts. Does this series converge for any
x> 07?
3. Give similar interpretations for
1
(1.10)

=)l - )12

and
(1+2*)(1+ 2 (1 + 2. (1.112)

Do these products converge for any> 07?



One can use generating functions to obtain interesting properties of the partition functions:

Proposition 1.1.5.Letn € N. The number of partitions of into unequal parts is equal to the number of
partitions ofn into odd numbers.

Exercise 1.1.6.Prove Proposition 1.1.5Hint:

1—221—2%1—2af
1l—2z1—221—23

1
B D (1.13)

1+2)1+2>)(1+2%)-- = (1.12)

For more examples of this nature, see Chapter XIX of [HW].

So far, we have studied power series expansions where the coefficients are related to the function v
want to study. We now consider more quantitative questions. Is there a simple formifa#fi How
rapidly doesP(n) grow asn — oo? Using the Circle Method, Hardy and Ramanujan showed that

e 2n/3

An\/3 '

We prove similar results for other additive problems.

P(n) ~ (1.14)

1.1.2 Waring’s Problem

It is useful to think of the partition problem in 81.1.1 as the study of the number of ways that a given
numbern can be written as a sum
> nk (1.15)

for £ = 1, with the number of terms ranging from(when eachw; = 1) to 1 (whenn; = n). See also
§??. We can now formulate the following question:

Question 1.1.7.Letk € N. Let P,(n) be the number of ways thatcan be written as the sum of perfect
k™ powers. Can one calculatg,(n)?

It is clear that for alln, P,(n) is non-zero as can be written as the sum af ones. There is a
striking difference between this case and the probler?(@f) in §1.1.1. The difference is thatif is a
natural number angh < n, then one can easily write a partition:ofnto m numbers. For higher powers,
however, this is false; in fact not true even for= 2. For example3 cannot be written as the sum of two
squares. Hence we ask the following questions:



Question 1.1.8 (Waring's Problem).Let k£ € N. What is the smallest numbeisuch that every natural
number can be written as the sum of at moperfectk™™ powers? Does such anexist? Ifs exists, how
doess depend ork?

These questions can easily be translated to questions involving appropriate generating functions,
we now explain. For Question 1.1.7, we easily see that

1

1+;Pk(n)xn = (1—x1k)(1_x2k)(1_x3k)_”§ (1.16)

however, this expansion is only useful if we can use it to calculat&the)s. For Question 1.1.8, consider
the auxiliary function

Quz) = > a™. (1.17)

As an identity of formal power series, we have
Qu(x)” = 14 a(n;k,s)a", (1.18)
n=1

wherea(n; k, s) is the number of ways to write as a sum of exactly perfects™ powers.
Exercise 1.1.9.Prove(1.18)

Remark 1.1.10 (Important). So far, all we have done is to use generating functions to find an equivalent
formulation for the original problem. We must find a good way to determinek, s).

If we could show that given & there exists ar such that for all, a(n; k,s) # 0, then we would
have proved every number is the sumsqferfectk™ powers. The smallest suchif it exists, is usually
denoted byy(k). In 1770 Waring stated without proof that every natural number is the sum of at most
nine positive perfect cubes, also the sum of at most 19 perfect fourth powers, and so on. It was alreac
known that every number is a sum of at most four squares. It is usually assumed that Waring believed th:
for all k, g(k) exists. Hilbert [Hil] proved Waring'’s conjecture in 1909, though his method yielded poor
bounds for the true value gi%).

Exercise 1.1.11.Show that no number of the fortd + 3 can be the sum of two squares. Show that no
number of the form(8k + 7) is the sum of three squares. This exercise shows that we cannot write all
sufficiently large numbers as the sum of three squares.

Exercise 1.1.12 Letn, = 2~ [(%)k} — 1. How many perfect™ powers are needed to representas a

2

sum ofk™ powers? Conclude thai(k) > 2% + [(5)'“} — 2. This giveg(2) > 4, g(3) > 9, g(4) > 19, ....
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Exercise 1.1.13.Using density arguments, we can often prove certain problems have no solutions. Show
there are not enough perfect squares to write any (large) number as the sum of two squares. Use th
method to determine a lower bound for how many pe#&gbowers are needed for eaéh

Let us concentrate of(2) = 4. As we now know that infinitely many numbers cannot be the sum of
three squares, we need to show that every natural number can be written as a sum of four squares. Th
are many proofs of this important fact, the first of which is due to Lagrange (though it is believed that Dio-
phantus was familiar with the theorem). One proof uses geometric considerations based on Minkowski’
theorem (see [Ste]). We refer the reader to Chapter XX of [HW] for three interesting proofs of the theo-
rem, as well as [Na]. We are particularly interested in the proof in §20.11 and §20.12 of [HW] which uses
generating functions. We set

Oz) = » am. (1.19)
If (n) is defined by
O(x)* = 1+ Z r(n)z", (1.20)

thenr(n) is equal to the number of representations @s the sum of four squares:
r(n) = #{(m1,ma,ms,my) : m; € Z, n = mj +mj +mj +mi}. (1.22)

Here them;s are integers, and different permutations of thys are counted as distinct. One can show
that

0(z)* = 1—1—82%35” (1.22)
n=1
where
G = Y m (1.23)
m|n,4m

Thus,r(n) = 8c¢(n). Asc, > 0, this implies that every integer is the sum of four squares.
Exercise 1.1.14.Give exercises sketching proof of claim

The above is a common feature of such proofs: we showetienceof at least one solution by
showing there are many. We provedis the sum of four squares by actually finding out how many
different waysn is the sum of four squares. In our investigations of other problems, we will argue
similarly.



1.1.3 Goldbach’s conjecture

Previously we considered the question of determining the smallest number of géHeotvers needed

to represent all natural numbers as a sunt'Bfpowers. One can consider the analogous question for
other sets of numbers. Namely, given a dets there a number, such that every natural number can be
written as a sum of at mosy, elements ofA? A set of natural arithmetic interest is the geof all prime
numbers. Goldbach, in a letter to Euler (Juné742), conjectured that every integer is the sum of three
primes. Euler reformulated this conjecture to every even integer is the sum of two primes.

Exercise 1.1.15.Prove that if every integer is the sum of at most three primes, then every even numbel
must be the sum of at most two primes. Conversely, show if every even integer is the sum of at most t\
primes, every integer is the sum of at most three primes.

To date, Goldbach’s conjecture has been verified for all even number2ug 64° (see [Ol]). There
are deep unconditional results in the direction of Goldbach’s conjecture:

1. Shnirel'man provedpr < oo. The proof is based on an ingenious density argument (see [Na],
Chapter 7).

2. Estermann [Est1] proved that almost every even number is the sum of two primes.

3. Vinogradov showed every large enough odd number is the sum of three primes. We discuss th
proof of Vinogradov’'s theorem later. Vinogradov proved his theorem in [Vinl, Vin2], where he
reformulated the Circle Method from the language of complex analysis to that of Fourier series.
[ChWa] has shown that sufficiently large may be taken tecbe™”.

4. Chen proved every even number is the sum of a prime and a number that is at most the product «
two primes. Chen’s theorem is based on a sieve argument (see [Na], Chapters 9 and 10).

In the next section we describe the key ideas of the Circle Method. This will allow us to approximate
quantities such as(n; k, s) (see (1.18)). We return to generating function approaches to Goldbach’s
conjecture in 81.3.

1.2 The Circle Method

We explain the key features of the Circle Method. We reinterpret some of the problems discussed in §1.
in this new language.



1.2.1 Problems
The Circle Method was devised to deal with additive problems of the following nature:

Problem 1.2.1.Given some subset C N and a positive intege¢, what natural numbers can be written
as a sum ot elements ofl, and in how many ways? Explicitly, what is

{a;+---+as:a; € A} NN, (1.24)
More generally, one has
Problem 1.2.2.Fix a collection of subsetd,, ..., A, C N and study

{a1 4+ +as:a; € A;} NN, (1.25)

We give several problems where the Circle Method is useful. We confine ourselves to two commor

choices forA. The first choice ig, the set of primesP = {2,3,5,7,11, ... }. We denote elements &f
by p. The second choice i&, the set ofk™ powers of non-negative integets; = {0, 1,2%, 3% 4% . 1.
We denote elements df by n*.

1. ConsiderA = P ands = 2. Thus we are investigating
{p1 + p2 : p; prime} N N. (1.26)
This is Goldbach’s conjecture for even numbers.

2. Again letA = P but now lets = 3. Thus we are investigating

{p1 +pa +ps : p; prime} NN. (1.27)

Vinogradov's theorem asserts that every large enough odd number is included in the intersection.

3. LetA = K and fix a positive integet. We are studying
{4+ +nfin; e N NN (1.28)
This is Waring’s problem.
4. Let—P ={-2,-3,-5,... }. If we considerP — P, we have

{p1 —p2} NN (1.29)

This tells us which numbers are the differences between primes. A related question is to study hov

many pairyp;, p») satisfyp; — p, = n. If we taken = 2, p; andp, are calledwin primes.
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In the following paragraphs we sketch the main ideas of the Circle Method, first without worrying
about convergence issues, then highlighting where the technicalities lie. In Chapter 2 we work througl
all but one of these technicalities for a specific problem; the remaining technicality for this problem has
resisted analysis to this day. We have chosen to describe an open problem rather than a problem where
the difficulties can be handled for several reasons. The first is that to handle these technicalities for or
of the standard problems would take us too far afield, and there are several excellent expositions for tho:
desiring complete detail (see [Da2, EE, Na]). Further, there are numerous open problems where the Circ
Method provides powerful heuristics that agree with experimental investigations; after working through
the problem in Chapter 2 the reader will have no trouble deriving such estimates for additional problems

1.2.2 Setup
Let us consider Problem 1.2.1. As before, we consider a generating function
Fa(z) = Zx“. (1.30)
acA
Next, we write .
Fu(x)® = Zr(n; s, A)a". (1.31)
n=1

Exercise 1.2.3.Prover(n; s, A) is the number of ways of writing as a sum of elements ofd.
An equivalent formulation of Problem 1.2.1 is the following:
Problem 1.2.4. Determiner(n; s, A).

In order to extract individual coefficients from a power series we have the following standard fact from
complex analysis:

Proposition 1.2.5. 1. Lety be the unit circle oriented counter-clockwise. Then

1 1 ifn=-1;
Ry (1.32)
2mi J, 0 otherwise.

2. LetP(z) = Y -, axz" be a power series with radius of convergence larger than one. Then

1
— [ P(2)z " Ydz = a,. (1.33)

27 -
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See ®7?for a sketch of the proof, or any book on complex analysis (for example, [Al, La5]). Conse-
quently, ignoring convergence problems yields

1

. = s, ,—n—1
r(n;s, A) = 5 VFA(Z) z dz. (1.34)
Definition 1.2.6 (z)). We set '
e(z) = ¥, (1.35)
Exercise 1.2.7.Letm,n € Z. Prove
! 1 ifn=m;
/ e(nx)e(—mz)dr = " m (1.36)
0 0 otherwise.
An alternative, but equivalent, formulation is to consider a different generating functioh for
fa(z) = Ze(am). (1.37)
a€A

Again, ignoring convergence problems,

1
/ fa(z)’e(—nz)dzr = r(n;s, A). (1.38)
0
If we can evaluate the above integral, not only will we know whickan be written as the sum of

elements of4, but we will know in how many ways.

Exercise 1.2.8.Using exercise 1.2.7, pro\é.38)

1.2.3 Convergence Issues

The additive problem considered in Problem 1.2.1 is interesting ondyi# infinite; otherwise, we can
just enumerate; + - - - +a, in a finite number of steps. U is infinite, the defining sum for the generating
function f4(z) need not converge, or may not have a large enough radius of convergence. Fof,each
define

Ay = {a€A:a< N} = An{0,1,...,N}. (1.39)

Note theA s are an increasing sequence of subsets

Ay C Anii, (1.40)

12



and

A}im Ay = A (1.41)
For eachV, we consider the truncated generating function attachegto
fn(z) = Z e(ax). (1.42)

a€EAN

As fy(x) is a finite sum, all the convergence issues vanish. A similar argument as before yields

In(z)® = ZTN(n;S,A)e(nx), (1.43)

n<sN

except now we havey (n; s, A), which is the number of ways of writing as the sum of elements ofd
with each element at most. If n < N, thenry(n; s, A) = r(n;s, A), the number of ways of writing
as the sum of elements of4; note fy(z)® is the generating function for the sum ©&lements (at most
N)of A

For example, ifA = P (the set of primes)N = 10 ands = 2, thenA;, = Py = {2,3,5,7}.
An easy calculation gives(8;2, P) = r(8;2, P) = 2. However,r(14;2, P) = 1 (from 7 + 7) but
r(14;2, P) = 3 (from 7+ 7, 3 + 11, and11 + 3).

We have shown the following, which is the key re-formulation of these additive problems:

Lemma 1.2.9.1f n < N then

r(n;s, A) = ry(n;s, A) / fn(z)’e(—nz)de. (1.44)

However, having an integral expression fgr(n; s, A) is not enough; we must be able évaluate
the integral (either exactly, or at least bound it away from zero). Mote:) has|Ay| terms, each term
of absolute value 1. In many problems, for most [0, 1] the size offy(z) is abouty/|Ax/|, while for
specialz € [0, 1] one hasfy(x) is of size|Ay|. The main contribution to the integral is expected to
come fromz where fy () is large, and often this integration can be performed. If we can show that the
contribution of the remaining is smaller, we will have bounded, (n; s, A) away from zero.

1.2.4 Major and Minor arcs

The difficultly is evaluating the integral in Lemma 1.2.9. Many successful applications of the Circle
Method proceed in the following manner:

1. Given a set4, we construct a generating functigiy (z) for Ay. As fx(x) is a sum of complex
exponentials of size 1, we expect there will often be significant cancellation. See the comment:
after Theoren®? for other examples of similar cancellation in number theory.
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2. Split[0, 1] into two disjoint pieces, called thdajor arcs M and theMinor arcs m. Then

r(m;s,A) = ry(m;s, A) / fru(zx mx)dm+/ fr(z)e(—mz)dz. (1.45)
The construction oM andm depend onV and the problem being studied.

3. On the Major arcsV we find a function which, up to lower order terms, agrees Wiftlw) and is
easily integrated. We then perform the integration, and are left with a contribution over the Major
arcs which is bounded away from zero and is large.

4. One shows that a& — oo, the Minor arcs’ contribution is of lower order than the Major arcs’
contribution. This implies that forn large,rx(n;s, A) > 0, which proves that large can be
represented as a sumoélements ofA.

The last is the most difficult step. It is often highly non-trivial to obtain the required cancellation over
the Minor arcs. For the problems mentioned, we are able to obtain the needed cancellatioa fbr
ands = 3 (every large odd number is the sum of three primes), butdnst P ands = 2; we give some
heuristics in §1.3.7 as to why = 2 is so much harder than = 3. For A = K (the set ofk" powers
of integers), we can obtain the desired cancellatiors fers(k) sufficiently large. Hardy and Littlewood
proved we may take(k) = 2* + 1. Wooley and others have improved this result; however, in general we
expect the result to hold for smallethan the best results to date.

1.2.5 Historical Remark

We briefly comment on the nomenclature: we have been talking about the Circle Method and arcs, ye
there are no circles anywhere in sight! Let us consider an example. Recall from Proposition 1.1.2 that th
generating function for the partition problem is

F(z) = (1_x)(1_;2)<1 el 1+ZP (1.46)

By (1.34), and ignoring convergence issues, we need to conS|der

1 —n—1

P(n) = 5 : F(2)z dz. (1.47)
The integrand is not defined at any point of the fm(rgu). The idea is to consider a small arc around each
pointe(%). This is wherelF'(z)| is large. At least intuitively one expects that the integral¢t) along
these arcs should be the major part of the integral. Thus, we break the unit circle into two disjoint pieces
the Major arcs (where we expect the generating function to be large), and the Minor arcs (where we expe
the function to be small). While many problems proceed through generating functions that are sums c
exponentials, as well as integrating oy@rl] instead of a cirlce, we keep the original terminology.

14



1.2.6 Needed Number Theory Results

In our applications of the Circle Method, we need several results concerning prime numbers. These wil
be used to analyze the size of the generating function on the Major arcs. As we have seemi §

87?7, it is often easier to weight primes byg p in sums, and then remove these weights through partial
summation. We use the following statements freely (see, for example, [Da2] for proofs). We constantly
use partial summation; the reader is advised to review the materiaPin §

Theorem 1.2.10 (Prime Number Theorem).Let 7(z) denote the number of primes at mast Then
there is a constant < 1 such that

Zlogp =z + O (xexp(—c\/logx)). (1.48)

p<w

Equivalently, by partial summation we have

m(x) = ;1 = Li(z) + O(wexp(—%ﬁlogx)), (1.49)
where L{x) is thelogarithmic integral, which for any fixed positive integérhas the Taylor expansion

Li(x):/x i _ =z | v +---+—(k_1)!x+0( ° ) (1.50)

logt logz  logx log" loghtt

The above is the original version of the Prime Number Theorem. The error term has been strengthene
by Korobov and Vinogradov t® (z exp(—cgy/log z)) for anyd < 2. All we will need is

B log x log x

n(r) = — +o( ° ) Y logp = z + o(a). (1.51)

p<z
Exercise 1.2.11.Using partial summation, deduce a good estimaterfar) from (1.48)
Exercise 1.2.12.Prove(1.50)

Theorem 1.2.13 (Siegel-Walfisz)Let C, B > 0 and leta andq be relatively prime. Then

X X

p<z
p=a(q)

for ¢ < log” x, and the constant above does not depend anor « (i.e., it only depends o6’ and B).

15



One may interpret the Siegel-Walfisz Theorem as saying each residue class has, to first order, the sa
number of primes. Explicitly, for a fixed there arep(q) numbersa relatively prime tog. Up to lower
order terms each residue class %%% primes (see &?, 8?7). Note the main term is larger than the error

term if we choos€ sufficiently large If we were to takey as large as? for somes > 0, then the error
term would exceed the main term; we want to apply this theorem whsmuch smaller than. The
choice of the Major arcs is crucially influenced by the error term in the Siegel-Walfsiz Theorem.

1.3 Goldbach’s conjecture revisited

While we discuss the complications from estimating the integral over the Minor arcs below, we do not
give details on actually bounding these integrals; the interested reader should consult [Da2, EE, Est2, Né
It is our intention to onlyintroducethe reader to the broad brush strokes of this elegant theory.

Unfortunately, such an approach means that at the end of the day, we have not solved the origin:
problem. We have chosen this approach for several reasons. While the technical details can be formidab
for many problems these details are beautifully presented in the above (and many other) sources. Furth
there are many applications of the Circle Method where the needed estimates on the Minor arcs al
not known, even assuming powerful conjectures such as the Generalized Riemann Hypothesis. In the
cases, while it is often reasonable to assume that the contribution from the Major arcs is the main tern
one cannot prove such statements. Thus, the techniques we develop are sufficient to allow the reader
predictthe answer for a variety of open problems; these answers can often be tested numerically.

For these reasons, we describe the ideas of the Circle Method for Goldbach’s problem: What are th
Major and Minor arcs? Why do we obtain the necessary cancellation whel but not whens = 2?
These examples are well known in the literature, and we content ourselves with a very brief introduction
In Chapter 2 we give a very thorough treatment of another Circle Method problem, Germain primes,
which has applications to cryptography. The techniques for this problem suffice to estimate the Major ar
contributions in many other problems (for example, how many twin primes are there lesg.than

We do not always explicitly compute the error terms below, often confining ourselves to writing the
main term and remarking the correction terms are smaller. As an exercise, the reader is encouraged
keep track of these errors.

1.3.1 Setup

The Circle Method begins with a choice of a generating function specific to the problem. For analytical
reasons (see rema®PR and §1.2.6), it is often convenient to analyze the weighted generating function

Fy(z) = > logp- e(pz) (1.53)

p<N
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instead offy (x), and pass to the unweighted function by partial summation. One could worked only with
fn(z) (see [Est2], Chapter 3); however, we prefer to Bsdz) as the weights are easily removed and
simplify several formulas. Working analogously as before, to writas a sum of primes leads us to

1
Ry s(m) = / F}(z)e(—mz)dx, (1.54)
0
where now
Rys(m) = > logp:---logp.. (1.55)
p1+tps=m
P <N

Exercise 1.3.1.RelateRy (m) andry(m; s, P). For details, see §2.7.

Thus, if we can showRy (m) is positive for N andm sufficiently large, then(m;s, P) is also
positive.

1.3.2 Average Value of Fiy(x)|?

We use the little-Oh notation (see definiti®®). Thus,N + o(/N) means the answer i§ plus lower order
terms. Recall

Fx(z) = ) logp-e(pz) (1.56)

p<N
Lemma 1.3.2.|Fx(z)| < N + o(N).
Proof. By the Prime Number Theorem, (1.48), we have

[Fn(z)] = |> logp-e(pz)

p<N

< Y logp = N+o(N). (1.57)

p<N

Lemma 1.3.3. Fy(0) = Fy(1) = N 4+ o(N),andFy(3) = =N + o(N).
Proof. Fiy(0) andFy(1) are immediate, as(p - 1) = 1 for all p. For Fiy(3), note
1 , —1 if pis odd
¢ <p- —) . "pISO (1.58)
2 +1 if piseven
As there is only one even prime,

1
Fy (—) = log2 — Z log p, (1.59)

2
3<p<N

and the argument proceeds as before. ]
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Exercise 1.3.4.How large areFy (1) and Fyy(2)? How big cano(N) be in Lemma 1.3.3?

ThusFy(z) is occasionally as large @§; in 81.3.5 we describe thewhereFy(z) is large. We can,
however, show that the average squaré'efx) is significantly smaller:

Lemma 1.3.5. The average value of'y(z)|* is N log N + o(N log N).

Proof. The following trivial observation will be extremely useful in our arguments.g(e} be a complex-
valued function, and letj(z) be its complex conjugate. Thdp(z)|> = g(z)g(z). In our case, as

Fy(z) = Fn(—z) we have
/OIFN(x)\de = /OFN(:E)FN(—x)dx
— /0Zlogp-e(px)zlogq-e(—qx)dx

p<N q<N
1
= Z Zlogplogq/ e((p—q)z)de. (1.60)
p<N g<N 0

By exercise 1.2.7, the integral is jif= ¢ and O otherwise. Therefore the only paipsq) that contribute
are wherp = ¢, and we have

/]FN(x)\zdx = Zlong. (1.61)
0

p<N

Using partial summation (see exercise 1.3.9), we can show

Y log’p = NlogN + o(NlogN). (1.62)
p<N
Thus .
/ |Fx(2)?dx = NlogN + o(NlogN). (1.63)
0
O

Remark 1.3.6. The above argument is extremely common. The absolute value function is not easy t«

work with; howeverg(x)g(x) is very tractable (see alsd?8). In many problems, it is a lot easier to study

Jlg(@)? than [ |g(x)] or [ |g(x)[®.
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Remark 1.3.7 (Philosophy of Square-root Cancellation)The average value of'y ()| is aboutN log N,
significantly smaller than the maximum possible valu&’df Thus, we have almost square-root cancella-
tion on average. In general, if one adds a “random” set™dihumbers of absolute value the sum could
be as large asV, but often is at most of siaZéN. For more details and examples, se2?@nd 7.

Exercise 1.3.8.Investigate the size OF."_; ¢>™**/? for p prime. Hint: rewrite the sum as two sums by
using the Legendre symbol (s€&78

Exercise 1.3.9.Using the Prime Number Theorem and Partial Summation, prove

> log’p = NlogN + o(NlogN). (1.64)

p<N

1.3.3 Large Values ofFy(z)

For a fixedB, let Q = log? N. Fix aq < Q and ana < ¢ with a andgq relatively prime. We evaluate
Fy ( ) While on averagé'y (z) is of sizey/N log NV, for z near suck we shall see thalty () is large.

( ) p;vlogp e( ) (1.65)

The summands on the right hand side depend weakly &pecifically, the exponential terms only depend
onp mod ¢, which allows us to rewrité’y < ) as a sum over congruence classes:

() - Zzlogpe( )

r=1 p=r(q)
p<N

- 33 e ()

r=1 p=r(q)
p<N

_ Z ( )Zlogp (1.66)

r=1 p=r(q)
p<N

We use the Siegel-Walfisz Theorem to evaluate the sumpoxer mod ¢. We first remark that we may
assume- andq are relatively prime (see exercise 1.3.10). Briefly i# » mod ¢, this mean® = ag +r
for somea € N. If r andq have a common factor, there can be at most one ppirfremelyr) such
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thatp = r mod ¢, and this can easily be shown to give a negligible contribution. FoiCany 0, by the
Siegel-Walfisz Theorem

N N
> logp = 5@ + 0 (k)gTN) (1.67)

As ¢(q) is at mostg which is at mosiog” N, we see that if we tak€ > B then the main term is
significantly greater than the error term. Note the Siegel-Walfisz Theorem would be useleser#
large, sayy ~ N°. Then the main term would be lik&'—°, which would be smaller than the error term.

Thus we find
a\ _ 5 ()N LN
FN(Q) B 2_1: (Q)¢(Q)+O<1Och)
N I ar N
E DRORICES RS

If the sum overr in (1.68) is not too small, thefy (g) is “approximately” of size%f, with an error of
sizelogc%N. If C > 2B, the main term is significantly larger than the error term, EN((%) is large.

The Siegel-Walfisz Theorem is our main tools for evaluating the necessary prime sums, and it is useft
only when the error term is less than the main term. Our investigations of the (potential) $iz€0f

lead us to the proper definitions for the Major and Minor arcs in 81.3.4.

Exercise 1.3.10.Show the terms withandg not relatively prime in(1.66)contribute lower order terms.

1.3.4 Definition of the Major and Minor Arcs

We split [0, 1] into two disjoint parts, the Major and the Minor arcs. &y (x)|? is of size Nlog N on
average, there is significant cancellationfin(z) most of the time. The Major arcs will be a union of
very small intervals centered at rationals with small denominator relatiyé. thlear these rationals we

can approximaté'y (x) very well, andFy (z) will be large (of sizeN). The Minor arcs will be the rest

of [0, 1], and here we expediy(z) to be significantly smaller tharv. Obtaining such cancellation in

the series expansion it easy — this is the hardest part of the problem. In many cases we are unable
to prove the integral over the Minor arcs is smaller than the contribution from the Major arcs, though we
often believe this is the case, and numerical investigations support such claims.
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Major Arcs

The choice of the Major arcs depend on the problem being investigated. In problems where the Siege
Walfisz Theorem is used, the results from 81.3.3 suggest the following choiceB Let0, and let

Q = log? N < N. Foreachy € {1,2,...,Q} anda € {1,2,...,q} with a andq relatively prime,
consider the set

a Q
Mayq = {x S [O, 1] | —a < N} . (169)
We also add in one interval centered at either 1, i.e., the interval (or wrapped-around interval)
Q Q
{0, N) U (1— e 1] (1.70)

Exercise 1.3.11.Show that ifN is large then the Major arcs\, , are disjoint forq¢ < @ anda < ¢, a
andq relatively prime.

We define the Major arcs to be the union of the akds

M:

Q
q=1

q
U Mag (1.71)
(@)=

where(a, ¢) is the greatest common divisor @efandg.

Remark 1.3.12. As the Major arcs depend oN and B, we should writeM,, ,(N, B) and M(N, B);
however, for notational convenience these subscripts are often suppressed.

Exercise 1.3.13.Show| M| < %. AsQ = log? N, this implies M| — 0 asN — co. Thus in the limit
most of|0, 1] is contained in the Minor arcs; the choice of terminology reflects wit&rer) is large, and
not which subset db, 1] is larger.

Note that the above choice for the Major arcs has two advantages. First, recall that we required th
denominatoy to be small relative tdV: ¢ < Q = log? N. Once a denominator is small for sofye we
can apply the Siegel-Walfisz Theorem and we can evaIEﬁ(%) well (see 81.3.3). Second, each Major

arc M, , has length?d — 212’ N: a5 these intervals are small, we expBet(z) ~ Fx(%). It should be
possible to estimate the integral ovét, .. Thus, for a fixed?, the size of the arc about it tends to zero
asN tends to infinity, but¥y () becomes better and better understood in a smaller windows gbout

Exercise 1.3.14.For large NV, find a good asymptotic formula faM .

Exercise 1.3.15.For a fixed B, how large mustV be for the Major arcs to be disjoint?
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Minor Arcs

The Minor arcsm, are whatever isotin the Major arcs. Thus,
m = [0,1] — M. (1.72)

Clearly, asN — oo almost all of[0, 1] is in the Minor arcs. The hope is that by staying away from
rationals with small denominator, we will be able to obtain significant cancellatioiy ().

1.3.5 The Major Arcs and the Singular Series

We are trying to writen as a sum ok primes. Let us consider the case= N ands = 3. We have
shown the (weighted) answer is given by

1
/FN($)3€(—N$)CZ$= > logp: log p; log ps; (1.73)
0

p1,p2,P3<N
p1+p2+p3=N

the weights can easily be removed by partial summation. We merely sketch what happens now; we hand
a Major arc calculation in full detail in Chapter 2.

First one shows that far € M, ,, Fy(z) is very close toFy (g) While one could calculate the

Taylor Series expansion (se@§, in practice it is technically easier to find a function which is non-
constant and agrees wifhy (z) atz = <. As the Major arcs are disjoint for large,

/MFN(:C) - Z Z / (—Nz)dz. (1.74)
<aq

Mag

3
For heuristic purposes, we approximdte(x)3e(—Nxz) by Fy (%) e (—N%). After reading Chapter 2
the reader is encouraged to do these calculations correctly. Therefore

/MFN(I)?’B(—Nx)dx ~ /MFN (g)ge (—N%) dr = Fy (g>36 (—Ng) % (1.75)

In (1.68) we used the Siegel-Walfisz Theorem to evaluate(g). Again, for heuristic purposes we
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suppress the lower order error terms, and find that the contribution from the Major arcs is
3

3 @ q q _
Z log prlogpalogps = %; Z % Z e(ﬂ) e( Na)
(

P1,P2,P3<N a=1 r=1 q q
pr1+p2+p3=N a,q)=1 (r,q)=1

3

) e 1 g g ar —Na

— 203 — N(1.76

Q;¢(Q)3; ;e<q) e( q ) (.76
(a,q)=1 (rg)=1

To complete the proof, we need to show that what multiphésis positive and not too small. I#?
were multiplied byﬁ, for example, the main term from the Major arcs would be of %}zevhich could
easily be cancelled by the contribution from the Minor arcs. An elementary analysis often bounds the
factor away fronD and infinity.

Note that, up to factors dbg NV (which are important!), the contribution from the Major arcs is of

size N*. A more careful analysis, where we do not just replficér)’e(—Nz) with fy (¢)%e (—N%) on
M, ,, would show that the Major arcs contribute

2

e(N)7 + o(N?), (1.77)

with
3

w-Sap X | Do) () em

(a,q)=1 (r,q)=1
&(N) is called theSingular Series in all Circle Method investigations, the contribution from the Major
arcs is given by such a series. The singular series for Germain primes will be discussed in detail in Chapt:
2; for complete details on the singular series for sums of three primes, the interested reader should s
[EE, Na]. If we set

~_Jp—1 ifp|N
() = {0 otherwise (1.79)

then one can show N
s(V) =[] (1 - %) . (1.80)

p

The product expansion is a much more useful expression for the factor multighirthan the series
expansion. IfN is odd there exist constants andc, such that

0 < <6(N) < < 0. (1.81)
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This allows us to conclude the Major arcs’ contribution is of ort¥ér

We do not go into great detail concerning the arithmetic properties(af), and content ourselves
with an important observation. §(N) > ¢, for all N, then the main term will be greater than the error
term for IV sufficiently large. Cas (V) ever vanish?

ConsiderN even. Therey(N) = 1, ¢(2) = 1, and the factor in5(NN) corresponding tp = 2
vanishes! Thus, for evev, the main term from the Circle Method is zero. In hindsight, this is not
surprising. Assume an eveéy > 6 can be written as the sum of three primes. Exactly one of the primes
must be even (if all or exactly one were odd, th€nwould be odd; if all were eveny would be 6).
Therefore, if the Circle Method tells us that we can write an eVeass the sum of three primes, we could
immediately conclude thay — 2 is the sum of two primes.

The Singular Series “knows” about the difficulty of Goldbach. For many Circle Method problems,
one is able to write the main term from the Major arcs (up to computable constants and fadbgra/pf
ass(N)N®, with () a product over primes. The factors at each prime often encode information about
obstructions to solving the original problem. For more on obstructions,z2e §

Exercise 1.3.16.For N odd, show there exist positive constants:; (independent oiV) such that) <
c1 < 6(N) < ¢ < 0.

Exercise 1.3.17.In the spirit of exercise 1.1.13, we sketch a heuristic for the expected average value of
the number of ways of writing as a sum of: primes. Consider. € [N,2N] for N large. Count the
number ofk-tuples of primes withy,; + - - - + p,. € [V, 2N]. As there are approximately even numbers

in the interval, deduce the average number of representations forrsué¥hat if we instead considered
short intervals, such as € [N, N'~9] for somej > 0?

Exercise 1.3.18.Prove (1.78) implies the product representation (2.80) Hint: many of the sums of
arithmetic functions arise in the Germain prime investigations; see §2.6.

Remark 1.3.19 (Goldbach).If instead we investigate writing even numbers as the sum of two primes,
we would integratel'y (x)? and obtain a new singular series, safN). The Major arcs would then
contribute&(N)N.
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1.3.6 Contribution from the Minor Arcs

We bound the contribution from the Minor arcsigy (N ):

< / (P (e)'de

< maXIFN /|FN )| da

/m Fy(z)*e(—Nx)dx

< meaX]FN /FN —x)dx
rem 0
< <m€aX]FN( )])NlogN (1.82)

As the Minor arcs are most of the unit interval, replacifigwith fol does not introduce much of an
over-estimationln order for the Circle Method to succeed, we need a non-trivial, good bound for

max |Fiy (z)| (1.83)

rem

This is where most of the difficulty arises, showing that there is significant cancellatiBn(in) if we
stay away from rationals with small denominatére need an estimate such as

N
F < 1.84
rfe%r}f’ @)l < log' ™ N (1.84)
or even
Fa(a)] < o — (1.85)
216%31{ NAT © logN )~ '

Relative to the average size [dfy (x)|?, which is N log N, this is significantly larger. Unfortunately,
as we have inserted absolute values, it is not enough to bdund)| on average — we need to obtain a
good bound uniformly inc. We know such a bound cannot be true foraalke [0, 1], becausd 'y (z) is
large on the Major arcs! The hope is thatifs not near a rational with small denominator, we will obtain
moderate cancellation. While this is reasonable to expect, it is not easy to prove; the interested read
should see [EE, Na]. Following Vinogradov [Vinl, Vin2] one shows

max |Fy(z)] <

L 1.86
TEmM IOgD N ( )

which allows one to deduce any large odd number is the sum of three primes. While (1.63) gives u
significantly better cancellation on average, telling us that(x)|? is usually of sizeV, bounds such as
(1.86) are the best we can do if we require the bound to holdlfar € m.
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Exercise 1.3.20.Using the definition of the Minor arcs, bound

[ 1wt [ ]

Show, therefore, that there is little harm in extending the integraFaf(z)?| to all of [0, 1]. In general,
there is very little loss of information in integratingy (z)[2".

(1.87)

1.3.7 Why Goldbach’s Conjecture is Hard

We give some arguments which indicate the difficulty of applying the Circle Method to Goldbach’s con-
jecture. To investigat& y ;(/N), the number of ways of writingv as the sum of primes, we considered
the generating function

= Zlogp~e(p:c), (1.88)
p<N
which led to .
Ry s(N) = / Fy(x)’e(—Nz)dz. (1.89)

Remember that the average size Bf (z)|? is N log N.

We have seen that, up to logarithms, the contribution from the Major arcs is of\Sifer s = 3.
Similar arguments show that the Major arcs contribute on the ordéiof for sums ofs primes. We
now investigate why the Circle Method works for= 3 but fail for s = 2.

Whens = 3, we can bound the Minor arcs contribution by

/ Fy(afe(~Na)de| < mas|Fy(2) / (o)
m 0
< max|Fy(z)|- NlogN. (1.90)

rem

As the Major arcs contribute(N)N?, one needs only a small savings on the Minor arcs; Vinogradov’s
bound

max |Fy(z)] < (1.91)

zem logP’ N’
suffices. What goes wrong when= 2? The Major arcs’ contribution is now expected to be of Size
How should we estimate the contribution from the Minor arcs? We liamMe:)%e(—Nx). The simplest
estimate to try is to just insert absolute values, which gives

/mFN( )2e(—Nz)dz

/ |Fn(z)]?dz = N. (1.92)



Note, unfortunately, that this is the same size as the expected contribution from the Major arcs!

We could try pulling amax,c,, | Fy(z)| outside the integral, and hope to get a good saving (pulling
out|Fy(x)|* clearly cannot work as the maximum of this is at leddbg V). The problem is this leaves
us with [ [Fy(z)|dz. As Fy(x) on average is of siz¢/Nlog N (this is not quite right: we have only
shown|Fy(x)|* on average isV log N; however, let us ignore this complication and see what bound we
obtain), replacingFy (x)| in the integral with its average value leads us to

< max |Fy(z)| -/ Nlog N. (1.93)

rem

/m Fy(x)%e(—Na)da

As the Major arcs’ contribution is of siz&, we would need

rem

max |Fy(z)] < 0( %) (1.94)

There is no chance of such cancellation; this is better than square-root cancellation, and contradicts tt
average value dff'y(x)|* from (1.63).
Another approach is to use the Cauchy-Schwarz Inequality (see L&Pma

[ st < ([ |f(:v>!2d$)é (/ rg<x>\2dx); | (1.95)

/m Fy(2)2e(—mz)dz

Thus

1
< meaX|FN(:1:)]/ |Fn(x)|dx

1 2
< max|FN (/ |FNx|dx> </ 12dx)
0

< meaX|FN( x)| - NlogN)%-l (1.96)

Unfortunately, this is the same bound as (1.93), which was too large.

Remark 1.3.21. Even though it failed, it was a good idea to use the Cauchy-Schwartz inequality. The
reason is we are integrating over a finite interval; thﬁé 12dz is harmless; if the size of the interval
depended oV (or was all ofR), applying Cauchy-Schwartz might be a mistake.

While the above sketch shows the Circle Method is not, at present, powerful enough to handle the
Minor arcs’ contribution, all is not lost. The quantity weedto bound is

/ Fn(z)?e(—maz)dz| . (1.97)
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However, we have instead been studying

/ | Fy () [2dz (1.98)

and )
meaX|FN(x)|/ |Fn(z)|dz. (1.99)
rem 0

We are ignoring the probable oscillation and cancellation in the intggrély (z)*e(—mx)dz. Itis this
expected cancellation that would lead to the Minor arcs contributing significantly less than the Major arcs

However, showing there is cancellation in the above integral is very difficult. It is a lot easier to work
with absolute values. Further, just because we cannot prove that the Minor Arc contribution is small, doe
not mean the Circle Method is not useful. Numerical simulations confirm, for many problems, that the
Minor arcs do not contribute for many. For example, foV < 10, the observed values are in excellent
agreement with the Major arc predictions (see [Ci, Sch, WAL DATA??
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Chapter 2

Circle Method: Heuristics for Germain Primes

We apply the Circle Method to investigate Germain primes. As current techniques are unable to ade
quately bound the Minor arc contributions, we concentrate on the Major arcs, where we perform the cal
culations in great detail The methods of this chapter immediately generalize to other standard problem:
such as investigating twin primes or prime tuples.

We have chosen to describe the Circle Method for Germain primes as this problem highlights many
of the complications that arise in applications. Unlike the previous investigations of witiag a sum
of s primes, our generating functiofy (=) is the product of two different generating functions. To
approximatef'y (x) on the Major arcM, ,, we could try to Taylor expand; however, the derivative is not
easy to analyze or integrate. Instead we construct a new function which is easy to integ{Fage ﬂn
has most of its mass concentrated nfqé,aand is a good approximation @y (z) on M, ,. To show the
last claim requires multiple applications of partial summation. For numerical investigations of the Minor
arcs, as well as spacing properties of Germain primes, see [Weir].

In 82.1 and §2.2 we define Germain primes, the generating fungkdm), and the Major and Minor
arcs. In §82.3 we estimatgy (z) and find an easily integrable functiar{z) which should be close to
Fx(x) on the Major arcs. We prove(z) is a good approximation té'y (x) in §2.4; this is a technical
section and can easily be skimmed on a first reading. We then determine the contribution from the Majo
arcs by performing the integration in §2.5 and then analyzing the singular series in 82.6. Finally, in 82.7
we remove théog p weights and then conclude with some exercises and open problems.

2.1 Germain Primes

Consider an odd primg. Clearlyp — 1 cannot be prime, as it is even,; howev%},1 could be prime, and
sometimes is ag = 5,7 and11 show.

Definition 2.1.1 (Germain Prime). A primep is a Germain prime (op and ’%1 are a Germain prime
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pair) if bothp and 7‘%1 are prime. An alternate definition is to hayeand2p + 1 both prime.

Germain primes have many wonderful properties. Aroligb, Sophie Germain proved thatfis
a Germain prime, then the first case of Fermat's Last Theorem, which states the only integer solutions c
xP 4+ yP = zP havep|zyz, is true for exponent. For more on Fermat’s Last Theorem, s€8.8As another
application, recent advances in cryptography are known to run faster if there are many Germain prime
(see [AgKaSa)).

Germain primes are just one example of the following type of problem: Given relatively prime positive
integersa andb, for p < N how often arep andap + b prime? Or, more generally, how often are
p,aip + by, ..., axp + b prime? One well known example is the famous Twin Prime Conjecture, which
states that there are infinitely many primesuch thap + 2 is also prime. It is not known if this is true.
Unlike the sum of the reciprocals of the primes, which diverges, Brun has shown that the sum of the
reciprocal of the twin primes converges (see [Na]). Therefore, if there are infinitely many twin primes,
there are in some sense fewer twin primes than primes. Explicitly, Brun proved that there exigts an
such that for allN > N, the number of twin primes less thax is at mostlif;(;]]vv. This should be
compared to the number of primes less tianwhich is of sizeﬁ. Using the Circle Method, Hardy
and Littlewood were led to conjectures on the number of sucgﬁ primes, and their Major arc calculations
agree beautifully with numerical investigations.

We have chosen to go through the calculation of the number of Germain primes less tlasmer
than twin primes as these other problems are well documented in literature ([Da2, EE, Est2, Na]). Not:
the Germain problem is slightly different from the original formulation of the Circle Method. Here, we
are investigating how oftem, — 2p, = 1, with p, < p; < N. Let

Ay = {p:pprime}
Ay = {—2p:pprime}. (2.1)

To construct generating functions that converge, we consider the truncated sets

Ay = {p:pprimep < N}

Aoy = {-2p:pprimep < N} (2.2)
We are interested in

{(al,ag) L ay + Ao = 1,CLZ' € AzN} (23)

In the original applications of the Circle Method, we were just interested in whether or not a number
was inAy + --- + Ay. To showm could be written as the sum of elementsc A, we counted the
number of ways to write it as such a sum, and showed it was positive.

For Germain primes and related problems, we are no longer interested in determining all numbers th:
can be written as the sum + a,. We only want to find pairs witla; + a, = 1. The common feature
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with our previous investigations is showing how many ways certain numbers can be written as the sum c
elements in4;y. Such knowledge gives estimates for the number of Germain primes at\most

ForanyN > 5we knowl € A,y + Ao ash is a Germain prime. Note the number of ways of writing
1 asa; + ay With a; € A;n is the number of Germain primes at ma@gt similar to before, we need to
compute for this problem(1; Ay, Asy), with the obvious notation.

Exercise 2.1.2.Looking at tables of primes less th&o0, do you think there will be more Germain primes
or twin primes in the limit? What if you study primes upltd? Up to108? What percent of primes less
than 100 (10%, 10%) are Germain primes? Twin primes? How many primes less fiigfor N large) do
you expect to be Germain primes? Twin primes?

Exercise 2.1.3.By the prime number theorem, for primes neahe average spacing between primes is
log . One can interpret this as the probability a number neas prime is@. We flip a biased coin with
probability @ of being a prime,l — @ of being composite; this is called tl@&amér model Using
such a model predict how many Germain primes and twin primes are less\than

Remark 2.1.4 (Remark on the previous exercise)The Cramér model of the previous exercise cannot
be correct — knowledge thatis prime gives some information about the potential primality of nearby
numbers. One needs to correct the model to account for congruence informatior? eel§Rub1].

2.2 Preliminaries

We use the Circle Method to calculate the contribution from the Major arcs for the Germain problem,
namely, how many primegs < N there are such th@g—1 Is also prime. As pointed out earlier, for this
problem the Minor Arc calculations cannot be determined with sufficient accuracy to be shown to be
smaller than the Major arc contributions. We will, however, do the Major arc calculations in complete
detail. Let

e (.Z') — eZTrix

| PR .
Mn) = ogp ifn ]?IS prime; (2.2)
0 otherwise.

We constantly use the integral version of partial summati@?)(8nd the Siegel-Walfisz Theorem (The-
orem 1.2.13). We have introduced the arithmetic functiom) for notational convenience. In applying
partial summation, we will have sums over integers, but our generating function is defined as a sum ove
primes;\(n) is a convenient notation which allows us to write the sum over primes as a sum over integers
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2.2.1 Germain Integral

Define
Fiy(z) = Z logp1 - e(p1x)
p1<N
Fon(z) = Z log ps - e(—2py)
p2<N
Fy(z) = > ) logpilogps-e((pr—2p2)x) = Fin(z)Faon(x). (2.5)
P1<N p2<N

Fx(z) is the generating function for the Germain primes. /Ag(x) is periodic with period 1, we can
integrate either ove), 1] or [-1, 1]. We choose the latter because the main contribution to the integral is
from x near0, although both choices obviously yield the same result. LettingA;y, Asx) denote the
weighted number of Germain primes, we have

r(1; Ain, Aoy) = /1FN(x)e(—a:)dx

- Z Z log p1 log p; /2 e((pr —2p2 — 1)x) dx. (2.6)

P1<N pa<N

D=

By exercise 1.2.7

2 1 ifpr—2p—1=0
/2 e((p1 —2ps — 1)) dx = I br—=<p2 (2.7)
-1 0 |fp1—2p2—17£0
In (2.6) we have a contribution ddg p; log ps if p; andp, = plgl are both prime and otherwise. Thus
3
r(L; Ay, Aon) = / ) Fy(z)e(—z)dr = Z log p11og ps. (2.8)
2 P1<N

p1—1 .
p1,po="lg— prime

The above is a weighted counting of Germain primes. We have introduced these weights to facilitats
applying the Siegel-Walfisz formula; it is easy to pass from bounds(fiorA; y, A;n) to bounds for the
number of Germain primes (see 82.7).

Remark 2.2.1. Using the\-function from(2.4), we can rewrite the generating function as a sum over
pairs of integers instead of pairs of primes:

Fy(z) = Z Z A(ma)A(m2) - e((m1 — 2ms)x). (2.9)

m1=1mg=1
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Of course, the two functions are the same; sometimes it is more convenient to use one notation over tl
other. When we apply partial summation, it is convenient if our terms are defined for all integers, and not
just at primes.

Exercise 2.2.2.Determine (or at least bound) the average values$'of(z), Fon(x) and Fy(x). Hint:
for Fiy(x), use the Cauchy-Schwartz inequality.

2.2.2 The Major and Minor Arcs

Let B, D be positive integers witth > 2B. SetQ = log” N. Define the Major are\,,, for each pair
(a, q) with a andq relatively prime and < ¢ < log” by

11 a Q
Ma,q = {ZL‘ S (—5, 5) : ‘l‘-g < N} (210)
if ¢ 5 and
1 1@ 1 Q 1
My = [ 5 §+N) U (5 > 5}. (2.11)
Remember, as our generating function is periodic with period 1, we can work on[githesr [—1, 1]. As

the Major arcs depend o andD, we should writeM,, ,(N, D) and M (N, D); however, for notational
convenience these subscripts are often suppressed. Note we are giving ourselves a little extra flexibili
by havingg < log? N and eachM,, , of sizew. We see in 82.5 why we need to hale> 2B.

By definition, the Minor arcsn are whatever is not in the Major arcs. Thus the Major arcs are the
subset of —1, 1] near rationals with small denominators, and the Minor arcs are what is left. Here near
and small are relative t&/. Then

r(1; Ay, Aon) = /2 Fy(z)e(—x)dzr = /M Fn(z)e(—x)dx + /FN(x)e(—x)dx. (2.12)

1
3 m

We will calculate the contribution to(1; A;x, A2x) from the Major arcs, and then in 82.7 we remove the
log p; weights.

We chose the above definition for the Major arcs because our main tool for evaléating is the
Siegel-Walfisz formula (Theorem 1.2.13), which states that givenBrg > 0, if ¢ < log? N and
(r,q) = 1then

N N
> logp = @JFO (logTN) (2.13)

For C very large, the error term leads to small, manageable errors on the Major arcs. For a more detaile
explanation of this choice for the Major arcs, see 81.3.3 and §1.3.4.
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We show the Major arcs contribute, up to lower order terfad/, whereT is a constant independent
of N. By choosingB,C' and D sufficiently large we can ensure that the errors from the Major arc
calculations are less than the main term from the Major arcs. Of course, we have absolutely no contrc
over what happens on the Minor arcs. Similar to Chapter 1 (88 8p to powers ofog N we have
Fy(z) on average is of siz&/, but is of sizeN? on the Major arcs. As there is a lot of oscillation in the
generating functiorfy (), for genericz € [—3, 1] we expect a lot of cancellation in the size 6§ ().
Unfortunately, we are unable to prove that this oscillation yields the Minor arcs contributing less than the
Major arcs.

We highlight the upcoming calculations. On the Major atef ,, we find a functionu of size N2
such that the error from to Fy on M, is much smaller thav?, say N* divided by a large power of
log N. When we integrate over the Major arcs, we find the main term is of siv€because up to powers
of log N the Major arcs are of siz¢), and we succeed if we can show the errors in the approximations
are much smaller thafy, say N divided by a large power dbg N. Numerical simulations for up to
10° and higher support the conjecture that the Minor arcs do not contribute for the Germain problem
Explicitly, the observed number of Germain prime pairs in this range agrees with the prediction from the
Major arcs (see [Weir]). We content ourselves with calculating the contribution from the Major arcs,

/ Fy(z)e(—z)dx. (2.14)
M

2.3 Fy(z)andu(x)

After determiningFy on M, ,, we describe an easily integrable function which is closéfomon M, ,.
We calculateF'y (“) for ¢ < log” N. Define theRamanujan sumc,(a) by

q

cqla) = Z e (T%). (2.15)

(r,q)=1

q
(r;,q) = 1 because ifr;,q) > 1, there is at most one prime = r; mod ¢, and one prime will give a

As usual, we evaluatéy (“) with the Siegel-Walfisz Theorem (Theorem 1.2.13). We restrict below to
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negligible contribution a®v — oco. See also §1.3.5. We have

n(3) - S () S ()

p1<N pa<N

_ Z 3 Ingl'e(plg>i S 1ng2'€(—2p2§>

ri=1 p1<N ro=1 po<N
r1=r1(q) pa=r1(q)

— ie(rlg)ie(r2—> > logpr Y logps

r1=1 ro=1 p1<N po<N
p1=r1(9) p2=r2(q)
q q 2
a —2a N N
; (161> ; (2 q ) Lb(Q) log® N
(r1,9)=1 (rg,q)=1
cqla)cg(—2a) | ( N? )
N"+0 — | - (2.16)
o(q)? log“ B q

Exercise 2.3.1.Show that the contribution from one prime may safely be absorbed by the error term.
Let

N N

Asu(0) = N2 itis natural to comparéy(x ) he Major arcs to

cq(a)cq(=2a) ( a)
—————ulrz—-, (2.18)
¢(q)? q
as these two functions agreezat= ¢. The functionu(z) is a lot easier to analyze thatfy (z). We show
for x € M, , that there is negligible error in replacitgy (z) with Cq—”“)u(a: ) We then integrate

over.M, ,, and then sum over all Major arcs. We describe in great detail in Remark 2.5.9 why it is natural
to considen(x).

2.4 Approximating Fy(x) on the Major arcs

In this technical section we apply partial summation multiple times to shsma good approximation to
Fy on the Major arcs\,, ,. Define

Cyla) = LY =0 (2.19)



We show

Theorem 2.4.1.For o € M, ,

Fy(a) = Cyla)u (a — g) +0 (logCNWN> . (2.20)

Fora € M,,, we writea asf + ¢, 3 € (-4, £]. Remember) = log” N andg < log” N. Note
Fy(z) is approximatelyC,(a) N? for z near?, and from our definitions of'y, v andCy(a), (2.20) is
immediate fora = <. The reader interested in the main ideas of the Circle Method may skip to §2.5,
where we integrate(z) over the Major arcs. The rest of this section is devoted to rigorously showing that
[Fiv(z) — Cy(a)u(z — 7)[ is small.

The calculation below is a straightforward application of partial summation. The difficulty is that we
must apply partial summation twice. Each application yields two terms, a boundary term and an integra
term. We will have four pieces to analyze. The problem is to estimate the difference

Sugla) = Fy(a)—Cyla)u (a - g) — Fy <5 n g) — C,(a)u(p). (2.21)
Recall thaty < log” N andFy () = Cy(a)u(0) is of S|ze . To prove Theorem 2.4.1 we must show

that |.S, ,(a)] < logC]Y%N As mentioned in Remark 2.2.1, it is easier to apply partial summation if

we use the\-formulation of the generating functiofiy because now both’y andw will be sums over
mi, Mo < N. Thus

Saql@) = D Amo)Ama)e((my —2ma)B) — Cyla) > e((my —2my)P)

mi, ma <N m1,m2§N

S [Mml)A(mQ)e((ml_zmz)g)—cq<a>}e<<m1—2mz>ﬁ>

mi1,ma<N

= > Y {A(ml)A(mge ((m1 —zmg)g) —Cq(a)} e(—2m25)] e(mi3)

m1<N Lmo<N

= Z Z amQ(ml,N)me(mbN)] e(my3)

m1<N Lma<N

= Z Saq(c;my)e(my3), (2.22)

mi<N
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where

Umy (M1, N) = XNmp)A(me)e ((Tm — 2m2)5) — Cy(a)
by (ml» N) = 6(—2m2ﬁ)
Sagla;mi) ="y (ma, N)by,(ma, N). (2.23)

We have writtert, ,(«) as above to illuminate the application of partial summation. We haléixed
and then use partial summation on the-sum. This generates two terms, a boundary and an integral term.
We then apply partial summation to thg-sum. The difficulty is not in evaluating the sums, but rather in
the necessary careful book-keeping required.

Recall the integral version of partial summation (LemP?astates

N N
anb(m) = A(N)b(N) — / A(u)t (u)du, (2.24)
m=1 1
whereb is a differentiable function and(u) = _, a.,. We apply this tau,,,, (m, N) andb,,, (mi, N).
AS b,,, = b(msy) = e(—20my) = e 42 VY (my) = —4mifBe(—208ms,).

Applying the integral version of partial summation to the-sum gives

Saalmn) = 3 NN male (s —2m)% ) = )| ef-2mas)

mo<N
= > amy(m1, N)byy(ms, N)
mo<N
N
= [ Z amz(ml,N)] e(—2Np) —|—4m’ﬁ/ [Z amz(ml,N)] e(—uf)du.
mo<N u=1 mo<u

(2.25)

The first term is called the boundary term, the second the integral term. We substitute these into (2.22
and find

Seql@) = > ”Z amQ(ml,N)] e(—2N6)] e(my )

m1<N ma<N

+ Z l4mﬂ B [Z amQ(mbN)] e(—uﬁ)du] e(my3)

m1<N ma<u

Sa,q(a; Boundary + S, ,(a; Integral). (2.26)
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The proof of Theorem 2.4.1 is completed by showisig, («; Boundary and S, ,(«a; Integral) are
small. This is done in Lemmas 2.4.3 and 2.4.8 by straightforward partial summation.

Remark 2.4.2. The factor ofirif in (2.26)is from differentiating)(m.). Remembet = ¢+ fisinthe

Major arc M, , = [g - .24 %} Thus,|3| < € = 2. Even though the integral i(2.26)is over

a range of lengthV, it is multiplied by, which is small. If5 was not present, this term would yield a
contribution greater than the expected main term.

2.4.1 Boundary Term

We first deal with the boundary term from the first partial summatiomens,, ,(«; Boundary.

Lemma 2.4.3.

N2
S(Lq(Oé; Boundary =0 <1OgCTN) . (227)

Proof. Recall that

S.q(c;Boundary = Z ” Z amQ(ml,N)] e(—2Nﬁ)] e(my3)

m1<N ma<N
— e(=2Np) Y [Z am(ml,N)] (). (2.28)

As |(e(—2Np)| = 1, we can ignore it in the bounds below. We again apply the integral version of partial
summation with

i = X V) = 3 [mAme (i - 2m)% ) - Cyfa)

mo<N mo<N q

bml = e(mlﬁ)' (229)
We find

¢(2NB)Saq(a;Boundary = > [Z am2(m1,N)] e(N3)

m1<N Lma<N
N

— 2mif3 / > [Z amQ(ml,N)] e(tf)dt.  (2.30)
t=0 <t [mo<N

To prove Lemma 2.4.3, it suffices to bound the two terms in (2.30), which we do in Lemmas 2.4.4 and
2.4.5. O
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Lemma 2.4.4.

> [Z amz(ml,N)] e(Ng) = O (1()ch) (2.31)

m1<N Lma<N

Proof. As |e(Nj)| = 1, this factor is harmless, and the,, m,-sums are bounded by the Siegel-Walfisz
Theorem.

S Y ) = 3 Y [A<ml>A<m2>e (1= 202 ) - €40

m1<N ma<N m1<N ma<N

¢(q) log” N ¢(q) log® N
N2
= 0 ( = ) (2.32)
log~ N
asC,(a) = a2 and|e,(b)] < é(q). O
Lemma 2.4.5.
27Tlﬁ/ (077 ml, (tﬁ) (T) . (233)
m1<t mo<N ’ lOg N
Proof. Note |3] < £ = w andC,(a) = ‘Efl‘;g d)((q) 9 Fort < /N, we trivially bound them,-sum
by 2N. Thus these contribute at most
|6|/ > 2Ndt = |BIN* < Nlog” N. (2.34)

m1<t

An identical application of Siegel-Walfisz as in the proof of Lemma 2.4.4 yields for/N,

 Eiee) = [ 0 (i) [0 ()] -

m1<t ma<N
tN
— 0( a ) (2.35)
log~ N
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Therefore

9 /Nﬁ

Remark 2.4.6. Note, of course, that the contribution is only negligible wihite < %. We see a natural
reason to take the Major arcs small in length.

N? N?
log” N log N

]

Z Z amz(th)

m1<t ma<N

Remark 2.4.7. The above argument illustrate a very common technique. Namely ifo, N] and N

is large, the interval0, v/N| has negligible relative length. It is often useful to break the problem into
two such regions, as different bounds are often available whetarge and small. For our problem, the
Siegel-Walfisz formula requires that< log? ¢; this condition fails ift is small compared tg. For small

t, the bounds may not be as good; however, the length of such an interval is so small that weak bounc
suffice. See also the example 2§

2.4.2 Integral Term

We now deal with the integral term from the first partial summatiomens, ,(«; Integra).

Lemma 2.4.8.

N2
Sa7q(Oé; |ntegl’a|) =0 <m) . (237)

Proof. Recall

Saq(c; Integra) = 4mif Z [/_1 [Z amQ(ml,N)] e(—uﬁ)du] e(my3) (2.38)

m1<N mao<u

where
g (M1, N) = Ama)A(ma)e <<m1 - 2m2)§) —Cya). (2.39)

We apply the integral version of partial summation, with

Uy = /UN [Z amQ(ml,N)] e(—uf)du

=1 mo<u

bm1 = 6(m15>. (240)
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We find

N
Saq(c;Integra) = 4mif [ Z / Z amQ(ml,N)e(—uﬁ)du] e(NpS)
mi1<N u=1 mo<u
N N
+ 877ﬁ2/ [Z / Z Uy (M, N)e(—uf)du| e(mqt)dt. (2.41)
t=1 mi<t u=1 ma<u
The factor ofs73? = —(4mi3) - (2mi3) and comes from the derivative efm,3). Arguing in a similar
manner as in 82.4.1, in Lemmas 2.4.9 and 2.4.10 we show the two terms in (2.41) are small, which wil
complete the proof. O
Lemma 2.4.9.
N N2
4mi mo (M1, N)e(—uf)d NB) = O ————F5— - 2.42
it | 5[5 il Nelcudyin v9) = 0 (). @42

Proof. Arguing along the lines of Lemma 2.4.5, one shows the contribution frefm/N is bounded by
Nlog? N. Foru > /N we apply the Siegel-Walfisz formula as in Lemma 2.4.5, giving a contribution
bounded by

o [0 )] (452 0 ()] - o)

N
N
< 18 / N
u=vn log” N
NB
< C‘m . (2.43)
log~ N
log? N ; N2
As | 3| < 25—, the above i®) <m) O
Lemma 2.4.10.
N N NZ
8%62/ / Q. (M1, Ne(—ufB)du| e(mqit)dt = O (_—) : (2.44)
|2 X malm N)e(ouiy elont) T

Proof. The proof proceeds along the same lines as the previous lemmas. Arguing as in Lemma 2.4.5, or
shows that the contribution wher< v N oru < /N isO (mgﬁ—%) We then apply the Siegel-Walfisz

Theorem as before, and find the contribution when> /N is

N N 4732
t N
< 8 / / e dudt < Cﬁ : (2.45)
t=vN Ju=vN log~ N log” N
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As |3| < log N the above i©) (m> O

This completes the proof of Theorem 2.4.1.

2.5 Integrals over the Major Arcs

We first compute the integral af(z)e(—x) over the Major arcs and then use Theorem 2.4.1 to deduce the
corresponding integral dfy (z)e(—x).

2.5.1 Integrals ofu(z)
By Theorem 2.4.1 we know far € M, , that

Fy(z) — Cyla)u (x — g)‘ < O (logCNWN) . (2.46)

We now evaluate the integral efz — £)e(—x) overM, q; by Theorem 2.4.1 we then obtain the integral
of Fy(z)e(—z) over M, ,. Remember (see (2.17)) that

u(zr) = Z e((my — 2my)z) . (2.47)

m1,mo<N

/M u (a - g) ce(~a)da = (—g) S0 (log]ZN) | (2.48)

Theorem 2.5.1 will foIIow from a string of lemmas on various integrals.otWe first determine the
integral ofu over all of[—1, 1], and then show that the integralefz) is small if |z| > Q

Theorem 2.5.1.

Lemma 2.5.2. )
/ S u(@)e(—a)de = ~ +O(1). (2.49)
Proof.

/_é u(@le(=w)dz = / > D el(m —2my)x) - e(—x)dx

1
2 2 m1<Nm2<N

= Z Z / (my — 2my — 1)z) dz. (2.50)

m1<N ma<N
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By exercise 1.2.7 the integral 1sf m; — 2ms — 1 = 0 and0 otherwise. Fo¥n,, my € {1,..., N}, there

are[2] = & + O(1) solutions tom; — 2m, — 1 = 0, which completes the proof. O
Define
_ . Q Q Q1 Q
I = {2+N N}, [2—{N;2 N}- (2.51)

The following bound is crucial in our investigations.
Lemma253Foryce[10rIQ,1 )<<1forae{1 —2}.

Exercise 2.5.4.Prove Lemma 2.5.3.

N
/Q:EIIUI2 u(z)e(—x)der = O <—logD N> ) (2.52)

Lemma 2.5.5.

Proof. We have

/ u(z)e(—x)dr = / Z e((my —2mg — 1)x)dx

I; I; m1,ma<N
= / Z e(mqx) Z e(—2max) - e(—x)dz
ZTTL1<]\/ mo<N
—e((N+1 —2x) —e(—2(N +1
- [e< z) — e((N + >x>} [e< 2) (2N A V)] o sgy
I, 1 —e(x) 1 —e(—27)
because these are geometric series. By Lemma 2.5.3 we have
22 N N
—z)d ——d - = — 2.54
/Iiu(x)e( I)I<</Ix:lj r < 0 og? N’ (2.54)
which completes the proof of Lemma 2.5.5. ]

- DN) that we must také& > 25.

Remark 2.5.6. It is because the error term in Lemma 2.5. 595(

Lemma 2.5.7.

—1_Q
2™ N

/ o u(z)e(—z)dz = O (log” N). (2.55)
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Proof. The argument is similar to the proof of Lemma 2.5.5. The difference is we use the geometric serie:
formula only for them;-sum, which is%w < L Aszisnear}, them;-sumisO(1). There are

N terms in then,-sum. As each term is at moktwe may bound thez,-sum byN. Thus, the integrand

is O(N). We integrate over a region of Ieng%@ and see that the integral (Q) = O(log” N) for N

large. ]

Note in the above proof we could not use the geometric series forrhegbms, as near = % the
second sum is quite large. Fortunately, we still have significant cancellation in the first sum, and we ar:
integrating over a small region. The situation is different in the following lemma. Thetkn-sums are
large. Not surprisingly, this is where most of the mass o concentrated.

Lemma 2.5.8.

/_]; u(z)e(—x)dr = gjL @) (log]XN) : (2.56)

Proof. This is immediate from Lemma 2.5.2 (which shows the integral ofrer [—1, 1] is & + O(1))
and Lemmas 2.5.5 and 2.5.7 (which show the integral ofer || > % is small). O
It is now trivial to prove Theorem 2.5.1.

Proof of Theorem 2.5.1We have

/M u (a - g) e(—a)da =

N N
- ) Mo (h)gDN) | (2.57)

]

Note there are two factors in Theorem 2.5.1. The fér%t,—g) , Is an arithmetical factor which depends
on which Major arcM,, , we are in. The second factor is universal, and is the size of the contribution.
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Remark 2.5.9. We remark once more on the utility of finding a functign) to approximatef'y(z), as
opposed to a Taylor series expansion. We found a function that is easy to integrate and by straightforwar
applications of partial summation is close to our generating function. Further, most of the mags &
concentrated in a neighborhood of si@ about0. Hence integrating: (or its translates) over a Major

arc is approximately the same as integratingver the entire interval. While there are a few points where
we need to be careful in analyzing the behaviou ahe slight complications are worth the effort because

of how easy it is to work with(z). For this problem, it was: = 0 giving the main contribution, and

x = i% was a potential trouble point which turned out to give a small contribution. The reason we need
to checkr = 43 is due to the definition of Germain primes, namely2tie Fyy (z) = 3 _\ e(—2p;).
Because of thig, whenz is near%, Fyon(z) is nearN.

2.5.2 Integrals of Fiy(z)

An immediate consequence of Theorem 2.5.1is

Theorem 2.5.10.

/M Fr(@)e(—z)de = C,(a)e <—g> g 40 <log#]\/') L0 (bgc%) (2.58)

a,q

Exercise 2.5.11.Prove Theorem 2.5.10.
From Theorem 2.5.10 we immediately obtain the integrai'fx)e(—x) over the Major arceu:

Theorem 2.5.12.

logP N ¢
a\ N N N
F —x)d = C —— = 4+ 0 +
[, e = 3203 (e (-2) F + 0 (omey + ey )
(a,q)=1
N N N
= 6N? +0 (1OgD—2BN + logC—3D—2B N) ) (2.59)
where

log? N q
ey =Y Y Cyla (—g) (2.60)

(a,q)=1

is the truncated singular series for the Germain primes.
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Proof. As

logB N ¢

M= U M (2.61)

a=1
(a,q)=1

the number of Major arcdA, , is bounded byog®? N. In summing over the Major arcs, the error terms
in Theorem 2.5.10 are multiplied by at masg*? N, and the claim now follows. ]

We will show the main term in Theorem 2.5.12 is of siXe thus we need to tak® > 2B and
C > 3D + 2B. We studysy in 82.6, and remove thieg p; weights in 82.7.

2.6 Major Arcs and the Singular Series

If we can show that there exists a constant- 0 (independent ofV) such that
Sy > co, (2.62)

thenforD > 2B andC > 3D + 2B by Theorem 2.5.12 the contribution from the Major arcs is positive
and of sizes v & for V sufficiently large. Recall

C,a) = cal@)cy(~2a) (2.63)

Substituting

pe = D 0q<a>e(—g), (2.64)

(a,q)=1

into the series expansion efy in (2.60), we find that

logB N
&y = Y Py (2.65)
q=1
The singular series for the Germain primes is
& => pg (2.66)
qg=1
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We shows is given by a multiplicative product and is positive in Theorem 2.6.18, and in Theorem 2.6.20

we show|é —&y| = O (M) for anye > 0. This will complete our evaluation of the contribution
from the Major arcs.

Many of the arithmetical functions we investigate below were studied in Chapt&ecall a function
f is multiplicative if f(mn) = f(m)f(n) for m,n relatively prime, and completely multiplicative if
f(mn) = f(m)f(n); see definitior??. The reader should consult Chap®as necessary.

2.6.1 Properties of Arithmetic Functions

We follow the presentation of [Na] (Chapteand AppendixA4), where many of the same functions arise
from studying a related Circle Method problem. Below we determine simple formulas for the arithmetic
functions we have encountered, which then allows us to prove our claims@hands (see §2.6.2).

Lemma 2.6.1.1f (¢, ¢') = 1 then we can write the congruence classes relatively primg'tasrq’ +1'q,
withl <r <g¢,1 <+ <qand(r,q) = (r',¢) = 1.

Exercise 2.6.2.Prove Lemma 2.6.1.
Lemma 2.6.3.¢,(a) is multiplicative.

Proof. Using Lemma 2.6.1 we have

cola)ey(a) = Zq: 6(7%) Xq: e<r'3,)

r=1 =1 q
(ra)=1 (r',q")=1
L E (e
= qq’
(ra)=1 (+/ ¢")=1
qaq’ a
= ) e (?-) = ¢y (a) (2.67)
r=1 q
(7,aq’)=1
O
We will soon determine,(a) for (a, q) = 1. We first state some needed results.
Lemma 2.6.4. Show that
a d if d|a;
ha(a) = (r5) = » 2.68
a(a) ;e "d {0 otherwise. (2.68)
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Exercise 2.6.5.Prove the above lemma.
Recall the Mébius function (see9):

—1)" if dis the product of distinct primes;
() = Y | (2.69)
0 otherwise.
By Lemma??,
1 if =1;
Z u(d) = ! (TaQ). : (2.70)
0 otherwise.
d|(r,q)
Lemma 2.6.6.1f (a,q) = 1 thenc,(a) = u(q).

Proof.

cola) = i e(rg) - ile(rg) 3" u(d), (2.71)

r=1 d
(=1 |(r,q)

where we used (2.69) to expand the sum freng) = 1 to all » mod ¢. Further

= Y u(d Ze (7;) . (2.72)

r=1
dlq i

This is becausé|(r, q) impliesd|r andd|q, which allows us to rewrite the conditions above. We change
variables and replacewith /; asr ranges fromi to ¢ through values divisible by, ¢ ranges froml to <.
We will use Lemma 2.6.4 to evaluate this sum. Therefore

= 2 d) i ( /d)

dlq
ZM q/d
dlq

= ZM(%) hq(a)
dlq

- ()

= Y u (%) d. (2.73)

If (a,q) = 1then the only term above is= 1, which yieldsc,(a) = u(q). O
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Corollary 2.6.7. If ¢ = p*, k > 2 and(a, ¢) = 1, thenc,(a) = 0.

We have shown,, (a) = ¢,(a)cy(a) if (¢,¢') = 1. Recall that the Eulep-function, ¢(q), is the
number of numbers less thgrwhich are relatively prime tg and is a multiplicative function (se€?8
for more details). We now have

Lemma 2.6.8.C,(a) is multiplicative ing.

Proof. Assume(q, ¢') = 1. We have

Corla) = Caq' (@) Cq (—20)

= Cyla)Cy(a). (2.74)

We now provep, is multiplicative. We first prove a needed lemma.

Lemma 2.6.9.1f (¢1,¢2) = 1, Cy (a1q2) = Cyy (a1).

Proof. AsC,, (a1q2) = <2 (“1‘12;6(;115_2“”2),we see it suffices to showy, (a1q2) = ¢,, (a1) ande,, (—2a;q2) =

¢, (—2ay). As the proofs are similar, we only prove the first statement. From the definitiQ(f (2.63),
we have

q1
a1q
Cqr(a1g2) = Z 6(7’1£)

1‘1:1
(r1,91)=1

qQ
3]

= Z € (7”1612—)
q

1‘1:1
(r1,91)=1

- i e(rﬂ) = ¢, a), (2.75)

r=1 ql

(ryq1)=1

becauséq, ¢2) = 1 implies that as; goes through all residue classes that are relatively pringg, teo
too does = ri¢s. O
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Lemma 2.6.10.p, is multiplicative.
Proof. Recall

i C,(a)e (—g) . (2.76)

(a,q)=1

Assume(q;, ¢2) = 1. By Lemma 2.6.1 we can write the congruence classes relatively primes@s
ar1q2 + azqr, With 1 < a; < g1, 1 <ay < g and(ar,¢1) = (az,¢2) = 1. Then

q192 a
Paig2 = Z Cargs(a)e (__>

4192
(a,q9192)=1
q192 a
¥ ()
Z ql (a) 4192
(a, q1t12) 1
q1 q2 1o + a4
142 241
- Z Z Cth(aqu + GZQI)C% (GIQ2 + Cl2£]1)€ (_T> . (2.77)
a;=1 ag=1 142

(a1,91)=1 (agz,q92)=1

A straightforward calculation shows,, (a1g2 + a2q1) = Cy, (a1¢q2) andCy, (a1g2 + a2q1) = Cy,(a2qr),
which implies

a1q2 + aoqq
Pagz = Z Z Cq1 GIQZ qz(GQ%) (_—)

ag=1 ag—1 q192
(a1,q1)=1 (ag,q2)=1

- Cy (a1g2)e ( ) Cy(azqr)e ( )

; " 1 ; ” 72

L (a1,91)=1 i (ag,q2)=1
aq a9

- C a C a __Z

azl n(0) ( Ch) Zl (@) ( Q2>

1 2
| (a1,91)=1 | (a,q2)=1

= Pq " Pqzs (278)

where we used Lemma 2.6.9 to replacg(aiq2) with C,, (a1), and similarly forC,, (a2q1). Thus,p, is
multiplicative. ]

Exercise 2.6.11.PrOVECq1 (&1Q2 + CLQQ1> = qu ((Iﬂ]g) and qu (CL1QQ + &2(]1) = Cq2 (agql).
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We now determing,.

Lemma 2.6.12.1f £ > 2 andp is prime therp,: = 0.

Proof. This follows immediately fronC,.(a) = 0 (see Corollary 2.6.7 and the definition@f(a)).
Lemma 2.6.13.1f p > 2 is prime therp, =

Proof.

Pp

0
~G
= Z Cypla)e <—g>
(@t
_ o@)e(-20) [ a
Bl Z; ¢(p)? e( p)' (79)

Forp > 2, (a,p) = 1 implies(—2a,p) = 1 as well. By Lemma (2.6.6);,(a) = ¢,(—2a) = u(p). As

n(p)* = 1andg(p)

Pp

Lemma 2.6.14.p, = 1.
Proof.

where we have useg(1) = e™ andcy(—2) = e~ 2™,

= p — 1 we have

5 _1 ™ (2.80)
]
2 a
N
(a,2)=1
— Cy(1)e (—%)
_ e)al=2) _
a 0(2)?
_ 67”(;; T ‘ e_ﬂ-i — 17 (281)
]
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Exercise 2.6.15.Provec,(1) = e™ andcy(—2) = e ™.

2.6.2 Determination ofey and &
We use the results from §2.6.1 to stugly and&, which from (2.65) and (2.66) are

logB N

Sy = >, P S =) (2.82)
q=1 q=1

We show thats — &(V)| is small by first determinings (Theorem 2.6.18) and then estimating the
difference (Theorem 2.6.20).

Exercise 2.6.16.Let i, be any multiplicative sequence (with whatever growth conditions are necessary
to ensure the convergence of all sums below). Prove

>ohe = 1 (1 + thk> . (2.83)
q=1 p prime k=1
Determine what growth conditions ensure convergence.

Definition 2.6.17 (Twin Prime Constant).

1
T, =[] {1— (p—1)2} ~ 6601618158 (2.84)

p>2

is the twin prime constant. Using the Circle Method, Hardy and Littlewood were led to the conjecture that
the number of twin primes at masis given by

X X
WQ(ZE) = 2T2—2 + o0 (log2x) . (285)

The techniques of this chapter suffice to determine the contribution from the Major arcs to this problem
as well; however, again the needed bounds on the Minor arcs are unknown.

Theorem 2.6.18.6 has a product representation and satisfies

& = 2Th. (2.86)
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Proof. By exercise 2.6.16 we have

& = > .
s

k=1

- II t+n (2:87)

p prime

because,: = 0 for £ > 2 andp prime by Lemma 2.6.12. The product is easily shown to converge (see
exercise 2.6.19). By Lemmas 2.6.13 and 2.64k4s 1 andp, = —ﬁ for p > 2 prime. Therefore

6 = H(1+pp>

p

= (1+p)[JQ+0p)

p>2

= el o)

= . (2.88)
u

We need to estimate — & v|. As p, is multiplicative and zero iff = p* (k > 2), we need only look at
sums ofp,. Asp, = —ﬁ, it follows that the difference betweehandé& y tends to zero a8/ — oo.

Exercise 2.6.19.Show the product i{2.87)convergesHint: take the logarithm, and Taylor expand.

Theorem 2.6.20.For anye > 0 and B, N such thatog? N > 2,

1
|6 -6y < O (bg(l——%)BJV) : (2.89)
Proof.
S—6x = Y. po (2.90)
q=log® N
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By Lemma 2.6.12p,= = 0 for k > 2 andp prime. By Lemma 2.6.13, = —(; if p > 2is prime. By

: R -1)?
Lemma 2.6.10p, is multiplicative. Therefore for any > 0 g

1 1
Pl < — < (2.91)

og2 © g

if ¢ is not square-free this is immediate, and fasquare-free we noté(p) = p — 1 and¢(q) > ¢* .
Hence

o0

1 1
‘6 - GN‘ <K Z q2726 - O (]_Og(l_—ZE)B]V> . (292)

gq=logB N

O
Exercise 2.6.21.For ¢ square-free, prove that for ary> 0, ¢(q) > ¢'~*.
Combining the results above, we have finally determined the contribution from the Major arcs:

Theorem 2.6.22.LetD > 2B, C > 3D + 2B, ¢ > 0 andlog? N > 2. Then

N N N ) : (2.93)

N
Fy(x)e(—x)der = 6— 4+ O + +
/M N( ) ( ) 9 (log(l—Qe) BN logD72BN 10g073D72BN

wherea is twice the twin prime constafit,.

In the binary and ternary Goldbach problems, to s€€ dould be written as the sum of two or three
primes, we evaluated the Singular Seried/aisee &7?). Thus, even after taking limits, we still evaluated
the Singular Series at multiple points, as we were trying tovei@eh integers can be written as a sum
of two or three primes, and the answer told us how many ways this was possible. Here, we really hav
&(1); knowing how large this is tells us information about what percent of primes are Germain primes
(see 82.7). As things stand, it does not make sense to evaluate this Singular Series at additional poin
However, if we were interested in a more general problem, suphﬂgé are both primep odd, this would
lead top; — 2p, = b. We would replace(—z) in (2.6) with e(—bx). Working in such generality would
lead to a Singular Series depending ionMore generally, we could consider prime pairs of the form
D, %“’ If we takea = ¢ andb = 2ck, we have the special case of prime pairs, and the Singular Series
will depend on the factorization Qft (see [HL3, HL4]).

Exercise 2.6.23 Redo the calculations of this chapter for one of the problems described above orin §2.1.
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2.7 Number of Germain Primes and Weighted Sums

We now remove thig p; weights in our counting function. By Theorem 2.6.22, we know the contribution
from the Major arcs. If we assume the minor arcs contrib@fé) then we would have
N

1
3 logp-log” -~ = S5 +0o(N) = TN +o(N). (2.94)

pP<N
p,g; prime

We can pass from this weighted sum to a count of the number of Germain prime(%géi@) with
p < N. Again we follow [Na], Chapteg; for more on weighted sums, se@3 Define

7T(;(N) = Z 1

p<N

p,L; prime
p—1
G(N) = : . .
(N) > logplog— (2.95)
p<N
p,pgl prime
Theorem 2.7.1.
G(N) G(N) ( loglogN)
_— < N) < OlN——7—). 2.96
o N — mo(N) < o® N log N (2.96)

Proof. In (2.95),logplog’%1 < log® N. ThusG(N) < log® N - ng(N), proving the first inequality in
(2.96).

The other inequality is more involved, and illustrates a common technique in analytic number theory.
As there clearly are less Germain primes than primes, fovany)

1-5 1-5 N N
N~ = 1 < n(N7° = ) 2.97
ma(N'7°) 2, 1= N = N € i (2.97)
p<N1=
p,% prime
We now obtain a good upper bound fag(N). If p > N'=9, then
p—1 1
1 = 1 1 1——
og 5 ogp+ og( 2p)
1
> (1—5)logN+O(—)
p
= (1-40)logN+0 (N1—5> . (2.98)
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In the arguments below, the error from (2.98) is negligible and is smaller than the other errors we en
counter. We therefore suppress this error for convenience. Thus, up to lower order terms,

p—1

G(N) > > logp-log

pZNl—LS
p,prl prime

= (1-0)log’N > 1

p>N1-8

p,p—gl prime

= (1—-6)%log’ N (r(N) — 7TG(Nl_é))

v

1-46
(1—6)%log® N - g(N) + O <(1 —6)?log® N - ggN) : (2.99)

Therefore

log® N - 1(N)

IN

N176
—_— _2 . 2 .
(1-=96)"7°-G(N)+0 <log N logN)

0 < log?N-7a(N)—=G(N) < [(1=6)2=1]G(N)+O (logN-N').

(2.100)
If 0 <é < 3,then(l—6)"? — 1 < 4. We thus have
9 log N
0 <log”N-7mg(N)—G(N) < N|[6+0 N3 : (2.101)
Choose) = ”j’fg# Then we get
log log N
< log? N - — < = :
0 < log®?N-me(N)—G(N) < O (N e N ) (2.102)
which completes the proof. O]

Combining our results of this section, we have proved

Theorem 2.7.2. Assuming there is no contribution to the main term from the Minor arcs, up to lower

order terms we have
>N

log? N’
whereT; is the twin prime constant (see definition 2.6.17).

mg(N) = (2.103)
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Remark 2.7.3 (Important). It is a common technique in analytic number theory to choose an auxiliary
parameter such as. Note how crucial it was in the proof far to depend (albeit very weakly) oN.
Whenever one makes such approximations, it is good to get a feel for how much information is lost in th

estimation. For = —Ql‘ffgj’ﬁN we have
N
N0 = N . N-2lesloaN/logN — . =2logloa NV logZ N (2.104)

- - - - . - - 6 - - - N
Hence there is little cost in ignoring the Germain primes less tNan’. Our final answer is of SizE oy
AsN!'0 = log#N and there areD <logL3N) primes less thaw!' ¢, there are at most) (log%N) Germain
primes at mostV' 9.

Exercise 2.7.4.Let A(n) be the von Magnoldt function (se€3. Prove

S AMm) = > logp+ O(at logx). (2.105)

n<x p<lz

As}_ . is of sizer, there is negligible loss in ignoring prime powers.

2.8 EXxercises

The following problems are known questions (either on the Circle Method, or needed results to prove
some of these claims).

Exercise 2.8.1.Proveve > 0, ¢ < ¢(q) < q.

Exercise 2.8.2.Let .

Cq(N) _ Z 627riNa/q'

a=1
(a,q)=1

Provec, (V) is multiplicative. Further, show

p—1 Iifp|N
cq(N) = | :
-1 otherwise.

Exercise 2.8.3.Proven(q)c,(N)/é(q)? is multiplicative.
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Exercise 2.8.4.Using the above exercises and the methods of this chapter, calculate the contribution from
the Major arcs to writing any integeN as the sum of three primes. Deduce for writing numbers as the
sum of three primes that

o(v) = 3o @)

= T ) (- )

pIN

Note&s;(N) = 0 if N is even; thus the Circle Method “knows” that Goldbach is hard. We &&lV) the
Singular Series

Exercise 2.8.5.Let&; () be the first) terms ofss(N). Bounds;(N) — &3 (V). Show forN odd
there exist constants, ¢, such that) < ¢; < &3(N) < ¢ < 0.

Exercise 2.8.6.Assume every large integer is the sum of three primes. Prove every large even integer is
the sum of two primes. Conversely, show if every large even integer is the sum of two primes, every larg
integer is the sum of three primes.

Exercise 2.8.7 (Non-Trivial). Calculate the Singular Series, (V) and &, o(N) for the Goldbach prob-
lem (even numbers as the sum of two primes), @nd. (N) and &y s o(N) for Waring’s problem
(writing numbers as the sum sperfectk-powers).Warning: &»(N) — &, o(/N) cannot be shown to be
small for all even/ in the Goldbach problembDo &, (/N) and&,(N) vanish forN odd?

2.9 Research Projects

One can use the Circle Method to predict the number of primes (or prime tuples) with given properties
and then investigate these claims numerically; see, for example, [Law2, Sch, Weir] (for additional Circle
Method investigations, see [Ci]). After counting the number of such primes (or prime tuples), the next
natural question is to investigate the spacings between adjacent elements (see Thapter

Research Project 2.9.1For many questions in number theory, the Cramér model (88e@8d Exercise

2.1.2) leads to good heuristics and predictions; recently, however, [MS] have shown that this model is
inconsistent with certain simple numerical investigations of primes, and in fact the Random Matrix Theory
model of the zeros of the Riemann Zeta function and the Circle Method give a prediction which agree:
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beautifully with experiments. There are many additional interesting sequences of primes to investigate an
see which model is correct. Candidates include primes in arithmetic progression, twin primes, generalize«
twin primes (fix an integer k, look for primes such that p and p+2k are prime), prime tuples (fix intggers
throughk, such thap, p + 2k4, . .., p + 2k, are all prime), Germain primes, and so on. A natural project

is to investigate the statistics from [MS] for these other sequences of primes, using the Circle Method ani
the Cramér model to predict two answers, and then see which agrees with nuPA&123REF to papers

from Brent

Research Project 2.9.21n many successful applications of the Circle Method, good bounds are proved
for the generating function on the Minor arcs. From these bounds it is then shown that the Minor arcs’
contribution is significantly smaller than that from the Major arcs. Howeveprtivethat the Major arcs

are the main term does not require one to obtain good cancellation at every point in the Minor arcs; all
that is required is that thentegralis small.

For problems such as Goldbach’s conjecture or Germain primes, the needed estimates on the Mina
arcs are conjectured to hold; by counting the number of solutions, we see that the integral over the Minot
arcs is small (at least up to abou?). A good investigation is to numerically calculate the generating
function at various points on the Minor arcs for several of these problems, and see how often large value
are obtained. See [Law2] arREF TO CJM. Warning: calculations of this nature are very difficult. The
Major arcs are defined as intervals of si%@}gvD—N about rationals with denominators at masg” N. For
example, ifD = 10 thanlog” N > N until N is about3.4 x 10'®, and there will not be any Minor arcs!

For N ~ 10'%, there are too many primes to compute the generating function in a reasonable amount of
time. Without resorting to supercomputers, one must assume that we ma/saka! for such numerical
investigations.
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