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Chapter 1

From Nuclear Physics toL-Functions

In attempting to describe the energy levels of heavy nuclei (JWigl, Wig3, Po, BFFMPW]), researchers
were confronted with daunting calculations for a many bodied system with extremely complicated in-
teraction forces. Unable to explicitly calculate the energy levels, physicists developed Random Matrix
Theory to predict general properties of the system.

In this chapter we give a brief introduction to classical Random Matrix Theory, Random Graphs, and
L-Functions. The goal is to show how diverse systems exhibit similar universal behaviors, and introduct
the techniques used in the proofs. In some sense, this is a continuation of the Poissonian behavior i
vestigations of Chapte??. The survey below is meant to only show the broad brush strokes of this rich
landscape — detailed proofs will follow in later chapters. We assume familiarity with the basic concepts of
probability theory (Chapte??) and linear algebra (a quick review of the needed background is provided
in Appendix??).

While we assume the reader has some familiarity with the basic concepts in physics for the historica
introduction in 81.1, no knowledge of physics is required for the detailed expositions. For those intereste
in learning more (as well as a review of recent developments), we conclude this chapter with a brie
summary of the literature.

1.1 Historical Introduction

A central question in mathematical physics is the following: given some system with obseriakles
ty < t3 < ..., describe how the are spaced. For example, we could taketthte be the energy levels
of a heavy nuclei, or the prime numbers, or zerod.diinctions, or eigenvalues of real symmetric or
complex Hermitian matrices (or as in Chap®éithe fractional part§n*«a} arranged in increasing order).
If we completely understood the system, we would know exactly where all #ae; in practice we try
and go from knowledge of how thgare spaced to knowledge of the underlying system.



1.1.1 Nuclear Physics

In classical mechanics, it is possible to write down closed form solutions to the two body problem: given
two points with masses:; andms, and initial velocitiess; and, and located af; andr,, describe how

the system evolves in time, given that gravity is the only force in play. The three body problem, however,
defies closed form solutions (though there are known solutions for special arrangements of special masst
three bodies in general position is still open). See [Wh] for more details.

Imagine how much harder the problems are in understanding the behavior of heavy nuclei. Uraniumr
for instance, has ove00 protons and neutrons in its nucleus, each subject to and contributing to complex
forces. If the nucleus were completely understood, one would know the energy levels of the nucleus
Physicists were able to gain some insights into the nuclear structure by shooting high-energy neutror
into the nucleus, and analyzing the results; however, a complete understanding of the nucleus was, a
still is, lacking. Later, when we study zeros bffunctions from number theory, we will find analogues of
high-energy neutrons!

One powerful formulation of physics is through infinite dimensional linear algebra. The fundamental
equation for a system becomes

whereH is an operator whose entries depend on the physical system ang &ne the energy eigenfunc-
tions with eigenvalueg’,. Unfortunately for nuclear physic#/ is too complicated to write down and
solve; however, a powerful analogy with Statistical Mechanics leads to great insights.

1.1.2 Statistical Mechanics

For simplicity, considerV particles in a box, where the particles can only move left or right, and each
particle’s speed is.



If we want to calculate the pressure on the left wall, we need to know how many particles strike the
wall in an infinitesimal time. Thus we need to know how many particles are close to the left wall, and
moving towards it. Without going into all of the physics (see for example [Re]), we can get a rough idea of
what is happening. The complexity, the enormous number of configurations of positions of the molecules
actually helps us. For each configuration we can calculate the pressure due to that configuration. We th
averageover all configurations, and hope that a generic configuration is, in some sense, close to the syste
average.

Wigner’s great insight for nuclear physics was that similar tools could yield useful predictions for
heavy nuclei. He modelled the nuclear systems as follows: instead of the infinite dimensional operatc
H whose entries are given by the physical laws, he considered collectiovis<oN matrices where the
entries were independently chosen from some probability distribptidhe eigenvalues of these matrices
correspond to the energy levels of the physical system. Depending on physical symmetries, we consid
different collections of matrices (real symmetric, complex Hermitian). For any given finite matrix, we
can calculate statistics of the eigenvalues. We then averages over all such matrices, and look at the lim
asN — oo. The main result is that the behavior of the eigenvalues of an arbitrary matrix is often well
approximated by the behavior obtained by averaging over all matrices. This is reminiscent of the Centre
Limit Theorem (7). For example, if we average over all sequences of tossing a faiRéoitimes, we
obtain/V heads, andhostsequences df NV tosses will have approximately heads.

Exercise 1.1.1.Consider2 N identical, indistinguishable particles, which are in the left (right) half of the
box with probability%. What is the expected number of particles in each half? What is the probability that

one half has more tha®V 1 particles than the other half? A¥1 < N, most systems will have similar
behavior.

1.1.3 Random Matrix Ensembles

The first collection of matrices we study a¥ex N real symmetric matrices, with the entries independently
chosen from a fixed probability distributign Given such a matri¥,

a1; Q2 a3z -+ AN
Q12 Q22 Q23 -+ AaN

A = . . . . = A", (1.2)
aiy QN asy -+ anN

the probability density of observing is

ProfA)dA = [] play)da;. (1.3)

I<i<j<N



We may interpret this as giving the probability of observing a real symmetric matrix where the probability
of theijth entry Iylng in [Clz‘j7 Qi + daij] is p(aij)daij.

Example 1.1.2.For a2 x 2 real symmetric matrix we would have

A = ( a11 Q12 ) , PrOb(A) = p(an)p(a12)p(aQQ)dalldalgdagg. (14)

Q12  A22

A real symmetric matrix is determined by specifyiHéZng) entries: there aré/ entries on the main
diagonal, andV? — N off-diagonal entries (for these entries, only half are needed, as the other half
are determined by symmetry). We say such a matrix%%ﬂ degrees of freedom Because is a
probability density, it integrates to 1. Thus,

/ ProfA)dA = ] / h plag)da; = 1; (1.5)

1<i<j<N Y @5 =

this corresponds to the fact that we must choose some matrix.
For convergence reasons, we often assume that the momentreffinite. We mostly study(z)
satisfying

plz) = 0
/_ plr)de = 1
E[z*] = /00 p(x)de < oo. (1.6)

The last condition ensures that the probability distribution isn’t too spread out (i.e., there isn’t too much
probability near infinity). Many times we normalizeso that the mean (first moment) is 0 and the variance
(second moment if the mean is zero) is 1.

Exercise 1.1.3.For [, 2"p(z)dx to exist, we often requirg, |z|"p(z)dz < oo if this does not hold, the
value of the integral could depend on how we approach infinity. Find a probability fungtionand an
integerk such that

A 2A

lim *p(x)dr = 0 but lim 2*p(x)dr = oo. (1.7)
A—o00 _A A—o00 —_A

Exercise 1.1.4.Let p be a probability density such that all of its moments existp i an even (odd)
function, show all the odd (even) moments vanish.



Exercise 1.1.5.Letp be a continuous probability density & Show there exist constantsh such that

q(z) = a - p(ax + b) has mean 0 and variance 1. Thus, in some sense, the third and the fourth moment:
are the first “free” moments (as the above transformation is equivalent to translating and rescaling the
initial scale).

Exercise 1.1.6.It is not necessary to choose each entry from the same probability distribution. Let the
i7™ entry be chosen from a probability distributigry. What is the probability density of observingp
Show this also integrate tb

Definition 1.1.7 (Ensembles) A collection of matrices, along with a probability density describing how
likely it is to observe a given matrix, is called ansembleof matrices (or aandom matrix ensemble

Example 1.1.8.Consider the ensemble 0fx 2 real symmetric matrices! where for a matrixA =

Loifa? 42 +22<1
A) = {4 - 1.8
p(4) {0 otherwise. (1.8)

Note the entries are not independent.

In this introduction, we confine ourselves to real symmetric matrices, although many other ensemble
of matrices are important. Complex Hermitian matrices (the generalization of real symmetric matrices
also play a fundamental role in the theory. Both of these types of matrices have a very important propert
their eigenvalues are reathis is what allows us to ask questions such as how are the spacings betweer
eigenvalues distributed.

In constructing our real symmetric matrices, we have not said much about the probability getrsity
Chapter?? we show for that some physical problems, additional assumptions about the physical system
forcep to be a Gaussian. For many of the statistics we investigate, it is either known or conjectured tha
the answers should be independent of the specific choige lddwever, in this method of constructing
random matrix ensembles, there is often no unique choige ©hus, for this method, there is no unique
answer to what it means to chose a mastixandom

Remark 1.1.9 (Advanced).We would be remiss if we did not mention another notion of randomness,
which leads to a more natural method of choosing a matrix at randomlU/LL&t) be the space oV x N
unitary matrices, and consider its compact subgroups (for exampleNthe N orthogonal matrices).
There is a natural (canonical) measure, called tHaar measure attached to each of these compact
groups, and we can use this measure to choose mataicendom Further, the eigenvalues of unitary
matrices have modulus They can be written as’, with thed; real. We again obtain a sequence of
real numbers, and can again ask many questions about spacings and distributions. This is the notion ¢
random matrix ensemble which has proven the most useful for number theory.

Exercise 1.1.10.Prove the eigenvalues of real symmetric and complex Hermitian matrices are real.
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1.2 Eigenvalue Preliminaries

Our main tool to investigate the eigenvalues of matrices will be the Eigenvalue Trace Formula. Recall the
trace of a matrix is the sum of its diagonal entries:

TracdA) = a;; +--- +ann. (1.9)
For2 x 2 matrices we have
4= ( ZH 212 ) ., TracgA?) = ayiai1 + ai2a21 + a12a21 + a2a0. (1.10)
21 22

In general one has
Theorem 1.2.1.Let A be anN x N matrix. Then

N N
TraCdAk) = Z cee Z Q40 Aigiz = Ay 4y, Ay, Qg - (111)

i1=1 ir=1
For small values of, instead of using;, i», i3, ... we often use, 5, k, .. ..
Exercise 1.2.2.Show Theorem 1.2.1 is consistent Witk 0)

Exercise 1.2.3.Prove Theorem 1.2.1.

1.2.1 Normalizations

Before we can begin to study fine properties of the eigenvalues, we first need to figure out what is th
correct scale to use in our investigations. For example, the celebrated Prime Number Theorem (Theore
?7?) states thatr(z), the number of primes less thansatisfies

(x) = *_ 4 Lower Order Terms (1.12)
log =
Remark 1.2.4. If we don'’t specify exactly how much smaller the error terms are, we do not need the full
strength of the Prime Number Theorem — Chebyshev’s arguments (The@rame sufficient to get the
order of magnitude of the scale.

The average spacing between primes less ﬁhimaboutx/fm = log x, which tends to infinity as
x — oo. Asking for primes that differ by 2 is a very hard questionzas> oo, this becomes insignificant
on the “natural” scale. Instead, a more natural question is to inquire how often two primes are twice the
average spacing apart.

If we fix a probability densityp, how do we expect the sizes of the eigenvaligs!) to depend on
N as we varyA? A good estimate falls out immediately from the following formula; this formula will be
exploited numerous times in the arguments below, and is essential for all investigations in the subject:

8



Theorem 1.2.5 (Eigenvalue Trace Formula)For any non-negative integér, if A is an N x N matrix

with eigenvalues;(A), then
N

TracgA*) = ) " M(A). (1.13)

=1

The importance of this formula is that it relates #igenvaluesf a matrix (which is what wevantto
study) to theentriesof A (which is what wechooseat random).

Sketch of the proofThe casé: = 1 follows from looking at the characteristic polynomiait(A — A1) =
0. For higherk, note any matrixA can be conjugated to an upper triangular matiik: AN = T where
T is upper triangular. The eigenvalues.4fequal those of’ and are given by the diagonal entriesiaof
Further the eigenvalues of* equal those of ™*. If )\;(A) and \;(A¥) are the eigenvalues of and A*,
note\;(A¥) = \;(A)*. The claim now follows by applying thie = 1 result to the matrixA*:

N N
TracgA¥) = > A (A) = ) " M(A). (1.14)

]

We give a heuristic for the eigenvalues of QMrx N ensembles of matrices being roughly of size
Vv/N. Fix a matrixA whose entries;; are randomly and independently chosen from a fixed probability
distributionp with mean 0 and variance 1. By Theorem 1.2.1,

N N
TraCQA2> = Z Z QijQ5; = Z Z a?j' (115)
i=1 j=1 i=1 j=1

From our assumptions gn we expect eachfj to be of sizel. By the Central Limit Theorem (Theorem
??), we expect

N N
> > al ~ N1 (1.16)

i=1 j=1

with high probability, with an error of siz¢ N2 = N (eachaz?j is approximately of size 1, there aié
of them, so their sum should be approximately of Si#9. Thus

> N(A) ~ N (1.17)



which yields
N -Ave(\?(A)) ~ N? (1.18)

or

|Ave(\;(A4))| ~ VN. (1.19)

Thus itis natural to guess that the correct scale to study the eigenvalued’of Ahreal symmetric matrix
is cv/N, wherec is some constant independent/éf This yields normalized eigenvalugs(A) = f(f“);
choosinge = 2 leads to clean formulas. One could of course normalize the eigenvalugs\by with

f an undetermined function, and see which choiceg give good results; eventually one would find

F(N) =cVN.

Exercise 1.2.6.Prove all the claims used in the proof of the Eigenvalue Trace Formulal i real
symmetric, one can use the diagonalizabilitylof

Exercise 1.2.7.Consider realN x N matrices, with entries independently chosen from a probability
distribution with mean 0 and variance 1. How large do you expect the average eigenvalue to be?

1.2.2 Eigenvalue Distribution

We quickly review the theory of point masses and induced probability distributions ?5ean8 87).
Letd,, represent a a unit point mass:gt We define its action on functions by

= /OO f(x)d(x — zo)dr = f(xo). (1.20)

., Called theDirac delta functional atx, is similar to our approximations to the identity — there is finite
mass (its integral is 1), the density is O outsigeand infinite atry. As its argument is a function and not
a complex numben,, is afunctional and not a function. To eacH, we attach a probability measure
(theeigenvalue probability distribution):

N
pan(z)de = %Z ( \/_>) da. (1.21)

At each normalized eigenvalué— we have placed a mass of Welg]{?t there areN masses, thus we

have a probability distribution. If(z) is a probability distribution, the[f p(z)dz is the probability of

observing a value ifu, b]. For us,ff wan(z)dz is the percent of normalized elgenvalue$a|rb]. We can
calculate the moments @fy y(z).

Definition 1.2.8. LetE[z*] 4 denote theé™ moment ofi4 v (z). We often denote thily ,(A).

10



The following corollary of the Eigenvalue Trace formula is the starting point of many of our investi-
gations; we see in remark 1.3.12 why it is so useful.

Lemma 1.2.9. My, (A) = Tactah),

ok N3+

Proof.

Myi(A) = E[lz"], = k

—
S

pan(x)de
_ %i/ﬂkxk(s (x—;\L\/%)) dx

L N
NGy
Trace A¥)

]

Exercise 1.2.10.Let A be anN x N real symmetric matrix witha;;| < B. In terms ofB, N and %,
bound|Trace A*)| and My (A).

1.3 Semi-Circle Law

1.3.1 Statement

A natural question to ask concerning the eigenvalues of a matrixVisat percent of the normalized
eigenvalues lie in an intervak, b]? Let u4 n(x) be the eigenvalue probability distribution. For a given
A, the answer is

b
/ pan(z)de. (1.23)

How does the above behave as we vary We have the following startling result, which is almost
independent of the underlying probability dengitwe used to choose the entriesAf

Theorem 1.3.1 (Semi-Circle Law).Consider the ensemble df x N real symmetric matrices with
entries independently chosen from a fixed probability dengity with mean 0, variance 1, and finite
higher moments. A¥ — oo, for almost all4, 1.4, v(z) converges to the semi-circle denstty/'1 — z2.

11



Thus, the percent of normalized eigenvaluesioh [a, b] C [—1, 1], for a typicalA asN — oo, is

b
2
/ —V1 — 22%dx. (1.24)
0w T

Later we discuss what happens if the higher moments are infinite.

1.3.2 Moment Problem

We briefly describe a needed result from Probability Theory: the solution to the Moment Problem. See
[Du], page 110 for details.

Let £ be a non-negative integer; below we always assuige= 1. We are interested in when the
my, determine a unique probability distributidh whosek" moment ism,. If the m,;, do not grow too
rapidly, there is at most one continuous probability density with these moments. A sufficient condition is
thaty "= m;jl/Zj = 0.

For us, the numbers:;, arise from averaging the momentgy ;(A) of the 4 n(x)s and taking the
limitas N — oo. Let

MN,k = /MN7k<A)PrOt(A)dA, myg = ]\;lm MN,k- (125)
A o0

For eachlV, the moments\/y ;. yield a probability distributionPy, andlimy_... My = my. If the
ms, grow sufficiently slowly, there is a unique continuous probability denBityith £ momentm,. It
is reasonable to posit that as for edacHimy_.. My = my, then “most”u4 y(z) converge (in some
sense) to the probability densify(x).

Remark 1.3.2 (Warning). For eachN, considerN numbers{a,, x }._, defined by, y = 1 if n is even
and—1if N is odd. ForN even, note the average of thgys is O, but eachu,, y| = 1; thus, no element

is close to the system average. Therefore, it is not always the case that a typical element is close to tt
system average. What is needed in this case is to consider the variance of the moments (see exerc
1.3.4).

Remark 1.3.3. While it is not true that every sequence of numbersthat grow sufficiently slowly
determines a continuous probability density (see exercise 1.3.7), as,oarise from limits of moments
of probability distributions, we do obtain a unique limiting probability density.

Exercise 1.3.4.Let {b, x}2, be a sequence with meariN) = L 3" b, v and variances?(N) =
LS oo — p(N)[P. Assume that ad — oo, u(N) — pando?(N) — 0. Prove for anye > 0 as
N — oo for a fixedV at moste percent ob,, y are not withine of . Thereforejf the mean of a sequence
convergegandwe have control over the variandbenwe have control over the limiting behavior ofost
elements.

12



In this text, we content ourselves with calculating the average momenslimy ... [, My i (A)dA.
In many cases we derive simple expressions for the probability deRsmjth momentsm,; however,
we do not discuss the probability arguments needed to show thét-as oo, a “typical” matrix A has
pan(z) close toP. The interested reader should see [CB, HM] for an application to moment arguments
in random matrix theory.

Some care is needed in formulating what it means for two probability distributions to be close. For
us, ua,n () is the sum ofV Dirac delta functionals of masS. |P(z) — pa ()] is large for individual
x. For example, ifP(x) is the semi-circle distribution, the’(z) — pu4 n ()| will be of size 1 for almost
all z € [—1, 1]. We need to refine what it means for two probability distributions to be close.

One natural measure is the Kolmogoroff-Smirnov discrepancy. For a probability distribitipnits
Cumulative Distribution Function C(x) is defined to be the probability ¢f oo, z|:

Cr(x) = /_x f(z)dz. (1.26)

If our distribution is continuous, note this is the same as the probability-&f, z); however, for distri-
butions arising from Dirac delta functionals like qug x(z), there will be finite, non-zero jumps in the
cumulative distribution function at the normalized eigenvalues. For example.fofz) we have

C,UA,N (z) = % Z L, (1.27)

Ai(A)
2N <z

which jumps by at Ieast}v at each normalized eigenvalue. For two probability distributignand

g, we define theKolmogoroff-Smirnov discrepency of f and g to besup, |f(z) — g(x)|. Note as

N — oo, each normalized eigenvalue contributes a smaller percentage of the total probability. Using the
Kolmogoroff-Smirnov discrepancy for when two probability distributions are close, one can show that as
N — 00,"most” 114 v(x) are close taP.

Remark 1.3.5. It is not true that all matricesA yield 4 () that are close taP; for example, consider
multiples of the identity matrix. All the normalized eigenvalues are the same, and these real symmetri
matrices will clearly not have: 4 v (z) close toP(z). Of course, asV — oo, the probability ofA being

close to a multiple of the identity matrix is zero.

Exercise 1.3.6.Fix a probability distributionp, and considerV x N real symmetric matrices with entries
independently chosen fropn What is the probability that a matrix in this ensemble has all entries within
e of a multiple of theV x N identity matrix? What happens & — oo for fixede? How does the answer
depend onp?

Exercise 1.3.7.Letm;, be thek™ moment of a probability densit§. Showmymy —m? > 0. Note this
can be interpreted a$ o | > 0. Thus, ifmamy — m? < 0, them,, cannot be the moments of a

m2

probability distribution. Find a similar relation involvingay, mq, mo, ms andmy.

13



Exercise 1.3.8.If p(z) = 0 for || > R, show thei™ moment satisfies;, < R*. Hencelim;_.. my,” <

oo. Therefore, if a probability distribution haSm;_. méj/?j = oo, then for anyR there is a positive
probability of observindz| > R. Alternatively, we say sughhas unbounded support. Not surprisingly,
the Gaussian moments (see exercise 1.3.9) grow sufficiently rapidly so that the Gaussian has unbound

support.

Exercise 1.3.9 (Moments of the Gaussian)Calculate the moments of the Gaussigm) = \/%76_932/2.
Prove the odd moments vanish and the even momentsare- (2k — 1)!!, wheren!! = n(n — 2)(n —
4)---. This is also the number of ways to magghobjects in pairs. Show the moments grow sufficiently

slowly to determine a unique continuous probability density.

1.3.3 Idea of the Proof

We give a glimpse of the proof of the Semi-Circle Law below; a more detailed sketch will be provided in
Chapter 2. We use Moment Method from 81.3.2.

For eachua y(r), we calculate itsi™-moment, My ;. (A) = E[z*]4. Let My, be the average of
My 1 (A) over all A. We must show a8/ — oo, My, converges to thé™ moment of the semi-circle.
We content ourselves with just the second moment below, and save the rest for §2.1. By Lemma 1.2.9,

MN,2 = /MNJC(A)PI’OI:(A)dA
A
— 1 2
= W/ATrace(A JProh(A)dA, (1.28)

We use Theorem 1.2.1 to expand the T(a%e and find

N N
1

Myy = 5o / > ) al Prob(A)dA. (1.29)

A=1 j=1

We now expand Prabt)dA by (1.3):
1 ) 0o N N
Myo = 22 \2 / T Z Z a?j -plan)day - - - plany)dann
a11=—00 ANN=—00 ;1 j=1
1 N N ) )

> /au:oo . /aNM @l plan)dan -+ plaxx)daxy:  (1.30)

i=1 j=1

14



we may interchange the summations and the integrations as there are finitely many sums. For each of t
N? pairs(i, j), we have terms like

/ agp(a;)dai; - H / plar)da. (1.31)

i =700 (k1) (i) ¥ GhI=—00
k<l

The above equals. The first factor is 1 because it is the variance.gf which was assumed to be 1.
The second factor is a product of integrals where each integral is 1 (bege@useprobability density).
As there areV? summands in (1.30), we findl/y> = ; (solimy_., My» = 1), which is the second
moment of the semi-circle.

Exercise 1.3.10.Show the second moment of the semi-circl? is
Exercise 1.3.11.Calculate the third and fourth moments, and compare them to those of the semi-circle.

Remark 1.3.12 (Important). Two features of the above proof are worth highlighting, as they appear

again and again below. First, note that we want to answer a question aboeigbevaluesf A; however,

our notion of randomness gives us information onehgriesof A. The key to converting information on

the entries to knowledge about the eigenvalues is having some type of Trace Formula, like Theorem 1.2.
The second point is the Trace Formula would be useless, merely converting us from one hard probler

to another, if we did not have a good Averaging Formula, some way to average over all rahdorthis

problem, the averaging is easy because of how we defined randomness.

Remark 1.3.13. While the higher moments pfare not needed for calculating/y, = E[z?%], their
finiteness comes into play when we study higher moments.

1.3.4 Examples of the Semi-Circle Law

First we look at the density of eigenvalues wheis the standard Gaussiap(z) = \/LTW e/2. We

calculate the density of eigenvalues for 500 x 400 such matrices, and note a great agreement with the
semi-circle.
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Distribution of eigenvalues—-Gaussian, N=400, 500 matrices
0.025 T T T

0.015

0.005-

-15 -1 -05 0 05 1 15

What about a density where the higher moments are infinite? Consider the Cauchy distribution,
1
= 1.32

Now we see the following behavior:

2500

The eigenvalue:
distribution are

s of the Cauchy
NOT semicirul lar.

2000 -

1500

1000

500~

0
-300 -200 -100 0 100 200 300

Note: the eigenvalues are now unbounded; for graphing purposes, we have put all eigenvalues grea
than 300 in the last bin, and less than -300 in the first bin.

Exercise 1.3.14.Prove the Cauchy distribution is a probability distribution by showing it integrates to
1. While the distribution is symmetric, one cannot say the mean is 0, as the infegtalz)dz = oc.
Regardless, show the second moment is infinite.

1.3.5 Summary

Note the universal behavior: though the proof is not given here, the Semi-Circle Law holds for all mean
zero, finite moment distributions. The independence of the behavior on the exact nature of the underlyin
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probability densityp is a common feature of Random Matrix Theory statements, as is the fact that as
N — oo mostA yield p4 v(z) that are close (in the sense of the Kolmogoroff-Smirnov discrepancy)
to P (where P is determined by the limit of the average of the momeits .(A)). For more on the
Semi-Circle Law, see [Bai, BK].

1.4 Adjacent Neighbor Spacings

1.4.1 GOE Distribution

The Semi-Circle Law (when the conditions are met) tells us about the density of eigenvalues. We now as
a more refined question:

Question 1.4.1.How are the spacings between adjacent eigenvalues distributed?

For example, let us write the eigenvalues4in increasing order; ad is real symmetric, the eigen-
values will be real:
M(A) < Xo(A) < - < Aw(A). (1.33)

The spacings between adjacent eigenvalues ar&’'thel numbers
Ao(A) = A (A), A3(A) — X2(A), ..., An(A) — Av_1(A). (1.34)

As before (see Chapté?), it is more natural to study the spacings between adjacent normalized eigen-
values; thus, we have
A2 (4)  M(4) AN(A)  Av-i(A)
2N 2N 7 2/N 2N

Similar to the probability distributiom s v (z), we can form another probability distribution v (s) to
measure spacings between adjacent normalized eigenvalues.

(1.35)

Definition 1.4.2.

N
van(s)ds = ﬁ ;(5 (s - /\i(A);/%_l(A)) ds. (1.36)

Based on experimental evidence and some heuristical arguments, it was conjecturedvthatas
the limiting behavior ofv4 x(s) is independent of the probability densjtyused in randomly choosing
the NV x N matricesA.

Conjecture 1.4.3 (GOE Conjecture:). ASN — oo, v4 n(s) approaches a universal distribution that is
independent op.
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Remark 1.4.4. GOE stands for Gaussian Orthogonal Ensemble; the conjecture is knpugy(lhasically)
a Gaussian. We explain the nomenclature in Chapter

Remark 1.4.5. The universal distribution i§4E ey whereW (t) is (up to constants) the Fredholm deter-
(

a2
minant of the operatof — [*, K « f, with kernelK = L (S“;E;") v Si“g;")). This distribution is well

2

approximated by (s) = Tsexp (—%)

Exercise 1.4.6.Provepy (s) = §sexp (—%) is a probability distribution with mean 1.

We study the case a¥ = 2 andp Gaussian in detail in Chapt@r.

Exercise 1.4.7 (Wigner’'s surmise)In 1957 Wigner conjectured that & — oo the spacing between
adjacent normalized eigenvalues is given by

T s>

pw(s) = 55 exp (_T> ) (1.37)

He was led to this formula from the following assumptions:

e Given an eigenvalue at, the probability that another one liesunits to its right is proportional to
S.

e Given an eigenvalue atand [y, I, I5, ... any disjoint intervals to the right af, then the events of
observing an eigenvalue iy are independent for all.

e The mean spacing between consecutive eigenvalues is

Show these assumptions imily37) Hint: Fix s and a large integem and let]; = [%s, %s] for

1 < 5 < m. The first assumption gives an extremely simple (approximate) formula for the probability of
observing an eigenvalue if) (in terms of an unknown proportionality constaft Now the probability of

a gap of size about is equal to the probability thai;, .. ., 7,,_; contain no eigenvalues bu, contains

an eigenvalue. Letv — oo to find a formula for the eigenvalue spacing in termsi@nd use the unit
mean spacing condition to determine the value.of

1.4.2 Numerical Evidence

We provide some numerical support for the GOE Conjecture. In all the experiments below, we consider
large number ofV x N matrices, where for each matrix we look at a small (small relativ& xmumber
of eigenvalues in théulk of the eigenvalue spectrum(eigenvalues ned), not near theedge(for the
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semi-circle, eigenvalues neafl). We do not look at all the eigenvalues, as the average spacing changes
over such a large range, nor do we consider the interesting case of the largest (smallest) eigenvalue
We study a region where the average spacing is approximately constant, and as we are in the middle
the eigenvalue spectrum, there are no edge effects. These edge effects lead to fascinating questions |
random graphs, the distribution of eigenvalues near the edge is related to constructing good networks
rapidly transmit information; see for example [DSV, Sar]).
First, we consider 500800 x 300 matrices, with entries independently chosen from the uniform

distribution on[—1, 1].

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20

Notice that even withV as low as 300, we are seeing a good fit between conjecture and experiment.
What if we takep to be the Cauchy Distribution? In this case, the second momenisoinfinite,
and the alluded to argument for semi-circle behavior is not applicable. Simulations showed the density ¢
eigenvalues did not follow the Semi-Circle Law, which doesn’t contradict theory as the conditions of the
proof were not met. What about the spacings between adjacent normalized eigenvalues of real symmet
matrices, with the entries drawn from the Cauchy distribution?
We study 500000 x 100 and then 500800 x 300 Cauchy matrices. We note good agreement with
the conjecture (and as increases, the fit improves).
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12000

T T T T y T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 100x100 Cauchy matrices, normalized in batches
of 20.

x10*

T T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20.

We give one last example. Instead of using continuous probability distribution, we investigate a dis-
crete case. Consider the Poisson Distribution:

)\n
= e .

nl

p(n) (1.38)

We investigate 500800 x 300 such matrices, first withh = 5, and then withA = 20, noting again
excellent agreement with the GOE Conjecture.
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x10"

T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Poisson matrices with lambda=5
normalized in batches of 20.

The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 sign matrices, normalized in batches
of 20

1.5 Thin Sub-families

Before moving on to connections with number theory, we mention some very important subsets of rea
symmetric matrices. The subsets will be large enough so that there are averaging formulas at our dispos
but thin enough so that sometimes we see new behavior.

As motivation, consider as our initial set all even integers. Netr) denote the number of even
integers at most. We seeN,(x) ~ ¢, and the spacing between adjacent integets iff we look at
normalizedeven integers, we would haye= % and now the spacing between adjacent normalized even
integersis 1.

Now consider the subset of even squaresN#f(z) is the number of even squares at mosthen
No(z) ~ \/75 For even squares of sizesayr = (2m)?, the next even square is@m-+2)? = r+8m+4.

Note the spacing between adjacent even squares is &hbowit 4./ for m large.
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Exercise 1.5.1.By appropriately normalizing the even squares, show we obtain a new sequence with a
similar distribution of spacings between adjacent elements as in the case of normalized even integer
Explicitly, look at/N consecutive even squares, each square ofisingth N < .

Remark 1.5.2. A far more interesting example concerns prime numbers. For the first set, consider all
prime numbers. For the subset, fix an integeand consider all prime numbegssuch thatp + 2m is

also prime; ifm = 1, we sayp and p + 2 are a twin prime pair. It is unknown if there are infinitely
many elements in the second set for anythough there are conjectural formulas (using the techniques
of Chapter [?]). It is fascinating to compare these two sets; for example, what is the spacing distribution
between adjacent (normalized) primes look like, and is that the same for normalized twin prime pairs”~
See Research Projee®.

1.5.1 Random Graphs: Theory

A graph G is a collection of points (theertices V') and lines connecting pairs of points (tedgesF).
While it is possible to have an edge from a vertex to itself (callegl&loop), we study the subset of
graphs where this does not occur. We will allow multiple edges to connect the same two vertices (if there
are no multiple edges, the graphsisple). Thedegree of a vertexis the number of edges leaving (or
arriving at) that vertex. A graph i&regular if every vertex has exactly edges leaving (or arriving).

For example, consider the graph below:

1

The degrees of vertices are 2, 1, 4 and 3, and vertices 3 and 4 are connected with two edges.

To each graph withV vertices, we can associate &nx N real symmetric matrix, called thegjacency
matrix, as follows: First, label the vertices of the graph frarno N (see exercise 1.5.3). Le}; be the
number of edges from vertéxo vertex;. For the graph above, we have

0011
0010

A=17110 9 (1.39)
1020

For eachN, consider the space of altregular graphs. To each graphwe associate its adjacency
matrix A(G). We can build the eigenvalue probability distributions (see §1.2.2) as before. We can investi-
gate the density of the eigenvalues and spacings between adjacent eigenvalues. We are no longer choo:
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the matrix elements at random — once we have chosen a graph, the entries are determined. Thus, we h
a more combinatorial type of averaging to perform: we average over all graphs, not over matrix elements
One application of knowledge of eigenvalues of graphs is to network theory. For example, let the
vertices of a graph represent various computers. We can transmit information between any two vertice
that are connected by an edge. We desire a well-connected graph so that we can transmit informatic
rapidly through the system. One solution, of course, is to connect all the vertices and obtam{iiete
graph. In general, there is a cost for each edge; if there/areertices in a simple graph, there are
w possible edges; thus the complete graph quickly becomes very expensiveN \eatices,d-
regular graphs have on§{* edges; now the cost is linear in the number of vertices. The distribution
of eigenvalues (actually, the second largest eigenvalue) of such graphs provide information on how we
connected it is. For more information, as well as specific constructions of such well-connected graphs
see [DSV, Sar].

Exercise 1.5.3.For a graph with /N vertices, show there ar®! ways to label the vertices. Each labeling
gives rise to an adjacency matrix. While a graph could potentially hgVvdifferent adjacency matrices,
show all adjacency matrices have the same eigenvalues, and therefore the same eigenvalue probabil
distribution.

Remark 1.5.4. Fundamental quantities should not depend on presentation. Exercise 1.5.3 shows that the
eigenvalues of a graph do not depend on how we label the graph. This is similar to the eigenvalues of a
operator?T : C" — C™ do not depend on the basis used to repre§enDf course, the eigenvectonsll
depend on the basis.

Exercise 1.5.5.1f a graph hasN labelled vertices and? labelled edges, how many ways are there to
place theE edges so that each edge connects two distinct vertices? What if the edges are not labelled?

Exercise 1.5.6 (Bipartite graphs).A graph is bipartite if the vertice¥ can be split into two distinct
sets,A; and A,, such that no vertices in ad; are connected by an edge. We can construétragular
bipartite graph with# A, = # A, = N. Let A, be verticedl, ..., N and A; be verticesNV +1,...,2N.
Letoy, ..., 04 be permutations of1, ..., N}. For eacho; andi € {1,..., N}, connect vertex € A, to
vertexV + (i) € A,. Prove this graph is bipartite and-regular. If d = 3, what is the probability (as
N — oo) that two vertices have two or more edges connecting them? What is the probalikty4iP

Remark 1.5.7. Exercise 1.5.6 provides a method for sampling the space of bipastégular graphs, but
does this construction sample the space uniformly (i.e., is ekseggular bipartite graph equally likely to

be chosen by this method)? Further, is the behavior of eigenvaluggegllar bipartite graphs the same

as the behavior of eigenvaluesdfegular graphs? See [Bol], pages 50-57 for methods to sample spaces
of graphs uniformly.

23



1.5.2 Random Graphs: Results

The first result, due to McKay [McK], is that while the density of statesasthe semi-circle, there is a
universal density for eacth

Theorem 1.5.8 (McKay’s Law). Consider the ensemble of altregular graphs with/V vertices. As
N — oo, for almost all such graphé&/, 1ia.),n () converges to Kesten’s measure

fla) = {W Hd—1)—a2 || <2v/d—1 (1.40)

0 otherwise

Exercise 1.5.9.Show that asi — oo, by changing the scale af, Kesten’s measure converges to the
semi-circle distribution.

Below is a comparison of theory and experimentdcet 3 and6.

The idea of the proof is that locally, almost all of the graphs almost always look like trees, where
it is easy to calculate the eigenvalues. One then does a careful book-keeping. Thus, this sub-family |
thin enough so that a new, universal answer arises. Even though all of these adjacency matrices are re
symmetric, itis a very thin subset. Ith&causedt is such a thin subset that we are able to see new behavior.

Exercise 1.5.10Show a general real symmetric matrix %%\;Ll) independent entries, whiled&aregular
graph has% non-zero entries.
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What about spacings between normalized eigenvalues? Surprisingly, thedmesdppear to be the
same as that from all real symmetric matrices. See [JMRR].

3-Regular,2000 Vertices
Graph courtesy of [JMRR].

1.6 Number Theory

We assume the reader is familiar with the material and notation from CHzpt&or us, anl.-function
is given by aDirichlet series (which converges ifts is sufficiently large), has alBuler product, and the
coefficients have arithmetic meaning:

ns
n=1

L(s, f) = Z“”(f) = [[Z,0*. /)", Rs > s0. (1.41)

The Generalized Riemann Hypothesisasserts that all non-trivial zeros ha¥e = %; i.e., they are on
thecritical line Rs = % and can be written a§+ 1y, 7 € R.

The simplest example i§(s), wherea,, (¢) = 1 for all n; in Chapter?? we saw how information
about the distribution of zeros @f s) yielded insights into the behavior of primes. The next example we
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considered were Dirichldt-functions, thel-functions from Dirichlet charactergof some conductom.
Herea,(x) = x(n), and these functions were useful in studying primes in arithmetic progressions.

For a fixedm, there arep(m) Dirichlet L-functions. This provides our first example offamily
of L-functions. We will not rigorously define a family, but content ourselves with saying a family of
L-functions is a collection of “similar’Z-functions.

The following examples shall be considered families: (1) all Diricllefunctions with conductor
m; (2) all Dirichlet L-functions with conductom € [N, 2N]; (3) all Dirichlet L-functions arising from
quadratic characters with prime conductoe [N, 2N]. In each of the cases, eaéhfunction has the
same conductor, similar functional equations, and so on. It is not unreasonable to think they might shar
other properties.

Another example comes from elliptic curves. We commented?® tBat given a cubic equation
y* = 2+ Apx+ By, if a,(f) = p—N, (WhereN, is the number of solutions t¢ = 2°+ A z+B; mod p),
we can construct afi-function using thez,(f)s. We construct a family as follows. Let(T"), B(T')
be polynomials with integer coefficients ih. For eacht € Z, we get an elliptic curvey, (given by
y> = 23 + A(t)z + B(t)), and can construct ab-function L(s, E;). We can consider the family where
t € [N,2N].

Remark 1.6.1. Why are we considering “restricted” families: Dirichlet-functions with a fixed conduc-

tor m, or m € [N, 2N/, or elliptic curves witht € [V, 2N]? The reason is similar to our random matrix
ensembles: we do not consider infinite dimensional matrices: we 8tudyy matrices, and take the limit
as N — oo. Similarly in number theory, it is easier to study finite sets, and then investigate the limiting
behavior.

Assuming the zeros all lie on the lings = % similar to the case of real symmetric or complex
Hermitian matrices, we can study spacings between zeros. We now describe some results about t
distribution of zeros of_-functions. Two classical ensembles of random matrices play a central role: the
Gaussian Orthogonal Ensem©E (the Gaussian Unitary EnsemlIfi&JE), the space of real symmetric
(complex Hermitian) matrices where the entries are chosen independently from Gaussians; see Chap
?7?. It was observed that the spacings of energy levels of heavy nuclei were in excellent agreement wit
those of eigenvalues of real symmetric matrices; thus, the GOE became a common model for the ener
levels. In 81.6.1 we see there is excellent agreement between the spacings of normalized Zeros of
functions and those of eigenvalues of complex Hermitian matrices; this led to the belief that the GUE is ¢
good model for these zeros.

1.6.1 n-Level Correlations

In an amazing set of computations starting at th&th zero, Odlyzko [Od1, Od2] observed phenom-
enal agreement between the spacings between adjacent normalized zgrgsanid spacings between
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adjacent normalized eigenvalues of complex Hermitian matrices. Specifically, consider thé&/set uf
random Hermitian matrices with entries chosen from the Gaussian distribution (the GUE) -Asxo,

the limiting distribution of spacings between adjacent eigenvalues is indistinguishable from what Odlyzka
observed!

His work was inspired by Montgomery [Mon], who showed that for suitable test functions, the pair
correlation of the normalized zeros ¢fs) agree with that of normalized eigenvalues of complex Hermi-
tian matrices. Le{a;} be an increasing sequence of real numbBrs; R"~! a compact box. Define the
n-level correlation by

lim #{(aﬁ _Qj27"'?ajn—1 _&jn) € B?]’L S N?]z #]k}

lim. - (1.42)

For example, th&-level (or pair) correlation provides information on how often two normalized zeros
(not necessarily adjacent zeros) have a difference in a given interval. One can show that i dé\be
correlations could be computed, then we would know the spacings between adjacent zeros.

We can regard the bokR as a product of. — 1 characteristic functions of intervals. Let

1 ifzx € [CL,’, bl]
I, = ] 1.43
o:() {O otherwise. ( )

We can represent the conditiane B by Ip(x) = [[;_, Lo, (z;). Instead of using a boB and its
function I, it is more convenient to use an infinitely differentiable test function (see [RS] for details). In
addition to the pair correlation and the numerics on adjacent spacings, Hejhal [Hej] showed for suitable
test functions thé&-level (or triple) correlation for (s) agrees with that of complex Hermitian matrices,
and Rudnick-Sarnak [RS] proved (again for suitable test functions) thai-teeel correlations oainy
“nice” L-function agree with those of complex Hermitian matrices.

The above work leads to tHeUE conjecture: the spacing between zeros bifunctions is the same
as that between eigenvalues of complex Hermitian matrices. In other words, the GUE is a good model ¢
zeros ofL-functions.

Even if true, however, the above cannot be the complete story.

Exercise 1.6.2.Assume that the imaginary parts of the zerog @f) are unbounded. Show that if one
removes any finite set of zeros, tirevel correlations are unchanged. Thus, this statistic is insensitive to
finitely many zeros.

The above exercise shows that thdevel correlations are not sufficient to capture all of number
theory. For manyL-functions, there is reason to believe that there is different behavior near the central
points = % (the center of the critical strip) than higher up. For exampleBilneh and Swinnerton-Dyer
conjecture (see 87?) says that if£/(Q) (the group of rational solutions for an elliptic cur¥e see ?)
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has rank-, then there are zeros at the central point, and we might expect different behavior if there are
more zeros.

Katz and Sarnak [KS1, KS2] proved that thdevel correlations of complex Hermitian matrices are
also equal to the-level correlations of thelassical compact groupgunitary, symplectic and orthogonal
matrices with Haar measure). What this means isrtratydifferent ensembles of matrices have the same
n-level correlations — there is not one unique ensemble with these values. This led to a new statistic whic
is different for different ensembles, and allows us to “determine” which matrix ensemble the zeros follow.

Remark 1.6.3 (Advanced).Consider the classical compact groupS{N), USp(2N), SO, SO(even

and SO(odd) with their Haar measure. Fix a group, and choose a generic matrix element. Calculating
the n-level correlations of its eigenvalues, integrating over the group, and taking the limit as oo,

Katz and Sarnak prove the resulting answer is universal, independent of the particular group chosen. Ir
particular, we cannot use the-level correlations to distinguish GUE behaviar,(N), from the other
classical compact groups.

1.6.2 1-Level Density

In the n-level correlations, given ah-function we studied differences between zeros. It can be shown
that any “nice”L-function has infinitely many zeros on the litka = %; thus, if we want to study “high”
zeros (zeros very far above the central paiat %), eachL-function has enough zeros to average over.

The situation is completely different if we study “low” zeros, zeros near the central point. Now each
L-function only has a few zeros nearby, and there is nothing to average: wherever the zeros are, that
where they are! This led to the introduction of familiesefunctions. For example, consider Dirichlet
functions with characters of conductaer. There ares(m) suchL-functions. For eacli.-function we can
calculate properties of zeros near the central point, and then wavesageover the¢(m) L-functions,
taking the limit agn — oc.

Explicitly, let h(z) be a continuous function of rapid decay. Forlafunction L(s, f) with non-trivial

zeros% + w](cj) (assuming GRH,y}j) € R), consider

Ds(h) = Zh (cf’y}j)) : (1.44)

Herec, is theanalytic conductor; basically, it rescales the zeros near the central point. &sof rapid
decay, almost all of the contribution to (1.44) will come from zeros very close to the central point. We
then average over afl in a family 7. We call this statistic thé-level density.

Dr(h) = %pr(m. (1.45)
feF
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Katz and Sarnak conjecture that the distribution of zeros neareghtal point s = % in a family of
L-functions should agree (in the limit) with the distribution of eigenvalues near 1 of a classical compact
group (unitary, symplectic, orthogonaNVvhichgroup depends on underlying symmetries of the family;
the important point to note is that the GUE is not the entire story: other ensembles of matrices naturall
arise. These conjectures, for suitable test functions, have been verified for a variety of families: we sketc
the proof for DirichletL-functions in Chapte??.

Remark 1.6.4. Why does the central point = % correspond to the eigenvalue? As the classical
compact groups are subsets of the unitary matrices, their eigenvalues can be wfitténc (—, ].
Hered = 0 (corresponding to an eigenvalue bfis the center of the “critical line”. Note certain such
matrices have forced eigenvalueslaffor example, anyV x N orthogonal matrix withV odd); this is
expected to be similar tb-functions with forced zeros at the central point.

Exercise 1.6.5.U is a unitary matrix ifU*U = I, whereU* is the complex conjugate transposelaf
Prove the eigenvalues of unitary matrices can be written“agfor ¢; € R. Hint: let 7 be an eigenvector
of U and considefUv)*(U7).

Remark 1.6.6 (Advanced).In practice, one takes in (1.44)to be a Schwartz function whose Fourier
transform has finite support (se@3. Similar to then-level correlations, one can generalize the above
and studyn-level densities. The determination of which classical compact group can sometimes be cal:
culated by studying the monodromy groups of function field analogues.

We sketch an interpretation of the 1-level density. Again, the philosophy is that, to each farhily of
functionsF, there is an ensemble of random matriC&sF) (whereG(F) is one of the classical compact
groups), and to eacti(F) is attached a density functio (). Explicitly, consider the family of all
non-trivial Dirichlet L-functions with prime conductor:, denoted byF,,,. We study this family in detail
in Chapter??. Then for suitable test functioris we prove

lim Dg, (k) = lim L YN h(en?) — /_ h h(z) W (x)dz. (1.46)

m—o0 m—oo ‘f = -
X m ]

We see that summing a test function of rapid decay over the scaled zeros is equivalent to integrating th
test function against a family-dependent density function. We can see a similar phenomenon if we stud
sums of test functions at primes. For simplicity of presentation, we assume the Riemann Hypothesis t
obtain better error estimates, though it is not needed (see exercise 1.6.8).

Theorem 1.6.7.Let F', I’ be continuously differentiable function of rapid decay; it suffices to assume
J |F(z)|dz and [ |F'(x)|dx are finite. Then

log p log p /°° 1
F = F . 1.47
Z plog N <log N) 0 (z)de +O log N ( )

p
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Sketch of the proofBy the Riemann Hypothesis and partial summation (Thed?@ywe have

Z logp = x4+ O(x% log?(z)). (1.48)

p<z

See [Da2] for how this bound follows from RH. We apply the integral version of partial summation
(Theorem??) to

Z logp - (1.49)

p<zx

In the notation of Theorer@?, a,, = logp if p is prime and) otherwise, and.(z) = % We find

Z loi;p = O(1) — /J:(u + O(u% log? u));—zldu = logz + O(1). (1.50)

p<w

We again use the integral version of partial summation, but nod@gén F <1°gp> wherea,, = 1"% for

p prime andh(z) = F (ng > Letuy = 222, Then

gloipp(lﬁ)gg]@) _ —/Oo(logx+0( ))dciF(llsgg;>da:
B () o G () D)
— logN { +O<—|F’( )|>]du
— logN/ {F <‘F,( )’)]du—l—O(uologN max F())

N t€[0,u0]

_ logN/ w)du+ O (/OOO |F’(u)|du> +0 <u0 log N max F(t))

t€[0,uo)

= logN/ w)du + O(1), (1.51)

asuy = llg’g]f, and our assumption th&t’ is of rapid decay ensures that théintegral isO(1). Dividing

by log N yields the theorem. Using the Prime Number Theorem instead of RH yields the same result, bu
with a worse error term. ]

Exercise 1.6.8 Redo the above arguments using the bounds freghich eliminate the need to assume
the Riemann Hypothesis.
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The above shows that summing a nice test function at the primes is related to integrating that functiol
against a density; here the density is justThe 1-level density is a generalization of this to summing
weighted zeros of.-functions, and the density we integrate against depends on properties of the family
of L-functions. For more on distribution of points, S€¥’§

Exercise 1.6.9.How rapidly mustt’ decay ast — oo to justify the arguments above? Afhas compact
support (i.e., ifF'(x) is zero if|z| > R for someR), F' decays sufficiently rapidly, and this is often the
case of interest.

Exercise 1.6.10.Why is the natural scale for Theorem 1.60g N (i.e., why is it natural to evaluate the
test function at % and notp)?

Exercise 1.6.11Instead of studying all primes, fix andb with (b, m) = 1, and consider the set of primes

p = b mod m (suchp are calledprimes in an arithmetic progression see 2. Modify the statement and
proof of Theorem 1.6.7 to calculate the density for primes in arithmetic progression. If instead we considel
twin primes, and we assume the number of twin primes at meeatisfiesr, (z) = T oeZs T O(z2*°) for

some constants, what is the appropriate normalization and density? For the conjectured vallg, of

see definitior??.

1.7 Similarities between Random Matrix Theory andL-Functions

The following (conjectural) correspondence has led to many fruitful predictions: in some sense, the zero
of L-functions behave like the eigenvalues of matrices behave like the energy levels of heavy nuclei. Tt
study the energy levels of heavy nuclei, physicists bombard them with neutrons and study what happen
however, physical constraints prevent them from using neutrons of arbitrary energy. Similarly, we wan
to study zeros of_-functions. We “bombard” the zeros with a test function, but not an arbitrary one
(advanced:the technical condition is the support of the Fourier transform of the test function must be
small; the test function’s support corresponds to the neutron’s energy). To evaluate the sums of the te
function at the zeros, similar to physicists restricting the neutrons they can use, number theorists ca
evaluate the sums for only a small class of test functions.

Similar to our proofs of the Semi-Circle Law, we again have three key ingredients. The first is we
average over a collection of objects. Before it was the probability measures built from the normalizec
eigenvalues, now it is th®,(h) for eachL-function f in the family for a fixed test functioh. Second,
we need some type of Trace Formula. For matrices, we passed from sums over eigenvalues (which v
wanted to understand) to sums over the matrix elements (which we were given and could execute). F
number theory, using what is known as Explicit Formulas (s&8,8ve pass from sums over zeros in
(1.44) to sums over the coefficienig(f) in the L-functions. Finally, the Trace Formula is useless if
we do not have some type of Averaging Formula. For matrices, because of how we generated matrice
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at random, we were able to average over the matrix elements; for number theory, one needs powerf
theorem concerning averagesaf( /) as f ranges over a family. We have already seen a special case
where there is an averaging relation: the orthogonality relations for Dirichlet characters (see R&nma

1.8 Suggestions for Further Reading

In addition to the references in this and subsequent chapters, we provide a few starting points to the va
literature; the interested reader should consult the bibliographies of the references for additional reading
A terrific introduction to classical random matrix theory is [Meh2], whose exposition has motivated
our approach (and many others). See also the original papers of Wigner [Wig1, Wig2, Wig3, Wig4, Wig5]
and Dyson [Dy1, Dy2]. For a more modern treatment via Haar measurdB2REF FORRESTER,
[KS2].
In Chapter 2 we sketch a proof of the Semi-Circle Law. See [CB] for a rigorous treatment (including
convergence issues and weaker conditions on the distribpjti¢tor more information, we refer the reader
to [Bai, BK]. In Chapter?? we investigate the spacings of eigenvalueg gf2 matrices. For the spacings
of N x N matrices asV — oo, see [Gau, Meh1, Meh2]. In Chapte? we study thel-level density for
Dirichlet characters, and state that the answer agrees with the similar statistic for unitary matrices. This |
but one of many statistics where random matrices behave similarlyfasctions. We refer the reader to
[Con, CFKRS, Dia, FSV, ILS, KS1, KeSn, Trwi].
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Chapter 2

Random Matrix Theory: Eigenvalue Densities

In this chapter we study the eigenvalue densities for many collections of random matrices. We concentra
on the density of normalized eigenvalues, though we mention a few questions regarding the spacing
between normalized eigenvalues (which we investigate further in Ch2pter

2.1 Semi-Circle Law

Consider an ensemble of x N real symmetric matrices, where for simplicity we choose the entries
independently from some fixed probability distributipn One very important question we can ask is:
given an intervala, b}, how many eigenvalues do we expect to lie in this interval? We must be careful,
however, in phrasing such questions. We have seenin 81.2.1 that the average size of the eigenvalues grc
like v/N. Hence it is natural to look at the density of normalized eigenvalues.

For example, the Prime Number Theorem states that the number of primesis —=- (plus lower

order terms). Thus the average spacing between prinies: is - = log . Consi(lllogr:{:two intervals
[10%,10° + 1000] and[10%°°, 102 4- 1000]. The average spacing between primes in the first is abobit
the average spacing between primes in the second is about We expect to find abow7 primes in
the first interval, and abo@tin the second. In order to obtain a universal answer, we instead look at the
density of normalized primes.

The appropriate question to ask is not what is the density of eigenvalues (or primes) in an interva

[a, b], but rather in an intervgk - (Ave Spacing)b - (Ave Spacing)

Exercise 2.1.1.Asz — oo, how many numbers at mostare square-frees is square-freeif n?/m
impliesn = +1)? What is the average spacing between square-free numbers?
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2.1.1 Moments of the Semi-Circle Density
Consider

) (2.1)
0 otherwise.

Pla) = {%\/1—x2 if |z] <1

Exercise 2.1.2.Show thatP(z) is a probability density (show that it is non-negative and integrateg.to
Graph P(x).

We call P(z) the semi-circle density. We calculate the moments of the semi-circle. We prove for
k < 3, thek™ moment of the semi-circl€'(k) equals the expectdd” moment ofys v () asN — oo,
and sketch the proof for higher moments. We have

Ck) = /OO " P(z)dr = %/11 V1 — 22dg. (2.2)

[e.o]

We note that, by symmetry; (k) = 0 for k£ odd, andC(0) = 1 as P(x) is a probability density. For
k = 2m even, we change variables. Letting= sin 6,

C(2m) = z/2 sin®”(#) - cos?(0)d6. (2.3)
™ J)_x«
Usingsin?(#) = 1 — cos?(6) gives
2 g .9 2 % s 2m—+2
C(2m) = — sin“” 0df — — sin“"" 0d6. (2.4)
m™J)_= m™J)_=
The above integrals can be evaluated exactly. We constantly use
1 1
2 — —_ —_
cos“(¢) = 5 + 5 cos(2¢)
sin®(¢) = % - %COS(ng). (2.5)

Repeated applications of the above allow us to wiité™ (¢) as a linear combination df, cos(26),.. .,
cos(2mb). Let

n!l = n-(n—=2)---2 ffn!seven 26)
n-(n—2)---1 if nisodd
We find (either prove directly or by induction) that
2 (% o L (@m =)
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Exercise 2.1.3.Show the above gives

(2m — 1)!!

C(2m) = QW

(2.8)

CalculateC'(2) andC'(4).
To eachV x N real symmetric matrixd we associate a probability distributipn, v (z) (See §1.2.2).
We now sketch the proof that & — oo, most of theu x(x) are close taP(z), the semi-circle density.

2.1.2 Moment Preliminaries

Definition 2.1.4. My x(A) is thek™ moment of the probability measure attachegitoy (z):

1S /A (AN
My i(A) = k dr = — J—) : 2.9
vk (A) /37 pan(z)de N;(Q\/ﬁ (2.9)
As always, the starting point is Theorem 1.2.5, which say4;(A)* = Trace A*). By Lemma 1.2.9,
MN,k(A) = mTraCQAk). (210)

We show that a8V — oo, the expected value of the moments of thex (x) converge to the moments of
the semi-circle. This does not prove Wigner’s Semi-Circle Law; we need some results from Probability
Theory to complete the proof (see §1.3.2 for an explanation of the needed technical arguments, and [CI
for a rigorous derivation of the Semi-Circle Law).

See §1.3.3 for a review of notation. Léfy , = E[My x(A)] be the average over all (appropriately
weighted by the probability density) éff ,(A). Explicitly, the probability density of observing a matrix
A with entriesa;; is [],; ;< x P(ai;)da;;, and averaging over all matrices gives the expected value of
MN,k(A) is

My . _/ / Myi(A) ] plai)das;. (2.11)
a11=—00 ANN=—00 1<i,j<N

As (see Theorem 1.2.1)

TraCQAk) = Z iy in Qi g * Wy iy (212)
1<i1,..,ix <N
this and (2.10) yield
1

Myr = —— Y Elai i a0, (2.13)



where

o0 o0
E[aihbai%is T aimil] = / T / iy ,ia Qigiz * ** Qi iq H p(aij)daij‘ (214)
a

a11=700 NN=700 1<i,5<N

(2.14) can be rewritten in a useful manner. In the producta;, i, - - - a;, i,, groupa;; together that have
the same subscripts; as the matrices are symmetric= a;; and we consider the paifs, j) and(j, ¢)
equal. Say we can write

noeeealt (2.15)

Qi igQig iz " iy = Qgqqy Teye?

where all pairgz;,y,) are distinct (remember, we consider the pairsy) and (y, z) equal). We then
obtain

[ee] o0
L. S T — 71 co.oqle .. ..
]E[an,mamm asz = / / Qi A pye || p(aw>daw~
a a

=00 NN==00 1<ij<N

(2.16)

As all entries arendependentlylrawn from thesamedistribution, this integral greatly simplifies. Lgj
be thek™™ moment ofp:

P = /00 a*p(a)da. (2.17)
Then (2.16) becomes -
Lemma 2.1.5.Leta;, i, iy iy + + * iy iy = a3y, - @, , Where all pairs(z;, y;) are distinct. Then
]E[ail,izaiz,ig o 'az’k,h] = Pry " DPry- (2.18)
Note we could also write
Bl o iy iy -+ - Qigiy] = E[a;ﬁyl] " 'E[a’;iy@] = DPri " Dry- (2.19)

As we assumg has mearn), variancel and finite higher moments, if amy = 1 then the above product
vanishes. If each; = 2 the above product is.

Exercise 2.1.6.Prove Equations 2.12 and 2.13 and Lemma 2.1.5.

2.1.3 The First Few Moments

We use the expansions from §2.1.2 to calculate the first few moments. See §1.3 for a review of th
formulation of Wigner’s Semi-Circle Law. We must show thaiy_... My — C(k), whereC(k) is the
k" moment of the semi-circle distribution.
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Lemma 2.1.7. The expected value 0y (A) = 1, thuslimy_... My, = C(0).

Proof.

Myy = E[Myp(4)] = E[Tracdl)] = LEIN] = %]E[l] . (2.20)

Lemma 2.1.8. The expected value 8f v ;(A) = 0, thuslimy_,.. My1 = C(1).

Proof.
1
MNJ = K [MNJ(A)] = W]E [TraCQA)]
1 N
= 2N3/2E [Z_; Qi
1 N
= >R > Elai). (2.21)
=1
As eachy;; is drawn from a probability distribution with mean zero, eéth,;| = 0. ]

Lemma 2.1.9. The expected value 8y »(A) = 1, thuslimy_... My2 = C(2).
Proof. By Theorem 1.2.1

N N
Tl’aCE(AQ) = ZZawaﬂ (222)
i=1 j=1
As Ais symmetrica;; = a;;. Thus, the trace i3, >~ a7;. Now
1
Myy = E[Myo(4)] = WE [Tracg A%)]
1 N N
— 2
= e ZZ%]
i=1 j=1
1 N N
2
= i 2 D Elag) (2.23)
i=1 j=1
EachE|a;;] = 1 because we have assumeltas mean 0 and variance 1 (which implies the second moment
of pis 1). There aréV? pairs(i, j). Thus, we haver, - (N?- 1) = 1. O
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Lemma 2.1.10.limy ... My 3 = C(3) = 0.
Proof. By Theorem 1.2.1

N N N
TraCQAS) = ZZZaijajkaki. (224)
i=1 j=1 k=1
Therefore
1
Mys = E[Mys(A)] = 8N2-5E [Tracg A®)]
1 N N N
= SN25 Zaijajkaki]
i=1 j=1 k=1

1 N N N
RS e NI 7=

There are three cases. If the subscripjsandk are all distinct, thew;;, a;x, anday,; are three independent
variables (in other words, these are three distinct pairsh B&s mean zero, by Lemma 2.1.5

Elajjajkar] = Elai;] - Elaji] - Elag] = 0. (2.26)
If two of the subscripts are the same (3ay ;) and the third is distinct, by Lemma 2.1.5
Elajainar) = Elag]-Efaj] = 0-1 = 0 (2.27)

because has mean zero and variance 1. If all three subscripts are the same, we have
E[a}] (2.28)

This is the third moment gf. It is the same for all pairg;, i), equal top; by Lemma 2.1.5. This is where

we use the assumption that the higher moments arfe finite. There areV triples where; = j = k.
Thus,

1 p3
MN73 = E [MN73(A)] = W : Npg = W (2.29)
Letting N — oo, we see the expected value of the third moment is zero in the limit. [

Remark 2.1.11. Many of the above calculations are unnecessary. We are dividilj®y There are

N3 triples a;ja;zar;. If 4,7 and k are distinct, we showed by Lemma 2.1.5 the contribution is zero. If
the indices arenot distinct, there are at mosiN? such triples, and as all moments pfare finite, by
Lemma 2.1.5 each such triple contributes a bounded amount (independgint Ak we divide byv?2?,

the total contribution is at most some universal constant timseswhich tends to zero a& — oo. This
illustrates a general principle: often order of magnitude calculations are sufficient to show certain terms
do not contribute in the limit.
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2.1.4 The Higher Moments

Lemma 2.1.12.For odd k, the expected value af y ,(A) asN — oo is zero.

Exercise 2.1.13.Prove Lemma 2.1.1Hint: write the tuple asu;, i, @i, - - - @i, = aily, -+~ ayt,,. Ifany
pair (z,y) occurs only once, sholi|

agt,, - ayt,] = 0. Thus each; > 2, and}_,r; = k. Show there
are o(N”%) such tuples, implying these terms do not contribute.

Therefore, we are left with calculating the limit of the averages/af,(A) for k = 2m even.

Lemma 2.1.14.Notation as before, the only tuples which contributeNas— oo to the main term of the
average of\/y »,,(A) are those where eaah) = 2.

Exercise 2.1.15.Prove Lemma 2.1.14int: any tuple with an-; = 1 contributes 0. Show there are at
mosto(N'*™) tuples where all; > 2 and at least one; > 3.

We are reduced to calculating the contributions to the averadéof,,(A) from tuples with each
r; = 2. By Lemma 2.1.5, a tuple

=a®, ---a’ (2.30)

Qiyig ** * Qigyyiy T1Y1 TmYm

contributesl™ (because we have a productafsecond moments @f, and the second moment pfs 1).
The above arguments and (2.13) yield, up to lower order terms,

1 *
1<14,.cyiom <N
where Z* means we restrict to tupl€s;, . . ., i5,,,) such that the correspondings are all 2. The deter-
mination of the limits of the even moments is completed by showing
1 . (2m — )N
- 1 = C(2 =9 2.32
Nt D (2m) = 2o (2.32)

1<1;,..., iom <N

The solution of this counting problem involves the Catalan numper kLH(QIf).NEED A BLURB ON
CATALAN See [Leh] for detalls.

Exercise 2.1.16 Prove(2.32)
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2.2 Non-Semi-Circle Behavior

In our investigations of randomtregular graphs, we showed the density of normalized eigenvalues do not
converge to the semi-circle (Theorem 1.5.8). We give several more examples of ensembles of matrice
where the density of eigenvalues is provabbt given by the Semi-Circle Law. Théregular graphs are
combinatorial objects, and we are not constructing our matrices by choosing entries at random from
fixed probability distributiorp. Now we give several examples where we do choose the entries randomly,
but with additional structure (otherwise we would of course just have the ensemble of all real symmetric
matrices). A generic real symmetric matrix h]é‘é\;Ll) independent entries. We now consider subsets
with far fewer independent entries, often of siXe The hope is that these thin ensembles might exhibit
new, interesting behavior.

2.2.1 Band Matrices

Definition 2.2.1 (Band Matrix (of with r)). We say a real symmetric matrix is a band matrix (of width
r) if a;; = 0 whenevefi — j| > r.

A band matrix of width O is a diagonal matrix and of width 1 has non-zero entries only along the main
diagonal and the diagonals immediately above and below. In general the number of independent entri
is of size(2r + 1)N.

Exercise 2.2.2.Calculate exactly how many entries can be non-zero if the band width is

While band matrices are a subset of real symmetric matrices, they are a very thin subset fur
Do they obey the Semi-Circle Law? Is the spacing between adjacent eigenvalues the GOE?

If the band widthr = N — 1, then the matrix is “full”’; in other words, every entry can be non-zero,
and the density of normalized eigenvalues converges to the semi-circle. What about the opposite extrerr
whenr = 0? ConsiderV x N real symmetric band matrices of widiheach entry which can be non-zero
is chosen randomly and independently from some fixed probability distribptiéior - = 0, we do not
need to assume anything about the momenis of

Theorem 2.2.3.The normalized eigenvalue densityist the semi-circle; it is jusp.

Proof. There is no need to normalize the eigenvalues. As we have a diagonal matrix, the ametties
eigenvalues! Asking how many eigenvalues arfiin] is equivalent to calculating the probability that an

a;; € [a, b], which is given byf;p(:t)dac. O

Exercise 2.2.4Let A be anN x N band matrix of width 1 with real entries, but not necessarily symmetric.
Which entries can be non-zero iff A?
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2.2.2 Toeplitz Matrices

We consider another ensemble of random matrices with far fewer independent entries than the ensemt
of all real symmetric matrices.

Definition 2.2.5. A Toeplitz matrixA is of the form

bp by by b3
by by by by
A = b_g b_l b() bl . (233)
bos by by by

That is, A is constant along its diagonals. Naig = b;_;.

We consider real symmetric Toeplitz matrices whose entries are chosen according to some distributic
p with mean 0 and variance 1. Thts; = b;_;. Itis convenient to normalize the eigenvalues of these

) . 1 !
Toeplitz matrices by\/—ﬁ rather thanm. Thus

N

pan(z) = %25 (az — L\/%)) : (2.34)

Remark 2.2.6. As the main diagonal is constant, the effect of the main diagonal bgimgsimply to
shift all eigenvalues by,. For simplicity, we také, = 0. Note there areV — 1 independent entries,

bi,...,bn_1.
Exercise 2.2.7.1f B = A + ml, prove the eigenvalues &f are m plus the eigenvalues of.

The eigenvalue distribution is again not the semi-circle. As long has mean 0, variance 1, and
finite higher moments, the answer is universal. klimosta Gaussian. Its moments are bounded by the
moments of the Gaussian. Its fourth momerﬂgswhile the Gaussian’s is.

Exercise 2.2.8.ShowMy; = 0andMy . =1 — % Thus, asV — oo, the expected value of the first two
moments are 0 and 1, respectively. Recall the second moment of the semi-c}lircle is

Just becausBmy_.., My # i does not imply that the eigenvalue probability distribution does not
converge to a semi-circle; it only implies it does not converge tosthadardsemi-circle — we need to
examine the fourth moment. See exercise 1.1.5.

It turns out that it is not the semi-circle that this distribution is trying to approach, but rather the
Gaussian. The odd moments of the Gaussian vanish, and the even moméfisaye= (2m —1)!!. The
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limits of the average of the moments want to®@&m); however, to calculate these moments involves
solving a system of Diophantine equations (see Ch&®erObstructions to these equations arise (due to
the fact that the indices must befi, . . ., N'}), and this prevents the limits from equalling the Gaussian’s
moments.

The fourth moment calculation highlights the Diophantine obstructions, which bound the moments
away from the Gaussian. As; = b;_; = b,_;, the trace expansion becomes

MN,4<A) = % Z E(bil—i2bi2—i3bi3—i4bi4—i1)' (235)
1<4y,i9,i3,14 <N
Letz; = [i; —i;41]. If any b, occurs to the first power, its expected value is zero (since the meais of
zero, and thes are drawn fronp), and these tuples do not contribute. Thus, eithertfseare matched
in pairs (with different values), or all four are equal (in which case they are still matched in pairs). There
are 3 possible matchings; however, by symmetry (simply relabel), we see the contributiary feom,,
r3 = x4 1S the same as the contribution from = 4, 9 = 3.
If 1 = 29, x5 = 24, We have

11— 1y = 1(12—23) and 13— 14 = 1(14—21) (236)

Exercise 2.2.9.Show the number of tuplég , i», i3, 74) satisfying the pair of equations (2.36)is O(N?)
if a + sign holds in either equation. As we divide ¥y, in the limit these terms do not contribute and the
main contribution arises when both equations have the minus sign.

If both signs are negative in (2.36), thén= i; andi, andi, are arbitrary. We see there ak& such
tuples. Almost all of these will have, # z3, and contributd; the rest will contribute a smaller term.
Explicitly, let p, denote the fourth moment ¢f Giveni; andi;, N — 1 choices ofi, yield 1 # z3
(contributingE[b2 2] = 1), and one choice yields the two equal (contributitié; | = ps). Therefore,
this case contributes

1 2 2 1 2! 1
m(N(N-1)-1+N(1)-p4):1-—+—:1+0<N). (2.37)
The case of; = 24, andx, = x5 is handled identically, and contributés- O (%)
The other possibility is for:; = z3 andxz, = x4. Non-adjacent pairing is what leads to Diophantine
obstructions, which decreases the contribution to the moment. We call this a non-adjacent pairing as tf
neighbors ofr; arex, andzy, butz; is paired withz;. Now we have

11— 1y = 1(13—24) and 9 —13 = 1(14—11) (238)

Exercise 2.2.10.Show the number of tuplds,,is, i3,74) satisfying the pair of equations i(2.38)is
O(N?) if a+ sign holds in either equation. As we divide Ny, in the limit these terms do not contribute
and the main contribution arises when both equations have the minus sign.
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If both signs are negative in (2.38), then we have
iy = dg4iy — i3, i1,i9,13,94 € {1,...,N}. (2.39)

The fact that each; € {1,..., N} is what leads to the Diophantine obstructions. In the first case (when
T = xy andzs = x4), we saw we had three independent variables, sihd- O(N?) choices that were
mutually consistent. Now it is possible for choicesigfi; andi, to lead to impossible values for. For
example, ifiy, iy > % andis < % this forcesi; > NV, which is not allowed, which implies there are

at most(1 — 2—17)]\/3 valid choices. This is enough to show the Gaussian’s moment is strictly greater. The
following lemma shows this case contribu%m the fourth moment.

Lemma2.2.11.Letiy ={1,...,N}. Then#{z,y,z € Iy : 1 <ax4+y—2< N} = %N?’—l— %N.

Proof. Sayz +y =5 €{2,...,2N}. For2 < S < N, there aré5 — 1 choices ofz, and forS > N + 1,
there ar&N — S + 1. Similarly, the number ok, y € Iy withxz +y =SisS—1if S < N+ 1and
2N — S + 1 otherwise. The number of triples is therefore

N 2N 9 1
YS-12%+ > @N-8S+1)* = SN+ LN (2.40)
S5=2 S=N+1 3 3

O
Collecting all the pieces, we have shown
Theorem 2.2.12 (Fourth Moment). My 4 = 22 + O (%).

In [BDJ, HM] the Toeplitz ensemble is investigated and shown to be non-Semi-Circular and non-
Gaussian. See [HM] for upper and lower bounds for the moments of the new distribution that the densitie
pa,n(x) converge to.

Remark 2.2.13. Similar to our previous arguments, one can show that the odd moments vanish, and the
main contribution to the even moments occur whenbflseare matched in pairs. Fatm objects, there

are (2m — 1)!! ways to match in pairs. Each matching wants to contridu¢and if they all did, then we
would have the Gaussian’s moments); however, not all matchings contiibléer some matchings, a
positive percent of tuples are inaccessible. Explicitly, for each matching we divid&'thy. It turns out

that of the2m indicesiy, . . . , is,,, ONncem + 1 are specified the others are determined. If we could choose
m + 1 indices freely, we would hav&™"! tuples for each matching, and a contributionloflt is here

that the loss of a positive percent is felt. See [HM] for details.
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2.2.3 Truncated Cauchy Distribution

In 81.3.4 we saw that numerical simulations of eigenvalues of matrices with entries independently cho
sen from the Cauchy distribution appeared not to satisfy the Semi-Circle Law/NBorN matrices,
instead of choosing the entries from the Cauchy distribution, choose the entries tinamec@edCauchy
distribution, where the truncation depends/@nExplicitly, let

7r(1+a: ) 241
pw(e) = {O otherwise, ( )

whereA is chosen to maké, pn (z)dz = 1. By appropriately choosing the cutgff V') and normalizing
the eigenvalues, one obtains a new distribution. See [Za] for complete statements and proofs, as well .
generalizations to other distributions.

2.3 Sparse Matrices

A common theme of some of the above problems (band matrices, random graphs) is that we are col
sideringsparse matrices real symmetric matrices where most entries are zero. Such matrices open up
fascinating possibilities to see new behavior. In general, the following heuristic principle is a good guide:
if you consider a very small subset of objects, you can see very special behavior. However, in mathema
ical proofs, we need to average over many similar objects. Thus, if we have too few objects, we cannc
perform the averaging; if we have too many objects, non-standard behavior (which occurs rarely) coul
be washed away.

For example, as most matrices are not band symmetric of small width, even though they have differer
eigenvalue statistics, this difference will not be noticed when we look at all symmetric matrices. The goal.
therefore, is to find an ensemble that is large enough so that we can do the averaging, yet small enough
that new interesting behavior is still present.

The generalized coin toss matriceprovide another candidate. Fog € [0, 1], letpy(1) = %,
pn(—1) = 45, andpy(0) = 1 — gn. Usingpy to construct a real symmetric matrix, we expect to have
aboutgy - w non-zero entries. ljy is small relative taV, these matrices are sparse, and there is the
possibility for new behavior. Note, of course, thatjf is independent ofV then the standard proof of
the Semi-Circle Law is applicable. See [Liu] for more details.

2.4 Research Projects

Research Project 2.4.1 (Band Matrices)lnvestigate how the eigenvalue density depends on the band
width. When do we observe the transition frprto the semi-circle? In other words, how large must
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be in order to see semi-circle behavior. Does this criticalepend orp? It has been observed for many
systems that transitions occur aroundV.

Research Project 2.4.2 (Band, Sparsel-Regular). Compare the eigenvalue distributions and spacing
distributions (see Chaptét?) of band matrices of width, generalized coin toss matrices, astdegular
random graphs. If we chooseq andd so that

N(N +1 dN
are the distributions similar? All three ensembles have approximately the same number of non-zer
entries, but they differ greatly iwherethe non-zero entries may lie.

Research Project 2.4.3 (Self-Adjoint Matrices).Fix a probability distributionp and chooseall the
entries ofA randomly and independently fropmn Consider the matrixi” A. This matrix is real symmetric,
but hasN? degrees of freedom. What is the density of its eigenvalues?

Research Project 2.4.4 (Weighted Random Graphs)Consider the space afregular graphs. To each
graph we attach an adjacency matrix, and we can study the distribution of the eigenvalues. Consider th
following generalization: fix a probability distributiop. Let A be the adjacency matrix of @&regular
graphG. Construct a matrixs as follows: ifa;; = 1, choose,;; randomly frony; if a;; = 0, setb;; = 0.

How does the distribution of eigenvalues dependg®nThe density of eigenvalues éfegular graphs

is not the semi-circle; however, is there a choicepdhat leads to semi-circular behavior? These are
called weighted graphs; one can regard these weights (especiallisipositive) as encoding different
information about the system (for example, how far apart different vertices are, or how long or how
expensive it is to transmit information between vertices). See [QS] for more details.

Research Project 2.4.5 (Complex Hermitian).Investigate the eigenvalue densities for some of the en-
sembles for complex Hermitian rather than real symmetric matrices. For example, consider comple»
Hermitian Toeplitz matrices.
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