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The distribution function of spacings S between nearest neighbors, in a long series of energy levels with
average spacing D, is studied. The statistical properties of S are defined in terms of an ensemble of systems
described in a previous paper. For large values of = (rS/2D), it is shown that the distribution of S can be
deduced from the thermodynamical properties of a certain model. The model, which replaces the eigenvalue
distribution by a continuous fluid, can be studied by the methods of classical electrostatics, potential theory,
and thermodynamics. In this way the distribution function of spacings S is found to be asymptotically

Q)=An"8 exp[— j2— 4]

for large ¢. The numerical constant 4 can in principle not be determined from such a continuum model.
Reasons are given for considering the remaining factors in the formula for Q(¢) to be reliable.

I. INTRODUCTION

N the first paper of the present series,! a general
theory was developed with the purpose of describing
the statistical behavior of energy levels in complex
systems. In this paper the theory will be applied to
one of the classical problems of energy-level analysis,
the study of the theoretical distribution law of spacings
between nearest-neighbor levels.

The theory of level spacings was begun by Wigner?
with a famous conjecture—that in a long series of
levels with average spacing D, the proportion of
spacings which lie between S and (S+dS) is given by

Ow(Hdt, t=(xS/2D). 1)
Qw (1) = (2t/7) exp(—#/x). (2)

This formula was supposed to apply to a series of levels
having the same values of all identifiable quantum
numbers such as angular momentum and parity. It is
very well supported by experimental data,® and by
numerical tests* with random matrices of high order.
However, it is now known to be false. Mehta and
Gaudin® have obtained an analytic expression for the
correct distribution function Q(¢f) and have computed
Q(#) numerically. They find that Qw(¢) is not identical
with Q(#) but is astonishingly close to it, the difference
[Qw—0Q| being less than 0.0162 over the whole range of
t. For practical purposes, Wigner’s intuition has been
abundantly justified.

The analytic expressions of Mehta and Gaudin
provide in principle a complete solution to the level-
spacing distribution problem. Unfortunately, their
formula for Q(¢) is very complicated, being obtained as

! Freeman J. Dyson, J. Math. Phys. 3, 140 (1962). Quoted in
what follows as (I).

tE. P. Wigner, Gatlinberg Conference on Neutron Physics,
Oak Ridge National Laboratory Report ORNL 2309 (1957), p. 59.

3 N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 (1960).
See, also, reference 4.

¢+C. E. Porter and N. Rosenzweig, Suomalaisen Tiedeakat.
Toimituksia A VI, No. 44 (1960); see especially Figs. 19 and 20.

5 M. L. Mehta, Nuclear Phys. 18, 395 (1960); M. L. Mehta and
M. Gaudin, ibid. 18, 420 (1960); M. Gaudin, sbid. 25, 447 (1961).

the Fredholm determinant of a certain integral equation
in which ¢ occurs as a parameter. The formula can be
used for numerical computation when S is of the order
of D (Gaudin® has computed Q(f) for ¢<5), and it
provides a series expansion of Q(f) in ascending powers
of ¢ which is useful for 1< 1. However, it gives no precise
information about the behavior of Q(f) for large .
Further analytic study might well yield an asymptotic
formula for Q(f) valid in the limit {— o, but this
remains to be demonstrated.

The purpose of this paper is to attack the problem
of the large level spacings, for which the Gaudin-Mehta
analysis has not yet proved useful, by an entirely
different approach. The behavior of Q(f) for large ¢
will be deduced from arguments of a mathematically
non-rigorous kind, based upon thermodynamical con-
siderations. The results are undoubtedly correct in their
main features and fill the existing gap in our knowledge
of the spacing distribution. If it should later turn out
that a rigorous and more exact calculation of Q(f) for
large ¢ can be extracted from the Mehta-Gaudin
analysis, then the results of this paper would be
interesting for a different reason. A comparison of the
two calculations would then show what are the limits
within which thermodynamical arguments may be
trusted and beyond which such arguments may be
misleading.

II. CONTINUUM MODEL
According to Sec. V of (I), the joint distribution

function of the eigenvalues [exp(d6;)], j=1, ---, X,
of a random unitary (¥ XN) matrix is

Owns(81, - - -, 05)=Cup exp[—BW], 3

W=— 3 In|e#i—¢i]. 4)

i<j

Here Cwg is a normalization constant; 8 is a parameter
which under normal circumstances takes the value 1,
but may also be equal to 2 or 4 under certain conditions
described in (I). Equation (3) is identical with the
distribution function of ¥V point charges on the unit
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circle, repelling each other according to the laws of
classical 2-dimensional electrostatics with the potential
energy W, in thermodynamic equilibrium at tempera-
ture T=8"1

The main objective of this paper is to calculate the
quantity Rg(a), defined as the probability that the
angle [—a<0<a] contains none of the 8;. From Eq. (3)
it follows that

Rp(a)=[¥np(a)/¥np(0)], ()
wM@=/m/F1wpmmmuwm (6)

Let now N become very large. Then ¥yg(0) is the
partition function of the Coulomb gas on the whole
unit circle, while ¥xg(e) is the partition function of the
same gas compressed into a circular arc of length
2(r—a). In other words

Rs(e)=exp[B{Fns(0)—Frs(@)}], M

where Fyg(a) is the free energy of the Coulomb gas
on the arc 2(r—a).

We now make three assumptions for which no
rigorous mathematical justification exists.

(i) There is a macroscopic density function ¢.(9),
a continuous function of 6 on the arc [a<8
<2r—a], such that ¢,(0)d8 is the number of
6; in the range [0<6;<8+df].

(i) For a given density function ¢.(6), the free
energy of the gas is composed of two parts

F=V+F, (8)

where V is the macroscopic Coulomb energy

2r—a
v=—1} f f 7 (O)oa(¢) In|?—c|dbdy,  (9)

and F, is a sum of contributions from the
individual arcs [0, 8+d0] of the gas,

Fi= / 00(0) fol'oa(6)1d6, (10)

where f3(o) is the free energy per particle in a
Coulomb gas having uniform density ¢ on the
whole unit circle.

(iii) The overwhelmingly dominant contribution to
the integral (6) comes from configurations not
deviating significantly from a particular macro-
scopic density-distribution ¢,(6), namely that
function ¢,() which makes F given by Egs.
(8)-(10) a minimum subject to

/ 2Maa (6)dg= V. (11)
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These assumptions (i)-(iii) can be summarized in
the single statement that for large N the Coulomb gas
obeys the laws of classical thermodynamics. The assump-
tion (10) means that the free energy (apart from the
macroscopic Coulomb energy) is an extensive property
of the system, the free-energy density at any point
being a function of the local temperature and density
alone. To a physicist these assumptions are so hallowed
by custom that they hardly require justification.
Every application of thermodynamics to systems of
strongly interacting atoms or molecules rests on assump-
tions of this kind. We make no effort here to explore
more deeply the mathematics of the problem.

The “continuum model” of the Coulomb gas on the
arc [a<0<2r—a] is defined to be a classical compres-
sible fluid of density ¢.(#) per unit angle, obeying the
laws of classical thermodynamics. The total free energy
Frg(e) of the continuum model is defined to be the
minimum value of F given by Egs. (8)-(10), and the
function ¢,(4) is determined by requiring that F be a
minimum subject to Eq. (11).

It remains to specify the function fz(s). Let

fole)=Ug(a)—B1Ss(0), (12)

where Up is the energy and Ss the entropy per particle
in a uniform gas of
N'=2rs

charges on the whole unit circle. According to Eq.
(I, 163), the energy per particle is

Us(e)=—3 InN'+U(B),

since we are now talking about the total Coulomb
energy including the ground-state energy [—31V’ InNV"].
The physical meaning of Eq. (14) is made clearer by
remembering that

(13)

(14)

Up(o)=+7% InA, (15)

where A is a Debye length representing the size of the
neutralizing charge cloud around each particle. Since
the Debye length must vary inversely with N, the
dependence of Ug(o) on ¢ can only have the simple
form (14).

According to the calculations of Sec. (IX) of I, the
entropy Ss(o) should be independent of N for large V.
However, we here run into an interesting example of
Gibbs’ paradox.® The entropy has been calculated in I
for a classical gas of NV distinguishable particles. Gibbs’
Paradox lies in the fact that entropy so defined is not
an extensive quantity. To obtain an extensive quantity,
one must subtract [InN!] from the classical entropy,
which is equivalent to treating the particles as undistin-
guishable. This means that in Eq. (12) one should use

Ss(0)=In(V/N)+S5(8), (16)
with S(8) given by Eq. (154) of 1.
S E. Schrédinger, Statistical Thermodynamics (Cambridge

University Press, New York, 1952), pp. 58-62.
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Assembling Egs. (8)-(10), (12), (14), (16}, we find

BF = Go+-Gr-Go, a7
Ga= —3B(N/20)? f / pa(@)pa(¢)
: XIn|e?—ei¢|dbdo, (18)
Gi= (1—38) (V/27) f pa(0) In(pa(6))d0, (19)
Go=BN[F(8)—} In), (20)
with
pu(0)= 20/ N)o(0), (21)
f " pe@)do=2m, 2)

and F(B) given by Eq. (151) of I. The fact that the
energy and entropy both contribute to G; a term in
(pInp) is due to the special form of the Coulomb
potential. When 8=2 (the case of the unitary ensemble)
the term G, is absent and the model becomes partic-
ularly simple.

When a=0, the equilibrium density is po()=1,
which makes G,=G;=0. Therefore

BFns(0)=Go=BN[F(8)—3InV]. (23)
Hence Eq. (7) gives
lan (a) = - mianGz+G1]. (24)

The term G, is the only one in Eqgs. (17)-(20) which
depended on the detailed microstructure of the Coulomb
gas, and it has disappeared from Eq. (24). Since our
purpose in this paper is to compute Rg(a), we simply
drop the constant Go and write

BF =G+ Gr, (25)

both terms G, and G, being purely macroscopic in form.
The variational problem (24) is equivalent to the
following set of equations.

0(0)=A4 exp[—7V.(8)], «<0<2r—e, (26)
v=[NB/{=(2-B)}], (27)
V(8 =~f rvap‘,,(go) ln}e”—e“’%dcp. (28)

This V, is the electrostatic potential produced by the
the charge-distribution p,. Equation (26) is a “self-
consistent field” type of equation, expressing the fact
that the charge p, is in thermal equilibrium in the
potential V,, which it itself generates.
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The only unexpected feature of these equations is
that the “effective temperature” appearing in the
exponent in Eq. (26) is not T=8"" but

T.~g"~}.

When 8> 2, the effective temperature is negative, that
is to say the charge has a statistical preference for
regions of higher potential. The simple case of zero
effective temperature occurs not at §= « but at §=2.
When =2, we must replace Eq. (26) by

(29)

V.(8)=V.=const, a<#<2r—a, (30)

and the minimum problem reduces to a problem of
classical electrostatics without any thermodynamics.
In this case Eq. (24) gives

InRy(e)= (N?/2m) V... (31)

III. SOLUTION FOR (=2
The continuum model for =2 is defined by Egs.

‘(28) and (30). It consists of a charge-density p.(6)

distributed on a conducting wire which forms a circular
arc of angle 2(r—a). Since this is a standard problem
of 2-dimensional potential theory, it can be immediately
solved by the method of conformal mapping. Although
the solution is well known, we reproduce the details of
it here. The details will be needed in Sec. IV, when we
go on to the more difficult case 872,

Let 2 be a complex variable representing points in the
physical plane. The conducting wire consists of the
curve
a<6<L2r—q, (32)

z==¢¥,

lying in the z plane. The function
2 ‘
W=~ [ nloG=eds @9

is analytic and many-valued in the whole z plane outside
the wire. Its real part is one-valued, and by Egs. (28),
(30)

ReWo(5)=Ve,
By Eq. (22),

Welz)~2rlInz as

z=e% a<O0Z2r—a. (34)

|z — . (35)
The potential is completely determined by the state-
ment that W,.(z) is analytic and satisfies Eqs. (34)
and {(35).

The charge density is related to W, by

1
pa(6) -_—5—[ sli-?}-' |8W./az]]. (36)

The limit 2— ¢® may be taken from the outside of
the unit circle, giving p.*(6), or from the inside, giving
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pa—(0). The charge p,+ may be thought of as localized
on the outer surface of the wire and p,~ as localized on
the inner surface. The total charge density is given by

Pa (0) = Pa+(0)+Pa—(0)) (37)
Pt (0) =3[pa(6)=1]. (38)
A convenient series of mappings is the following
1—2 1—
=, z=———§. (39)
142 1+¢
¢ 2wd
w= , = (40)
(t2+-62)4-+o 1—w?
1—ww, 14+-nwo
u= , W= . (41)
W W u+two

Equation (39) maps the z plane onto the ¢ plane with
cuts along the imaginary axis from (%i8) to (%iw),
where

d=tania. (42)

Equation (40) maps the { plane onto the inside of the
unit circle in the w plane, the point z=o, {=-1
mapping onto w=1w,, with

e=%(r—a).

The end-points z=exp(zia) of the wire in the z-plane
map onto the points w= 4. Equation (41) maps the
inside of the unit circle in the w-plane onto the outside
of the unit circle in the # plane. The point g=
maps onto %= with the proportionality factor

(43)

W= — tane,

u~zsec(3a), |z - . - (49
The solution of the potential problem is simply
Wea(z)=2m In[u cos(§a)]. (45)
This satisfies Eqs. (34), (35) with
Va=2xIn cos(3a). (46)

The corresponding charge densities p.%(6) are given by
Eq. (38) with

pa(6) =sin (36)[sin*(36) —sin® (Ge) I

These results give immediately the asymptotic form
of the spacing distribution in a series of energy levels
with 8=2. Let D be the average level-spacing, and

i= (xS/2D)

(47)

(48)

large compared with unity. The proportion of level
spacings of size between ¢ and (¢+dt) is Q(¢)d!, where

Q(&)="4nd*P/dr, (49)
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and P(¢) is the probability that a randomly chosen

interval of length (2¢D/x) will be free of energy levels.

By Eq. (5) we have
P(t)=R:(a),

t=1aN. (50)

Equations (31) and (46) then give in the limit as N— o,
P(t)=exp[N?In cos(¢/N)]=exp[—32], (51)
Q(t)~(x/2) exp[—32], B=2.

The continuum model predicts that the spacing
distribution for £>1 has the form (52). Unfortunately
it is impossible to estimate by continuum-model
calculations what the inherent errors of the model are
likely to be. Therefore the degree of accuracy with which
Eq. (52) holds is unknown. Clearly the discreteness of
charge would make the distribution (47) wrong for
angles § within a range of about N2 from the end point
0=a. Taking an optimistic view, one may conjecture
that the free energies of the continuum model and of a
real Coulomb gas with discrete charges differ by an amount
which remains bounded as t— «. One could hardly
expect, in view of the unavoidable effect of discreteness
at the end-points, that “remains bounded” could be
replaced by “tends to zero” in this statement. The
consequence of this conjecture is that, in all asymptotic
formulas such as Eq. (52), the exponential factor and
the power of ¢ standing outside the exponential are
probably correct, but the numerical coefficient is not
to be taken seriously.

It is of some interest to compare the formula (52)
with the result one would deduce from simple argu-
ments of the kind which Wigner? used in making his
conjecture Eq. (2). To derive Eq. (2), Wigner assumed

Qw(t)= At exp(— B#), (53)

(52)

and determined the constants 4 and B from the
conditions

/ wQ(t)dt= I (54)
]

f Q(tdi= (x/2), (55)

which must hold exactly for the correct distribution
function Q(¢). The motivation for Eq. (53) came from
three arguments: (i) “the repulsion of levels” is known
to make the distribution linear in ¢ for small ¢, (ii) the
level repulsion should make the distribution approxi-
mately Gaussian for large ¢, and (iii) the formula should
be as simple as possible. The resulting Eq. (2) was
applicable to a level series with 8=1, the case which
normally occurs in experiments.

In the case =2, which applies when time-reversal
invariance is abandoned, the level-repulsion will make
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Q(#) quadratic in ¢ for small ¢, The “Wigner conjecture”
for this case would be

Ow*(t)= AP exp(—BP), -(56)

with 4 and B still determined by Egs. (54) and (55).
Putting in the numerical values, Eq. (56) becomes

Ow?(t)=[2568/757 exp[ — 1682/x%].

Comparing Egs. (52) and (57), one sees that the Wigner
conjecture is incorrect, but that the conjectured expo-
nential factor differs from the true one only by the ratio
[32/x*]. 1t is probable that, as in the case 8=1, the
Wigner conjecture (57) lies numerically very close to
the true distribution function over the whole range
of ¢. An additional check on this point comes from the
known form of the exact distribution function at small
t. In Paper IIT of this series, we shall prove that

)~ 8/3me, 1K1, B=2.

&7

(58)

The Wigner conjecture (57) then differs from the true
Q(t) at small ¢ by the ratio [96/7*]. It is remarkable
that an incorrect formula can come as near as this to
the truth.

IV. SOLUTION FOR (=2

When 872, the continuum model leads to the non-
linear equations (26), (28), and an analytic solution is
not to be expected. The problem becomes tractable
only after introducing some kind of perturbation-theory
approximations. Since the objective is an asymptotic
formula valid for large values of {=}a, the perturba-
tion theory should if possible represent an expansion in
inverse powers of (aV). Fortunately, the formulation
of the problem by the minimum principle Eq. (24)
makes such an expansion possible. According to Egs.
(18) and (19), G is of order (aN)? while G, is of order
(eN). The “unperturbed system” can be taken to be
given by G alone, the addition of G; being the “pertur-
bation.”

The unperturbed system is, apart from the constant
factor B, identical with the case 8=2 considered in
Sec. IIL. So the unperturbed free energy is given by
Egs. (25), (31), and (46) and is

BFy=—18N?In cos(a). (59)

The unperturbed charge density will now be denoted
by 5.(6) and is given by Eq. (47).

Since Eq. (24) is a variation principle for the free
energy, the first-order perturbation of SF is merely
the value which G, takes with the unperturbed charge-
distribution, namely

2r—a

BFy= (1—18) (V/2m) f 52(6) N5 (0)d6.  (60)

To evaluate Eq. (60) it is convenient to transform the
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integral into the % plane. Since charge is invariant in a
conformal mapping,

[m@io= [ 1aul. (61)
Hence Egs. (47) and (60) give
BF.=(1—3B)(N/2x)
x [ n (#—tane) (u— cote) ! !, (62)
[u—exp(}ie) Lu—exp(—1da)]

the integral being taken around the unit circle. Now
/(lnlu——al)ldu]=21r max[ln|el, 0], (63)

this being the potential at the position a of a uniformly
charged circle of radius 1. Therefore Eq. (62) gives

BF1=(1—3B)N In cote= (1—38)N

Xln[secta+tana]. (64)
In the limit ¥ — o, Egs. (59) and (64) give
BF o+BF =182+ (1—38)1, (65)

as the first two terms of the desired expansion of the
free energy in powers of ¢1.,

The next term in the expansion will require second-
order perturbation theory. The calculation becomes
necessarily more complicated, but much of the pain
can be avoided by working in the w plane defined by
Egs. (39), (40). On the unit circle of the w plane,

Pa(B)=secia|sect|, w=exp(#), (66)
f 5al6)d0= / m)ds, (67)
m(Y)=|du/dw| =sinjo[ 1+costa cosy T%.  (68)

The perturbed charge density is written in the form
pa(6)=pa(8)+qW)h ), (69)

qW)=|dw/dz] =[sec’sa—cos®y]/[2 tania|cosy| ], (70)
where %(¢) is the unknown perturbation and is supposed
to be a small quantity. According to Eq. (40), each
point z= exp(#6) is mapped onto two points w=exp(y),
w=exp[i(r—y¢)]. The outside surface of the arc
[«<8<2r—a] in the z plane is mapped onto the left
half of the unit circle [cosyy <07 in the w plane, while
the inside surface of the arc in the z plane is mapped
onto the right half of the unit circle [cosy>0] in the
w plane. Therefore Eq. (69) may be written

pa(0)=qW)[m)+m(xr—y)+h)], (71)
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and k(y) must be regarded as an even function of
(cosy). Since the total charge is not changed by the
perturbation,

f h(g)dg=0. (12)

It is now necessary to express the free energy (G;+G)
in terms of w-plane integrals. For G, Egs. (19), (70),
and (71) give

Gi=3(1~18)(V/27) f [M@)-+hw)]

XIn{gW)[M @) +r@) Ndy, (73)
M©Y)=m@E)+m(x—y)
=2 sinja 1 —cos?(3a) cos® 1. (74)

Expanding Eq. (73) to second order in A(¥), we find

Gi=3(1~18)(V/2r) / [ Ing)-+ (h Ingn)
M-y, (75)

The term independent of % is the first-order free energy
given by Egs. (60), (64). Thus to second order in k(y)

Gr=BF1+}(1~38)(N/2m) / [h($) In| secy|

+1 cscia(1—cos?}a cosm)h2(Y) Jdy. (76)

The transformation of G, into the w plane can be
made without any approximation. Equation (18) may
be written

Go=+3B(N/2n)? /

o

2r—a

pa(0) Re[Wa(e?)]ds, (77)

where W,(2) is given by Eq. (33). If p,(¢) in Eq. (33)
is taken to be the unperturbed charge density p.(¢),
then W,(z) has the value given by Eq. (45). However,
pe(@) is now defined by Eq. (69), and therefore

Wo(z)=2xm In[u cos(3a) ]+ Y (3), (78)
¥(5)=— / (@) InG—c®)do (19
-3 / M) Ina—e)ad. (80)

The factor (3) in Eq. (80) appears because the
integration corresponds to the arc [a<¢<2r—a]
taken twice. Now this function ¥ (z) is analytic in 2
and tends to zero as z— « by virtue of Eq. (72). It
is, therefore, analytic in w inside the unit circle. Accord-

FREEMAN J. DYSON

ing to Egs. (36), (70), and (79),

1 1
— lim [8Y/6w]= @)’1% [ov/os]=4h¥), (81)

2w — e 2

the derivatives being taken in the radial direction.
Therefore the function

- / h) Inwo— ¥y 82)

has the same normal derivative as ¥ (2) at every point
of the unit circle in the w plane, and can differ from
Y (2) only by a constant. By virtue of Eq. (72) this
implies

[ g@)h) Re[ ¥ (c9)Jdb
=—%/] 7h(¢)h(w) In]e¥— e |dydw. (83)

This expresses in a simple form in the w plane the part
of Gy which is quadratic in 2(¢). The term linear in
k() vanishes since the unperturbed charge distribution
Pa(0) was chosen so as to make G, stationary. The term
independent of A(y¥) is just 8F, given by Eq. (59).
Therefore Eq. (77) reduces to

Ga=BFo~18(V/20)" f / h)h(w)

Xln|e¥—e™|dpdw. (84)
The total free energy to order #2(y¥) is
BF=pF+BF+8F 2 (85)

where BF: is the sum of the terms involving %(y) in
Eqs. (76) and (84).

To determine k(y), the quadratic form BF, must be
minimized. It is convenient to expand k(y) in a Fourier
series

h(Y)= i ko cos(2ny).

Nl

(86)

The constant term is zero by Eq. (72), and the odd
terms are zero since 4(y) is even in (cosy). Substituting
Eq. (86) into Egs. (76) and (84), and taking the limit
N — oo we find

BFy=(1—38[2 X v a4 (3201 Y (w2 +tnthnia)]
+(8/32) X nu,?,  (87)
with

Un=(—1)"Nb,. (88)

For large values of ¢, the u, which makes Eq. (87) a
minimum will be a slowly varying function of #. With
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negligible error we may replace the term (#.%ni1) by
(#.2), and the minimization then becomes trivial.
The result is

BFa=—16"(1—18)" = n~'[1+(2n/B)
n=i
X(1-38) ]

The series is convergent and gives for large ¢ the
asymptotic expression

BFy=—36"1(1—38)In[84/2(1—~36) 1+7},

where v is Euler’s constant.

As we observed in Sec. ITI, the continuum model
cannot be expected to give the constant term in the
free energy correctly as {— . The constant term in
Eq. (90) is probably meaningless. Therefore we drop
the constant term and obtain the final expression for
the free energy

BF =167+ (1—48)i—367'(1—~36)* In¢,

with an error which should be bounded as t— «. The
term in (Inf) is probably reliable. At the very worst,
the second-order perturbation calculation, being based
on a variation principle, shows that the error in Eq. (91)
cannot be of greater order than (Inf).

Equations (5) and (24) give the result

Ps(t)~At/® exp[—182— (1—-3B)1],
f@)=01-18)%/28 (92)

for the probability that a randomly-chosen interval of
length (2¢D/7) be empty of levels in a series with mean
spacing D. According to Eq. (49), this gives for the
distribution-function of large spacings

()~ AP+ ® exp[ —i87— (1—3B)(].

In the case 8=2, these expressions reduce to Egs.
(51) and (52). In applying the theory to nuclear level
distributions, in which there is invariance under
rotations and under time reversal, the case =1 is
relevant, and we find for {— o

Qu()~ A7 exp[ —3P—}1],

(89

(90)

oy

(93)

(94)

This is the case to which Wigner’s conjecture Eq. (2)
applied. We conclude that Wigner’s conjecture under-
estimates the frequency of large spacings by a factor
which tends to infinity as ¢ — . Needless to say, the
range of ¢ for which Wigner’s conjecture is seriously in
error includes so few level-spacings that it is for practical
purposes completely unimportant.

For systems with odd spin, invariance under time
reversal, and no rotational symmetry, we showed in
Sec. TII of I that the case 8=4 applies. The level-
spacing distribution is then asymptotically

Qs()=A8"8 exp[ —£+1]. (95)
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V. ADDITIONAL REMARKS

a. Accuracy of the Perturbation-Theory
Calculation

The calculations of this paper are subject to two
kinds of errors, (i) the inherent inaccuracy of the
continuum model, and (ii) the inaccuracy of the
treatment of the continuum model by perturbation
theory in Sec. IV. We believe that the magnitude of
type (i) errors in the free energy is bounded as t—
this belief is based only on physical intuition and cannot
be checked by calculations within the continuum
model. The magnitude of type (ii) errors can in principle
be checked by pushing the perturbation calculations
further.

We here examine the magnitude of the perturbation
term A(Y) in Eq. (71) in comparison with the unper-
turbed term M (y) given by Eq. (74). The explicit form
of %, obtained by minimizing Eq. (87) is

#n=—2n+(8/2—B) I
With Eqgs. (86) and (88), this gives

(96)

h<¢>=—a§ (n+[8/(2—B) Wy~ (= 1)* cos2mp.  (97)

The order of magnitude of A(Y) is

h(Y)~aln|tcosy|, |cosy|<i?, (98)
h)~altcosy|?, t1<|cosy| <t} (99)
E)~at, t3<|cosyl. (100)

The comparison term M (¥) is by Eq. (74) always at
least of the order . We have then

hY)KM (Y)

except in the range (98). So the perturbation theory is
reliable except in the range of angles ¥ within ¢ of
(&=37). The excluded range is mapped in the z plane
onto the range

(101)

a< || <att?a, (102)
at the extreme tips of the arc [a<0<2r—a]]. Equation
(47) then shows that the total amount of the unper-
turbed charge in the excluded region is approximately
one unit. Therefore the perturbation theory breaks
down just in the space occupied by a single charge at
the tips of the arc, where the continuum model is
anyhow meaningless.

The foregoing argument indicates that the series
(86) for £(¥) has a meaning up to frequencies # of the
order of ¢, while the terms with #>{ are meaningless.
The same conclusion holds for the series (89) giving
the second-order contribution 8F, to the free energy.
The terms in BF, up to n~¢ give the part of Eq. (90)

Downloaded 14 Jan 2006 to 136.167.253.29. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



164

proportional to (InZ), while the terms with #>¢ affect
only the constant in Eq. (90). We thus arrive at the
following general conclusions concerning the accuracy
of the calculations.

(a) Errors of type (ii) are of the order of unity in the
free energy and do not affect the logarithmic
term in Eq. (91),

(b) Errors of type (i) probably appear only where the
perturbation theory breaks down, and therefore
the perturbation theory makes physical sense as
far as we have carried it.

(c) It would make no sense to carry the perturbation
theory to higher orders, since any higher-order
terms would be of the same order of magnitude
as the type (i) errors.

b. Gaussian Model

The calculations of this paper were based on the
circular ensembles defined in (I). The same thermo-
dynamic methods could just as well have been applied
directly to the Gaussian ensemble’ which has been
the starting-point for the other workers*+% in this field.
In the Gaussian ensemble, the angles [y, --,0x] are
replaced by real numbers e, - -,ex ] free to vary from
{(— =) to (4 =). The potential energy W is given by

=— T In|e—¢l+ (@) T e, (103)

i<y i

instead of by Eq. (4). The continuum model is then a
classical charged fluid, confined to a straight conducting
wire and attracted to a fixed point 0 on the wire by a
harmonic potential.

The analysis of the Gaussian continuum model
proceeds almost as easily as for the circular model.
There is only one essential complication. The conducting
wire cannot be allowed to be infinite, because the
attractive potential would then bring in charge from
large distances in indefinite amounts. Negative charge-
density is allowed by classical electrostatics but not by
the conditions of this model. The appropriate model is
a conducting wire of finite length, the length being
chosen so that the charge-density shall be positive
everywhere on the wire but zero at the end-points.
When the model with a gap is introduced, the length
of the wire must be adjusted so that the condition of
zero charge density at the ends is maintained. Once this
is done, the calculations proceed as before, and the
final results are identical with those we have obtained in
Secs. IIT and IV.

7 E. P. Wigner, Proc. 4th Can. Math. Congress, p. 174 (Toronto,
1959), has in fact used this method to determine the over-all
eigenvalue distribution of the Gaussian ensemble. For the over-all
distribution, in contrast to the distribution of level spacings, a
zero-temperature approximation is sufficient. Wigner was therefore
able to derive the “semi-circle law’’ for the eigenvalue distribution,

using a purely electrostatic model without any thermodynamics.

FREEMAN J. DYSON

c. Case of Negative ¢

The partition function ¥xg given by Eq. (6) has a
well-defined meaning when the angle « is replaced by
(—a). The integration with respect to each variable §;
is then to be taken from O to 2x, with the interval from
(—a) to (4a) counted twice. The ratio Rg(—a) is the
expectation value of 2%, where % is the number of the 6;
lying in the range |8] <a. The function Pg(—1) is the
expectation value of 2%, where % is the number of energy
levels, in a series with mean spacing D), which happen to
lie in a randomly chosen interval of length (2tD/x).
The expectation values are to be taken from the usual
ensemble at temperature 8%,

At infinite temperature (3=0) the value of Ps(—§) is

Po(—8y=[1+ (a/m) J¥ =exp[2t/7]. (104)
At any temperature we have
Pp(—1)=(2%y > 2<*k>=exp[2¢ In2/7]. (105)

In fact Pg(—1) is a decreasing function of 8 and always
lies between the limits (104) and (105).

The behavior of Pg(—¢) for large ¢ can be determined
from a continuum model. Instead of having a gap from

' #= —a to = +a, the model is now a complete circular

wire with a potential

U=—3"11n2 (106)

applied to the interval (|6] <a). This adds a term

GY'=—(N/2x) In2 j " pelO)d (107)

to the free energy given by Egs. (18), (19}, the other
integrals now all running from 0 to 2=.

We can calculate the free energy as before by pertur-
bation theory, using G alone for the unperturbed
system. The calculation is much simpler than for
positive ¢£. The unperturbed charge density is g, (#)=1,
and the unperturbed free energy is zero. The first-order
perturbation produced by Eq. (107) is

BFy=—(2t/7) In2, (108)

Second-order perturbation theory adds to this a con-
tribution

BFy=—g-[(In2)/x} Int. (109)

The asymptotic behavior of Ps(—¢) at large ¢is thus
Py{(—1)~Ap® exp[(2 In2/m)t],
gB)=(n2)*/=?8 (110)
and the asymptotic behavior of Qs(—?) is the same.
These results for negative ¢ are not of any practical

importance. Their chief interest is that they impose
necessary conditions which any exact analytic formula
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for Q(#) must satisfy. In particular, even the elementary
inequality (105) is not satisfied by Wigner’s conjectured
Eq. (2), and this provides the shortest proof that
Wigner’s conjecture cannot be exactly correct.

d. Magnitude of Fluctuations in Level Density

One further consequence emerges from Eq. (110).
Let an interval of length (M D) be chosen at random in
a long series of energy levels with average spacing D.
Let & be the number of levels lying in the interval.
Then Eq. (110) may be written

(25)=AM®2M, (111)

This implies that the variable % is distributed about its

165

mean value (k)=M with a mean-square fluctuation
((k—M)?)=[(2/7%6) InM ]+R, (112)

the remainder term R being bounded for large M.
Equation (112) shows that the fluctuations in % are
enormously less than they would be for an uncorrelated
series of levels, which would give

(—M)=M. (113)

The difference between Egs. (112) and (113) is a
measure of the power of the long-range level repulsion
in suppressing large fluctuations of level density. For
the case 8=1 which applies to observed level-series, a
more precise result than Eq. (112) will be proved in
Paper IV.
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