JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER 1 JANUARY-FEBRUARY, 1962

Statistical Theory of the Energy Levels of Complex Systems. III

FREEMAN ]J. DysoN
Institute for Advanced Study, Princeton, New Jersey

(Received September 15, 1961)

A systematic method is developed for calculating the #n-level correlation-function R, (xi,: - -,x,), defined
as the probability for finding # levels at positions (xy,- - -,2.), regardless of the positions of other levels.
It is supposed that the levels of a complex system are statistically equivalent to the eigenvalues of a random
symmetric unitary matrix of order N>>n, according to the general theory described in an earlier paper.
The 2-level correlation-function is found to be

Ra(xyma) =1~ {s() }2-{ f ms(t)dt}{ds(r) Jdr},

s(')‘__'[Sin("")/"]) r= le—x2l y

the scale of energy being chosen so that the mean level-spacing is unity. It is shown how this result could
in principle be used in order to determine the proportions of levels in two uncorrelated and superimposed
series. An analytic expression for the distribution of nearest-neighbor level-spacings, discovered by Gaudin
and Mehta, is rederived, and a similar expression is found for the distribution of spacings between next-
nearest neighbors. An unexplained identity relates the nearest and next-nearest neighbor spacing distribu-
tions of a system invariant under time-reversal to the level-spacing distribution of a system without time-

reversal invariance.

INTRODUCTION

HIS paper will be concerned with the study of

the statistical properties of N points [exp(#;)],

j=1, .-+, N, distributed around the unit circle with
the probability distribution function

PN(aly' : ')GN)=CN H Iew*—ei’il.

i<

M)

In paper I of the present series! it was shown that the
distribution (1) holds for the eigenvalues of a symmetric
unitary (NXN) matrix chosen at random o t of a
certain ensemble, called the orthogonal ensemble. It
was suggested that the series of angles [6y,---,0x]
derived from this particular ensemble should provide
a good model for the statistical behavior of the energy
levels of a sufficiently complicated system. According
to Eq. (I, 130), the probability distribution (1) is
correctly normalized if the constant Cy has the value

Cy=[2"x"T(1+34N) ] )

The main objective of the analysis is to calculate the
n-level correlation function

Ra(1, -+ 8n)=[NY/(N—n) 1:|f. .
X/ 1I"PN(ol’. . -,HN)dﬂ,H_ldBn_*_ﬁ. . .daN’ (3)

which ‘measures the probability of finding a level
(regardless of labeling) in each of the small intervals
[6,, 6:+d8.], -, [84, 0,+d8,], the positions of the
remaining (N —#) levels being unobserved. In particular

Ry(0)=(N/2x) 4)

1F. J. Dyson, J. Math. Phys. 3, 140 (1962); 3, 157 (1962),
these two papers will be quoted as I and II.

is the constant over-all level density. Each function R,
for n>1 contains terms of various kinds, describing
the grouping of # levels into various subgroups or
clusters. For practical purposes it is convenient to work
with the n-level cluster function defined by

T"(olr e 10ﬂ) = % (_ 1)ﬂ_m(fn'— 1) !

X II Re,[6 with £ in G;]. (3)

=1

Here G stands for any division of the indices [1, 2, - - -,
n] into subgroups [Gi, Gz, -+, G.] Eqation (5) isa
finite sum of products of R-functions, the first term in
the sum being [ (—1)* 'R, (84, - - ,0,) ], and thelast being
the constant

(n—1) (N /2x). (6)

The inverse of Eq. (5) is
Ra(8y, -+ 8n)=2 (=) "] Te,[6 withkinG;]. (7)
5 ,

7=1

~Thus each set of functions R, and T, is easily deter-
mined in terms of the other. The advantage of the
cluster functions is that they have the property of
vanishing when any one (or several) of the separations
|8;—0;| becomes large in comparison with the mean
level spacing (27/N). The function T, describes the
correlation properties of a single cluster of #n levels,
isolated from the more trivial effects of lower-order
correlations.

Of special interest for comparison with experiment
are those features of the statistical model which tend
to definite limits as N — . The cluster functions are
convenient also from this point of view. In the limit
N — =, the angles §; must be replaced by real numbers

x;=(N/2x)8;, 8
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STATISTICAL THEORY OF THE ENERGY LEVELS

each x; being free to vary from (— ) to (+«), and
the index j running from (—®) to (4 =) also. The
x; then form a statistical model for an infinite series of
energy-levels with mean spacing D=1. The cluster
functions,

Yn(xly' * ';xn)z }v'l..mag (N/ZW)_"T,,(OI,' ‘ '30"): (9)

are well defined and finite everywhere. In particular

Vi(x)=1, (10)
while

Y2(x1,x2)=Y2(|x1—x2|) (11)

defines the shape of the neutralizing charge-cloud
induced by each particle around itself, when the model
is interpreted as a classical Coulomb gas [see Sec. VI
of I.

The cluster functions satisfy the identity

/ Vo, - )= (1= 1)Vas(or, - - #as), (12)

for »>1. This means that each ¥, is an integrable
function of the (#—1) variables (x1—%n, X2~%,, - -,

Xn_1—%4), and has a Fourier transform

:Vn(kl,' B

y n—l)

=/~~-/w Va(xy,- -« ,00) exp{2milki(xi—x,)+- - -

FEa1(xn1—2n) J}dx:- -

The limiting forms of the correlation functions R, are
not integrable, and their Fourier transforms involve
products of  functions.

Many important properties of the level-distribution
depend only on the fwo-level form-factor defined by

-dx,._l.

(13)

o0

b(k)=1y:(k)=

-0

Vi(r)e* krdy. (14)

The normalization is chosen to make 4(0)=1, by Egs.
(10) and (12).

In this paper it will be shown that all the cluster-
functions ¥, are in principle calculable. The ¥, will
be exhibited as coefficients in the expansion of a certain
determinant. However, the elementary algebra that is
required for the extraction of the higher ¥, is very
tedious. Explicit evaluations will be made only for the
two-level functions Y,(r) and b(k).

The method of calculation is essentially copied from
the work of Gaudin and Mehta,? who first discovered
how to deal with integrals of the form of Eq. (3).

2 M. L. Mehta, Nuclear Phys. 18, 395 (1960); M. L. Mehta
and M. Gaudin, Nuclear Phys. 18, 420 (1960); M. Gaudin,
Nuclear Phys. 25, 447 (1960).
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All the serious difficulties are overcome by the Gaudin-
Mehta method. The analysis differs from th t of
Gaudin-Mehta in two respects. (i) We deal with
distributions around a circle, while Gaudin and Mehta
used a Gaussian distribution on a straight line. (ii) We
are interested in a precise evaluation of the two-level
correlation function, while they considered only the
more difficult problem of the distribution of level-
spacings.

II. GAUDIN-MEHTA METHOD
ON A CIRCLE

To avoid minor complications, let N=2m be even.
Let U(8) and V (6) be any two functions defined on the
unit circle (—7<6<w). Consider the quantity H,
defined as the expectation-value

H= (malt U(of)]mlalt V(ej)])y (15)

taken with respect to the probability-distribution (1).
Here Jlaiw means a product taken over a set of m
alternate points 8; as they lie on the unit circle, and
IT'a1. means a product over the remaining m points 6;.
The alternating series may start anywhere on the
circle, no special end-point being singled out.

By Egs. (1) and (2), an explicit formula for H is

(2m)!
H= ‘[ dolf d02 / dom
24m+1 Mgy | Bom_1

X II [2 sin}(6;—6:) 1 H U (1) V (0)

<7
+ IT V(6a-1)U(62)}. (16)
k=1
This may be transformed into
(2m)! *
H:———-——/‘..« dal"'d02m
25mm (g 1) .
X TI [2 sink(6;—6.)] H {V (02-1)U (61
i<
Xe(On—0u-1)}, (17)

where e(x)=(x/|x|). To deduce Eq. (17) from Eq.
(16), let J be the integral on the right of Eq. (17).
If any two of the 6,; lie consecutively on the circle, the
integrand of J is odd under interchange of these two
variables, and that part of J vanishes. Similarly the
part of J with any two of the 6y;_; lying consecutively
vanishes. The surviving part of J has the 6;; and the
;1 forming two alternate series, but not necessarily
arranged in order as they appear in Eq. (16). Suppose
that the 6y; in J appear in a permutation P of the
natural order, while the 63 ; appear in a permutation
Q. The entire integral J then reduces to the integral
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appearing in Eq. (16), multiplied by the constant

C= 3 epeq ﬁ e(2P,—2Q:+1).

P,Q k=1

(18)

But Cis just (#!) multiplied by an (mXm) determinant
whose element number (3,5) is (41) when ¢> 4, (—1)
when < j. The value of this determinant is 2™, hence

C=2""yp, (19)
and Eq. (17) is proved.
The next step is to write
IT [2 sing (;—6:)1=i~™ det|exp(ipf;)|,  (20)

i<

where the determinant is (2mX2m), the column index
j taking the values (1,---,2m) while the row-index p
takes the values

p=—m+3, —m+i§, -, m—}  (21)

Squaring Eq. (17), using Eq. (20) and expanding the
determinants, we obtain

o LEM =D

€pE€
2i2m1r2m(m |)4 P,Q Q

X inIl {g(Pos, Pri—1)g(Q2e,Qm-1)}, (22)
with

§(0)= f BdoUO) (¢)e(0— o)

X [exp(ipf+ige) —exp(igh+ipo)].

P; and Q; are any two permutations taking values in
the range (21) for j=1, -+ -, 2m.

Let (p,9) be indices in the range (21). We say that
(9,9) are “partners in P” if for some % we have p= Py,
g=Ps1 or p=Py 1, ¢=Py. Similarly we define
partners in Q. We can then construct a permutation R
on (—m-3, -+, m—%) such that R,=g¢ if and only if
(p,9) are partners in P or in Q. Such a permutation R
must consist of a number L of cycles each of even order.
When P and Q are given, the composition of the cycles
in R is fixed, and only the sense of those cycles which
have order greater than 2 is undetermined. Therefore,
the number of distinct R associated with a given P
and Q is

(23)

2Ln (24)

where % is the number of cycles in R of order 2. This %
is also the number of pairs (p,9) which are partners in
both P and Q.

Conversely, if a permutation R containing only even
cycles is given, this determines the pairing of partners
in P and in Q with precisely the same degree of
ambiguity 2% Given the pairings, the complete
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specification of P can be made in 2™(m!) ways, and
similarly for Q. Therefore every R can arise from

2L—hi2m gy 1)2 (25)
distinct pairs (P,Q).
The parity of the permutation R is
er=(—1)L. (26)

The combined parity epeq is the parity of the permuta-
tion
P IP 2°° 'P 2m
[0
0102 -+ O2m
Now es is unchanged if we interchange the pairs

(Q2j—1, Q2;) in blocks so as to make Py=0Q,, P;=Qs,
etc. The resulting permutation S is

[PZP-t‘ . 'P2m]
0204 - - Qamd

and this is obtained from R by taking just half the
indices in each cycle. The parity of .S is therefore

(27)

(28)

and N is the number of cycles in R whose length is
divisible by 4. Since the sum of lengths of all the cycles
in R is 2m, we have

epeq=es= (— 1),

L—A=m (mod. 2). (29)
Equations (26), (28), and (29) give
ereq=(—1)™¢r. (30}

The sum (22) is now expressed in terms of the
permutations R alone. Combining Eq. (22) with Egs.
(24), (25), (30), we find

! 2m)! 72 m—}
H=[——-] (—)"Tex T g(Ry). (1)
28mapmop | R p=mti

The factor (—1)™ reappears in Eq. (31) because we
used the relation

which follows from Eq. (23). The sum in Eq. (31) is
over permutations R consisting of even cycles only.
However, by virtue of Eq. (32), any permutation
including an odd cycle would cancel in Eq. (31) against
the same permutation with the odd cycle taken in the
opposite sense. Therefore the sum over R may be
extended to all permutations, and H? reduces to a
determinant. The factor (—1)™ may be again absorbed
by changing (¢ — —¢) in g(p,q), which is equivalent to
reversing the order of the (2m) columns of det|g(p,9)}.
The constant factor in Eq. (31) may be absorbed by
multiplying the pth row of the determinant by [$/8xi].
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In this way Eq. (31) reduces to

HZ:dCt]qul; (33)
with
? ) 7 —
T f /_ U@V (9el6= )
X[exp(ipp—igp)—exp(ipo—igh)], (34)

both p and ¢ taking the values [—m-+4%, ---, m—3].
The result (33) corresponds to Eq. (10) in Mehta’s
paper.® Mehta does not make any use of his Eq. (10),
and instead concentrates his attention on a determinan-
tal expression for the first power of the integral
corresponding to our H, namely his Eq. (14). The
analogous formula for the first power of H is

H=detlFm|5P:q=%, %: "'7m_%, (35)
with
? L
Fumr” | [ dicv@V o=
) Jox
X[ cosp¢ singd—cospd singe].  (36)

Equation (35) follows immediately from Eq. (33),
provided that

U@ (e)=U(=0)V (= o), (37

which means in practice that U and V must either be
both even functions or both odd functions on [ —, + .

Superficially, Eq. (35) appears simpler and more
elegant than Eq. (33). However, the restriction (37) is
highly inconvenient and makes it difficult to obtain
directly from Eq. (35) any information about the
cluster functions T'.. For our purposes Eq. (33), which
holds without restriction on the functions I’ and V, is
much more useful.

Another advantage of Eq. (33) is that it is independ-
ent of the arbitrary choice of the end points [—, 7]
on the circle. Since p and ¢ are both half-odd-integers,
one may write

tumo [ [aaer@vee
8ni

X[exp(ipf—ige)—exp(ipo—igd)], (38)
the range of integration being limited only by
0<6—<2m. (39)

A similar independence of the end point does not hold
for Eq. (36).
When U(6)=V(6)=1, Eq. (34) gives

Jpa=02q (40)
and so H*=1, as it should be according to Eq. (15).

3 The first paper in reference 2.

THEORY OF THE ENERGY LEVELS
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This is a confirmation by direct calculation that the
normalization of probability given by Eq. (2) is correct.
In paper I this normalization was deduced independ-
ently, by a group-theoretical argument.

III. TWO-LEVEL CORRELATION FUNCTIONS
Write U(0)=V ()=1+A4(6) in Eq. (15), where 4 (8)
is still an arbitrary function. Then

=({I[1+46,]),

the product now extending over all the (2m) levels 6;.
Equations (33) and (34) now become

(41)

H2=det|d,y+7 5/, (42)
1 *
’pq=_<1+‘£)/ A(0) exp[i(p—q)61d6
27 q/J _«
+(74§;) f f_ A@A(0-9)
Xexp[i(ph—qe)ldode. (43)

All the cluster-functions T, (6s,- * +,8.) can, in principle,
be determined by expanding the two sides of the
identity (42) in powers of 4 (6). According to Egs. (3),
(41), and (7),

2r

o 1
H=% —

| Rﬂ(oly' ot ,0,,)
- XA@0)---A(04)d01 - -dbn (44)
oa 1)»—1
.—_exp ( ) / / Ta(0y,- -+ ,05)

XA8) - A(6,)db:- - -dﬁn]. (45)

The determinant for H? can be expanded along its
leading diagonal. The result is a series beginning with
the terms

=1+ (2m/x) / A (a)dH'—”E%:I—)[ / A (av)da]2

+5 (;P;) [ [104c06-

X explip(6— @]dm_gi p» (1+3)(1+§)

el q
X / / 4()A(¢) exp[i(p—g) 6— ) Jdbdo, (46)

the remaining terms being of order 4% and higher.
Since the function A4 () is arbitrary (and this is here
essential), each T, can be picked out as the coefficient
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of [4(61)- - - A(8.)] in the logarithm of the series (46).
In the case n=2, this procedure gives

T5(6,0)=—2 (p/4mi)e(6— ¢) exp[ip(6— ¢)]

1
—¥ (2+f+3) expli (p—q) (0— )]
q 7

81? pua

=+3e(0— ¢)Dsn (80— ) — {Isw (6— o)}

X{Dsn(0— )} +{sn(6— )}, (47)
where we have written
(@)= 1 5 giem sin (ma) "
sn(a)= -2 e —m, (48)
Df(a)=(3/0a) f(a), (49)
17@= [ sy (50)
In the limit N — o, Eq. (47) becomes
Vo(xix2)={3—Is(}{Ds(n}+{s(n)}>,  (51)
r= le—le ’
sin(zxr) -
s(r)=lim {(2n/N)sw(2wr/N)}= (52)
wr
Since
/ s(r)dr=3, (53)

Eq. (51) is equivalent to the formula for R, stated in
the abstract.

The behavior of V', for small and large values of 7 is
given by

Yo(r)=1——ar4+—a%——x¥'4---, (54)
6 60
1 14-cos*(ar)
Ya(r)= 4. (55)
T wirt

The Fourier transform of ¥ gives the two-level form
factor according to Eq. (14),

b(k)=1—-2|k|+|k| In(14+2]k]), (|k]<1),
=—1+|k| In[(2|k]+1)/(2[2] -1)],

(1&] >1). (56)
This has the behavior
b(R)=1—2{k| +2k2+--- (37)
1 1
b(k)y=—-+ (58)
12k2 80k

for small and large k. At the points (k===1) where the

FREEMAN ]J.
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analytic form of (k) changes, not only (k) but also
its first two derivatives are continuous. There is a
discontinuity only in the third derivative. This is
connected with the fact that the oscillating term in
Ya(r) according to Eq. (55) is of order »—* for large 7.

The oscillating term in Eq. (55) is of considerable
interest, as it indicates the presence of an incipient
crystal-lattice structure or long-range order in a series
of eigenvalues. Even at large separations, two eigen-
values feel the natural periodicity of the lattice, and
have a slight preference for separations which are an
integer multiple of the mean level spacing. Unfor-
tunately, the r—* dependence of this effect makes it
unobservable in practice. To see the second maximum
(at r=1) of the oscillatory term standing out from
statistical fluctuations, one would need a well-observed
series of more than 10 000 levels.

The Gaudin-Mehta method gives information not
only about the total eigenvalue distribution but also
about the separate distributions of odd-numbered or
even-numbered levels. For example, one may take in
Eq. (15) U(®)=1, V(6)=1+A4(6). Then

H=(Lu[1+4(6)]), (59)

the product extending over m levels lying alternately on
the unit circle. Equation (42) now holds with

rmi(ug) [ 40 estip-go. 0

The expression of H involves correlation functions of
the alternate eigenvalue series. The analysis proceeds
as before, only the term in }e(f— ¢) is now missing
from Eq. (47). The results are the following.

In an infinite eigenvalue series with mean spacing
D=1, let

%[1— Vo (xl,xg)]dxldxg (61)

be the probability for finding two eigenvalues in the
intervals [y, ;4dx1], [%s, #2+dxs], both belonging
to the same alternate series. Then

Vo (xyxe) = {s(r)}*— {Is()}{ Ds(n)}, (62)

with the same notations as in Eq. (51). For large and
small » we find

1
Vor(r)=1——miri4-- - -, (63)
135
cos(mr) 144w sin(ar) 1-4-cos*(xr)
Yz’(?’)= d Jr —_

r wir? wirt
4o (64)

The corresponding two-level form factor is
be(k)=2—2{k|+ k| In(|2{%] —11), (lk] <), ©63)

=0, ([k1>1).
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The long-range order of the eigenvalue series appears
much more strongly in Eq. (64) than in Eq. (55),
and it shows clearest of all in the singularity of the
Fourier transform b¢(k) at k=%. This behavior of the
alternate eigenvalues proves that the long-range
crystalline structure of the level-series is real. In a
one-dimensional gas, the operation of merely picking
out alternate atoms for examination could not create
long-range order if long-range order had not been
present to start with.

In an observed series of levels of practical length,
say a few hundred levels, the first few oscillations of
Eq. (64) should be distinguishable. But for this test of
the theory to be meaningful, it is necessary to be sure
that all the observed levels belong to a single series and
that none have been missed.

A very intriguing possibility suggests itself in the
situation, very frequent in practice, in which an
observed set of levels is a superposition of two uncor-
related series. This situation arises, for example, when
slow neutrons are captured by an odd-4 nucleus into
levels with two possible spin values. In general it is
difficult to say which levels belong to which series, and
even the proportion of levels in the two series is a
matter of conjecture.*

Let a level-series be a mixture of two uncorrelated
series 1 and 2, in the proportions f, (1— f). The 2-level
cluster function ¥, of the combined series is then

Yao(r)=1Y:(fr)+ A= fPYL(A=f)r],  (66)
and the form factor is
b(k)=fb(k/ )+ (1— fb[k/(1—f)]. (67)

The function b(%) can be measured by Fourier analysis
of the observed 2-level correlations. In principle, if
the series were long enough, one could find the dis-
continuities in the third derivative of b(k) and so
determine f directly. In practice this will not be possible,
because the function d(%) is too smooth. The stronger
discontinuity of b°(k) is also of no help, since there is
no way to pick out alternate levels from two super-
imposed series. Practical methods for determining f in
such cases will be discussed in paper 1IV.

IV. REGULARITY OF EIGENVALUES
AROUND THE CIRCLE

As a simple application of the theory of Sec. III, we
calculate the mean-square deviation of the eigenvalues
[exp(#6;)] from a regular arrangement of & points on

4 The general belief among nuclear theorists is that, when a
nucleus of spin J captures a slow neutron, the compound states
of spin (J—4%) and (J+3%) will occur roughly in the proportion
J to (J+1). E.g., T. D. Newton, Can. J. Phys. 34, 804 (1956).
The experimental evidence for or against this belief is quite
meager. See for example J. A. Harvey, D. J. Hughes, R. S. Carter,
and V. E. Pilcher, Phys. Rev. 99, 10 (1955).

17

the unit circle. This mean-square deviation is

2>. (68)

The minimization over the angle « is elementary, and
gives

i N
A?={—min Y
N ¢ j=1

) 2rij
exp(#6;)— exp(—-N—+¢a)

A*=1—(¢/N?), (69)

¢=( T expliti—Qrid/MI1. (10)

The ensemble average can be expressed in terms of
two-level correlations only, and Eq. (70) bécomes

t=x? CSC2(1r/N)|:1—- (x/N?)

Xf Ty(e){2r| 0| — ¢2}d¢]- (1)
By use of the Fourier expansion

8 )
27| <pl—$02=g7"2'"4z k% cos(ko), (72)
1

Eq. (71) can be reduced to the form

2

s 2 =
;zm 1+—A—7;k [b(k/N)—1]}.  (73)

Now let N — . The sum in (73) may be split into two
parts, 1 <k<yN and k>N, where 7 is small compared
with unity. In the first sum we approximate b(k/N) by
[1—(2k/N)] according to Eq. (56). The second sum
reduces to the integral

/ [5(x)—1J2de=2[ () —1]-+3r%.  (74)
7
Equations (69) and (73) then give

4 Sw?
A2=—A—f-;[ (InN) +’Y+1—EZ]. (75)

Since the mean level spacing is D= (2r/N), we have for
large N '
(A¥/ D)~ (1/7% InN. (76)

Thus the deviations of the 8; from a regular polygonal
arrangement are very small, on the average, even when
N is as large as 10° or 108.

V. COMPARISON WITH THE
UNITARY ENSEMBLE

It is of some interest to compare the results hitherto
obtained with the corresponding results for an eigen-
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value series with the probability distribution

Prvu(®r,- )= (/N ) 2m)~V I |eimeti|2,  (77)

i<y

instead of Eq. (1). The distribution Py, would be
correct for the eigenvalues of a random unitary matrix
in the unitary ensemble defined in paper I. This would
be a model for the energy levels of a complex system
without invariance under time reversal. _

In the unitary ensemble the integrals (3) can be
performed without difficulty, giving the n-level correla-
tion functions

R,.(6,,- ',Gn)=detiSN(0j—0k)!, (78)

the determinant being (#X#) and having every diagonal
element equal to (NV/2r). It is easy then to verify from
Eq. (7) that the cluster functions are

T,.,,(al,- - ,0,,)=Z H[sN(H,-—Ok)].

Here sx(e) is given by Eq. (48), and ¥ I] means a
sum over [ (z—1)!] products, of which one is

sx(61—02)sn (62—83) - - -sn(0,—61),

the others being obtained from it by cyclic permutations
of [1,2,- - - ,n]. In particular, when #n=2,

(79)

(80)

T9u(61,02) = {sn(61—02)}2, (81)
and therefore
—0, (&>, ®2
The analogs to Eqs. (54), (55) are
1 2
Vou(r)=1——n¥?+—atrt+- - -, (83)
3 45
i sin®(wrr)
Vou(r)= (84)
it

Equation (84) shows that the long-range order is
much more marked in the unitary case than it was in
Eq. (55). This was to be expected, since the unitary
case is equivalent to a Coulomb gas at temperature

=7 instead of T=1.

The analog of Eq. (75) is

A= (2/N3)[(InN)+v— (x%/6)].

Thus the mean-square displacement of the eigenvalues
from a regular lattice is only half as great as before.

It is an interesting problem, which we have not been
able to solve, to calculate the correlation-functions for
the symplectic ensemble of paper I. In that case the
square in Eq. (77) is replaced by a fourth power. The

(85)
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effects of long-range order must then be even stronger
than in the unitary case.

VI. ENERGY AND SPECIFIC HEAT OF THE
EQUIVALENT COULOMB GAS

We now return to the study of the probability distri-
bution (1) of the eigenvalues of symmetric unitary
matrices. In Sec. VI of I it was shown that this is also
the distribution function of a classical Coulomb gas at
temperature 7'=1. A measure of the energy of the gas
is provided by the quantity

W=— 3 In|e®i—e®i|+34N InN.

<7

(86)

This W is a convenient statistic by which to compare
observed eigenvalue distributions with the theory, since
we saw in Sec. IX (C) of I that the theoretical expecta-
tion-value and variance of W are both calculable. In
fact, for large N,

(Wy=NU, U=1-—%}vy—1%In2=0.365, (87)
3 =
((W—(W)))=NC, C=5-—E= 0.266. (88)

Here U is the mean energy, and C the specific heat per
particle, in the Coulomb gas at temperature 1. The
values given in Eqs. (87), (88) were obtained from the
conjectured analytic form of the partition function of
the gas.

The value of (W) can also be expressed in terms of
the 2-level cluster functions. A little manipulation of
Eq. (86) gives

=1 [ [ 700,0) ] ot |t o+ 4 ¥
=%N/ Ya(x) In| 27x|dx

< b(k)
=—iN ug.é{ / —};—dk-l—(lnn)'i-'v - (89)

The integral (89) is elementary, and we obtain thereby
a direct check of Eq. (87).

Suppose next that the observed levels are a mixture
of two uncorrelated series in the proportions f, (1—f).
Equation (89) still holds, with the form factor b(k)
given by Eq. (67). The expectation-value of W for the
mixed series is therefore

(W)=NU—=3N{fInf+(1—7) In(1=/)}.

The expectation value of W? will bring in cluster
functions of 2, 3, and 4 levels. After some algebra we find

(90)
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((W—=W)))

. / / f Vi@, yaw) In(2r]s—y])

Xln(21r|z-w])dydzdw+1\’//l/'3(x,y,z)
XInQ2x|x—y]|) ln(21r|x—z|)dydz—%N/Yg(x,y)

xtin(rls=y Dy [ [ [trea

—8(x—2) J[V2(yw)—8(y—w)] In(2x|x—y])

XIn(2x|z—w|)dydzdw. (91)
The last term of Eq. (91) may be simply expressed in
terms of the 2-level formfactor 6(k); it is in fact

IV / “Lb(k)— 1T—dk. (92)
0

The integrals in Eq. (91) could all in principle be
evaluated, using the methods of Sec. III to determine
the functions ¥; and ¥, However, this would be a
tremendous labor; even to write down the explicit
form of ¥'3 takes many lines of print. It is very fortunate
that the sum of all the integrals is known independently,
being given by Eq. (88).

In the case of the unitary probability-distribution,
the ¥, are simple functions given by Eq. (79), and the
integrals (89) and (91) can be performed without too
much trouble. In this case we obtain Egs. (87) and
(88) with

U=3(1-v), C=2—(x%/6), (93)
in agreement with the results of Sec. IX of I. This
serves as a double check, verifying both the conjectured
partition-function of paper I and the algebra leading
to Eq. (91).

When the variance of W is computed for a mixture
of two level-series, it turns out that only the last term
of Eq. (91) is affected. After much cancellation of
terms, we find

(== [ (-1

X[b((1—f)k)y—1]Jk2dk. (94)
The integral in Eq. (94) does not seem to be expressible
in terms of elementary functions. In the simplest case
f=1%, the added term (94) is just equal to the term (92)
already appearing in Eq. (91), but even in this case no
analytic integration seems possible.

If b(k) given by Eq. (56) is plotted numerically, it is
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seen that

b(k)=exp(—2|k|) (95)
is quite an accurate approximation except for large |%].
Large values of |£| are unimportant in Eq. (94), and
so Eq. (95) should give a useful approximation.
Substitution of Eq. (95) into (94) gives the result

(W=W)H)=NC=N{fInf+(1—f) In(1=1)}, (%)

which should be accurate within 109, for all f. Note
that Eq. (90), although of similar appearance to Eq.
(96), is an exact formula not resting upon the approxi-
mation (95).

Suppose that a series of V eigenvalues around the
unit circle is known to be a mixture of two series having
separate probability distributions of the form (1),
only the proportions f, (1—f) of the two series being
unknown. Then a single measurement of W for the
combined series will yield a value for f by Eq. (90).
The variance of this measurement of fis by Eq. (96)

N 4 C—fInf—(1—f) In(1-f)
(an >_—N Inf—In(1— f) '

Unless f happens to be very close to 3, the expected
error in the measurement of f is of the order of N5,

This method of measuring f is obviously far more
precise than the method discussed in Sec. ITI. However,
itis not yet a practical method, since it requires observa-
tion of the eigenvalues round an entire circle. In paper
(IV) we shall show how the method can be adapted to
the practical situation in which we observe eigenvalues
only on a small part of the circle.

(97)

VII. LEVEL-SPACING DISTRIBUTION

Until now we have studied only the probability-
distributions R, (61, -,0,) for finding #» levels at a
given set of positions, irrespective of the remaining
levels. Gaudin and Mehta,? following Wigner, were
mainly interested in the level-spacing distribution
function .S(6). This is defined by the statement that
S(62—061)d8:d6; is the probability for finding 2 levels in
the intervals [8;, 6:4+d8:] and [8s, 62-+df>], and no
levels in the interval [6;+d8;, ;. Also

S©0)=[R/de"], (98)

where R(8) is the probability that a randomly chosen
interval of length 8 is empty of eigenvalues.

The connection between R(f) and the cluster-func-
tions 7', is

o 1 @
R(Za)-——-exp’ - ,§1; / . '/;a Tn(By, - -,04)
X dby- - -do,.}. (99)

In fact R(2e) is precisely the expression H given by
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Egs. (41) and (45), if we choose for U(@)=V(0)=1
+A(8) the function

U@ =1(—rt+a<<r—a)

=0(w—a<0<w+a). (100)

It is convenient to choose the center of the excluded
interval to be at 6=, so that U(6) is an even function
in (==, +=). Then Egs. (35), (36) can be used, and
we deduce

R (20[) =det|? pa— Sin[ (P _ Q)a] Sin[ (1"*‘9)‘1] )
(p=9) w(p+q)

$ and ¢ taking the values (3, --+,m—3%). This is the
analog, for the circle, of Gaudin’s Eq. (12),5 which
gives the corresponding expression for the Gaussian
model with finite . The analogy becomes even closer
if we write Eq. (101) as

(101)

1 o
Opg—— / cos(pf) cos(gf)ds|. (102)

R(2a)=det
) ™J a

When NV — «, the determinant (102) becomes the
Fredholm determinant of an integral equation, and
our results coincide with those of Gaudin. We find that,
for an infinite eigenvalue series with mean spacing
D=1, the probability £(x) that a random interval of
length x be empty of eigenvalues is

E@= 11 1—a\), (103)

=1

where the A; are the eigenvalues of the integral equation

AF(y)= / cos{3rxyz)F (3)dz. (104)

Gaudin® has shown how to use Eq. (103) for the
practical computation of E(x).

A different application of the Gaudin-Mehta method
is made by choosing, instead of Eq. (100),

U@®=V0)=1(—rta<b<r—a)

U@®)=0, V({@)=2(r—a<l<rta). (103)

Let R’'(2a) denote the expression H resulting from this
choice. R'(6) is then the probability that a randomly
chosen interval of length ¢ will contain #not more than

one eigenvalue. The function
S’ (0)=[d*(R+R')/d6*] (106)

is the probability distribution for spacings between
pairs of next-nearest neighbors. Equations (35) and (36)

5 Page 450 of the third paper in reference 2.
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now give

sin(p—qa_ sin(p+g)a

R'(22) =det|s
w(p—q)  w(p+q9)

(107)

P

=det

1 a
Opg——~ / sin(p9) sin(qﬂ)dﬁl. (108)
TJa .
The symmetry between Egs. (102) and (108) is remark-
able, and we do not understand why it exists.

When N — o, the limit of R'(2e) is E’(x), the
probability for an interval x to contain not more than
one eigenvalue in a series with mean spacing D=1.
Equation (108) gives the result

E@= 1T (1=,

=1

(109)
where the u; are the eigenvalues of the integral equation
1
uF(y)= / sin(3wxyz)F (z)dz. (110)
0

Gaudin’s method would allow one to compute £'(x),

-and hence the next-nearest neighbor spacing distribu-

tion, numerically.

Now comes a still more peculiar coincidence. Let
R,(2a) be the probability for an interval (2a) to be
empty, in an eigenvalue series taken from the unitary
probability-distribution (77). Then Eq. (78) gives

(—)“
ull®)— d N\Y; k
Ru0)- T — f /_ et|sx(:0 e){la

(111)

Using Eq. (48) and standard theorems from the algebra
of deterrmnants Eq. (111) becomes

sin(p—q)a
R.(2a)=det|8,,— ———P———
7(p—q)
=det|6,,— — ei(r—0ogg| (112)
27 )«

The determinant here is (VX A), the indices  and ¢
taking the values [—m-+3%, —m+3, ---,m—37]. The
similarity to Egs. (102) and (108) is again striking.
If we now add and subtract the rows and columns of the
determinant (112) with indices (Zp), (24¢), we find
the identity

R,(20)=R(20)R'2ax). (113)
When N — o, the limit of R,.(20) is E.(x), the
probability for an interval x to be empty in an infinite
eigenvalue series with mean spacing D=1 in the
unitary ensemble. Equation (112) then reduces to the
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Fredholm determinant

Eu®)= IT (1—evp),

j=1

(114)

where the »;are the eigenvalues of the integral equation

1

VF(3)=} / expGriny)F@)ds,  (115)

and the ¢ are (+1) or (—1) according as the corre-
sponding eigenfunction is even or odd. The even v; are
identical with the A; satisfying Eq. (104), while the
odd v; are equal to (4u;) with u; satisfying Eq. (110).
Therefore Eqs. (103), (109), and (114) satisfy the
identity

Ey(x)= E(x)E'(x), (116)

which is just the limit of Eq. (113) as N — .

The meaning of Eq. (113) can be illustrated in a
concrete way as follows. Let 3, be an eigenvalue series
of order N=2m, taken from the unitary probability
distribution (77). Let 2 be another eigenvalue series
of order N, constructed according to the following
recipe: take two independent eigenvalue series 2_; and
22, each of order NV and belonging to the usual prob-
ability-distribution (1), superimpose the two series,
and then pick out alternate eigenvalues from the
mixed series. In view of a certain biological analogy,
the suffix M may here be considered to stand for the
word “meiosis.” Now the product R(2e)R’(2a) is just
the probability that a random interval of length (2a)
contains no term of the series 3_ . Therefore Eq. (113)
has the following meaning: the distributions of level-
spacings in the series 3, and Y are identical.

This property of the series 3_a suggests that we also
examine its 2-level cluster function Taum(e), which can
be derived quite easily from the results of Sec. IIIL
The construction of 3 gives the formula

L= (23)— (£ Ro)(E Pus)

T

= (2 Rojp) (X Pa)—2(Z Qo) (X Quiern).  (117)

Here Pj(a) is defined to be the probability, for the
separate eigenvalue series 3.1 or 32, that an interval &
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shall contain precisely ;j eigenvalues. Q;(a) is the
probability that an interval «, with one end point at
an eigenvalue of D_;, shall contain j additional eigen-
values. R;(a) is the probability that an interval & has
eigenvalues of X_; at both end points and j additional
eigenvalues in its interior. From Egs. (47) and (62)
it is easy to compute

me~1
2 Ryj=3(k*—sy*+IswDsy— Dsy),
0

k= (N/2r), (118)
m-—2
Y Rojri=13(B—sn®+IsyDsy), (119)
0
m—1
2 Q=3 (k+sn), (120)
(1]
m—1
2 Qsir1=3(k—sn), (121)
0
S Py=1—Isy, (122)
0
m-—1
(123)

2 Pya=Isy,
0

the notations being defined by Egs. (48)-(50). Sub-
stituting these expressions into Eq. (117) and using
(81), we find

Topm(e)=sn?=Ts,(e). (124)

So the series D_a and Y, have identical 2-level corre-
lations. This fact is additional and distinct from the
identity of their spacing distributions.

In view of the foregoing, we make the general
conjecture that all statistical properties of the eigenvalue
series 2_u and 2. are identical. We can find no general
argument to explain why this conjecture should be
true; but, if it were false, the identities (113) and (124)
would become even more mysterious than they already
are.

Note added in proof: This conjecture has subsequently
been proved by Dr. J. Gunson of the University of
Birmingham, England.
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