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Using mathematical tools developed by Hermann Weyl, the Wigner classification of group-repre-
sentations and co-representations is clarified and extended. The three types of representation, and
the three types of co-representation, are shown to be directly related to the three types of division
algebra with real coefficients, namely, the real numbers, complex numbers, and quaternions. The
author's theory of matrix ensembles, in which again three possible types were found, is shown to be in
exact correspondence with the Wigner classification of co-representations. In particular, it is proved
that the most general kind of matrix ensemble, defined with a symmetry group which may be com-
pletely arbitrary, reduces to a direct product of independent irreducible ensembles each of which

belongs to one of the three known types.

I. INTRODUCTION

HE purpose of this paper is to bring together
and ' unify three trends of thought which have
grown up independently during the last thirty years.
These are (i) the classification by Wigner' of repre-
sentations of groups which include time-inversion,
(ii) Weyl's general theory of matric algebras and
their commutator algebras,” and (iii) the study of
ensembles of random matrices, begun by Wigner®
and continued by various other physicists.* It will
be shown that these three theories are all variations
upon a single mathematical theme. It is not sur-
prising that the three theories should turn out to
be closely related, since they all took their origin
from the work of the great algebraists Frobenius
and Schur at the beginning of the twentieth century.®
Our way is threefold in another and deeper sense.

1E. P. Wigner, Nachr. Akad. Wiss. Gottingen, Math.
physik. Kl., 546 (1932). See also, E. P. Wigner, Group Theory
and its Application to the Quantum Mechanics of Atomic
Spectra (Academic Press Inc., New York, 1959), English
edition, Chaps 24 and 26.

2 H. Weyl, The Classical Groups, Their Invariants and
Representations (Princeton University Press, Princeton, New
Jersey, 1939). Chapter 3 of this book contains the essential
theorems on which all of our arguments hang. For Weyl's
treatment of semilinear representations, see Duke Math. J. 3,
200 (1937).

3 E, P. Wigner, Ann. Math. 53, 36 (1951); 62, 548 (1955);
65, 203 (1957); 67, 325 (1958).

4 F. J. Dyson, J. Math. Phys. 3, 140, 157, and 166 (1962).
This series of three papers includes references to earlier work
by others in the same field. Paper IV in the series is being
written in collaboration with Dr. M. L. Mehta and will be
published later. The present paper should logically be con-
sidered to be number zero in the series, since it provides an
improved mathematical and logical foundation for the rest of
the series. Since Roman numerals contain no symbol for zero,
we preferred to publish the present paper under a separate

e.

s A sketch of the historical development i8 to be found in
the section headed “Remembrance of Things Past” in Weyl’s
book (reference 2), p. 27.

In each of the three theories which we aim to unify,
there appears a triple alternative, a choice between
three mutually exclusive possibilities. (i) The ir-
reducible representations of a group by unitary
matrices fall into three classes, which are called
potentially real, complex, and pseudoreal.’® Another,
and quite independent, threefold choice exists for
representations of a group by unitary and anti-
unitary matrices. Wigner” calls such representations
co-representations, and he classifies them into
types I, IT, and III. (ii) The classical groups studied
by Weyl are of three types, namely orthogonal,
unitary, and symplectic. (iil) The present author*
found three distinet kinds of ensembles of random
matrices, to which he attached the same three names
as are given to the classical groups. In the previous
discussion of matrix ensembles,* the question whether
all irreducible ensembles belong to one of these three
types was not raised. This question will here be
answered in the affirmative.

The recurrence of the threefold choice in all these
contexts gave the first hint that a unified mathe-
matical treatment of group representations, com-
mutator algebras, and ensembles should be possible.
It was Bargmann who pointed out to the author®
that the root of the matter is to be found in the
classical theorem of Frobenius.®

Frobenius’ Theorem. Over the real number field

¢ Chapter 24 of Wigner’s book (reference 1). This classifi-
cation was discovered bé A. Loewy, Trans. Am. Math. Soc. 4,
171 (1903). See also G. Frobenius and I. Schur, Sitzber.
preuss. Akad. Wiss., Physik.-math. KI. 186 (1906).

7 Chapter 26 of Wigner's book (reference 1).

V. Bargmann (private communication).

® G. Frobenius, J. reine u. angew. Math. 84, 59 (1878);
L. E. Dickson, Linear Algebras (Cambridge University Press,
New York, 1914), p. 10.
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there exist precisely three associative'® division alge-
bras, namely the real numbers, the complex numbers,
and the real qualternions.

Once this is understood, the further development,
of the theory is extremely simple. All that is neces-
sary is to apply the general theorems of Weyl® to
the special case in which the ground field of the
matric algebras is the field of real numbers.

Probably all these connections would have been
clarified long ago, if quantum physicists had not
been hampered by a prejudice in favor of complex
and against real numbers. It has been generally
believed that only the complex numbers could
legitimately be used as the ground field in discussing
quantum-mechanical operators. Over the complex
field, Frobenius’ theorem is of course not valid;
the only division algebra over the complex field is
formed by the complex numbers themselves. How-
ever, Frobenius' theorem is relevant precisely be-
cause the appropriate ground field for much of
quantum mechanics is real rather than complex.
Specifically, as soon as anti-unitary operators such
as time inversion are included, it is simpler and
more natural to work with a real ground field than
to follow Weyl’ in studying semilinear operators
over the complex field.

Physicists have known for a long time that in
practice, when invariance under time-inversion is
in question, complex phases are no longer arbitrary
and undetermined coefficients may be taken to be
real. Physicists are, in fact, like M. Jourdain talking
prose, using the real numbers for their ground field
without knowing it. One purpose of this paper is
to make the use of the real ground field in quantum
mechanics official and undisguised.”” No change in
the physical content of the theory is thereby im-
plied. Only it may be easier for students to under-
stand what they are doing if the mathematical

10 The restriction to associative algebras is forced b{ the
fact that the rule of matrix multiplication is associative. In all
applications of group theory to quantum mechanics we
identify the operation of multiplication with ordinary matrix
multiplication, It is well-known that a fourth division algebra
over the real number field exists, namely the algebrs of
octonions, if multiplication is allowed to be nonassociative.
It is interesting to speculate upon gmssxble physical interpre-
tations of the octonion algebra [gee . Pais, Phys. Rev. Letters
7, 291, 1961]. We have tried, and failed, to find a natural way
to fit octonions into the mathematical framework developed
in this paper.

1t The general formalism of gua.ntum mechanics over a
real ground field has been worked out by E. C. G. Stueckel-
berg, Helv. Phys. Acta 32, 254 (1959); 33, 727 (1960). Two
further papers {sy Stueckelberg and collaborators have been
circulated as preprints and will &pfpear in Helv. Phys. Acta.
These papers have many points of contact with the present
work. For a brief summary of Stueckelberg’s conclusions, see
also the paper of Finkelstein et al. (reference 12).
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formalism is brought into closer correspondence with
physical practice.

A final by-product of the work described in this
paper is that it defines an area of quantum mechanics
within which quaternions play a natural and es-
sential role. Several attempts have been made in the
past’? to construct a radically new version of quan-
tum mechanics in which complex numbers are from
the beginning replaced by quaternions. Our analysis
has nothing to do with these attempts. Proceeding
in a modest and conservative spirit, we merely
show that quaternions form the appropriate alge-
braic basis for a description of nature whenever
we have to deal either with pseudoreal group
representations or with co-representations of Wig-
per’s type II. The context in which quaternions
arose historically, in a study of the three-dimen-
sional rotation group, can now be seen to be an
extremely special case of this general principle.
Every group which admits pseudoreal representa-
tions equally admits a natural description in terms
of real quaternions.

II. GROUP ALGEBRA AND COMMUTATOR ALGEBRA

The starting point of our analysis is a group @
which is supposed to be a symmetry-group for some
quantum-mechanical system. For example, G could
be a rotation group, or an isotopic-spin group, or
a time-inversion group, or all of these in combina-
tion. The quantum-mechanical states belong to a
linear vector space H, of finite dimension n over
the field C of complex numbers. An element g of
G is represented in H, by an operator A(g) which
is either unitary or antiunitary. Physically, the
antiunitary A(g) will correspond to operations ¢
which involve time-inversion. We make the con-
vention that the letter g may denote any element of
@, the letter w denotes an element for which A(u)
is unitary, and the letter ¢ denotes an element for
which A(a) is antiunitary. The set of w forms a
subgroup @, of G. We assume that G contains some
antiunitary elements a. Then @, is an invariant
subgroup of @ with index 2. The a form a set G,
which is the unique co-set of G, in G.

The A{a) are not matrices over the field of com-
plex numbers. The notion of group representation
can be enlarged, following Weyl’ and Wigner,” so
as to include such semilinear operations. However,
we find it simpler and more fruitful to represent

12 G, Birkhoff and J. von Neumann, Ann. Math. 37, 823
(1936). E. J. Schremp, Phys. Rev. 99, 1603 (1955); 113, 936
(1959). D. Finkelstein, J. M. Jauch, 8. Schiminovich, and D.
Speiser, J. Math. Phys. 3, 207 (1962).
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the A(a) by true matrices over the field R of real
numbers. We define the correspondence

Ag) & M(g) 1

in the following way. M(g) is a {2n X 2n] matrix
with real elements. Each (2 X 2) block in M(u)
is derived from a single element of the [n X n)
complex matrix A(u) by the replacement

a+iBH[; —ﬂ. @)

Each A(a) is of the form
Aa) = Ula)j, ®)

where U(a) is unitary and j is the operation of
complex conjugation. The M(a) are defined by
making the substitution (2) in U(a) together with

the replacement
i=1I.% [1 0]. @
0 -1

The space Hp in which the matrices M(g) operate
is a real 2n-dimensional vector space. Each vector
in Hp is composed of the real and imaginary parts
of the components of the corresponding vector in H.,.
It is convenient to consider the symbol

i=1, % [O _1] ®)
1 0

also as a matrix operating in H 5.

The M(g) now form a true 2n-dimensional repre-
gentation of the group G over the field R. The dis-
tinetion between unitary and antiunitary elements
of @ is provided by the commutation rules

M)y = iM@), (6)
M(a)s = —iM(a). @

All the M (g) are orthogonal matrices.

A matric algebra over R is defined as a set of
matrices which is closed under the three operations
of addition, matrix multiplication, and multiplica-
tion by scalar coeflicients in R. Three such algebras
will now be introduced:

A generated by the M(u), (8)
B generated by the M (u) and 7, )
D generated by the M (u), M(a), and <. (10)

The commutator algebra of a given algebra K is
defined as the set of matrices which commute with
all matrices in K. The commutator algebra is itself
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a matric algebra over R. In particular we define

X = commutator algebra of 4, (11)
Y = commutator algebra of B, (12)
Z = commutator algebra of D. (13)
The inclusion relations
ACBCD (19
immediately imply
XDOYDa. (15)

The algebra A is given the name ‘“‘group algebra
of G, over R.” In an obvious sense, B is identical
with the group algebra of G, over C. The algebra
D is not a group algebra over C in the ordinary
sense, but it may be considered to be the group
algebra of G over C. However, it is important that
we have defined each of 4, B, D as algebras with
coefficients in R.

We next introduce some convenient notations;
following Weyl.” If K is any algebra and m a positive
integer, we denote by mK the algebra of matrices
consisting of m identical blocks,

M O O
oM 0 (16)
0 -« M

with M in K. Symbolically, we may write this as
an outer product,

mK = I, X K. (17)

We denote by [K],, the algebra of all matrices con-
sisting of m’ blocks,

Mll M!2 Mlm

M, M.
‘21 .22 Al'in , (18)
ml Ma! Mm

with each M,; independently a matrix in K. In
particular, when K = R is the algebra of scalars,
R, is the algebra of all real matrices of degree m.

Two algebras A, A’ are said to be equivalent
(A ~ A’) if there exists a fixed nonsingular matrix
N such that every matrix M of A is related to the
corresponding M’ in A’ by

M = NM’N™. (19)
If A is any algebra, the inverse algebra A4 is obtained
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from A by inverting the order of factors in all
products, thus

M= MM, (20)

if and only if

M = Mle. (21)

Finally, a division algebra is defined to be an algebra
in which every nonzero element M has a reciprocal
M,
With these notations and definitions, we are in a
position to state the main theorem of Weyl."
Weyl's Theorem. Let K be any group algebra over
R, and L its commutator algebra. Then K and L
are simultaneously equivalent to the canonical forms
K~ ;s,[E,.],,, L~ Z LB, (22
The summations here represent direct sums over
diagonal blocks of matrices. Each value of j corre-
sponds to one inequivalent irreductble representation
of the group T which generates K over R. For each j,
E; is a division algebra, and s;, t; are positive inlegers.
The matriz block corresponding to index j has degree

d; = s;lie;, (23)

where e; 18 the degree of E;.

The following remarks may be made concerning
this theorem.

Remark 1. The relation between the algebras K
and L is symmetrical. Thus K is also the commutator
algebra of L.

Remark 2. When the sums (22) reduce to a single
term, the algebras K and L are called simple. In
this case the suffixes j may be dropped.

Remark 3. When K is generated by an irreducible
representation of T, K is simple and the integer's
is equal to unity. In this case

K~E, L~iE (24)

Remark 4. By Frobenius’ theorem (see Sec. I),
the possible division algebras over R are three in
number, and are denoted by E, C, and Q. R has
degree 1, and is generated by the scalar I, = 1.
C has degree 2 and is generated by

Iz=[1 0} eﬁ[o —1]_
01 1 0

Note that this e, is not necessarily identical with the
original imaginary unit 7 defined by Eq. (5). Since
13 This is theorem (3.5B) on p. 95 of Weyl’s book (reference

2), combined with the theorem that every group ring is fully
reducible (p. 101 of the same book).

(25)
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C is commutative, C = C. The quaternion division
algebra @ has degree 4 and is generated by

I,

71

T2

T3

I,

71

1 0 0 0]
_ 0 1 0 0
0 0 1 ’
Lo o o 1l
0 1 0 0]
_ |1 0 0 0
0O 0 o0 ,
1: 0 0 -1 0. (26)
0 0 1 0]
_{ 0 0 0 -1
-1 O o0 o0 ,
0 1 0 o
0o 0 o0 1]
_| 0 0 1 0
0 -1 0 o0 .
| —1 0o 0 OJ
The inverse algebra @ is then generated by
1 0 o0 0]
_| O 1 0 o0
0 0 1 0 ’
c 0 o 1
0 1 0 0
|1 0 0 0
0O 0 0 -1 ’
L 0 0 1 0: @
[0 0 1 0
| 0 0 o0 1
-1 0 0 0 ,
L 0 -1 0 ol
( 0 0 0 1]
_| 0 0 -1 0
0 1 0 0 .
L—1 0 o0 ol

This particular representation of @ and @ by real
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matrices is called the regular representation. It has
the property that all matrices in Q@ commute with
all matrices in @. Thus @ and  are commutator
algebras of each other, as required by the theorem.

Remark 5. When K is a simple algebra, the division
algebra E is uniquely fixed and must be either R, C,
or Q. In these three cases we say that the representa-
tion of I' by K is of type R, type C, or type @,
respectively.

Remark 6. We shall apply Weyl's theorem to the
algebras A, B, and D defined at the beginning of
this section. In the case of A, the group I is identical
with G;. In the case of B, the group T is the direct
product of G, with the Abelian group T, generated
by (I, 7). In the case of D, the group T is the product
of G with T,, the commutation rules between G
and T, being given by Egs. (6) and (7). Each of
A, B, D is thus a group algebra over R in the
ordinary sense, although only B is a group algebra
over C.

The following lemma'* is important in determin-
ing the structural relations between the algebras
B and D.

Lemma. Let M,(g), M.(g) be two tnequivalent ir-
reductble components of the algebra D. Then the sub-
algebras M,(u), M.(u) in B are inequivalent, and
no irreductble component of M,(u) can be equivalent
to any irreductble component of M,(u).

To prove the lemma, we assume that M,(g) and
M,(g) are inequivalent and that M,(u) and M,(u)
have two equivalent irreducible components. There
then exists a matrix P in the algebra Y, linking
the two inequivalent blocks M, and M, of the
algebra D, but commuting with the algebra B.
This P satisfies

Pi =iP, PMaa;") = Myaa;")P, (28)

for any two antiunitary elements a,, a, in G. There-
fore,

(M ()] "PM,(ar) = (M(a)]"PMy(a) = W, (29)
where W is a matrix independent of a,, a,. Hence

PM(a) = M (@)W (30)
for all ¢ in @. Since Eq. (30) also holds with a re-
placed by a™!, we have

M (a)P = WM,(a). (31)

14 This lemma could probably be deduced as a special case
from the general theorems of A. H. Clifford, Ann. Math. 38,
533 (1937), concerning the connections between representa-
tions of groups and subgroups. However, it seemed simpler to
give a direct and elementary proof of the lemma without
appeal to Clifford’s work.

1203
Therefore,
P+ W)M,(a) = M,(a)(P + W) (32)
for all @ in G, and this implies
(P + W)M\(g) = Mu(g)P + W).  (33)

Since M,(g) and M,(g) are supposed irreducible
and inequivalent, Schur’s lemma'® now implies

P+W=0. (39)
But then Eq. (30) becomes
PM(a) = —M,(a)P. (35)
Equations (28) and (35) together give
iPM.(g) = M(g)iP (36)

for all g in G, and therefore by Schur’s lemma again
iP = 0.

Thus the operator P cannot exist, and the lemma
is proved.

Remark 7. An equivalent statement of this lemma
is as follows. Let the algebras Y and Z be written
in the canonical form of Weyl's theorem as direct
sums of diagonal blocks,

Y=2Yh Z=2Zh
k i

where the Z; are inequivalent simple algebras and
likewise the Y,. The lemma states that each Y,
is confined to a single block containing precisely
one Z;. This means that the structural relation
between Y and Z is completely determined by con-
sidering the separate blocks Z;.

37

III. WIGNER’S CLASSIFICATION OF IRREDUCIBLE
REPRESENTATIONS

In this section we shall establish the connection
between Weyl’s theory of group algebras (Sec. II)
and the classification of group representations by
Wigner.!

A few preliminary observations must first be made.
The equivalence relations in Eq. (22) refer to a
transformation to canonical forms by a similarity
relation (19) in which N may be an arbitrary real
nonsingular matrix. According to a standard argu-
ment,'® since the algebra.K is generated by an
orthogonal group representation, the transformation
matrix N may be chosen to be orthogonal. Next we
show that, when the algebra K is one of the trio 4,
B, or D, the matrix N may be chosen so as to
commute with 4. The operator ¢ belongs to B and D,

15 See Wigner (reference 1), p. 75, Theorem 2.
18 See Wigner (reference 1), p. 78,
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and to the commutator algebras X and Y of A and B.
So in each of the three cases, ¢ belongs either to
K or to L. When the transition to canonical forms
is made, 7 is transformed into some matrix ¢’ which
has nonzero elements only within the blocks where
the canonical form of K or L exists. The trans-
formed 7’ still satisfies

P = —I. (39)

It is therefore possible to transform ¢’ back into the
standard form ¢ by a real orthogonal transformation
working within each diagonal block separately. As
a result, we have an orthogonal matrix N' which
transforms K and L into the canonical forms (22)
and transforms ¢ into ¢. This N then commutes
with 7.

When N is chosen to be orthogonal and to com-
mute with 4, N is identical with a unitary trans-
formation of the original complex vector space H..
Thus the canonical forms (22) are obtained by a
change in the representation of state vectors, accord-
ing to the usual terminology of quantum mechanics.
It is convenient for us to choose N to be a trans-
formation of this special kind. When this is done,
the division algebras C and @ will not in general
appear in the particular representations (25) and
(26). For the quantum-mechanical applications it is
useful to have 7 in the standard form (5), whereas
there is no strong reason to prefer the representations
(25), (26) of C and @ to other equivalent repre-
sentations.

Let now G, be a group composed of unitary opera-
tors only. For the moment we are not concerned
with the antiunitary part of G, and so we consider
the algebras 4, B, X, Y only. Suppose that the
operators A(u) form an irreducible representation
of @, over C. Since C is the only division algebra
over C, the forms of the algebras B and Y are com-
pletely determined by Weyl’s theorem

B = (0)., Y =nC.

Equation (39) is in fact merely a statement of
Schur’s lemma.' Also, it follows from the defini-
tions that every matrix in X which commutes with
7 belongs to Y.

The order (number of linearly independent ele-
ments) of the algebra B is 2n’. According to Egs. (8)
and (9), the order of A is 2n” if ¢ belongs to A,
n® if ¢ does not belong to A. Weyl's theorem then
gives precisely three possible canonical forms for
the algebras A, X, as follows:

A = ZR”, X = ‘nRz,

(39)

(40)
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4 =20, X =nC, (41)

A= Quu X = mQ-: (42)

where we have written m = }n. In all three cases
the operator 7 belongs to X, and the order of X
is 2 or 4.

Wigner’s classification of irreducible representa-
tions A(u) is the following. Let A*(u) be the repre-
sentation formed by taking the complex conjugate
in each element of A(u). If

A*(w) = MA@M™, all u, (43)

with M unitary and symmetric, then A(u) is
“potentially real.”” If Eq. (43) holds with M unitary
and antisymmetric, then A(u) is ‘“‘pseudoreal.” If
A*(u) is not equivalent to A(u), then A(u) is “com-
plex.” We write M as usual as a (2n X 2n) real
mairix, and define

P=iM (44)

with j given by Eq. (4). Then Eq. (43) holds if and
only if the matrix P belongs to the commutator
algebra X. Therefore an equivalent statement of
Wigner's classification is this. If X contains an anti-
unitary operator P with

P =1, (45)

then A(g) is potentially real. If X contains an anti-
unitary operator P with

then A(g) is pseudoreal. If X contains no anti-
unitary operator P, then A(g) is complex. An in-
spection of the canonical forms (40), (41), (42) then
yields the following theorem.

Equivalence Theorem I. Let A(u) be an irreducible
representation over C of a unitary group G,. Let the
algebra A be defined by Eq. (8) with real coeffiotents.
Then

(@) If A 13 of type R, A(u) 13 potentially real;
(ii) If A is of type C, A(u) s complex;
(iii) If A s of type Q, A(u) ts pseudoreal.

In each case the converse s also true.
The following remarks are corollaries of The-
orem I.

Remark 1. The matrices M (u) form a real repre-
sentation of the group G,. This representation is
irreducible over B when A is of type C or Q. It
reduces to two equivalent irreducible components
when 4 is of type R.

Remark 2. It is well known® that A(u) is potentially
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real if and only if it is equivalent to a representation
composed entirely of real matrices. We now can
make another statement of the same kind. The
irreducible representation A(u) is pseudoreal if and
only if it is equivalent to a representation composed
entirely of matrices whose elements are quaternions
with real coefficients.

Remark 8. It is well-known (see Wigner's book,’
p. 289) that the irreducible representations of the
3-dimensional rotation group are potentially real
for integer spin, pseudoreal for half-integer spin.
From remark 2 it then follows that the integer-
spin representations may be taken to be real, and
the half-integer-spin representations may be written
in terms of real quaternion matrices.

We now turn our attention to the full group G
including antiunitary operators. We shall be con-
cerned with the algebras B, D and their commutators
Y, Z. An irreducible co-representation of G is a set
of matrices M(u), M(a) such that the algebra D
is irreducible over R. According to Weyl's theorem
there are then three possibilities for the canonical
forms of D and Z.

D = Rzm Z = (2n)R, (47)
D =C,, Z =nC, (48)
D= q,, Z = mQ—) m = in. (49)

The algebra B may now be reducible, but its
irreducible components must be of the form sC,. Also,
by Egs. (9) and (10), the order of D must be exactly
twice that of B. Equations (47), (48), and (49) then
imply that the order of B is 2n’, n’, n® in the three
cases. The only possibilities are

B = C,., Y = nC; (50)
B =C,+ Ca, Y = mC + mC, (51)
B = 2C,, Y = mC,, (52)

and these correspond precisely to the three alterna-
tives (47) to (49).

Wigner’s classification of irreducible co-representa-
tions’ is the following. The co-representation is type I
if its unitary part is irreducible. It is type II if its
unitary part reduces to two equivalent irreducible
components. It is type III if its unitary part reduces
to two inequivalent irreducible components. Now
when the co-representation generates the algebra D,
the unitary part of it generates the algebra B. An
inspection of Eqs. (50) to (52) shows that these
three alternatives correspond to the Wigner types I,
IIT, 1T, respectively.

Equivalence Theorem I1. Let A(g) be an trreducible
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co-representation over C of a group G including anti-
unitary operations. Let the algebra D be defined by
Eq. (10) with real coeffictents. Then

() If D is of type R, Alg) is of Wigner type I,
(i) If D is of type C, Alg) s of Wigner type 111,
(iii) If D'is of type Q, Alg) is of Wigner type I1.

In each case the converse 18 also true.

Remark 4. If follows from this theorem that an
irreducible co-representation is of type II if and
only if it can be expressed in terms of matrices
whose elements are real quaternions.

Remark 6. According to Eqs. (47) to (562), the
algebra Y has always precisely double the order
of the algebra Z. Also, it is known that ¥ contains
the matrix 7, which commutes with Z but does not
belong to Z. Therefore, in the case here considered
(D being irreducible and Z a simple algebra), ¥
is precisely the direct product of Z with the algebra
generated by (1, 7).

Remark 6. The statement that Y is the direct
product of Z with (1, 7) has been established for
the case of Z simple. However, by virtue of the
lemma of Sec. IT (see remark 7 following the lemma)
the same relation between Y and Z holds in the
general case.

Remark 7. The lemma of Sec. IT can be stated
very concisely as a statement about co-representa-
tions: inequivalent irreducible co-representations of
G contain inequivalent irreducible representations
of G,.

IV. FURTHER ANALYSIS OF THE WIGNER
CLASSIFICATION

The equivalence Theorems I and II are so alike
in form that one might suppose them to be two
statements of the same triple alternative. We shall
show that in fact the precise opposite is true. The
two triple alternatives are entirely independent.
Within the same irreducible co-representation of G,
any one of the three types of algebra D may occur
in combination with any one of the three types
of algebra 4.

To study the relation between the two theorems,
we fix a particular irreducible co-representation A(g)
of G and investigate the possible structure of the
six algebras A, B, D, X, ¥, Z in combination.
Since A(g) is irreducible, the possible structures
for D, Z, B, Y are described by Egs. (47) to (52).
The representation A(u) of G, is however not
necessarily irreducible, Theorem I, and the three
alternatives given by Eqs. (40) to (42), apply
directly only to the irreducible components of A(u).
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When D is of type R, then A(w) is irreducible
and Egs. (40) to (42) apply unchanged. When D
is of type Q, then, according to Eq. (52), A(u) splits
into two identical irreducible components, or sym-
bolically A(u) = 2A’(w). In this case Egs. (40) to
(42) apply to A'(u). When D is of type C, then
Eq. (51) holds, and so A(u) splits into two irreducible
components inequivalent over C,

AW = M) + A0). (33)

The real representation M(u) of G, splits corre-
spondingly into two components

M) = Mi(u) + My(u). (54)

Equations (40) to (42) apply to A, and A, separately.
However, we shall prove that the algebra A is
necessarily of the same type (R, C, or @) for the
representations A, and A,. Thus one of Eqgs. (40)
to (42) applies to both components of A(u).

Let a be any one of the antiunitary operators
in @. The transformation

(55)

is an automorphism V of the unitary group Gi.
The representations

Av(w) = AV@), My = M(V@w) (56)

differ from A(uw) and M(u) only by a relabeling of
the elements of G,. Thus M, (u) and M (u) generate
isomorphic group algebras. Moreover, Eq. (54) im-
plies

u— V) = aua

My(w) = [M(@)] " MwM@@) = M), (57)

where the equivalence is over R and not over C.
Suppose now that D is of type C and Eq. (54) holds.
Then Eq. (57) means either

Miyw) = [M(a)]™ M,)M(a),

Mup(w) = M@)] ' M)M(a),  (58)
or
Miy(u) = [M(@)] " M,@)M(a),

Moy) = [M(@]"'M)M(a). (59

Because the algebra D generated by M(u), M(a),
and ¢ is irreducible, Eq. (58) cannot hold. There-
fore Eq. (59) must hold and

M v(u) = M), Mo v(u) = M\(u). (60)

The algebra A generated by M,(u) is therefore
necessarily of the same type as that generated
by M. (uw).

We may thus classify irreducible co-representa-
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tions of @ into nine possible cases, which we denote
by RR, RC, RQ, CR, - - - , QQ. Case CR, for example,
means that algebra D is of type C while algebra A
is of type R, i.e.,, we have a co-representation of
Wigner type III whose unitary part splits into two
irreducible inequivalent representations each of
which is potentially real.

Using Egs. (40) to (42) we can write down the
possible forms of the algebras A and X in each of
the nine cases:

case RR, A = 2R, X = nR,, (61)
case RC, A = (C,, X =aC, (62)
case RQ, 4 = Q,, X = mQ, (63)
case CR, A =2R,+ 2R,, X = mR, + mR,,
(64)
case CC1l, 4 =C, + C,, X = mC + mC,
(65)
case CC2, A = 2C,, X = m(,, (66)
case CQ, A=Q,+@Q, X =pQ+Q,(67)
case QR, A = 4R,, X = mR,, (68)
case QC, A = 2C.,, X = m(C,, (69)
case @@, A = 2Q,, X = pQ,, (70)

For convenience we wrote here m = in, p = in.
The forms of A and X are uniquely fixed in all
cases except CC. Case CC divides into two alterna-
tives CC1 and CC2. Case CCl holds when the
representations M,(u) and M,(u) are inequivalent
over B; case CC2 holds when M, and M, are equiva-
lent aver R.

The results (61) to (70) follow immediately from
Eqgs. (40) to (42) when D is of type R or Q. However,
when D is of type C some further argument is
needed. Suppose then that D is of type C, so that
Eqs. (48) and (51) hold, and the representation
M (u) splits according to Eq. (54). When M, and M,
are inequivalent over R, every matrix commuting
with the M (u) must commute separately with M, (u)
and M,(u). The algebra X is then the direct sum
of the commutator algebras of M, and M,. There-
fore for M, and M, inequivalent, Eq. (64), (65),
or (67) holds according as A is of type R, C, or Q.

It remains to consider the case in which D is
of type C while M, and M, are equivalent over R.
There is then a real matrix L which commutes with
all the M(u) but does not commute with M,(u),
M ,(u) separately. This L satisfies

M) = L7 M@)L, M) = L7M)L.  (71)
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Since A;(u) and A,(u) are inequivalent over C, L
must anticommute with 7. Now suppose if possible
that A were of type R or Q. Then there would exist
also a matrix L' in X, anticommuting with 7 and
commuting with each of M,(uw), M,(u) separately.
The product U = LL’ would be a matrix com-
muting with 7 and also satisfying Eq. (71). This
is impossible since A, and A, are inequivalent over C.
We have thus proved that, if D is of type C and
M, and M, are equivalent, A is also necessarily
of type C. There exists then only the case CC2
with A and X given by Eq. (66).

We next discuss a special situation in which the
above enumeration of possibilities simplifies con-
siderably. We say that the group G is “factorizable”
if the automorphism V given by Eq. (55) is an inner
automorphism of @,. Suppose that G is factorizable.
Then there exists an element w in G, such that

Viu) = a”'ua = wuw, all v in G,. (72)
Then there exists an antiunitary operator
T =auw (73)

in G which commutes with all elements of G,.
Conversely, if such T exists, then V() is an inner
automorphism for any choice of the antiunitary
operator ¢ in Eq. (55). In many physical applica-
tions, when such an operator T exists it is con-
venient to give it the name ‘‘time-inversion opera-~
tor.” In any representation M(g) of G, the anti-
unitary matrix M(T) belongs to the algebra X.

We now classify the possible types of irreducible
co-representation of a factorizable group G. Many
cases can be immediately eliminated. First, the
matrix M(T) belongs to X but does not belong to
Y since it anticommutes with 7. Therefore X = Y
for a factorizable group. Hence, by comparing Egs.
(50) to (52) with Egs. (62), (65), and (69), the
cases RC, CC1, and QC are excluded. Next, suppose
that D is of type C. Then Eq. (72) gives

My@) = [Mw)] " M@M@w), (74)

with M (w) unitary. Since A,(u) and A,(u) are in-
equivalent over C, Eq. (74) implies

M,y(u) = [M(w)]™" M,()M(w),

Myy(w) = [M(w)]" Ma()M(w).
This together with Eq. (60) shows that M,(x) and
M,(u) are equivalent. We proved earlier that cases
CR, CC1, and CQ are then impossible.

The surviving cases for a factorizable group @G
are RR, RQ, QR, QQ, and CC2.
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The operator [M(T)]’ commutes with all M(g)
and with 7, and it is also equal to M (u) with u = T%.
Thus [M(T)}* belongs to both the algebras D and Z.
By Egs. (47) to (49), the common part of D and Z
is (2n)R when D is of type R or Q, and is nC when
D is of type C. Since [M(T)]* is a real orthogonal
matrix, it must be a scalar

LD = e = %1, (75)

in any of the four cases RR, RQ, QR, QQ. However,
Eq. (75) need not hold in case CC2.

We determine lastly which cases go with the plus
sign and which with the minus sign in Eq. (75).
When @G is factorizable and Eq. (75) holds, the
algebra D is a direct product of the commuting
algebras A and W, where W is the algebra of order 4
generated by (I, 7, M(T), ¢M(T)]. The structure
of W = (D/A) is then determined as follows:

case RR, A =2R,, D=R,, W~R, (76
caseRQ, A=4Q,, D=R,, W~QQ, (77
case QR, A =4R,, D=Q,, W~Q, (78
case QQ, A =2Q,, D=Q, W~ER, (79

The sign of ¢in Eq. (75) is plus when W is of type R,,
minus when W is of type Q. These results will now
be summarized in a theorem.

Theorem I11. Let M(g) be an irreducible co-repre-
sentation of a factorizable group G, in which M(T)
1s anti-unitary and commutes with all the M(g). Then
the following three possibilities alone exist:

(i) case RR or QQ with [M(T)] = +1,
(ii) case RQ or QR with [M(T))’ = —1,
(iii) case CC2 with [M(T)] = cos @ + e sin o,

where a may be any real angle, and e s an element
of the algebra A with ¢ = —1.

Remark 1. Tt is noteworthy that the sign of
[M(T)]* is determined neither by the Wigner type
of the co-representation M(g), nor by the reality
type of the unitary subrepresentation M(w), but
only by these two types in combination. Thus
[M(T)" = +1 corresponds to Wigner type I and
potentially real, or to Wigner type II and pseudo-
real; [M(T)]" = —1 corresponds to Wigner type II
and potentially real, or to Wigner type I and
pseudoreal.

Remark 2. In the majority of applications of the
theorem, T will be identified with the physical
operation of time inversion, In these circumstances
[M(T))* = +1 for co-representations with integer
spin, and [M(T)]* = —1 for co-representations with
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half-integer spin.” Therefore cases RR and QQ occur
only with integer spin, cases RQ and QR only with
half-integer spin. Case C'C2 may occur with either
integer or half-integer spin.

V. EXAMPLES

The classification theory of Sees. III and IV
would be empty if one could not produce examples
to show that each of the enumerated possibilities
can actually occur. We list here one example of
each of the ten possibilities (61) to (70). The first
five examples are factorizable and illustrate Theorem
I11. The last five are nonfactorizable.

To simplify the notations we write (2 X 2)
matrices in terms of the standard basis

1.2:[1 0], el={o 1}
01 1 0
ez=[° —1], e3=[1 0]. (80
1 0 0 -1

The quaternion units are defined by Egs. (26) and
(27). The order of the co-representation is the order
of the real matrices M(g); this is twice the di-
mension of the complex vector space H..
Ezxample 1. Case RR. Order 2.
G, contains identity I only. G = [I, T), T* = I.

MI) =1, M@ =e,
M(T) = €,

Ezxzample 2. Case QR. Order 4.
G, generated by (I, T°], G = I, T, T?, T°]
with T* = I.

M(D =1, M(i) = T2
M(T') = T,

Ezxample 3. Case RQ. Order 4.
G is generated by the 3-dimensional rotation
group O, with the time-inversion operator T
commuting with O,. Representation M(u) is

[M(D)] = L.

MDY = —I..

with spin .
M(ﬁ" ¢) = €xp [W"’-’])
M@ =1, MT) =+, [MD*%=-L

Ezample 4. Case @Q. Order 8.
Same group as example 3. Representation M (u)
has two spin-} components which are inter-
changed by the T operator.

M@, ¢) = exp [ipn-7] X I,
M(T) = { X e,

MG = o X I,
M(D)] = L.
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Ezxample 5. Case CC2. Order 4.
G is generated by the 2-dimensional rotation
group 0, together with an operator T com-
muting with 0,. The operator 7 is a combina-
tion of time-inversion with space reflection. The
phase angle « is a fixed parameter.

M(g) = cos¢[l, X I,] + sin ¢les X e.],
M(‘i) = Iz X €.

M(T) = cos 3afe; X e;] + sin 1afe, X e],
[M(T)) = cosall, X I] + sinale; X ] = M(a).

Example 6. Case RC. Order 2.
G is generated by the 2-dimensional rotation
group 0, with an operator T not commuting
with 0,. T is now time-inversion without space
reflection.

M(g) = (cos ¢)I, + (sin ¢)e,,
M@) = €2,

Ezample 7. Case QC. Order 4.
Same group as example 6.

M(g) = (cos¢)I, + (sin @) 75,
M@ =1, MT=nm.
Ezample 8. Case CR. Order 4.
G, is a 4-element group generated by the
reflections R, and R, in two perpendicular
planes. G = [G1, TG,), T* = I, where T is a

combination of time-inversion with a reflection
in the plane z = y.

M(I) = Iz X Iz, M(R,) = €3 X Iz,
M(Ru) = —e; X Iz;
M(”:) =1I, X e, M(T) =¢ X 6.

Ezample 9. Case CQ. Order 8.
G, is a direct product {0; X 0] of two 3-di-
mensional rotation groups. G = [G,, TG.),
where T interchanges the two groups.

M(m, ¢; 7, ¥) = [3(I: + e)] X exp [dp7- 7]
+ 3. — )] X exp [3yA-7],
M@ =1, X 74, M(T) = ¢ X 7{.

Example 10. Case CC1. Order 4.
G, = [0, X 0.}, G = [G,, T®,] where T inter-
changes the two 0, groups.

M@, ) = [3I. + e)] X [cos ¢pI; + sin ¢e,]
+ [, — es)] X [cos ¥I, + sin ye,],

M(T) = es.
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M(’L) = Ig x €2, M(T) = € x €3.

The most interesting of these examples are num-
bers 4, 5, 8. They have some features which are
nentrivial and appear to be novel. We leave to the
reader the exercise of verifying that in each case
the commutator algebras X, Y, Z have the structure
described in Eqs. (47) to (52), (61) to (70).

VI. ALGEBRAIC CHARACTERIZATION OF
REPRESENTATION TYPES

In this section we conclude the study of repre-
sentation types by proving a generalized version
of a classical theorem of Frobenius and Schur. Let
M(g) be a representation of a group @, irreducible
over some ground field & with characteristic zero.
We suppose that the group G is either finite or
compact, and that the matrices M(g) have a finite
order d. If f(g) is any function of the group element
g, the average of f(g) over @ is defined by

av, f(9) = h™ . f(g), (81)

or by

av, 10) = v [ 1(0) duo), (82)
where h is the order of G when G is finite, and where
v is the volume of G in the invariant group measure
du(g) when G is compact. We consider the fourth-
rank tensor

P = av, [Mo'i(g_l)Mkl(g)]' (83)

Let K be the group algebra generated by the M(g)
with coefficients in &.

The structure of K is given by Eq. (24), since
Weyl's theorem holds in any field with charac-
teristic zero. The commutator algebra L of K has
the structure

where E is an irreducible division algebra of order
eover ® and d = te.

The type of the representation M(g) is specified
by the division algebra E. For example, when & = R
is the field of real numbers, there are three types
of representation corresponding to £ = R, C, or Q.
The tensor P,; ;, is useful in classifying representa-
tions by virtue of the following theorem.

Theorem IV. The tensor P;; . depends only on
the integer t and on the algebra E, and is otherwise
independent of the group G and of the representation
M(g).

Thus P;; . is characteristic of the type of the
representation M (g).
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To prove the theorem, let g’ be any element of G-
Then

P = av, [M(g" " g7 )M i(g9")]

= mE“ M.--.(g’_l)me.k,.M,.z(g')-

Thus P;; i1, considered as a matrix in the indices
(7, 1), commutes with all M(g’) and belongs to the
commutator algebra L. Similarly, P;; .; belongs to
L when considered as a matrix in (k, j). Let e,
p =1, --- , ¢, be a linearly independent basis for
the algebra E. Then Eq. (84) gives

(85)

Py = [(T)all)] X E Cu,(ep)n(g)ki, (86)
where the ¢,, are coefficients in ®.
Now consider the sum
A
(Z)ik = ;Pn‘.u[lz X ex]u- 87
On the one hand, by Eq. (86),
A
(X)ie = Tei X 2 80Cun(€ss (88)
where
s = spur [¢'¢"]. (89)

On the other hand, by Eq. (83), since ¢* commutes
with all the M(g),

(Z)v’k = av, [M(g)(I. X GX)M(Q_I)]M

(90)
= (I e X ex)ki'
Comparison of Egs. (88) and (90) shows that
,Z 8w = Oxy, (91)

so that the matrix ¢, is the inverse of the matrix s, ,.
The coefficients ¢,, are thus uniquely determined
by E, and Eq. (86) establishes the truth of The-
orem IV. .
We shall be interested in applying Theorem IV
to cases in which the matrices M(g) are orthogonal.
So we assume « :

Mi(g™) = M, (9. (92)

The algebra K then contains the transposed of
every matrix in K, and L has the same property.
We can therefore choose the basis elements e* of
the algebra E to be either symmetric or antisym-
metric. Suppose that the number of symmetric ¢
is g, and the number of antisymmetric ¢* is ¢'.
The invariant

P = .?‘., P (93)
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provides a simple criterion for the type of the

representation M(g).
Theorem V. When M(g) ¢s an orthogonal irreducible
representation of G over a field ® of characteristic zero,
P = av,spur [M(¢")] = ¢ — ¢'. (99

The first part of Eq. (94) follows at once from the
definition of P and Eq. (92). To prove the second
part, we suppose the ¢* chosen so that

(e)‘)ki = "7).(3)‘):'1” (95)
with each 7, equal to 1. Then Eqs. (86), (89),
and (91) give

P

> Cul@)iim(€)s

wrif

= E CurSyuty
uy
=X n=q-¢.

Remark 1. Suppose that & is the field of real
numbers. Then Theorem V gives the following
characterization of the type of the representation
M(g):

(96)

P = 41 for M(g) of type R, 97
P = 0for M(g) of type C, (98)
= —2 for M(g) of type Q. 99)

Remark 2. We apply remark 1 to the situation
discussed in Theorem I of Sec. III. Let A(u) be an
irreducible representation over C of a unitary group
G. Then the corresponding real representation M (u)
splits into two equivalent irreducible representations
M'(u) when M(u) is of type R, while M(u) is ir-
reducible when it is of type C or Q. The corre-
spondence between A(u) and M (u) gives

spur M(u) = 2 Re spur A(u), (100)

and therefore the quantity
I = av, [spur A(w®)] (101)

is equal to 3P. This P is given by Eqgs. (98), (99)
when M(u) is of type C, @, but is equal to (42)
when M () is of type R since Eq. (97) then refers
to the irreducible component M’(u). So we derive
the classical criterion of Frobenius and Schur'’ for
the type of an irreducible unitary representation:

I = 41 for A(u) potentially real, (102)
I = 0for A(u) complex, (103)
I = —1 for A(u) pseudoreal. (104)

17 G. Frobenius and I. Schur, reference 6.
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Remark 3. We apply remark 1 to the situation
discussed in Theorem II of Sec. III. Let A(g) be
an irreducible co-representation over C of a group G.
According to remark 6 of Sec. II, the group algebra
D is generated over B not by the group G itself
but by an extended group TI. The representation
of T which generates D consists of the matrices

M@, M), M@, M@, (105

which are all real and orthogonal. When Theorem V
is applied to the group I, the contributions from
M(u), tM(u) to P cancel each other, while the
contributions from M(a), 1M(a) are equal. Thus

P = } av, spur [M(a®], (1086)

averaged over the antiunitary part only of G. If
A(u) is the unitary part of the co-representation,
A(u) is irreducible when D is of type R, while A(u)
has two irreducible components when D is of type
C or Q. In any case we let A’(u) be one of the (one
or two) irreducible components of A(u), and we write

I’ = av, [spur A’(a®)]. (107)

By Eq. (100), this I’ is equal to P when D is of
type R, and is equal to 2P when D is of type C or Q.
The criterion of Egs. (97)-(99) then becomes

I’ = +1 for A(g) of Wigner type I, (108)
II' = 0 for A(g) of Wigner type III, (109)
I = —1 for A(g) of Wigner type II. (110)

This elegant analog to the Frobenius-Schur criterion
was discovered by Bargmann.®

VII. THEORY OF MATRIX ENSEMBLES

In this section we deal with the problem for which
the theory of Sec. II was specifically introduced,
namely the classification of ensembles of matrices
with given symmetry properties. An ensemble is
a set of objects with an assigned probability dis-
tribution. We shall define the probability distribu-
tions later; it is necessary first of all to study the
classification of sets of matrices invariant under
some symmetry-group G.

As in Sec. II, we suppose that the matrices S
which we are studying operate in a complex vector
space H, of finite dimension n. We are given a
representation of the group G in H,, consisting of
unitary operators A(uz) and antiunitary operators
A(a). The matrices S are supposed to be invariant
under @, but this notion of invariance already intro-
duces an ambiguity. There is a choice between two

13 V. Bargmann (private communication),
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definitions of invariance. We say that S is ‘“formally
invariant under G" if

SA(g) = A(S, in @. (111)

Formal invariance means that S is unchanged by
any of the transformations

S — Ag)S[A(g)] ™, (112)

whether g be unitary or antiunitary. We say that S
is “physically invariant under G” if for every pair
of vectors (¢, ¢) in H,

@, S¥) = (AW)¢, SA@)Y) = (A@)¥, SA(a)¢). (113)

Note that the initial and final state vectors are
interchanged in Eq. (113) in the case of antiunitary
elements of G. The effect of Eq. (113) is that we
have instead of Eq. (111)

SAw) = A@W)S, SA(e) = A(@)S, (1149

where S* means the Hermitian conjugate of S.

The two types of invariance are relevant in dif-
ferent circumstances. If S is, for example, a unitary
operator describing a change in the representation
of states, then formal invariance under G is a
meaningful requirement, signifying that this change
in representation does not disturb the symmetry
relations of the states under the operations of G.
If S is an operator characterizing a physical system,
for example a scattering matrix, then the anti-
unitary operations of G are associated with a re-
versal of the physical roles of initial and final states;
in this case physical invariance of S is the physically
meaningful requirement, signifying that the system
to which 8 belongs is invariant under the operations
of G in the usual dynamical sense. The two definitions
of invariance under G become equivalent only when
the matrix S is Hermitian, for example when S is
the Hamiltonian of a system.

It is convenient to transeribe the matrix S into
a real (2n X 2n) matrix operating in the real vector
space Hj according to Eq. (2). The real form of S
then satisfies

all ¢

Si = 18, (115)

with ¢ defined by Eq. (5). For 8 to be invariant
under the unitary subgroup @, (in either sense) it
is necessary and sufficient that

SMw) = Mw)S, % in G, (116)

where the matrices M(g) are the representation of
@G defined in Sec. II. The condition for S to be
formally invariant under G is

SM(a) = M(a)S, a in G, (117)
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in addition to Eq. (116). The condition for S to be
physically invariant under G is Eq. (116) and

SM(a) = M(a)S”, a in G, (118)

where S” means the transpose of S.

From Egs. (115), (116) we see that the set Y
of matrices in Hp invariant under @, is identical
with the commutator algebra Y defined by Egs. (9)
and (12). From Egs. (115)-(117), the set Z of
matrices formally invariant under G is identical
with the commutator algebra Z defined by Egs.
(10) and (13). We define the set:W to consist of
those matrices which are both formally and physi-
cally invariant under G. Then W is the set of all
symmetric matrices in Z. Lastly, we define V to be
the set of matrices physically invariant under G.
Then we shall prove

Theorem VI. For 8 to be in V, il is necessary and
sufficient that

S = Sl +iSz,

where 8, and S, are matrices in W.
The sufficiency follows immediately from the
relations

(119)

.7
z =

iM(a) = —M(a)i. (120)

To prove the necessity, we observe that all the
matrices M (g) are orthogonal, and thus

M(g™) = M(9]".

Hence ST belongs to V whenever S does, and we
may then write

._.i’

(121)

S=8 4+ 8, (122)

where 8§’ is symmetric and S’ antisymmetric, and
both 8’, 8" belong to V. The matrices 8, = §
and S; = —18" now satisfy both Eq. (117) and
Eq. (118), and therefore belong to W.

The results of Sec. II, and in particular Weyl's
theorem, provide us with a complete structural
analysis of the sets V, W, Y, Z. We use Frobenius’
theorem (Sec. I) in order to replace the division
algebras E; of Weyl's theorem by the standard
trio R, C, and Q. The integers ¢; of Weyl's theorem
are now irrelevant since they contribute to the
structure of the group algebra D but not to the
commutator algebra Z. We thus state the main
result of the theory of matrix ensembles as follows.

Theorem VII. The set Z of maitrices in H z formally
tnwariant under G s a direct product of trreductble
components, one component Z; corresponding to each
tnequivalent irreducible co-representation of G oon-
tained in the given co-representation A(g). Each com-
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ponent Z, may be writlen as the set of all square
matrices of order s; with elemenis in an algebra &;.
Each ¥, is either R, the algebra of real numbers, or C,
the algebra of complex numbers, or Q, the algebra of
real quaternions.

Remark 1. The structure of the set Z; depends
on the Wigner type of the corresponding co-repre-
sentation of G in the manner specified by equivalence
Theorem II. The reality type of the unitary part
of the representation, specified by equivalence
Theorem 1, is here entirely irrelevant, except inso-
far as the Wigner type and the reality type may be
correlated for factorizable groups G according to
Theorem III.

According to remark 7 at the end of Sec. II, the
sets V, W, Y are direct products of independent
components, one corresponding to each component
Z; of Z. To avoid unnecessary repetition, we deseribe
the structure of V, W, Y corresponding to a single
component of Z. Thus in the following theorems
we assume that Z is irreducible, which means that
all irreducible co-representations contained in A(g)
are equivalent. From this special case the general
case is easily derived by writing Z; for Z and taking
a direct product over j.

We have seen, in Remarks 5 and 6 of Sec. III,
that the algebra Y is generated by ¢ and Z. The
matrix ¢ commutes with Z, and therefore commutes
with the algebras &®;. Hence we may form a new
algebra @} by adding the independent unit % to ;.

Theorem VIII. When Z s irreducible, the set Y of
mairices in Hp tnvariant under G, may be wrilten
as the set of all square maitrices of order s with ele-
ments in an calgebra ¥°, derived from ® by allowing
each element of ® lo have complex instead of real
coefficients.

Remark 2. When & = R, &° is the algebra of ordi-
nary complex numbers. When & = C, &° is the
algebra of complex-complex numbers with two com-
muting imaginary units; in this case ®° is reducible
and has the structure

&~ C+4C. (123)

When & = @, &° is the algebra of complex quater-
nions, which is equivalent to an algebra of complex
(2 X 2) matrices,

q)c ~ Cz . (124:)

The algebra W consists of matrices which are
symmetric when written in expanded form in Hj.
When 8 is written, as in Theorems VII and VIII,
as a smaller matrix with elements in ®, the condition
of symmetry becomes a condition of ® duality, as

FREEMAN J. DYSON

follows. We define the ® conjugate of a number in
& to be the number obtained by reversing the signs
of the coefficient of ¢; (in the case @ = C) or of
the coefficients of r,, 72, 75 (in the case & = Q).
We define the & dual of a matrix to be the trans-
posed matrix with each element ® conjugated. Since
the units e,, 71, 72, 7» When written in expanded form
are antisymmetric, a matrix which is symmetric
in expanded form becomes ® self-dual when written
with elements in ®.

Theorem IX. When Z is trreducible, the set W of
matrices in Hyp tnvariant under G in both physical
and formal senses may be written as the set of all
square self-dual malrices of order s with elements
in®=R,C, orQ.

The & conjugate of an element of $° is obtained
by changing the signs of the coefficients of the &
units, leaving the unit ¢ unchanged. So from The-
orems VI and IX follows immediately the result:

Theorem X. When Z 1is irreducible, the set V of
mairices in Hp tnvariagnt under G in the physical
sense may be written as the set of all square self-dual
matrices of order s with elements in °.

Remark 3. We now finally make contact with the
theory of matrix ensembles developed earlier by
the author.* Let Vy be the subset of unitary matrices
in V. Then Theorem X states that, for the most
general symmetry group G and the most general
quantum-mechanical representation of @, the set
Vy is a direct product of independent components,
each of which is identical with one of the three
ensemble-spaces T, T, and T, defined in reference 4.
The cases T, T,, T, correspond, respectively, to
& = R, C, Q The spaces T,, T;, and T, were
originally obtained by considering special groups G
of a very simple kind. It is satisfactory to find
that the same three spaces, and no others, oceur
in all possible circumstances.

The reason for choosing ¥y as the space in which
to construct an ensemble is that no natural defini-
tion of uniform probability appears to exist in V.
For the same reason we study the subset Zy of
unitary matrices in Z. The following theorem follows
from Theorem VII together with well-known proper-
ties of the classical groups.’

Theorem X1I. The set Zy of unitary matrices in Hy
formally invariant under G is a direct product of ir-
reducible components, each of which is a simple
classical group. When ®; = R, C, or Q, the corre-
sponding component of Zy is an orthogonal, unitary,
or symplectic group of dimension s;.

In the same way we define the unitary subset
Yy of Y. The components of ¥, are
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Yo = Uls), U)X U, U@y, (125)
corresponding to
Zy =0, U@, Sp(2). (126)

The unitary space Vy is not a group. But it can be
represented conveniently in terms of the groups
Yy, Zy in the following way. A matrix S belongs
to Vy if and only if it can be expressed as a ®-
symmetric product

S=UUu® U 127
where D denotes & dual. All matrices U’ of the form
U = UU,, U, (128)

in Yy,

in Zy,

correspond to the same S by Eq. (127), and every
U’ corresponding to S is of the form (128). Thus
each matrix S in V' corresponds to a unique co-set
of the subgroup Zy in the group Y,. We have thus
proved

Theorem XII. The set Vy of unitary matrices in V
ts abstractly equivalent to the homogeneous space
(Yu/Zy), the quotient of the group Yy by its sub-
group Zy.

Having defined the spaces Zy and V,, we are
now in a position to define the corresponding in-
variant matrix ensembles. The ensemble E” of
unitary matrices formally invariant under G is
. defined as the space Z; with probability distribution
given by the invariant group measure in Z,. Since
Zy is a direct product of simple classical groups,
the group measure in Z; is merely the product of
the invariant measures in the irreducible com-
ponents of Zy. The ensemble E” of unitary matrices
physically invariant under G is defined as the space
V y with measure given according to Theorem XII by

du(Vy) = [du(Yv)/du(Zv)]. (129)

Here du(Yy) and du(Zy) are the invariant group
measures in Yy and Zy, and the quotient measure
is defined in the obvious way. Alternatively, the
quotient measure may be uniquely defined as the
measure in ¥V, which is invariant under all auto-
morphisms

S — USU”, U in Yy, (130)

of Vy into itself. The ensemble E” is a direct product
of irreducible components, each of which is identical
with one of the three types E,, E,, E, which were
studied in reference 4.

Two other types of ensemble naturally suggest
themselves for study, composed of Hermitian and
anti-Hermitian matrices, respectively. A matrix S
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of Vy is of the form
S = exp [tH], H in W, (131)
while a matrix S of Zy is of the form
S = exp [4], A in Z,, (132)

where Z 4 is the subset of Z containing anti-Hermitian
matrices. Thus W and Z, are the spaces of in-
finitesimal generators for V and Zy, respectively.

We define the Hermitian Gaussian ensemble EZ
as the space W of matrices H with the probability
distribution

du(H) = C exp [—(pur H)/4a"] J] dHS, - (133)

where ¢, a are constants and the product extends
over all the independent real coefficients of the
elements of H in the algebra &®. The anti-Hermitian
Gaussian ensemble E” is defined as the space Z,
with probability distribution

du(4) = C exp [+(pur 4%)/40”] [T dA%. (139

These ensembles have an algebraic structure pre-
cisely analogous to that of E” and E”, respectively.
They divide into irreducible components each of
which is of one of the three types R, C, or Q. In
particular, E¥ is the natural ensemble to use in
describing the statistical properties of the Hamil-
tonian H of a system known to be physically in-
variant under the group G.

The physical motivation for considering ensembles
of matrices with probability distributions defined
in these various ways has been discussed by Wigner'®
and by the author.* In the case of the ensembles
E" and E”, consisting of unitary matrices, the
existence of a natural uniform measure provides
an intuitively plausible definition of “equal a prior:
probability.” In the case of the ensembles E¥ and E*,
consisting of Hermitian and anti-Hermitian matrices,
the choice of a Gaussian probability distribution is
mainly a matter of mathematical convenience.
Rosenzweig®® has argued that one should use in
preference to Eq. (133) a ““microcanonical ensemble"”
with the exponential replaced by a delta function

s[spur (H?) — 7).

The algebraic structure of E¥ and E* would of
course not be affected by such a change.

In any physical situation to which the ensembles
E” or E¥ are relevant, we have a system specified
by a unitary operator S or by a Hermitian H.

19 B, P. Wigner, Proceedings of the 4th Canadian Mathe-
matics Congress (University of Toronto Press, Toronto,
Canada, 1959), p. 174.

 N. Rosenzweig, Bull. Am. Phys. Soc. 7, 91 (1962).
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Since the system is invariant under @, every
stationary state is associated with a particular ir-
reducible co-representation of G. Each irreducible
co-representation fixes the values of a certain set
of quantum numbers (spin, parity, isotopic spin,
etc.) which are attached to the energy levels belong-
ing to that co-representation. The fact that the
ensemble E” or E¥ is a direct product of irreducible
components means that the energy levels belonging
to different sets of quantum numbers are sta-
tistically uncorrelated. Thus the statistical proper-
ties of energy levels are entirely determined by the
behavior of the individual level-series, each asso-
ciated with one set of quantum numbers. A single
level-series is deseribed by an irreducible ensemble.
The final result of our analysis may then be stated
as follows: When we consider a single series of
energy levels of a complex system, having definite
values for all quantum numbers of the symmetry-
group @, the statistical behavior of these levels
follows one of three possible laws, corresponding to
the three types of irreducible ensemble E® or E¥.

VIII. EIGENVALUE DISTRIBUTIONS

In this section we list without proof the joint
probability distributions of the eigenvalues of
matrices belonging to the irreducible ensembles
EF, E*, E*, E”. In each case the integer s is the
dimension of the algebra Z over the field ® which
may be R, C, or Q. The constant ¢ will not be the
same each time it appears.

1. E”. Ensemble of Unitary Matrices
Formally Invariant under G

() ® = R, Zy = 0(s). In this case Zy (the
orthogonal group) splits into two disconnected parts,
consisting of matrices with determinant A equal
to 41 and —1, respectively. There are thus four
distinct eigenvalue distributions to be listed.

(@) s = 2n, A = 1, eigenvalues exp (=16;),

P, ---,86,) =c H [cos 8; — cos 6,]. (135)
@il) s = 2n, A = —1, eigenvalues =1, exp (+46,),
Po,- ---,8.0)=c H(l — cos’ 6;)

X IT [cos 6; — cos 6,]%. (136)

i<ji

(ili) s = 2n 4 1, A = 1, eigenvalues +1, exp (=16;),

FREEMAN J. DYSON

P(oh ] 0n) =CH(1 — €08 0,)
X IJ [cos 8; — cos 6,>.  (137)
i<j
(iv) s = 2n 4+ 1, A = —1, eigenvalues —1,
exp (=£16;),
P(ol)' * ,0,;) =CH(1+0050,~)
X II lcos 6; — cos 6,]*.  (138)

B) ® =C, Zy = U(s), eigenvalues exp (26;).
P(6y, -+, 0,) = c I] lexp (6,) — exp (16)[". (139)

i<f
(v) & = Q, Zy = Sp(2s), eigenvalues exp (£19;).
P, ---,8,) = CH(I — cos’ 6;)
f

X IT [cos 6; — cos 6,1°.

i<y

(140)

2. E*. Gaussian Ensemble of Anti-Hermitian
Matrices Formally Invariant under G

(e) ® = R, matrices real and antisymmetric.
(i) s = 2n, eigenvalues +iE;,

PE,, --- ,E) = {]] & — E)"

1<j

X exp [~ E Ei/24%).  (141)
(ii) & = 2n + 1, eigenvalues 0, LiE;,
P(E,, --- ,E,) = c[H E?][g (B — EY)7]
X exp [~ Z Ei/2a%].  (142)
(8) ® = C. Eigenvalues iE,.
P@E, - ,E) = c[g (E; — E,)
X exp [~ Z Ei/4a’].  (143)
(v) ® = Q. Eigenvalues +iE;.
PE,, --- ,E) = "[I,-I E?][g (B — E)]
X exp [— E E}/2a%]. (144)

3. E”. Ensemble of Unitary Matrices
Physically Invariant under G

Eigenvalues exp (76;), each doubly degenerate
in the case ® = Q. '

P(0;, -+, 8) = c ]] [exp (66,) — exp (36,) )%, (145)

<7

with 8 = 1, 2, 4 for ® = R, C, Q, respectively.
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4. E”. Gaussian Ensemble of Hermitian
Matrices Invariant (in either sense) under G

Eigenvalues E;, each doubly degenerate in the
case ® = Q.

P(E,, -+ ,E,) = C[H lEi - Eilp]

X exp [— £, Ei/40%),  (146)
with 8 = 1,2,4for ® = R, C, Q.

Proofs of Eqs. (135) to (140) are to be found in
Chapter 7 of Weyl's book.? Equations (141) to (144)
can be deduced as limiting cases of Egs. (135) to
(140) when all angles 6; are small. Similarly Eq. (146)
can be deduced from Eq. (145). The proof of Eq.
(145) has been given by the author.*

The statistical properties of the eigenvalues result-
ing from each of these ensembles can be studied by
following the method used by the author* for the
case of Eq. (145). The eigenvalue distribution in
each ensemble has an exact mathematical analog
in the form of a classical Coulomb gas.

We briefly describe the Coulomb gas analogs to
E" and E* when & = R or Q. In E* the numbers

(147)

are considered to be positions of unit charges, con-
strained to move on the segment [—1 < z < +1],
which may be imagined to be a straight conducting
wire of length 2. Every two charges repel each
other with the potential

z; = cos b

Wi —2) = — In [z, — ;. (148)

In addition there are fixed charges of ¢. units at
* = +1 and of ¢_ units at £ = —1. When & = R,
the angles 6, are rotation angles of a random rotation
in the orthogonal group O(s). The values of g,,
g- are

G s=2nA

=1;¢9, = ¢. = —-1.

() s=2n4=—-1;¢, = ¢ = +1.
(iii) s=2’n+1’A=l;q+=+%’q_=—%_
(iv) s=2n+4+1,4=-1;¢. = -}, ¢ = +1.

When & = @), the angles 0, are rotation angles of
a random matrix in the symplectic group Sp(2s).
In this case ¢, = ¢_ = +}. The temperature of the
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gas is the same for ® = R or Q, namely, T = 1.

The Gaussian antisymmetric ensembles E* for
® = R or Q have a Coulomb analog composed of
unit charges with positions

constrained to move on the semi-infinite straight
wire 0 < z < . The repulsion between charges
is again given by Eq. (148), and T = % as before.
There is a fixed charge of ¢ units at £ = 0, where

g= —%1 when & =R, s = 2n,

g= +iwhen ® = R,s =2n + 1, or when & = Q.
In addition to the Coulomb forces, each charge z;
is subject to a constant downward force produced
by a “gravitational potential”’

V(z) = [z/4a0"]. (150)

When & = C, the ensembles E” and E* become
identical with E” and E¥, for which the Coulomb
analogs have been described previously.*

The whole of the previous analysis* of level dis-
tributions, based on the ensembles E”, can be re-
peated with minor modifications for the other
ensembles E*, E*, E”. However, there is one basic
difference between the physical ensembles E°, E¥
on the one hand and the formal ensembles E*, E*
on the other.

Theorem XIII. Constder an irreductble ensemble
of matrices over the field ®, with order s —> «. In
E" or E*, the local statistical behavior of eigenvalues
18 described by an infinite Coulomb gas with tempera-
ture T = % independent of ®. In E¥ or E¥ the local
behavior of eigenvalues is described by an infinite
Coulomb gas with temperature T = 1, %, 1 corre-
sponding to ® = R, C, Q.

The most striking qualitative feature of the
physical ensembles E*, E¥ is that the strength of
the repulsion between neighboring energy levels
depends on the Wigner type of the co-representation
to which these levels belong. This feature is absent
in the formal ensembles E*, E*.
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