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Introduction

The statistical properties of the characteristic values of a matrix the ele-
ments of which show a normal (Gaussian) distribution are well known (cf.
[6] Chapter XI) and have been derived, rather recently, in a particularly elegant
fashion." The present problem arose from the consideration of the properties
of the wave functions of quantum mechanical systems which are assumed to
be so complicated that statistical considerations can be applied to them. Since
the physical problem has been given rather recently in some detail in another
journal [3], it will not be reviewed here. Actually, the model which underlies
the present calculations shows only a limited similarity to the model which is
believed to be correct. Nevertheless, the calculation which follows may have
some independent interest; it certainly provided the encouragement for a de-
tailed investigation of the model which may reproduce some features of the
actual behavior of atomic nuclei.

All the remaining work will deal with real symmetric matrices of very high
dimensionality. The first and last problems concern infinite bordered matrices;
the second one a finite matrix the consideration of which served as an inter-
mediate step toward the solution of the last one. We mean by a bordered matrix
the sum of a diagonal matrix k and a border matrix v. The diagonal elements
of k are all the integers --- , —2, —1, 0, 1, 2, --- . The border matrix v has
non vanishing elements only up to a distance N from the diagonal, the absolute
value of all the non vanishing elements is the same

| Vmn | = 0 for|m —n| =N, (— = <mn< =)

(D
=0 for|m —n| > N.

Since the matrix H = k + v is symmetric, vmn = v, . Subject to this condition,
however, the signs of the v;; are random, i.e. we consider ensembles of matrices
with all possible signs of v,., subject to the conditions of symmetry. In the
first of the problems considered N = 1, in the third one both N and » are very
large in such a way, however, that +°/N = q remains limited. The first problem
will be solved completely, i.e. the characteristic values and vectors given ex-
plicitly.

In order to formulate the third problem, we denote the characteristic values
and vectors of an H by A and y®

(2) HY® =W or 3. Hug® = M.

! Personal communication of Professor V. Bargmann.
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BORDERED MATRICES OF INFINITE DIMENSIONS 549

We shall inquire then for the expectation value of those

®3) (W)’

the \ of which is in unit interval at 2 which will be considered to be a continuous
variable. One can imagine this to be calculated by solving the characteristic
value problem (2) for each of the permissible sign combinations of the v,
choosing those which have a characteristic value A between z and = + §, calcu-
lating (3) for these H and A, adding the expressions obtained in this way and
dividing the result by & times the number of all H considered. The expectation
value obtained in this way will be denoted by o(x), it is the quantity which we
inquired for. An integral equation will be obtained for ¢ and some of its prop-
erties, but not o itself, will be obtained explicitly. However, the mathematical
analysis which leads to the integral equation for ¢ will lack rigor; in particular
the convergence of the procedure which defines ¢ will not be proved. Many
important statistical properties of the characteristic functions and characteristic
values of H can easily be obtained from o¢. The fact that the density of the
characteristic values of ¢ is 1 follows easily from the invariance properties of
the set of permissible H.

The second problem concerns a finite symmetric matrix H, albeit of very
large dimension. Its diagonal elements are zero, the off-diagonal elements | v, |
= p are real but have random signs as before, m and n assume only the values
—N,—-N+1,---,N — 1, N so that this H is 2N + 1 dimensional. The prob-
lem is again to calculate o(x) as defined above for the third problem. The aver-
ages have to be taken in this case only over 2V matrices and the fact that
o(z/(N)'"? v), properly normalized, converges to a limiting function can be proved
in this case. This limiting function will be explicitly determined. It also gives
the density of the characteristic values of H, .

Singly bordered symmetric matrix

We shall calculate first the characteristic vectors of

-2 V_1-9 0 0 0

(=)

Vg —1 wv_p O
0 vp 0 vy O
0 0 ve 1 vy
0 0 0 v 2

(4) H,

It
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in which the absolute values of all » are the same. Neither the characteristic
values nor the squares of the components of the characteristic vectors will be
changed if H, is transformed by a diagonal matrix s all the diagonal elements
of which are s; = 1. Such a transformation will leave the diagonal elements
of (4) unchanged but will replace v, by SkSe41Wre41 - BY choosing s = 1,
8 to have the sign of —v._,, for £ > 0 and the sign of —u; 441 for k < 0, all
non diagonal elements will become negative, their value will be denoted by —uv.
The resulting matrix H; can be transformed into H, + 1 by renumbering
the rows and columns. Hence, the set of characteristic values A; will be unchanged
if one replaces each \; by A\, + 1. Furthermore, H, can be transformed into
—H, by interchanging the k* and —k* rows and columns and transforming
it by an s with s, = 1 foreven k and sy = —1 for odd k. Hence the set of char-
acteristic values contains, with every \;, also —\; . Since the A, will change
continuously as v is increased and since for » = 0 the set of A; consists of all
integers, this will be true for all v. Without loss of generality, one can set

(43.) A = k.

The characteristic vector of k shall be denoted by ¢*. It then follows from the
remarks about transforming H; into H, + 1 that ¢{* = y{*" i.e. the I** com-
ponent of ¥* depends only on the difference I — k

(4b) ¥ =% = i

where; for simplicity ¥ has been replaced by y. It finally follows from the
remark about the transformation of H, into — H, that

G = o(— ).

Clearly ¢ = +1 and again by continuity from the v = 0 case, ¢ = 1. This gives

(4c) Vo= (=)
The equation Hyy = 0 reads explicitly
(5) = + Wi — vy = 0.

This reminds one of the recursive formula for Bessel functions, ([5], 17.21, p.
359)

(5a) —Jia(@) 4+ 2U/2)J(z) — J1a(z) = 0.
Hence it follows that one can set

(5b) Vi = Ju(20) = ¢i§ .

This satisfies all conditions since for large [

(5¢) ViR o/l & (e) T

¥ goes to zero fast enough for ) 7 < . We note that the orthogonality of
v and ¢* gives

(6) Do Ju20) () = 0 k= 0.
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The summation runs over all integers from — « to «. The essential result of
the calculation is (5¢) which shows how ¥, decreases as [ — «. Because of (4c),
the decrease is essentially the same as [ — — .

It should be noted that one can obtain a formal solution of the equation
H,p = Mg for any X. It is necessary for this purpose only to set

@ = Zz_)‘(21))

where the Z; = aJ; + BN, are all the same linear combinations of regular and
irregular Bessel functions. However, the ¢ obtained in this way cannot be nor-
malized.

Preliminary remarks on the strength function

We shall consider, below, very large sets of real symmetric matrices. Each
of these will have certain characteristic values A; the corresponding real nor-

malized characteristic vector will be denoted by ¥, its components by w,

The orthogonality relations of the YV are

@) DN L L AR D S

We next define a function S(x) as follows. Let us consider all the characteristic
values A\ of all the matrices of the set which are below z. Their number shall
be denoted by MA(x) where 0 is the number of matrices in the set. Let us con-
sider then the sum of the squares of a particular component k£ = 0 of all the
characteristic vectors ¢® for which A < z. Then

(8) NS(@) = Dot 2oacs @),

the summation is extended over all matrices of the set and all the characteristic
vectors of these which satisfy the condition A < z. The right side is clearly in-
dependent of the sign and other arbitrarinesses in the definition of the charac-
teristic vectors should multiple characteristic values occur. Because of the nor-
malization relations (7), if £ — o, the sum over A gives 1 for each matrix
separately and one finds

(8a) S(») = 1.
We shall calculate now the moments
) M, = f 2 d8() = M e A NG

the summation is to be extended over all characteristic vectors of all matrices
of the set. If a typical matrix of the set is denoted by H = (Hma) one can write

2o Hudd = M’
and repeated application of H to both sides gives

Zn (Hy)mn‘l’sn)\) = >\vlll7(n)‘).
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Multiplication with ¢{" and summation over A yields by means of (7) the well
known equation

(9a) (H)mi = 20 NY WY,
Setting m = k = 0 herein and summing over all matrices of the set gives
(9b) M, = R 3 (H)oo = AV(H o -

Av will denote the average of the succeeding expression over all matrices of
the set.

The M, will be calculated in the following section for a certain set of matrices
in the limiting case that the dimension 2N + 1 of these matrices becomes in-
finite. It will be shown, then, that S(z), which is a step function for every finite
N, becomes a differentiable function and its derivative S'(z) = o(z) will
be called the strength function. In the last section, infinite sets of infinite
matrices will be considered. However, all powers of these matrices will be defined
and (H")e involves, for every », only a finite part of the matrix. It will be seen
that the definition of the average of this quantity for the infinite set of H does
not involve any difficulty. However, a similar transition to a limiting case N —
« will be carried out with this set as with the aforementioned set and this tran-
sition will not be carried through in a rigorous manner in either case.

The expression “strength function” originates from the fact that the absorp-
tion of an energy level depends, under certain conditions, only on the square of a
definite component of the corresponding characteristic vector. This component
was taken, in (8), to be the O component. Hence S(z;) — S(z,) is the average
strength of absorption by all energy levels in the (z; , x») interval.

Random sign symmetric matrix

The matrices to be considered are 2NV + 1 dimensional real symmetric matrices;
N is a very large number. The diagonal elements of these matrices are zero,
the non diagonal elements v, = v;; = =v have all the same absolute value but
random signs. There are | = 2¥V*¥*Y guch matrices. We shall calculate, after
an introductory remark, the averages of (H”)y and hence the strength function
S'(x) = o(x). This has, in the present case, a second interpretation: it also
gives the density of the characteristic values of these matrices. This will be
shown first.

Let us consider one of the above matrices and choose a characteristic value
\ with characteristic vector ¢™. Clearly, A will be a characteristic value also of
all those matrices which are obtained from the chosen one by renumbering
rows and columns. However, the components y{® of the corresponding charac-
teristic vectors will be all possible permutations of the components of the original
matrix’ characteristic vector. It follows that if we average (¥{”)* over the afore-
mentioned matrices, the result will be independent of k. Because of the nor-
malization condition (7), it will be equal to 1/(2N + 1).

Let us denote now the average number of characteristic values of the matrices
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of our set which are smaller than x by A(x). More accurately, this is the number
of all characteristic values of all matrices of our set which are smaller than z,
divided by the number of matrices in our set. Clearly A(— =) = 0, A(x) =
2N + 1. Since every characteristic value X which is common to 7, of the matrices
contributes n,/MN to A(z) if A < z and since it contributes N 'n,/(2N + 1) to
S(z), we have

(10) Al@) = (2N 4+ 1)8(z).

This is true for any value of N, as N — o, the step functions A(z) and S(x)
become differentiable and the density of characteristic values per unit interval
becomes

(10a) A(x) = 2N + Do(z).
Calculation of the moments

We now proceed with the calculation of the average of (H" )i, or (H”)y since
the former quantity is independent of k. We first note that the diagonal ele-
ments of H® are

(11) Sk vkt = 2 vor = 2N,
Hence the average of this quantity is also
(11a) M, = 2NV,
Let us consider now the expression for the »** moment
(12) M, =n" Zset Zi-l...,-y_l VoiyVigis = Viy_yq -
Since the diagonal elements of our matrix vanish, the summation in (12) can be
restricted to those sequences 0, ¢;, 22, -+ , 4,1, 0 in which no two succeeding

members are equal. A pair of unequal numbers jl, each of which characterizes
a row or column of our matrices (i.e. for which —N =< 7,1 < N) will be called
a “step”’; the step Ij will be called the reverse of jl. The sequence 0, ¢; , 2, - - - ,
7,.1, 0 contains v steps: 0%, , %1%z , %ot3, -+ - , %,—10. Each matrix of our set at-
tributes a sign to every step but the signs of a step and of its reverse are always
the same.

Set summation and the summation over the 7 can be interchanged in (12).
The set summation will give 0 for each sequence 0, 2, , 22, -+, %1, 0 unless
it contains every step jl and its reverse an even number of times. If it does and
if its first and last members are the same, it will be called a valid sequence.
Thus, 0, %, 7, ¢, [, m, n, m, n, m, 1, ¢, 0 is a valid sequence for v = 12 if the ¢,
J, I, m, n, are all different. For a valid sequence, the set summation of (12) gives
Nv’. Hence M, is equal to ¢" times the number of valid sequences of length
v + 1.

Clearly, there is no valid sequence if » is odd. Hence, M1 = 0 and we can
restrict ourselves to the calculation of the M, , i.e. the number of valid sequences
of length 2» 4+ 1. A typical valid sequence of length 2» + 11is 0, ¢, %2, -+,
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T1, %, %1, " *, 12, 41, 0, no matter what the 7 are as long as no two suc-
cessive members of the sequence are equal. There are (2N)” valid sequences of
this type and it will be shown that the leading term in the expression for the
total number of all valid sequences of length 2v + 1 is a numerical multiple of
this, which will be denoted by ¢,(2N)". The accurate expression for the number
of valid sequences contains terms with lower powers of N but we shall assume
that N is so large that we can restrict ourselves to the leading term. Hence

(13) M,, = t,(2N)"™.

Because of (11a), #; = 1 and we proceed to calculate the general ¢, .

Excluding the first member, there cannot be more than v different members in a
valid sequence of length 2v + 1. Let us call the steps “free’” which end in a mem-
ber which did not occur in the sequence before and let us call the steps ““repeti-
tive” which end in a member which did occur before. The sequence can be valid
only if the number of repetitive steps is at least equal to the number of free
steps. Since the number of free steps is equal to the number of different members
of the sequence, the latter number cannot be more than one half of the number
2v of all steps. This proves the assertion.

The number of valid sequences which contain less than v different members is
proportional to N'™" and their number is, therefore, negligible. The total number
of sequences with only » — 1 different members is less than (2»)! (2N + 1)""
and the number of valid sequences is smaller than this.

It follows from the preceding observation that it will be sufficient to count
those valid sequences which have » different members, i.e. contain » free steps.
It is permissible, therefore, to call only those sequences valid which contain
v different members. Since the number of repetitive steps in these sequences is
also » and since every free step must be repeated (in the same or the opposite
direction) if the sequence is to be valid, every repetitive step will in fact be
equal to a free step or to the reverse thereof. This justifies the name “repetitive”’
for the not free steps of a valid sequence.

A valid sequence in the above restricted sense defines a type sequence. The
type sequence has 2v members, its ut" member is the number of the free steps
minus the number of the repetitive steps among the first u steps of the sequence
to which it is coordinated. Thus, for instance, the sequence 0, 5, 3, 5, 0 and
0, 3,0, —2, 0 are both valid sequences for 2v = 4 (if N = 5). The type sequence
of the former is 1, 2, 1, 0, that of the latter is 1, 0, 1, 0. All type sequences start
with 1 and end with 0, successive members of it differ by +1.

There are exactly 2N(2N — 1) --- 2N — v 4+ 1) = (2N)!/(2N — »)! ~ (2N)’
valid sequences for every type sequence. If the ut* member of the type sequence is
larger than the preceding one, the corresponding step in the valid sequence is
free and may lead to any number j(—N < j < N) which has not been used
before. If, on the other hand, the u** member of the type sequence is smaller
than the preceding member, the uth step of the valid sequence is a repetitive
one and must be the reverse of the step which originally led to the element
from which this step starts. Hence, in the latter case, the u* step of the valid
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sequence is completely determined. (It follows that in a valid sequence in the
restricted sense the steps are not actually repeated but balanced by the reverse
step. This fact is not material for the remainder of the calculation.) It follows
that t, in (13) is the number of type sequences of length 2v.

Before obtaining a recursive formula for ¢, , we note that the only two type
sequences for 2v = 4 are the ones given above: 1, 2, 1, 0 and 1, 0, 1, O the cor-
responding valid sequences have the form 0, 7, j, 7,0 and 0, 7, 0, j, 0 with ¢ > j.
Hence &, = 2. For 2v = 6 the type sequences are 1,2,3,2,1,0; 1,2, 1,2/ 1, 0;
1,2,1,0,1,0;1,0,1,2,1,0; 1,0, 1,0, 1, 0. Hence, #; = 5. The valid sequences
of the second type are 0, 7, 7, 7, [, 7, 0 with 7, 7, [ all different.

The number of type sequences which contain no 0 before the last member
will be denoted by ¢’. From these sequences, one can obtain a type sequence of
length 2v — 2 by omitting the first and last member and subtracting 1 from
each remaining member. Hence

(14) to=t,_,. (tt =t = 1),

If the first 0 member of the type sequence is at the position 2x (it must be at
an even position) the first 2« members of it form a 0 free type of length 2«, the
remainder an arbitrary type sequence of length 2v — 2«. Hence

(143) t, = Z:=l t;tv—x = Z:x::l | T M (V = ly 2) 3; o )

These recursive equations permit the successive calculation of the ¢, . One can
obtain a closed formula for them by writing

(15) Hz) = Dowo .
The recursive formula (14a) then gives
(15a) i) = 1 + zt(z)”.

The 1 on the right side is necessary because (14a) is not valid for » = 0. It fol-
lows that

(15b) tz) = (22)7'(A + (1 — 4a)h).
Actually, the lower sign has to be taken. It gives

1
o _ a4\t — (21’)!
<V_?_1>( 4 vip + 1)V

This can also be proved by induction by means of (14a). Finally, by (13)
(2v)!

(15¢) . =

[N

— v 2v
(16) M,, S0+ 11 (2N)"v™.
Calculation of the strength function
It follows from (9) and (15) that
® 2» _ ® 2v _ 21’! v 2y
a7) [a"as@) = [ a¥o@az= 2 N,
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The fact that S(z) is differentiable and that, therefore, the first integral can be
replaced by the second one (o(x) = §'(x)) will be a consequence of (17). From
the vanishing of the odd moments M,,,, it follows that ¢(z) is an even function
of z. The form of the even moments suggests the introduction of new variables

(18) p(§) = No(N¥)
in terms of which (17) reads

y @12 Y (29)1(29)
(18a) /52"(9 = o F DN~ e+ D

where ¢ = »*/N.

Professor W. Feller kindly pointed out to the writer that the analysis of the
original manuscript leading to (20) can be simplified by calculating directly
(cf. also [2], Chapters 14 and 16),

[ o0 dx = Xz [ B o g

@v)!
(19) 2\»v ’
_ Z (—)"(2qk) _ 2J1(‘1 k)
Y vip + 1)! qk

where ¢’ = (8q)%. The second member of (19) follows from the vanishing of the
odd moments, the third member is the well known series (see [5], 17.1, p. 355)
for the Bessel function of order 1. In order to obtain p itself, the Bessel function
must be represented as a Fourier integral. Such a representation is provided by
the expression (see [5], Example 1, p. 366),

T
1z

S TERTA b ¢ S e de

Jy (2)
(19a)

1
=2 f e (1 — w)? dw.
-1

™

The last part was obtained by substituting w for cos ¢. Substitution of ¢’k for
z and £ for ¢'w then gives (remembering that ¢ = 8¢)

(19b) 27;_(,9@ - ﬁ _:’ ¢*4(8g — &) d.

Comparison of (19b) with (19) yields

(20) p()) = (4vq)"(8¢ — £’ for £ < 8¢
=0 elsewhere.

The original analysis did not make use of the properties of Bessel functions.
It showed, on the basis of (18a), that the moments of (8¢/¢) ds/d¢ and of ¢ ds/d¢
— 3s are equal where ds/d¢ = £p. This led to the differential equation:

(19¢) (8¢/%) ds/dt = & ds/dt — 3s
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and hence to (20). The integration constant was determined from the normaliza-
tion of p, i.e. from (18a) with » = 0. It was necessary then to refer to Corollary
1.1 in Shohat and Tamarkin’s book [4], p. 11, or to Carleman’s general theorem
[1], p. 115, or [4], p. 19, to infer from the asymptotic form of the right side of
(18a) that (20) is the only solution of (18a). This also justified (17). In any case,
it is easy to verify a posteriori that the p of (20) satisfies (17).

For o(z), (18) gives

2 2\%

_4#]\7727‘_) (for —(8N)» < z < (8N)™).

This gives both the distribution of the characteristic values of the random sign
symmetrical real matrices defined at the beginning of this section and also
their strength function. Since, on the average, all the components of the charac-
teristic vectors have the same absolute value, the two distributions are naturally
identical. The reader will notice that even though some of the matrices of the
set considered have characteristic values as high as 2Nwv, the characteristic
values in excess of (8N)'v become increasingly rare as N — o« and their total
number constitutes, in the limit, a negligible fraction of all characteristic values
of the matrices of the set.

(20a) o(z) =

Infinite symmetric matrices with wide random borders

The set of matrices H = k + v underlying the following calculation has been
described in some detail in the introduction. Of the two, k is unbounded but
its characteristic vectors are clearly the unit vectors parallel to the coordinate
axes; v is bounded for all N, its bounds being +=2Nv. Hence the characteristic
value problem of H is defined.

Some of the remarks which apply for the singly bordered matrix also apply
to the present set of matrices. In particular, k can be transformed into —k by
renumbering rows and columns and the set of matrices v is also invariant under
this transformation. It follows that the average number of characteristic values
\ per unit interval at z is an even function of z. It also follows that if v s
the characteristic vector of one matrix of the set, the set contains another matrix
with characteristic vector ¢3". Hence, if 9 is the number of matrices of the set
which we consider and if this set of matrices includes either both or neither
of the aforementioned matrices

@) NS@) = Tt Lince )" = et oo (987)"

Because of (7), the sum of the expression in (21), extended over all A, is just
N. Hence, the last sum is also equal to

(21a) NS(@) = N — Duet 2oac—s @™)* = N — NS(—2)
so that
(21b) S) + S(—z) =1

and the strength function o(z) = S’(z) is again even.
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Second, it is again possible to transform k into k 4+ 1 by renumbering the
rows and columns and the set of matrices v is also invariant under this trans-
formation. Hence, the average number of characteristic values A per unit in-
terval at x is a periodic function of x with period 1.

It may be well to repeat here that we shall be interested, eventually, in a
very wide border, i.e. in the case that N in (1) is very large. At the same time
v shall be very large also, in such a way, however, that »/N = ¢ remains con-
stant. The problem originates from the consideration of an ‘“‘unperturbed prob-
lem” in which the spacing of the characteristic values is 1/N, the matrix of the
unperturbed problem being N 'k. The “perturbation” N 'v has matrix elements
connecting characteristic values of the unperturbed problem which differ up
to 1 (this quantity being chosen as the unit of energy). The diagonal elements
of the square of the perturbation N*" are 2NN " and this quantity is denoted
by 2q.

Calculation of the moments

Because of the even nature of the strength function, it will suffice to calculate
the even moments thereof. Their calculation will be based again on (9b), i.e.
on the calculation of the set average of (H™)y . Before carrying out the calcula-
tion, it should be noted that

(22) (H")oo = 220 (H)oa(H )uo = 20 (H )i -

It will be shown that (H"),, is different from zero only for —wN = n < N
and that only those v.., influence it for which —vN < m, n < vN. These state-
ments are evident for » = 1. Since

(22a) (H)on = 2om (H)om(mbmn + vn)

and since vm, = 0 for | m — n | > N, the statements follow by induction. They
show that, when calculating the set average of (H”)y , the average has to be
taken only over a finite set of matrices, namely those in which the v,
for —2vN =< m, n £ 2vN have all possible signs consistent with the condition
of symmetry.

The calculation of M, = Av(H”)s will closely resemble the calculation of
the preceding section. It will turn out again that the term in M,, which is pro-
portional to the highest power of N has a factor (v’N)” &~ N** and only the terms
proportional to N* will be calculated. The proportionality constant of N>
will depend on ¢ and we shall write

(23) M,, = Av(H”)y = T,(q)N”.

We use again an expression similar to (12) for

(24) M, = AV D iiyeeing_y HooyHsig . Hiyy o

and define the steps 0¢;, 71tz , @223, -+ -, 7240 as before. However, there are,

in this case, three kinds of steps: (1) the free steps which lead to an 7 which has
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not occurred before in the sequence 04ist; - - - 72,10, (2) the repetitive steps
which occurred before in the same or in the reverse direction, and (3) the waiting
steps which correspond to diagonal elements of the matrix. It is possible again
to define type sequences each member of which differs from the preceding one
by %1 or 0. If the u** member of the type sequence is larger than the preceding
one, the corresponding step is a free step: if it is smaller, it is a repetitive step.
Finally, if 4 — 1* and u* members are equal, the corresponding step is a waiting
step. It is true again that every free step must be repeated in the same or in
the opposite direction. Furthermore, since the diagonal element in the 0 row
vanishes, neither the first, nor the last step, can be a waiting step; the first one
must be a free step, the last one a repetitive step.

We shall single out again that part of the sum (24) which belongs to types
which have no 0 members, excepting the last. In the corresponding terms of
(24), none of the 7 is 0. The sum of these terms will be denoted by T,(¢)N™.
The first and last factors in a typical sum of this type are v,;, and v;;, , their
product v*. The rest of the terms give all the terms of

(25) Eizia'"izv-z HilizHizix"'Hizv-zh = (H2y_2)ili1 .

However, the set of matrices (H. tm,i,+n) 1s identical with the set of matrices
(Hmn + 711) so that the average of (25) is equal to the average of [(H + 41)¥ oo .
This gives for the contribution of the zero-free types to (24)

TW(QN” = Zk VAVI(H + £1)* oo
(25a) — Zk VAV ZX <2V ;‘ 2) kzy—z»—x( H)‘)oo )

The summation over k£ can be replaced by integration from —N to N. It gives
0 for odd A, for even X it gives 2N*/(2y — 1 — A). It simplifies the notation
to write 2\ for A and let A run over the integers. At the same time, ¥ will be
written for » and the expression (23) substituted for the Av

’ 2% 2 x—1 2¢ — 2 2\ N B
T(QN™ = 2v ZX=0 < 0\ > T\(@)N e — o — 1
(25b) 0 0 @
_ 2K x—1 K — A q
= 2gN x=o< 0 >2—-K 1 (for k > 0).

This is the analogue of the very much simpler equation (14) of the preceding
section. The highest T\ which occurs on the right side is T',; .

The various terms which enter the sum (24) can be distinguished according
to the position 2« at which the first 0 occurs in their type sequence. In the terms
in which O occurs at the position 2«, the index 7, = 0 so that they contribute
altogether to the sum (24)

(26) T:(Q)NzxAVHOiszHizxﬂi2x+2 oo Hyy 0= T:(Q)Nz‘Av(sz_zx)OO .
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The whole sum (24) will contain terms which correspond to any « from 1 to
v; it will be a sum of expressions (26) with all these x. Hence
Ty(q)]\ﬂv — Z:_l T:(q)N2KAV(H2v—2K)m
= 2 et T T (@) N* (for v > 0)

where (23) was used to express the Av. This last expression is the analogue of
the second member of (14a). Substitution of (25b) into (26a) gives a recursive
formula for the T, alone

x—1 2K - 2 ]v)\ Ty—x
= 2 i T3 (7, >m_ﬁ‘ 0w

2 1 N A—
= 2q Z“—O Z)\=0< Kz—i‘ > 2 + 1 + 6140

The last term was added to make (26b) valid also for » = 0. The highest 7
that occurs on the right side has index » — 1 and the equations (26b) determine
successively all 7', . One obtains, either by direct calculation or from (26b)

(26a)

(26b)

(26¢) Ty = 1 T.=2¢ T,= 8¢ + 2¢/3.
The equations of the preceding section for the M, are contained in (26b)
as a limiting case for ¢ = . Hence the coefficient of ¢ in T, is

2(2»)!/(»!(v + 1)!). The coefficient of ¢"" is
2¥ /8 — 272 — DI((» — 1)) 7Y/3.

The coefficients of ¢ and ¢* are 2/(2v — 1) and 4(2» — 2)/(2v — 3), respectively.
However, no closed expression could be obtained for T, .

The following estimate of T, , although very crude, will show by Carleman’s
theorem [1], p. 115 or [4] p. 19, that the moments (26b) uniquely determine
the distribution function. The explicit expressions (26¢) show that

(27) T, < 2(qg + 1)
is valid for » = 0, 1. It will be proved, in general, by induction. If (27) is valid
forh =0,1,2,--- ,» — 1, we have, forxk < v — 1

St (Poh ) m<2 S (M) @+ 0 <2 B (55"
(g + D% < (g 4+ DT 4+ 0™ + 1 — o)™

The last term on the right side can be omitted for xk = 1. For x = 0, omission
of the last term makes (27a) an equality. Hence, we have, by (26b) and (27)

T, 22925 (g+ DA+ 0200+ 1) — x — D)* /(2 + 1)

) l(V _ 1)2»—2 23(11 _ 2)2v—4 . (V _ 1)2v—312 y‘lv—-l }
<4(q+1){ T T3 SR N v Sl v |

(27a)
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There are » terms in the bracket and the last one is largest among them. Hence

(27b) T, < 4(g + 1)’/ 2v — 1) < 2(¢ + )V
for v = 2,3, --- . This proves (27).

It follows that
(27c) (T)* — @+ 1)

so that the series with the general term (27¢) diverges and the Perron-Carleman
criterion for the uniqueness of the moment problem (28b) is satisfied.
Equations for the strength function

We shall write the basic equation for the strength function at once in terms
of o

(28) f_w ”s(z) dx = M, = T,(¢)N™.

By introducing a proper scale for the variable of the strength function

(28a) p§) = No(N§)

(28) transforms into

(281) [ &nte) dz = 1000

All odd moments of ¢ and p vanish. The existence of all moments implies that
p goes to zero at £ — == « faster than any power of £ Substitution of (28b) into
(26b) gives for » # 0

[ deeato) = 20 22 Tioo (M55 1) [t [ asntone) G

All integrals in which no limit is given are to be extended from — « to «. To-
gether with [p(¥) d¢ = 1, (29) completely determines the even function p.
The summation over A can be carried out in (29) by the binomial theorem and
gives

2x+1 _
(292) f dEE"p(8) = q 205 f dt f et LY 2x-|l-(11

E)2x+l

Integration of the identity

gives

L 2x+l
(29b) o - [ 3
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Hence (29a) can be written also as
a B8 2y
v — 1 2v—1 x__:.—_l
@) [ ases(o) = 0 [ at [ axopers ([La + [ ar) 5 =]

where o = (1 + ¢)/¢ and B8 = (1 — £)/¢. Introducing z = ¢z as new variable
instead of x gives

oo [an) — 10 f e o ([ v [ i)

zz_g-‘l'

The purpose of the following transformations is to bring the right side into a
form in which » appears only as the exponent of ¢*. This cannot be done by
simply interchanging the variables z and ¢ in the term which contains 2 be-
cause the singularity which would then result at z = ¢. In addition, it appears
worthwhile to simplify the last equation somewhat. One can replace the two
integrals with respect to z by two similar integrals extending from ¢ — 1 to
£+ 1land from — £ — 1 to — £ 4+ 1. Since the remainder of the integrand is
an even function of £, the two integrals are equal and can be replaced by twice
one of them. Finally, one can interchange the integrations with respect to z and
£ to obtain, still only for » = 0,

2y

[ = o [ ae [ a5 [ aetornte) =5

) .
=gq f dz / diRy(2)p(t) zz2 - S;g
in which
z+1
(308) R@ = [ e

is again an even function which drops to zero at z = = « faster than any power
of z. Since the integrand on the right side of (30) has no singularity, it is per-
missible to exclude two narrow strips | 2 4= ¢ | < e from the integration. Then, the
integration variables z and ¢ can be interchanged in the term with z* to give,

ase — 0
2y

6ob)  [acente) = [ qdedbiRi0@) + 00RO G

Even though both integrands are even functions of ¢, the application of the
theorem of moments to equate the integrands is not permissible because (30b)
is not valid for » = 0.

In order to render (30b) valid also for » = 0, we calculate first

axtl>e 28 — 7

(31)

f dz =§1_ln2§-+8 for0 < ¢ < ¢
|

1

c

fore < ¢.
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These expressions are proportional to 1/¢ as long as ¢ is of the order £. They
drop very fast as ¢ increases: the integral is 1 for { ~ & and of the order of
e for ¢ ~ ¢ Hence, if f(¢) is an even function with two continuous deriva-
tives which is small enough at { = £+,

(31a) lim, f fl e 2 EE z,_,f @(2

¢ is the integral of (31) from { = — = to « or twice the integral from 0 to «.
The reader will recognize that the double integral of ({* — 2°)™' over the whole
¢z plane excluding the | { & z | < & strips is not absolutely convergent: it gives
a negative value if first integrated over z then ¢, the opposite value if the in-
tegration is carried out in the reverse order. It is clear from (31a) that the sub-
traction of a term f(¢) in the square bracket of (30b) will not render this equa-
tion invalid for » = 1 as long as the even function f(¢) drops faster at ==
than any power of { because {”f({) vanishes at { = 0. On the other hand, the
value of the integral for v = 0, which is zero as the integral now stands, will
become 1 if

c=7/2

(32) f(0) = 2/x'.
Hence
(320) [ di®o(e) = limimo [ det” f' L E©)e@) Jrfz"(_‘“)zlf“z) = S

is valid now for all ». It can be written in a somewhat more transparent form

fdﬂ'{'zvp(i') fd§‘§'2"q[R1(;')fd P(Z) - P(f)_*_ ({')fd R1(Z) — gl(f):l

(32b)
=nmhm[da”ﬁ&mﬂqd2R“@“” 1)

(2_22

In the square bracket, the strips |z &= ¢ | < ¢ need not be excluded from the
integration since the integrand is regular everywhere. Because of (31a), the
right side can be replaced by

(32¢) 8ucqlf(0) — 2R1(0)p(0)] = §7°gul2/7°q — 2R1(0)p(0)].

Hence, the left side of (32b) contains the moments of an even function of and
the form (32c) of the right side shows that these all vanish except the zerot:
moment. It follows that the function vanishes and so does its zero** moment

(33) Mo—wmjﬁig@d+q@f&@t%gﬁ

(33a) Ri(0)p(0) = 1/7'q.
The last equation means, in terms of the strength function ¢ (cf. (28a))

(33b) No(0) [ : o(x) de = 1/x%.
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Driscussion of the equations (33) for the strength function

As was mentioned before, the problem of the preceding section represents
the limiting case ¢ = o of the present problem. Hence, (20) is a solution of
(33), (33a) for very large ¢q. In the opposite limiting case of small ¢, the total
width of p will be much smaller than 1 and R; can be replaced by 1 over the
significant region. Hence, in this case

(34) p(f) qu(z) P(f) dz.

This equation is solved by

const q
¢t + ¢ - g + &
the constant being determined by (33a). However (34a) is valid only as long as
¢ < 1 since only in this region is R; ~ 1.

Neither (20) nor (34a) give the asymptotic behavior of p({) correctly. In
particular already the second moment of (34a) is divergent. The asymptotic
behavior can be calculated on the basis of the observation that p and R; surely
decrease to 0 at { — o« faster than any power of { and that, hence, the largest
contribution to the integrals in (33) comes from the region at very small z.
Hence, the {* — 2’ in the denominators can be replaced by ¢*. Since the integrals
of p and R; are 1 and 2, respectively, we have asymptotically

(35) p(f) & qRi(0)/¢" + 2g0(8)/¢".

The last term on the right side is much smaller than the left side and can be
omitted. The resulting equation has the asymptotic solution

(35a) p(t) = const. (2¢¢° In ¢/é)*.

The calculations reported in the present paper were carried out during the
summer of 1954. The writer is much indebted to the Wisconsin Alumni Re-
search Foundation for supporting this work.

(34a) p(§) ~
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