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CHARACTERISTIC VECTORS OF BORDERED MATRICES
WITH INFINITE DIMENSIONS II

By EvucenNE P, WIGNER
(Received June 19, 1956)
The matrices which form the subject of an earlier study [1] consist of a diag-

onal matrix k
1 Kmn = Mdpn (—0 <m,n < )
and of the “border”. This is a real symmetric matrix v, all the elements of which
vanish beyond a certain distance from the diagonal
(1a) UVmn =0 for |m —n| >N (—o <mn< o)
while those closer to the diagonal have all the same absolute value
(1b) | vmn | = v for |m —n| = N.

Since v is symmetric vm, = Vnm . Subject to this condition, however, the signs
of the v, are random; i.e., ensembles of matrices are considered with all pos-
sible signs of the v, subject to the conditions of symmetry.

The problem is connected with the real normed characteristic vectors ¢™ of
H=k+4v:

2) Z H"m‘/’(» =\ '//(x).

The average value of @™)? over all matrices of the ensemble was denoted by
o(\), the characteristic value A being considered as a continuous variable. A
more nearly exact definition of #(A) is given in the aforementioned article. A
complete solution could be given for N = 1; the more interesting case of a very
large N led, in general, to an integral equation. In order to formulate this in-
tegral equation, a more proper scale for the variable A was introduced

3) p(A\/N) = Na(p).

It was further assumed that, together with N, also v tends to infinity in such
a way, however, that
(3a) v'/N =

remains finite. Then, the following integral equation (33) was obtained for p,
partly by heuristic arguments

@ o) = k) [P g g RO ZBD,

All integrations on which no 11m1ts are given are to be extended from — « to

o5

t+1
(4a) Ri(5) = _/{_1 p(2)dz.
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It is easily seen that p(¢) is an even function, it tends to zero for large ¢ so rap-
idly that all its moments exist. Its zerot* moment (integral) is 1, its second
moment, 2q.

The integral equation (4) could not be solved in closed form and no such
solution will be presented here. However, it will be transformed into a much
simpler equation from which the approximate expressions for p (for large and
small values of ¢) which were obtained before can be obtained much more
easily. For this purpose we consider the function r(z) which is analytic in the
upper half plane, tends to zero in that plane as | z| — «, and the real part of
which is p(z) for real z. This function is well known to be given in the upper
half plane by the integral

(5) r(z) = %_ f g_p—(_g‘)—z d¢ (for Im z > 0).

It is easy to verify that the real part of r(z) tends to p(¢) as z approaches the
real ¢ from above

(5a) Re r(z) = p(2) (for real 2).

The imaginary part of 7(z) on the real axis is obtained in the same way as the
principal value integral

(5b) Im r(z) = }I_P f .'zp—g)_g' d¢ (for real z).

Naturally, the integral representation (5) is not valid in the lower half plane;
in fact, the real part of the integral in (5) approaches —p({) as z approaches
the real ¢ from below. In the lower half plane r(2) must be obtained by analytic
extension from the upper half plane, not by (5). As a matter of fact, it will not
be necessary to make such an extension, the complex variable z can be restricted
for the purposes of the present article to the upper half plane including the real
axis.

Let us consider now the analytic function which is in the same relation to
R; as r is to p. The function

(50) r() = L r(z + ¢)ds

satisfies all the conditions which this function must satisfy and is therefore this
function. It is also even in z.
At very large | z |, because of the rapid drop of p(¢) at { — 2, and since

f p(¢) d¢ = 1, one obtains from (5)

(6) r(z) — i/72 (for Im z > 0).

Let us now calculate the imaginary parts of r(z) and ri(2) on the real axis.
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Since p is an even function

. Im r(z) = %P f zp(_i')g_ e = 2_17_rp f (zp(_f)g' + l:;i?) d¢

1 2z
=erfp(§')zz—_—'§,2d§'-

An easy calculation gives, furthermore,

* 22df _ (11

PL,z?—f?_ZP/o <§'+z i‘—z)d§
_ . . z—e N 1 1
=2t ([T a4 [ ) (-5 5)

2—€ N
=2limlim{|:ln§-+zj| +|:ln§-+zj| }
N->w e>0 2z — §' 0 §‘ — Z_]zte

- 211mlim{ln2z il S N\ S N e e} - 0.
N> e>0 € N — 2 €
It now follows by means of (7) that for real z
_z p($) oz p(®) — p(2)

since the last equation shows that the term added on the right side vanishes.
The principal value integral can now be replaced by the proper integral since
the integrand has no singularity any more.

As (4a) shows, the even character of p entails the even character of R;.
Hence, the same calculation gives

(7b) Im r(z) = 2 Ri(§) — Ri(2) de

™ 22 — {2
and (4), multiplied by z/w, can be given the form
(8) (Rezr/m) = q(Rer)(Im ) 4+ g(Re r)(Im rq) (for real 2).

It follows that the real part of the analytic function w = zr/7 + 4¢rr; vanishes
on the real axis. Since r and r; are both regular in the upper half plane, includ-
ing the real axis, this holds also of w. Finally, since both r and r, tend to zero
as | 2| — «, and because of (6), w — i/x" for very large 2. It follows that w —
i/=" is regular in the upper half plane, tends to zero for |z | — o and its real
part vanishes on the real axis. Hence w — i/x° = 0

9) zr/m + igrry = i/7.

This is the simplified form of (4) to which we were referring. It can be written
in an even slightly simpler form if one introduces p(z) = wr(z) and pi(z) =
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mri(2)
(9a) zp + iqppr = ¢
while the relation between p and p; remains
z+1
(9b) @ = [ 20 ds.

The consequences of (4), obtained before, will now be derived from (9) or
the equivalent (9a). It will be noted, first, that Im r(z) is an odd function of
the real variable z. This follows most easily from (7a). Similarly, (7b) shows
that Im r; is also odd. Hence, both r and r; are real functions of z

(10) r(iz) = r(iz); r(iz) = nrzz).

In particular, » and r, are real for z = 0 and equal to p(0) and R.(0), respec-
tively. Hence, insertion of z = 0 into (9) gives

(11) gp(0)R,(0) = 1/7".

This is equation (33a) of Reference 1. It follows from the development given
there that (11) should be a consequence of (4). The preceding argument veri-
fies this directly.

Since 2q is the second moment of p, this will change very little in a unit in-
terval if ¢ is large. Hence, by (5¢), 1 & 2r for large ¢. Thus (9) becomes in this
case

2’ + @/n)r — i/7° =

or
2
r@ = + Trc + [21.- 71 6§r2q2] .
In this case for real z
p(2) = Rer(z) = (4rg) '8¢ — 2} for 22 < 8¢
=0 for 2 > 8¢.

This is equation (20) of Reference 1.

If ¢ is very small, the width of p will be very small and the integral of (5c)
will be closely approximated by the similar integral from — o to « as long
as z < 1. For real 2, the value of this integral is 1 because this is the contribu-
tion of the real part of r and because the imaginary part of r, being odd, does
not contribute at all. Hence (9) becomes in this case

((z/7) + dg)r = i/".
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The real part of r then is for real z
p(2) = Rer(z) = ¢/(& + 7°¢) (for -1 <z<1)
which is (34a) of Reference 1.
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