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Chapter Eleven

Introduction to Fourier Analysis

Lveryonc has expericnec representing quantitics in terms of a basis sct. Many citics
arc laid out in a grid, and locations arc represented by # blocks cast and y blocks
north. We represent this mathematically by writing any point in the planc B2 as
@ ([l]) (] ([l]), with ¢, 7 € R. Here ([l]) is the unit vector in the cast dircction, ([1])
is the unit vector in the north dircction, and our “basis™ is the sct of the two unit
veetors.

Another example is Taylor scrics expansions (scc §A.2.3). For “nice™ functions
(although sce Lxercise A.2.7)

Flz) oyl a2 ay-2? | -, (11.1)
at lcast for x sufficiently close to (.. We arc cxpanding f(z) in terms of {1, z, 2%,
2%, %, ... }. Unlike our example in the plane, here we have an infinite dimensional
space. Because there are infinitely many directions, we will have to work to show
how to dcal with issucs such as convergence (docs any such scrics converge to
a nice function?) and representation (can any nice function be written as such a
serics?).

FFouricr Analysis is concerned with expanding periodic functions (often with pe-
riod 1) in terms of the Fourier basis 2, () g?® ¢ Z. Recall a function
F is periodic of period o if f(x | &)  f(z) forall =. This basis turns out to
be extremely uscful for a varicty of problems; we will sce several instances be-
low, ranging from the equidistribution of sequences in Chapter 12 (if o € () then
ra mod 1 is cquidistributed in [0, 1]) to Goldbach-type problems in Chapter 13
(representing numbers as the sum of primes). While the investigations in Chapter
12 require many of the technical results on convergence proved below, in Chap-
ter 13 all we really nced is the notation and results of §11.1. We will also prove
Poisson Summation, onc of the most uscful techniques in number theory with ap-
plications ranging from proving the functional equation of {(s) (Thcorem 3.1.20)
to investigating digit bias (scc §9.4.2). Finally, when we investigate the distribu-
tion of zcros of L-functions in Chapter 18, we shall usc Fourier analysis to derive
formulas connecting sums over zeros to sums over primes.

It is a deep problem to determine what functions arc given by an expansion in
the Fourier basis. We prove for many “nice™ periodic functions that f is cqual to
its cxpansion in the Fourier basis. This is but onc of many applications of Fouricr
analysis; others include solving the heat and wave cquations (how systems cvolve
with timc), the isoperimetric inequality (of all smooth closed curves in the planc,
for a given perimeter the circle encloscs the greatest arca), the uncertainty prineiple
(onc cannot localize arbitrarily well a function and its louricr transform), compu-
tation of special values of (&) and L-functions (Chapter 3, and is related to a proof
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that there are infinitely many primes), the Central Limit Theorem (Chapter 8) and
Poissonian behavior of nar mod 1 (Chapter 12), to name a few. We sketch some
of'these applications in §11.6. IFor a comprchensive treatment of Fourier analysis,
sce [Be, SS1, Zy].

11.1 INNER PRODUCT OF FUNCTIONS

For# € C we define the exponential function by means of the series

T
e ST (11.2)
o () T
which converges everywhere; sce §5.4 for more propertics of e. Given the Taylor
serics expansion of sin« and cos «, we can verify the identity

et cosx | isinz. (11.3)

Exercise 11.1.1. Prove " converges for all © € R (even better, for all = € C).

Show the series for e" also equals
T T
lim (l | —) . (11.4)
n—+ 00 T

which you may remember from compound interest problems.

Exercise 11.1.2. Prove, using the series definition, that &*+Y  g"e¥Yand calculate
the derivative of &".

Recall the definition of the inner or dot product: for two complex-valued vee-
tors? (w1, ,un), W (wi, -, wy, ), we define the inner product ¥ - «J (also
denoted {7, 40Y) by

T
Tod (@) >, (11.5)
i 1

where Z is the complex conjugatec of 2 (if 2z ¢ | 4y, Z 2 — #y). The length of a
vector 7 is

[ . (11.6)
We generalize the dot product to functions. Let f 1 R — C, say f(z)  u(z) |
iw(x) with w, v real valued functions. We define

b b b
Flz)dz / w(z)dz | z/ w(z)de. (11.7)

l'or a complex number z, |z|?  zZ. We will scc the gencralization of length to
a function will be [ F(z) f(z)de (while f f(z)?dz can be zero (or cven negative)
for complex valued f, the first integral is always non-negative).

For definiteness, assume f and g arc functions from [0, 1] to C. Divide the
inerval [0, 1] into 72 equal picces. Then we can associate to f a veetor in R™ by

flo) (f([)),f(%),,,,,f(nn1)), (11.8)
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and similarly for g. Call these vectors f,, and g,,. As before, we consider

n—1 . .
Fas G f (1) 7 (1) : (11.9)
{ } JZ[:] ” "
note if f g this sum is rcal and non-ncgative. In general, as we continuc to
divide the interval (n — o), the above sum diverges. For example, if f and g arc
identically 1, the above sum is x:. We expect that the inner product of the constant
function on the unit interval with itsclf (its length) should be 1.
There is a natural re-scaling: we multiply cach term in the sum by %, the size of
the subinterval. Note for the constant function the sum is now independent of 7.
Thus, for good f and g, we are led to define { , g} by a Ricmann integral

n—1

, L L
(f,¢p  Im Z f (%) -7 (%) é / F(z)g(z)dx. (11.10)
- i 0 ()

Taking the complex conjugate of g cnsures that {f, f is non-negative. Here,
“good” means any class of functions such that the Ricmann integral converges (for
cxample, continuous or piccewisc continuous functions).

Exercise 11.1.3. Ler ., g and h be continuous functions on [0, 1], and ¢, b € C.
Prove

1. {F, Fy =20, and equals O if and only if § is identically zero;

2. (ha) (g

3(af 1 ba k) alf, By | g R,
Exercise 11.1.4. Find a vector & (:') € C% such that +3 | »5 0, but
@3 /0

Definition 11.1.5 (Orthogonal). Two continuous functions on [0, 1] are orthogonal
(or perpendicular) if their inner product equals zero.

Exercise 11.1.6. Prove " and =" are not perpendicular on [0, 1]. I'inda c € R
k

such that x™ — cx™ is perpendicular to x™ ; ¢ is related to the pmojection of ™ in

the direction of =™

We will sce that the exponential function behaves very nicely under the inner
product. For r» € Z, define
en(z) &, (11.11)
Exercise 11.1.7 (Important). Show for m,n € Z that
1 ifm n

{em(n), eq(x)) . (11.12)
() otherwisc.
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Thus {...,e_1(z),en(x), e1(x), ... } is a sct of mutually perpendicular, unit-
length functions. By an orthegonal set we mcan a sct of vectors or functions
which arc mutually perpendicular; if additionally cach vector or function has unit
length, we say the sct is orthonormal. Thus the Fourier basis is an orthonormal
sct.

Much carc is needed, however, in expanding a general periodic function in terms
of'the &, (z)’s. First, we have issues arising because we have infinitely many basis
functions — we must show the infinite series converge, and further that it converges
to the initial function (and this is, sadly, not always the casc). This is very different
from the casc of the planc, when we had just two basis vectors, ([l]) and ([1]) Sce-
ond, we have questions of completeness. Is the above list of the e, (2)’s complete?
Do these infinitely many functions capture everything, or do we nced to add morc
functions which arc orthogonal to cach e, (2)?

Definition 11.1.8 (Periodic). A function f(x) is periodic with period o if for all
rel flzl a)  Flz).

Note the exponential functions e, (x) arc periodic with period 1. Thus, if f is
periodic with period 1, it makes no difference if we study 7 on [0, 1] or [—i, i] or,
more gencerally, on any interval of length onc.

Exercise 11.1.9. Ler § and g be periodic functions with period a. Prove of (x) |
Ba(z) is periodic with period .

Definition 11.1.10 (Lven, Odd). A4 function f(xz) is even (resp., odd) if f(x)
F(=) (if f(z) —F(~x)).

Exercise 11.1.11. Prove any function can be written as the sum of an even and an
odd function.

11.2 FOURIER SERIES

11.2.1 Introduction
Let # be continuous and periodic on B with period one. Define the »" Fourier

coefficient j?tn) of f to be

Fn) {F(z), 2,(2)) ﬂ Fz)e ™ g, (11.13)

Returning to the intuition of B™, we can think of the ,(2)’s as an infinite set
of perpendicular unit dircctions. The above is simply the projection of § in the
dircetion of e, (x). Often onc writes ¢, for F(n).

Exercise 11.2.1. Show

(f(z) = f(n)en(z),en(z)) 0. (11.14)

This agrees with our intuition: after removing the projection in a certain direction,
what is left is perpendicular to that direction.
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The N'™ partial Fourier series of f is

N
Sn(z) > Fln)ed(x). (11.15)

n —N
Exercise 11.2.2. Prove

2.7 ()] < f; |f(2)lda.
3. Bessel’s Inequality: if {f, fy < co then >~ ___ |Fn)2 < {F, F).

4. Riemann-Lebesgue Lemma: if {f, f) < co then lim,,_ ., j?tn) 0 (this
holds for more general §; it suffices that f[]l | F(2)|de < o).

5. Assume ¥ is differentiable k times; integrating by parts, show |f(n)| < ”%
and the constant depends only on § and its first k derivatives.

As{f(z) — Sy(x),en(z)y  0if|n] < N, we might think that we just have to
let IV tend to infinity to obtain a series 5., (x) such that

{f(z) —Su(x), en(x) 0. (11.16)

Assume that a periodic function g(x) is orthogonal to e,,(z) for cvery nz if and only
if g(2) is identically zero. Then f(z) — Sw(x) 0, and henee F(z)  Sao(z):
we have expressed f(z) as a sum of exponentials! We must be very carcful. We
have just glossed over the two central issues — completencss (are the e, (2)’s all the
“dircctions™?) and, cven worse, convergence (do the sums agree with f for all 27).
FFor many #, the Fouricr scries docs converge pointwisc, but much care is required
to prove such results. By looking at modified Fourier series, we will casily give
examples of finite approximations to  with good pointwisc convergenee.

Exercise 11.2.3. Let h(z) Flz) | g(z). Does ﬁ(n) fm) | §(n)? Let
k(z)  Fflz)glz). Doesk(n)  Ff(n)Gd(n)?

Remark 11.2.4. In many of our thcorems below we assume that { £, £} f[]l | F(z)|?
dr < oo, This is a natural condition, as the Cauchy-Schwarz incquality (Ap-
pendix A.6) implics that if / and g arc two such functions, {f, g} < oo and
f[]l | 7 (z)|de < oo the second statement is false if f, g : R — C and not [0, 1] — C.
[ff[]l|f(m)|" dz < oo, onc often writes § € L7([0, 1]).

Exercise 11.2.5. Remark 11.2.4 shows that if {f, 3, {g, g} < oo then the dot prod-
uct of f and g exists: {f, g} < oo. Do there exist f,g : [0,1] — C such that
f[]l |f(m)|dm,f[]l lg(z)|de < oo but f[]l fle)g(z)dz  oo? Is f € L2([0,1]) a
stronger or an equivalent assumption as f € LY([0,1])?
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11.2.2 Approximations to the Identity

We assumc the reader is familiar with the basics of probability functions (sce Chap-
ter 8, especially §8.2.3). A scquence 4, (), Aa(xz), 4;4(x), ... of functions is an
approximation to the identity on [0, 1] if

I. forall & and N, Ax(z) = 0;

2

. forall IV, f[]l An(z)dx  1;
. . . . 1-§ ]
3. forall 4,0 < & < %, lim s o fa An(z)de 0.
Similar definitions hold with [(), 1] replaced by other intervals; it is often more
convenient to work on [—%, %], replacing the third condition with

1
lim / An(z)dz 0 if 0<d< . (11.17)
N—noo || =6 2

We could also replace [0, 1] with R, which would make the third condition

—& >0
Vlim/ I/ An(z)dx 0 if 40 (11.18)
N—oo f_ 5

There is a natural interpretation of these conditions. The first two (non-negativity
and intcgral equals 1) allow us to think of cach Ax () as a probability distribution.
The third condition states that, as N — co, all of the probability is concentrated
arbitrarily closc to onc point. Physically, we may regard the 4,,(2)’s as densitics
for a unit mass of smaller and smaller width. In the limit, we obtain a unit point
mass; it will have finite mass, but infinite density at one point, and zcro density
clsewhere.

Exercise 11.2.6. Define

{ < L
Ay (e) {N forlz] < 5 (11.19)

() otherwisc.

Prove Apn is an approximation to the identity on [—%, %] If f is continuously
differentiable and periodic with period 1, calculate
1

\lil_ll _ /_ F(x)An(z)de. (11.20)

Exercise 11.2.7. Ler A(z) he a non-negative function with f—_ A(z)dz 1. Prove
An(z) N - A(Nz) is an approximation to the identity on R.

Exercise 11.2.8 (Important). Letr An(x) be an approximation to the identity on

[—%, %] Let f(z) be a continuous function on [—%, %] Prove

N_li1_11 /_ Flx) Ay (z)dz F(0). (11.21)



IMNT _PUP_final July 3,2012

INTRODUCTION TO FOURIER ANALYSIS 271

By Lxercise 11.2.8, in the limit the functions Ax () arc acting like unit point
masscs at the origin.

Definition 11.2.9 (Dirac Dclta Functional). We define a map from continuous com-
plex valued functions to the complex numbers by (f)  F(0). We often write this
in the more suggestive notation

ff(m)@(m)dm F(0), (11.22

where the integration will usually be over [0,1], [ 1, 3] or R.

By a standard abusc of notation, we often call é(x) the delta function. We can
consider the probability densitics A, (x)dz and §(z)dx. Vor An(z)dx, as N — oo
almost all the probability (mass) is concentrated in a narrower and narrower band
about the origin; &(z)dx is the limit with all the mass at onc point. It is a discrete (as
opposed to continuous) probability measure, with infinite density but finite mass.
Note that §(z — ) acts like a unit point mass; however, instcad of having its mass
concentrated at the origin, it is now concentrated at a.

11.2.3 Dirichlet and Fejér Kernels

We define two functions which will be useful in investigating convergenccof Fourier
scrics. Sct

-N.' . s .
Da(): 3 en(w) SN I Dm)

i sin 7
n —N

1 N—-1
Fy(e): > Dy(=)

o ()

sin®(Nre)

N sin® o

(11.23)

Exercise 11.2.10. Prove the two formulas above. The geometric series formula
will be helpful:

M N M+l
o=
E 't ? (I 1 24)
n N

Here F stands for ejér, I for Dirichlet. By () and Dy (x) are two important
cxamples of (intcgral) kernels. By integrating a function against a kernel, we obtain
a ncw function related to the original. We will study intcgrals of the form

1
g(z) / Fly)K(z —y)dy. (11.25)
(1

Such an integral is called the convolution of §f and K. The licjér and Dirichlct
kernels yicld new functions related to the Fourier expansion of f(x).

Theorem 11.2.11. The I¢jér kernels F\ (xz), Fu(x), Fy(x), ... are an approxima-
tion to the identity on [0, 1].
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Proof. The first property is immediate. The second follows from the obscrvation
that Fix(z) can be written as

l(e_l(m) [ ex(z) |+, (11.26)

) . N
Fy(z) ey(z) | N

and all integrals are zero but the first, which is 1. To prove the third property, notc
that Fiy (2) < w—2o— ford <o <1 —4. L

Nsin® wd

Exercise 11.2.12. Show that the Dirichlet kernels are not an approximation to the
. . 1 ) 1 RV
identity. Ilow large are [ | Dy (x)|dx and [ Dy (x)*dx?

Let f be a continuous, periodic function on R with period one. We may consider
F as a function on just [0, 1], with f(0)  7(1). Define

1
T tm) / fty)F\ (x — ’y)d’y (11.27)
N

In other words, T'x(z) is the integral transform of f(z) with respecet to the Fejér
kemnel. We show below that, for many f, T () has good convergence propertics
to f(x). To do so requires some basic facts from analysis, which arc recalled in
Appendix A3,

11.3 CONVERGENCE OF FOURIER SERIES

We investigate when the Fourier scrics converges to the original function. For con-
tinuous functions, a rclated scrics always converges. An important application is
that instcad of proving results for “gencral™ f, it often suffices to prove results for
Fourier scrics (sce Chapter 12).

11.3.1 Convergence of Fejér Series to f

Theorem 11.3.1 (I'cjér). Ler f(x) be a continuous, periodic function on [0, 1].
Given ¢ = 0 there exists an Ny such that for all N > Ny,

|F(2) = Tw(z)| < e (11.28)
forevery ¢ € [0, 1]. Hence as N — oo, Ty f(z) — f(z).

Proof. The starting point of the proof is multiplying by 1 in a clever way, a very
powerful technique. We have

1 1
fa)  f(=) ﬂ Fy(y)dy f[] Fo)Fydy,  (1129)

this is true as Fiv (%) is an approximation to the identity and thus integrates to 1.
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Lor any positive N and & € (0, 1/2),
1
Tu(@) = (o) [ o= 0)Fwdy— 1)1
0

1 1

[ #e-0Pvway- | f@avwa
0 0
(by property 2 of Fy)

&
f (F(z —v) — f(2)) Px(y)dy

0

1—4
I f (flz—y) — fle) Fx(y)dy
]

1
[ / (Flz —v)— F(2) Fn(y)dy. (11.30)
1

—d

Asthe Fiy(z)’s are an approximation to the identity, we find

1—§ 1—-4
/ (Flz—v)— Fl2) En(y)dy| < 2max|f(z)| / Fy(y)dy. (11.31)
s s

By Theorem A.3.13, f(2) is bounded, so there exists a B such that max|f(z)| <
E. Since

1-6
’\lim / Fy(y)dy 0, (11.32)
N =00 &
wc obtain
1-4
’\1i1_11 / (Fflz—y)—Flx)En(y)dy O (11.33)
AN —FDO 5

Thus, by choosing IV large cnough (where large depends on &), we can ensurc that
this picce is at most £.

It remains to cstimate what happens necar zero, and this is where we use f is
periodic. Since § is continuous and [0, 1] is a finite closed interval, 7 is uniformly
continuous (Theorem A.3.7). Thus we can choose ¢ small cnough that | (2 —y) —
f(z)| < § forany o and any positive yy < &. Then

] 1
< / %F;\r(y)dy < % / Fyly)dy < =
n ° V]

&
‘ ﬂ (F(z — ) — F(2)) Fy(v)dy

(11.34)
Similarly
1
f rifri:c—y)—frios))Fz\-riy)dy‘ < % (11.35)
1-§ :
Thercfore
|Tw () — F(z)] < ¢ (11.36)

for all IV sufficiently large. U
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Remark 11.3.2. Where did we use f periodic? Recall we had expressions such as
Flz — ) — F(z). Forexample,ifz  .00Landy  .002, we have f(—.001) —
F(.001). The periodicity of f allows us to extend f to a continuous function on R.

Onc often uses the interval [—3, 1] instead of [0, 1]; the proof follows analo-

gously. Proofs of this naturc arc often called three epsilon proaofs; splitting the
interval as above is a common technique for analyzing such functions.

Definition 11.3.3 (Trigonometric Polynomials). Any finite linear combination of
the functions e, (x) is called a trigonometric polynomial.

I'rom licjér’s Theorem (Theorem 11.3.1) we immediately obtain the

Theorem 11.3.4 (Weicrstrass Approximation Theorem). Any continuous periodic
function can be uniformly approximated by trigonometric polynomials.

Remark 11.3.5. Weicrstrass proved (many ycars before licjér) that if f is continu-
ous on [z, ], then forany ¢ > 0 thereis a polynomial p(z) such that | f(z) —p(z)| <
¢ forall & € [a, b]. This important thcorem has been extended numerous times (scc,
for example, the Stone-Weicrstrass Theorem in [Rud]).

Exercise 11.3.6. Prove the Weierstrass Approximation Theorem implies the origi-
nal version of Weierstrass’ Theorem (see Remark 11.3.5).

We have shown the following: if f is a continuous, periodic function, given any

¢ > () we can find an [N, such that for N > N;, T (z) is within ¢ of f(x). As ¢
was arbitrary, as N — oo, Ty (z) — f(z).

11.3.2 Pointwise Convergence of Fourier Series

Theorem 11.3.1 shows that given a continuous, periodic £, the Fejér series Ty (z)

converges pointwise to f(x). The Iejér serics is a weighted Fourier serics, though;

what can be said about pointwisc convergenee of the initial Fourier serics to F(z)?
Recall f(n) is the n'" Fourier coefficient of (). Consider the Fouricr scrics

N
Sn(e) > flnyetme, (11.37)
n —N

Exercise 11.3.7. Ler f(x) be periodic function with period 1. Show

S_\.'[:m[o /: ff:&)D_x[:m - m[])dm /_I fleg — m)D\Em)dm (11.38)

Theorem 11.3.8 (Dirichlct). Suppose
1. f(z)is real valued and periodic with period 1;
2. | f()| is bounded:;

3. F(z)isdifferentiable at x.
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Then lmy_~, Sn(zy)  Flan).
Proof. Let D (x) be the Dirichlet kernel. Previously we have shown that Dy ()

sn(NFLme) 4p 4 f_-, Dx(z)dz 1. Thus

sin(we)

Flzo) — Sn(z0)  Flzo) /:. Dy (z)de — /:. Fleo —2)Dn(z)dz

,/i [Flzo) = flzo —2)] Dy(z)de

sin(mae)

/: f(zo) = fl2o — 2) sin((2N | 1)wz)dz

/  gug(2)sin((2N | 1)7a)de. (11.39)

Jlea)—J (wo—)

We claim g, (z) A is bounded. As f is bounded, the numerator
el hlIH\?TO')J
is bounded. The denominator is only troublesome ncar = (0; however, as § is

diffcrentiable at o,

N Ffleg | 2) — flzg)

lir "(20). 11.40
=0 @ 7 (o) ( )
Multiplying by 1 in a clever way (onc of the most useful proof'techniques) gives
_ flzo | 2) flzo) _ fleo 1 2) flzo) T F'(z0)
lim — lim — ,
) sin(mz) 1) T sin(wx) T
(11.41)
where we used L'Hospital’s rule to conclude that lim,,,_, 5113::'093 1. Thercfore

G (2) 18 bounded everywhere, say by B. As g, is a bounded function, it is square-
intcgrable, and thus the Ricmann-Lebesgue Lemma (see Exercise 11.2.2) implics
that its Fourier coefficients tend to zero. This completes the proof, as

zf_ Guo () 8in((2N | Vwz)de (/ : G (m)ehﬁx"'l""”dm) : (11.42)

thus ourintcgral is just the imaginary part of'the 2V | 1¥ Fourier coefficient, which
tends to zero as N — oo. Henee as N — oo, Sy () converges (pointwisc) to
Flzo)-

LI

Remark 11.3.9. If § is twicc differentiable, by Lxercise 11.2.2 j?tn) <& {—i— and
the series S (z) has good convergence propertics.

What can be said about pointwisc convergence for gencral functions? It is possi-
ble for the Fourier scrics of a continuous function to diverge at a point (sce §2.2 of
[SS1]). Kolmogorov [Kol] (1926) constructed a function such that f[]l | F(z)|de is
finite and the Fourier series diverges everywhere; however, if []l |f(2)]?de < co,
the story is completely different. For such f, Carleson proved that for almost all
x & [0, 1] the Fouricr serics converges to the original function (scc [Ca, Fef]).
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Exercise 11.3.10. Ler f(n) % Does 3. f(n)e,(z) converge to acontinu-

ous, differentiable function? If so, is there a simple expression for that function?

11.3.3 Parseval’s Identity

Theorem 11.3.11 (Parscval’s Identity). Assume f[]l | F(2)|*de < co. Then

> 1
> Fwr [ i@, (11.43)
o —oo 0

In other words, Bessel's Inequality (Exercise 11.2.2) is an equality for such f.

We sketch the proof for continuous functions. From the definition of Sy (x) we
obtain Bessel’s Incquality:

1 - 1 ) . )
0 =< /[] (Flx) —Sn(e)(fle) — Sn(z))de ﬂ |f(z)]* — lul%;|f(n)|2,
 (1144)

Rearranging yiclds

1 1
/|f{m)|2dm /|f{m)—8;\r(m)l2dml S Fm)P. (11.45)
(1 ]

[n|<N

To complete the proof, we nced only show thatas N — oo, ﬁ]l |F(z)—Sn(z)|?de —
(. Notc Besscl’s Inequality, (11.45), immediately implics

20 1
S fn)? < / |7 (x))Pdz < co: (11.46)
L —oo 0

therefore the sum converges and given any ¢, for IV sufficiently large

ST Fm)P <« (11.47)
[n|=vN
In the proof of Theorem 11.3.8 we multipliced by 1; we now do another common
trick: adding zcro in a clever way. By Theorem 11.3.1, given any ¢ > () there
cxists an Ny such that for all N = Ny, |Ff(z) — Tw(z)| < . We apply the
incquality |a | &) < 4|a|? | 4]8]* to|f(z) — Sy(z)| withe  f(z) —Tn(z) and
b Tn(z) — Sn(z). We have

1 1 1
/ |ftm)—S\Em)|2dm < —l/ |ftm)—T=\tm)|2dm | -l/ |T\Em)—S\Em)|de

0 0 0

(11.48)
The first term on the right is at most 4¢2. To handle the sccond integral, note
N
( N B Arivm
Tn(z) Z_:\ %f{n)ez X (11.49)
which implics
: _. Y a2 s
ﬂ [T () — Sx(x)|*de Z F|f:jn)|2, (11.50)

n —N
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Since f is continuous, f is bounded (Theorem A.3.13), henee by Lxercise 11.2.2
J"?(n) is bounded, say by E. The sum in (11.50) can be made arbitrarily small (the
terms with || < +/IN contributc at most ﬂi, and the remaining contributes at
most ¢ by (11.47)).

Exercise 11.3.12. [ill in the details for the above proof. Prove the result for all §
satisfying f[]l | F(2)]?dx < co.

Exercise 11.3.13. ,_’}“f[]l | F(2)|*dz < co, show Bessel’s Inequality implies there
exists a B such that | j?tn)| < B for all n.

Exercise 11.3.14. Though we used |a | b]? < 4|a|? | 4|6|% any bound of the form
clal® | ¢|b|* would suffice. What is the smallest c that works for all a,b € C?

11.3.4 Sums of Series

Onc common application of pointwise convergence and Parscval’s identity is to
evaluate infinite sums. For example, if we know at some point z that Sy (z)) —
F(zg), we obtain

o
3T Flm)etmme o F(xo). (11.51)
nmn —o0
Additionally, if f"|f(z)|*d2 < co we obtain
=] N 1
> 1Fn)? f |f ()] *dz. (11.52)
n —oo 0
Thus, ifthe terms in a series correspond to Fourier coefficients of'a “nice” function,
we can cvaluate the scrics.

Exercise 11.3.15. Ler f(z) 5 — |z| on[—3, 3]. Calculate 377 ﬁ Use
this to deduce the value r}}“zr L {—J{— This is often denoted ((2) (see Lxercise
3.1.7). See [BP] for connections with continued fractions, and [Kar] for connec-
tions with quadratic reciprocity.

Exercise 11.3.16. Let f(z) =z on [0,1]. Evaluate 3 | {—i—

T

(— 1y

 ercis ( _11 e T > y
Exercise 11.3.17. Let f(z) mon[—35, 3] Prove] > 553 Seealso

ELxercise 3.3.29; see Chapter 11 of [BB] or [Sc] for a history of caleulations of w.

Exercise 11.3.18. /ind a function to determine
with Exercise 3.1.26.

1. . 13 . e
17T compare your answei

11.4 APPLICATIONS OF THE FOURIER TRANSFORM
To cach periodic function (say with period 1) we associate its Fourier coefficients

1
#(n) / Fla)e2minw (11.53)

0
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Note the integral is well defined for all n iff[]l |F(z)|de < co. If f is continuous
and differentiable, we have scen that we can recover f from its Fourier coefficients
F(n). We briefly discuss the generalization to non-periodic functions on all of &,
the Fouricr transform; sce [SS1] for complete details.

We give two applications. The first is Poisson Summation, which rclates sums of
f atintcgers to sums of its Fourier transform at intcgers. Often this converts a long,
slowly decaying sum to a short, rapidly decaying onc (sce for example Theorem
3.1.20 on the functional equation of {(s), as well as Theorem 9.4.2 which shows
there is digit bias in Geometric Brownian Motions). Poisson Summation is onc of
the most important tools in a number theorist’s arscnal. As a sccond application we
sketch the proof of the Central Limit Theorem (Theorem 8.4.1).

The FFouricr transform also appears in Chapter 18 when we investigate the zeros
of L-functions. When we derive formulas relating sums of a function § at zcros
of an L-function to sums of the product of the coefficients of the L-function times
the lFouricr transform of f at primes, we shall usc some propertics of the Fourier
transform to show that the sums converge. Relations like this arc the starting point
of many investigations of propertics of zeros of L-functions, primarily becausc
often we can cvaluate the sums of the Fouricr transform at primes and then usc that
knowledge to glean information about the zeros.

11.4.1 Fourier Transform

We define the Fourier transform by
) f  fle)e T dn; (11.54)

(sometimes the Fourier transform is defined with &~ #*¥ instcad of =27 ®¥)_ Instcad
of countably many Fourier coefficients, we now have one for each ¥ € B. Whilc
7(y) is well defined whenever S |F(2)]dz < co, much more is truc for functions
with 7| f(2)|%dz < oo.

The Schwartz Space S(IR) is the space of all infinitely differentiable functions
whosc derivatives arc rapidly decreasing. Lxplicitly,

Vi k=0, sup(z| | 1)7]7%(2)] < co. (11.55)

Thus as |z| —+ oo, f and all its derivatives decay faster than any polynomial. Onc
can show the Fourier transform of a Schwartz function is a Schwartz function, and

Theorem 11.4.1 (Fouricr Inversion Formula). for f € S(R),

f(=) f " Flyermevay (11.56)
In fact, for any § € S(R), )
fx | F(2)]"de fx |7 dy. (11.57)

L) L=l

Definition 11.4.2 (Compact Support). 4 function f : R — C has compact support
if there is a finite closed interval [a, B such that for all x & [a, 8], f(z) 0.
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Remark 11.4.3 (Advanced). Schwartz functions with compact support arc cx-
tremely uscful in many arguments. It can be shown that given any continuous
function g on a finite closed interval [a, 8], there is a Schwartz function § with
compact support arbitrarily closc to g; ic., forall z € [a,8], [f(z) — g(z)] < e
Similarly, given any such continuous function g, one can find a sum of step func-
tions of intervals arbitrarily closec to g (in the same scnsc as above). Often, to prove
a result for step functions it suffices to prove the result for continuous functions,
which is the samc as proving the result for Schwartz functions. Schwartz functions
are infinitely differentiable and as the Fourier Inversion formula holds, we can pass
to the Fourier transform space, which is sometimes casicr to study.

Exercise 11.4.4. Show the Gaussian f(x) ‘zl— e~ r=e™/29% s in S(R) for
VAT TS

any p,o € R.

Exercise 11.4.5. Ler f(x) be a Schwartz function with compact support contained
in [—ea,a] and denote its Fourier transform by f(y). Prove for any integer A = ()
that |f(y)] < « er_-", where the constant c; depends only on f, its derivatives

and . As such a bound is useless at y ), one often derives bounds of the form
Y i
|f‘y)| = FENPER

11.4.2 Poisson Summation

—il

We say a function f(z) decays like 2~ if there are constants x; and O such that

for all || > 2o, |f(2)] < /]

Theorem 11.4.6 (Poisson Summation). Assume § is twice continuously differen-
tiable and that f, ¥ and " decay like x =% for some v = 0. Then

i f(n) i f(n), (11.58)

where f is the Fourier transform of f.

The theorem is truc for more general f. We confine ourselves to this useful case,
whosc conditions arc oftcn met in applications. Sce, for example, Theorem 9.4.2,
where Poisson Summation allowed us to replace a long slowly decaying sum with
just onc term (plus a negligible crror), as well as Theorem 3.1.20, where we proved
the functional equation of {(s).

It is natural to study F'(z) > nez fle | n); the theorem follows from un-
derstanding F'(0). As F'(z) is periodic with period 1, it is natural to try to apply
our results on Fouricr serics to approximate F'. To usc the results from §11.3.2, we
nced F' to be continuously differentiable on [0, 1]; however, before we show F is
differentiable, we must first show F'is continuous and well defined! For example,
consider f(z) to be narrow spikes at the integers, say of height » and width ”_11
centered around & . Note the sum F(0) does not exist.

Exercise 11.4.7. Consider

f(a) nf (L —|n—a|) ifls—n| <X forsomen e’

11.59
0 othcrwisc. ( )
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Show f(z) is continuous but F(0) is undefined. Show F'(x) converges and is well
defined for any » € .

Lemma 11.4.8. If g(xz) decays like = for some 5 > 0, then G(z) > oner
gz | n) converges for all x, and is continuous.

Exercise 11.4.9. Prove Lemma 11.4.8.

Lemma 11.4.10. I f, #', ' decay like x= %) then F'(x) is continuously dif-
ferentiable.

Proof. The natural candidate for 7"(x) is 3 -, f'(2 | 7). This infinite sum exists
and is continuous by Lemma 11.4.8 (applicd to f'); it suffices to show that this sum
cquals F'(z). We shall denote this infinite sum by #"(z), and we now justify this
notation by showing it does cqual the derivative of £'(x). To see this, it suffices to
show that forany ¢ > () there is a ¢y > 0 such that for all |¢] < &, we have

‘F(m | &) — F(x)
§

Without loss of generality we may assume § < 1. We may writc

F(z | &) — F(x) () Z {f{m Il d)—Flz | n) T n)}

— Fl(z)| <. (11.60)

4 ] 4
[n|=N
| l;x[ft\m | n | ég—fr\m | n) T n>}

(11.61)
By the Mcan Valuc Theorem (Theorem A.2.2),
flelnld)—Fflz1n) d-Fflzlnlec) ¢, €[0,8], (11.62)

and similarly with f replaced by f'. Therefore

w _F’(m) Z [f’(m | n | C”_)— f’(m | ?’1)]
[n]=N
I Z [Flelnlc)—Flz n)
|| =N
Z [J—F’Em I n| CH.>_ flrtm | ?’1)]
[n]=N
LD e i nl da) (11.63)
|| =N

with d,, € [0, 8]. Since ' is of rapid decay, = is fixed and &, < 1, by taking N
sufficiently large we can make

) 20 £
" dy) < < - 11.64
L fEinid) s 3o < gy < (16
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Since f' is continuous at = | 7, we can find &, < 1 such that if |2,| < &, then

flzlnle)—Fflzn)=< TENTT- Lettingd  min(1, &, min,|>n d,),
we find

!y ! £ £ o

n) — YEFE YIRS o 11.65

Z[ft\mlnlc) Flz | n)] < Zzt\2N|1)<2 ( )

[n|<N [n|=N

completing the proof. U

Exercise 11.4.11. [or what weaker assumptions on §, f', "' is the conclusion of
Lemma 11.4.10 still true?

We have shown that the assumptions in Thcorem 11.4.6 imply that ) 7" cxist
and arc continuous, and clearly F' is periodic of period 1. Let £(m) be the m!™
Fourier coefficient of F:

ﬁ(m) /l F(2)e ™™ dg, (11.66)
Because F' is continuously d.f'ﬁbre.'m(j; le for all ., by Thecorem 11.3.8
() ij F(m)eZmo=. (11.67)
In particular, nT
EF(0) ij F(m). (11.68)

As F(0) 37, f(n), from (11.68) it suffices to show fﬁtm) j?tm) While
wc usc the same notation for the Fourier Transform and the Fourier coefficients,
the Fourier Transform is for a function defined on I (such as f) and the Fouricr
coefficients are for periodic functions (such as F'). We have

1 =]
F(m) / ST flm | n)e T, (11.69)
0 T —o0

By l‘ubini’s Theorem (Theorem A.2.8), if we take absolute valucs of the integrand
and cither f 37| |or 3" [ |# | exists, then we can interchange order of summation
and intcgration. Onc must be carcful, as it is not always possible to interchange
orders. Sce Lxercise 11.4.12.

Hence in the integral-sum for £'(m), we find

o 1 =] 1
> / |f(2 | m)e2mome] N / (2 | n)e 2™ |dy
n —eo U n —en U
o 1
Z / |f[m | n)8—27rm[;1.'+n.3827r'imn|dm
n —oo” ! \

/' | ()&= 270 | dg

L=l

/x |7 (z)|dz < oo, (11.70)

L=l
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as f decays like 2~ (177 We can therefore interchange the order of integration and
summation. Removing the absolute values above gives f(m), the Fourier Trans-
form of § cvaluated at m. We have shown fﬁtm) f(m), and substituting into
(11.68) completes the proof of Theorem 11.4.6. L

While the following cxcrcisc is not needed for the investigations above, it in-
dicates how dangerous interchanging orders of summation and integration can be.
The reader is advised to study and remember this example!

Exercise 11.4.12. One cannot always interchange orders of integration. l'or sim-
plicity, we give a sequence oy, such that Em (2”_ Gmyn) [/ Z”_ (Zm Gen,n ). 1OF
m,n = 0 let

1 ifn m

Cnn -1 ifn m |1 (l |7|)

(0 otherwisc.
Show that the two different orders of summation yield different answers (the reason
for this is that the sum of the absolute value of the terms diverges).

Remark 11.4.13. In many problems onc wants to interchange a limit and an inte-
gral; unfortunately, it is not always the case that

li1_11_/ Folz)da / lim f,(z)dz, (11.72)
even if £, (z) and # arc continuous. lor example, let
. 0 if|z] = 1/n
Fulz) ol > 1/ (11.73)

n — 2n? ||m| - 2_1”| if |z < 1/n.
Show f_xoo Falz)dz  1butlim, .. f.(z) 0.

Exercise 11.4.14. The example in the previous remark haslim,, ., max,. |, (z)|
oa; in other words, there is no M such that |f,,(x)| < M for all M and . Iind a
family of functions f,(x) such that

li1_11_/. Falz)de / / lim f,(z)dx (11.74)

and each f,(x) and f(x) is continuous and | f,,(z)|,|f (z)| = M for some M and
all x.

11.4.3 Convolutions and Probability Theory

An important property of both Fouricr serics and Fouricr transforms is that they
behave nicely under convolution. We denote the convolution of two functions f
andgby A f*g, where

hy) fr #(2)g(y — v)do fr fe-pe(@de  (1175)

and I [0,1] if /, g arc periodic of period 1 and I Rif f, g : B — C. We
assume the rcader is familiar with the Cauchy-Schwarz incquality (scc Appendix
A6). Recall {f,¢) [, fx)F(x)de, with I as above.
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Exercise 11.4.15. Ler f, g be continuous functionsonI [0, orI R Showif
{f,7),{g ¢} < cothenh  f*gexists. Hint: Use the Cauchy-Schwarz inequality.
Show further that ht\n) ﬁn)?tn) if I (0,1 erif I R Thus the Fourier
transform converts convolution to multiplication.

We can now rctumn to the proof of the Central Limit Theorem, Theorem 8.4.1.
We assume the reader is familiar with the notations from Chapter 8. The following
cxample is the starting point to the proof of the Central Limit Theorem. Let p be
a probability density on R such that {p, p} < oo. Let X and X, be two random
variables choscen independently with probability density p. Thus the probability of

Xi €z, 2+ Axis fI—Hm p(#)dt, which is approximately p(x)Ax. The proba-
bility that X, | Xy € [z, 2 + Ax] is just

S —

=i

As Az — Owe obtam thc convolution of p with itself, and find

b
Probh(X, | X, €[a,b]) / (p*p)(z)dz. (11.77)

We must justify our usc of the word “probability™ in (11.77); namcly, we must show
o % pis a probability density. Clearly (p * p)(z) = 0, and for any two f, g with

(5,749, 0) < o0,

/__m::f* g)(x)da /_ ”; /_ ‘; Ho 1ol
f_:, f_:, F(z = y)g(v)dady
IRC (f_: flo - y)dm) ”
f_:, 9() (f_: frit)dt) dy. (1178)

Ifwetake f g p,the last integrals arc 1. We usced genceral § and g as the above
arguments yicld

Lemma 11.4.16. The convolution of two “nice” probability densities is a proba-
bility density.

Exercise 11.4.17. Prove (11.77).

Exercise 11.4.18 (Important). Ifforalli 1,2,... we have { f;, ;) < oo, prove
Sorall i and § that {fi x f;, fi* f;} < co. What about f1 % (f2 x f4) (and so on)?
Prove fu# (fax fa)  (Ffu* fo)* fa. Therefore convolution is associative, and we
may write f1 % -~ % fn for the convolution of N functions.

Exercise 11.4.19. Suppose X1, ..., Xy are i.i.drv. froma probability distribution
p on B. Determine the probability that X, | -~ | Xn € [a,b]. What must be
assumed about p for the integrals to converge?
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11.5 CENTRAL LIMIT THEOREM

As another application of Fouricr analysis, we sketch the proof of the Central Limit
Theorem (Theorem 8.4.1). We highlight the key steps, but we do not provide de-
tailed justifications (which would require several standard lemmas about the Fourier
transform; sce for example [SS1]).

For simplicity, we consider the case where we have a probability density p on
R that has mean zero, variance one, finite third moment and is of sufficiently rapid
decay so that all convolution integrals that arisc converge; sce Lxercise 15.1.6.
Specifically, let p be an infinitely differentiable function satisfying

f ep(e)de 0, / elp(z)de 1, / lt[*p(z)de < co. (11.79)

Assume X, Xo, ... arc independent identically distributed random variables
(i.id.rv.) drawn from p; thus, Prob(X; € [a,8]) f:p(m)dm. Define Sn

—2/2

N - . . :
>+ 1 Xi. Recall the standard Gaussian (mean zero, variance onc) is ,_Z e
WOAT

Theorem 11.5.1 (Central Limit Theorem). Ler X;, Sy be as above and assume
the third moment of each X; is finite. Then 5’% converges in probability to the
/N

standard Gaussian:

: Sy 1 /*" g .
lim Prob| ——= € [&,b — e T dy. 11.80
Ne—roo (\/N [ ]) m . ( )

We sketch the proof. The Fouricr transform of g is

(y) / p(z)e ™V g, (11.81)
Clearly, |5(y)| < [ p(z)de  Loand3(0) [ _p(z)de 1.

Exercise 11.5.2. One useful property of the Fourier transform is that the derivative
of § is the lourier transform of 2mwizg(x); thus, differentiation (hard) is converted
to multiplication (easy). Explicitly, show

7(y) / 27im - g(a)e” Ty, (11.82)
If g is a probability density, note §(0)  —2mwiE[z] and §'(0) —4w?E[z?].

The above excreise shows why it is, at lcast potentially, natural to usc the Fourier
transform to analyze probability distributions. The mecan and variance (and the
higher moments) arc simplc multiples of the derivatives of 7 at zero. By Lixcrcisc
11.5.2, as p has mean zcro and variance one, 7'(0) 0, 7"(0)  —47?. We Taylor
cxpand ¥ (we do not justify that such an cxpansion cxists and converges; however,
in most problems of interest this can be checked direetly, and this is the recason we
need technical conditions about the higher moments of ), and find near the origin
that

ny
ly) 11 p__—é“)gﬁ |- 120t O@yY). (11.83)
Necar the origin, the above shows ¥ looks like a concave down parabola.
By Lxcreises 11.4.15, 11.4.18 and 11.4.19, we have the following:
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I. The probabilitythat X, | -+ | Xn € [a,b] is f:(p* sk p)(2)dz.

2. The Fourier transform converts convolution to multiplication. If FT[f](y)
denotes the Fourier transform of f cvaluated at 4, then we have

FT[p* - xpl(y)  Ply) - Bly). (11.84)
However, we do not want to study the distribution of X; | -+ | XN x, but
rather the distribution of Sn L,—'P{‘ x.

v N

Exercise 11.5.3. /fEB(z) Alcx) for somefixedc / 0, show Ety) %.:4? (4.
Exercise 11.5.4. Show that if the probability density of X, | -+ | Xn @ is
(p#* - % p)(x) (ie, the distribution of the sum is given by p * -~ * p), then the
probability density 0}‘% xis (v Npx - x+/Np)(z/N). By Exercise
11.5.3, show _

N
I'T [(\/Np* ok \/Np)(m\/N)} (1) {ﬁ(i)} , (11.85)
VN
The previous excreiscs allow us to determine the Fourier transform of the distri-

N
bution of Sy. It is just [fé‘( »’?TH . We take the limit as N — oo for fixed .

rom (11.83), (y) 1 — 2w%y% | O(y"). Thus we have to study

9r2e2 3 N N
{1— WNy | O(g\iw)} , (11.86)
Exercise 11.5.5. Show for any fixed y that
2qr2y? v\ 2m2y?
Jim {1— | O(W)} eIy (11.87)

—I gt iy = e /2
o

Hint: This problem requires contour integration from complex analysis.

Exercise 11.5.6. Show that the l'ourier transform of e

We would like to conclude that as the Fourier transform of the distribution of
Sx converges to e~ 27 ¢ and the Fouricr transform of =27 ¢ s ﬁ e /2,
then the distribution of S cqualling » converges to ﬁ e 2, Justifying thesc
statements requires some results from complex analysis. We refer the readerto [lic]
for details.

The key point in the proof is that we used Fourier Analysis to study the sum of
independent identically distributed random variables, as Fourier transforms convert
convolution to multiplication. The universality is due to the fact that orly terms up
to the sccond order contribute in the Taylor expansions. Lxplicitly, for “nice™ p
the distribution of S converges to the standard Gaussian, independent of the fine
structure of p. The fact that p has mcan zero and variance one is really just a
normalization to study all probability distributions on a similar scale; sce Lxereise
15.1.6.

The higher order terms arc important in determining the rate of convergence in
the Central Limit Theorem (scc [I°e] for details and [KonMi] for an application to
Benford’s Law).
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Exercise 11.5.7. Modify the proof to deal with the case of p having mean 1 and
variance o*.

Exercise 11.5.8. l'or reasonable assumptions on p, estimate the rate of conver-
gence to the Gaussian.

Exercise 11.5.9. Let gy, po be two probability densities satisfying (11.79). Con-
sider Sy Xy | oo | X, where for each i, X, is equally likely to be drawn
randomly from py or go. Show the Central Limit Theorem is still true in this case.
What if we instead had a fixed, finite number of such distributions py, . .., pr., and
for each i we draw X; from p; with probability g; (of course, gy | -~ | ¢, 1)7

11.6 ADVANCED TOPICS

Below we briefly highlight additional applications of Fouricr Scrics and the Fouricr
Transform. The first problem complements Dirichlet’s Theorcm (Theorem 11.3.8)
by describing what can go wrong at points where the function is discontinuous. We
then give an example of a continuous function that is nowhere differentiable, fol-
lowed by a proofthat of all smooth curves with a given perimeter a circle encloses
the most arca. We then end with some applications to differential equations. Scv-
cral of these problems require more mathematical pre-requisites. For more details,
sce for example [Be, SS1].

Exercise 11.6.1 (Gibbs Phcnomenon). Define a periodic with period 1 function by
-1 if-3<2<0

(x 11.88
/() 1 if0<z < (11.8%)
Prove that the Fourier coefficients are
. 0 if n is cven :
Fn) . (11.89)

if »2 1s odd.

%
Show that the N'" partial I'ourier series Sy (z) converges pointwise to f(z) wher-
ever f is continuous, but overshoots and undershoots for x near (). Hint: Express

. . - p . sin(2 ) ax .
theseries expansion for Sy () as a sum of sines. Note == "7% ¥ cos(2mart)dt.
- AT - ) 2w () .
Express this as the real part of a geometric series of complex exponentials, anduse

the geometric series formula. This will lead to
) Y 1 At 1 T gin(4nmt
Syvor(z) 8 ®{ZE a4 wdt, (11.90)
0 2% sin(2wt) g sin(2wt)
which is about 1.179 (or an overshoot of about 18%) when ﬁ What can
vou say about the I'ejér series T (x) for x near ()?

Exercise 11.6.2 (Nowhere Differentiable IFunction). Weierstrass constructed a con-
tinuous but nowhere differentiable function! We give a modified example and sketch
the proof. Consider

— _ 1
Flz) acos(2" - 2wx), 3 < o<l (11.91)
0

T
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Show } is continuous but nowhere differentiable. Hint: liirst show |a| < 1 implies
f is continuous. QOur claim on § follows from: if a periodic continuous function
g is differentiable at xy and §(r) O unless . £2™, then there exists O such
that for all n, |§(n)| < Cn2™". To see this, show it suffices to consider =, ()
and g(0) 0. Our assumptions imply that (g,e,,) 0if2"=! < m < 27! and
m /2™ We have §(2™) (g, eon Fyu—i(2)) where Fy is the I'ejér kernel. The
claim follows from bounding the integral (g, esn Fyu—1(2)). In fact, more is true:
Baire showed that, in a certain sense, “"most” continuous functions are nowhere
differentiable! See, for example, [10l].

Exercise 11.6.3 (Isopcrimetric Incquality). Ler (%) (z(£), %(t)) be a smooth
closed curve in the plane; we may assume it is parametrized by arc length and has
length 1. Prove the enclosed area A is largest when (%) is a circle. Hint: By
Green's Theorem (Theorem A.2.9),

E{ rdy — ydx 2Arca(A). (11.92)
¥
The assumptions on <y (t) imply x(t), ¥ () are periodic functions with lourier series

. 2
expansions and (—f}j) | (—Lf;f) 1. Integrate this equality fromt 0 to i

1 to obtain a relation among the Fourier coefficients of (:‘T; and (:‘T; (which are
related to those of ©(3) and y(t)); (11.92) gives another relation among the FFourier
coefficients. These relations imply 4wAvca(A) < 1 with strict inequality unless the
Fourier coefficients vanish for |n| = 1. After some algebra, one finds this implies

we have a strict inequality unless -y is a circle.

Exercise 11.6.4 (Applications to Differential Lquations). One reason for the intro-
duction of Fourier series was to solve differential equations. Consider the vibrating
string problem: a unit string with endpoints fixed is stretched into some initial po-
sition and then released; describe its motion as time passes. Let v(x,t) denote the
vertical displacement from the rest position x units from the left endpoint at time t.
Ior allt we have w(0,t)  w(1,%) 0 as the endpoints are fixed. Ignoring gravity
and friction, for small displacements Newton's laws imply
&, ) , 8%z, t)
x? C T
where ¢ depends on the tension and density of the string. Guessing a solution of the
form

(11.93)

s o}
wu(x, %) an () sin(nmz), (11.94)
o1
solve for a,(%).
One can also study problems on R by using the Fourier Transform. lts use stems
from the fact that it converts multiplication to differentiation, and vice versa: if

dJ(y)
dy

g(z) F(z) and h(x) xf(x), prove that §(y) QWiyf(y) and

—2mik(y). This and Fourier Inversion allow us to solve problems such as the heat
equation

Hu(x, ) & u(z,t)

o o8> TER >0 (11.95)
i
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with initial conditions w(x,0)  F(z).



