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ABSTRACT. These notes are a corrected proof of the Central Limit The-
orem for independent identically distributed binomial random variables
with probability 1/2 of success (Chapter 8, pages 214–215 of the first
edition).

1. CHEBYSHEV’ S INEQUALITY

Exercise 1.1(Chebyshev’s Inequality). Let X be a random variable with
meanµ and finite varianceσ2. Prove Chebyshev’s inequality:

Prob(|X − µ| ≥ kσ) ≤ 1

k2
, (1)

whereProb(|X − µ| ≥ a) is the probability thatX takes on values at least
a units from the mean. Chebyshev’s theorem holds for all nice distributions,
and provides bounds for being far away from the mean (where far is relative
to the natural spacing, namelyσ).

2. PROOF FORBERNOULLI PROCESSES

We sketch the proof of the Central Limit Theorem for Bernoulli Processes
where the probability of success isp = 1

2
. Consider the random variableX

that is 1 with probability1
2

and−1 with probability 1
2

(for example, tosses of
a fair coin; the advantage of making a tail−1 is that the mean is zero). Note
the mean ofX isX = 0, the variance isσ2

X = 1 (as we have12· 1
2
+(−1)2· 1

2
)

and the standard deviation isσX = 1.
LetX1, . . . , X2N be independent identically distributed random variables,

distributed asX (it simplifies the expressions to consider an even number of
tosses). ConsiderS2N = X1 + · · ·+ X2N . Its mean is zero and its variance
is 2N , and we expect fluctuations of size

√
2N . We show that forN large

the distribution ofS2N is approximately normal. We need

Lemma 2.1(Stirling’s Formula). For n large,

n! = nne−n
√

2πn (1 + O(1/n)) . (2)
1
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For a proof, see [WW]. We show (2) is a reasonable approximation. It is
often easier to analyze a product by converting it to a sum; this is readily
accomplished by taking logarithms. We have

log n! =
n∑

k=1

log k ≈
∫ n

1

log tdt = (t log t− t)|n1 . (3)

Thuslog n! ≈ n log n− n, or n! ≈ nne−n.
We now consider the distribution ofS2N . We first note that the probability

thatS2N = 2k + 1 is zero. This is becauseS2N equals the number of heads
minus the number of tails, which is always even: if we havek heads and
2N − k tails thenS2N equals2N − 2k.

The probability thatS2N equals2k is just
(

2N
N+k

)
(1

2
)N+k(1

2
)N−k. This is

because forS2N to equal2k, we need2k more1’s (heads) than−1’s (tails),
and the number of1’s and−1’s add to2N . Thus we haveN + k heads
(1’s) andN − k tails (−1’s). There are22N strings of1’s and−1’s,

(
2N

N+k

)
have exactlyN +k heads andN −k tails, and the probability of each string
is (1

2
)2N . We have written(1

2
)N+k(1

2
)N−k to show how to handle the more

general case when there is a probabilityp of heads and1− p of tails.
We use Stirling’s Formula to approximate

(
2N

N+k

)
. After elementary alge-

bra we find
(

2N

N + k

)
≈ (2N)2N

(N + k)N+k(N − k)N−k

√
N

π(N + k)(N − k)

=
22N

√
πN

1

(1 + k
N

)N+ 1
2
+k(1− k

N
)N+ 1

2
−k

. (4)

We would like to use
(
1 + w

N

)N ≈ ew from §5.4; unfortunately, we must
be a little more careful as the values ofk we consider grow withN . For
example, we might believe that(1 + k

N
)N → ek and(1 − k

N
)N → e−k, so

these factors cancel. Ask is small relative toN we may ignore the factors
of 1

2
, and then say

(
1 +

k

N

)k

=

(
1 +

k

N

)N · k
N

→ ek2/N ; (5)

similarly, (1− k
N

)−k → ek2/N . Thus we would claim (and we shall see later
in Lemma 2.2 that this claim is in error!) that

(
1 +

k

N

)N+ 1
2
+k (

1− k

N

)N+ 1
2
−k

→ e2k2/N . (6)

We show that
(
1 + k

N

)N+ 1
2
+k (

1− k
N

)N+ 1
2
−k → ek2/N . The importance

of this calculation is that it highlights how crucial rates of convergence are.
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While it is true that the main terms of(1± k
N

)N aree±k, the error terms (in
the convergence) are quite important, and yield large secondary terms when
k is a power ofN . What happens here is that the secondary terms from these
two factors reinforce each other. Instead of using

(
1 + w

N

)N ≈ ew from
§5.4, it is better to take the logarithms of the two factors, Taylor expand,
and then exponentiate. This allows us to better keep track of the error terms.

An immediate consequence of Chebyshev’s inequality (see Exercise 1.1)
is that we need only studyk where|k| is at mostN

1
2
+ε. This is because the

standard deviation ofS2N is
√

2N . Specifically, see Exercise 2.4 for a proof
that given anyε > 0, the probability of observing ak with |k| À N

1
2
+ε is

negligible. Thus it suffices to analyze the probability thatS2N = 2k for
|k| ≤ N

1
2
+ 1

9 .

Lemma 2.2. For anyε ≤ 1
9
, for N →∞ with k ¿ N

1
2
+ε, we have

(
1 +

k

N

)N+ 1
2
+k (

1− k

N

)N+ 1
2
−k

→ ek2/NeO(N−1/6). (7)

Proof. Recall that for|x| < 1,

log(1 + x) =
∞∑

n=1

(−1)n+1xn

n
. (8)

As we are assumingk ¿ N
1
2
+ε, note that any term below of sizek2/N2,

k3/N2 or k4/N3 will be negligible. Thus we have

Pk,N =

(
1 +

k

N

)N+ 1
2
+k (

1− k

N

)N+ 1
2
−k

log Pk,N =

(
N +

1

2
+ k

)
log

(
1 +

k

N

)
+

(
N +

1

2
− k

)
log

(
1− k

N

)N+ 1
2
−k

=

(
N +

1

2
+ k

)(
k

N
− k2

2N2
+ O

(
k3

N3

))

+

(
N +

1

2
− k

)(
− k

N
− k2

2N2
+ O

(
k3

N3

))

=
2k2

N
− 2

(
N +

1

2

)
k2

2N2
+ O

(
k3

N2
+

k4

N3

)

=
k2

N
+ O

(
k2

N2
+

k3

N2
+

k4

N3

)
. (9)
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As k ¿ N
1
2
+ε, for ε < 1

9
the big-Oh term is dominated byN−1/6, and we

finally obtain that

Pk,N = ek2/NeO(N−1/6), (10)

which completes the proof. ¤
Combining Lemma 2.2 with (4) yields(

2N

N + k

)
1

22N
≈ 1√

πN
e−k2/N . (11)

The proof of the central limit theorem in this case is completed by some
simple algebra. We are studyingS2N = 2k, so we should replacek2 with
(2k)2/4. Similarly, since the variance ofS2N is 2N , we should replaceN
with (2N)/2. We find

Prob(S2N = 2k) =

(
2N

N + k

)
1

22N
≈ 2√

2π · (2N)
e−(2k)2/2(2N).(12)

RememberS2N is never odd. The factor of2 in the numerator of the nor-
malization constant above reflects this fact, namely the contribution from
the probability thatS2N is even is twice as large as we would expect, be-
cause it has to account for the fact that the probability thatS2N is odd is
zero. Thus the above looks like a Gaussian with mean0 and variance2N .
For N large such a Gaussian is slowly varying, and integrating from2k to
2k + 2 is basically2/

√
2π(2N) · exp−(2k)2/2(2N).

Exercise 2.3.Use the integral test to bound the error in(3), and then use
that to bound the error in the estimate ofn!.

Exercise 2.4.Prove the standard deviation ofS2N is
√

2N . Use this and
Chebyshev’s inequality (Exercise 1.1) to prove

Prob(|S2N | ≥ N ε ·
√

2N) ≤ 1

N2ε
, (13)

which implies that it suffices to study values ofk with k ¿ N
1
2
+ε.

Exercise 2.5.Prove(8).

Exercise 2.6.Can you generalize the above arguments to handle the case
whenp 6= 1

2
.
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