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ABSTRACT. Two players roll die withk sides, with each side equally likely of being
rolled. Player one rollsm dice and player two rollsn dice. If player one’s highest
roll exceeds the highest roll of player two then player one wins, otherwise player two
wins. We calculate the probability that player one wins, giving a concise summation
and integral version, as well as estimating the probability that player one wins for
many triples(m,n, k). The answer involves numerous useful techniques (adding zero,
multiplying by one, telescoping series), as well as some beautiful formulas (formulas
for sums of powers, the binomial theorem, order statistics, partial summation).

1. INTRODUCTION

Consider two people, player one and player two, competing in the following game.
Player one rollsm dice, player two rollsn dice. Each die hask sides (labeled1 through
k), with each side equally likely of being rolled. Player one wins if the highest number
he rolls is greater than the highest number player two rolls, and otherwise player two
wins. We show that

Theorem 1.1.Notation as above, the probability that player one wins is

Prob(Player one wins) =
1

km+n

k∑
a=2

[am − (a− 1)m] · (a− 1)n. (1)

We can further simplify this formula by using the binomial theorem to expand the
difference (writea asa − 1), and then use formulas for power sums. We leave this as
an exercise for the reader, as this formula is already quite tractable for applications, and
further to use these expansions requires coding the Bernoulli polynomials (of course, if
one is programming in an environment where these are already defined, it is worthwhile
to consider these additional simplifications).

Using partial summation, we may re-write the probability that player one wins, and
find

Theorem 1.2. Notation as above, with[u] denoting the greatest integer less than or
equal tou, we have

Prob(Player one wins) =
1

km+n

[
km · (k − 1)n −

∫ k

1

[u]m · n(u− 1)n−1du

]
.

(2)

We prove Theorem 1.1 in §2 and Theorem 1.2 in §3, and conclude in §4 by estimating
the probability that player one wins for variousm, n andk.
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2. PROOF OFTHEOREM 1.1

To prove Theorem 1.1 we first introduce some notation, and then prove some useful
lemmas. LetX1, . . . , Xm andY1, . . . , Yn denote the rolls of players one and two, re-
spectively. To determine which player wins, what matters is not the individual rolls, but
rather the maximum value rolled by each player. Thus we are interested1 in

X[m] = max
1≤i≤m

Xi

Y[n] = max
1≤j≤m

Yj. (3)

Lemma 2.1. Notation as above, fora, b ∈ {1, . . . , k} we have

Prob(X[m] = a) =
am − (a− 1)m

km

Prob(Y[n] = b) =
bn − (b− 1)n

kn
. (4)

Proof. By symmetry, it is enough to prove the formula forX[m]. We takea ∈ {1, . . . , k}
as these are the possible rolls for a die withk sides. We calculate the probability that
X[m] equalsa. For this to be true, the largest roll must bea, and the remaining rolls
must bea or less. Let̀ be the number of rolls that are equal toa; note` ∈ {1, . . . ,m}
(there arem rolls, and at least one equalsa). Thus the remainingm − ` rolls must be
a− 1 or smaller. Thus, in the set ofm rolls, ` of the rolls area (for example, ifm = 5
and` = 3 then we could have rolls1, 3 and4 area, or we could have rolls2, 4 and5
area, and so on).

There are
(

m
`

)
ways to choosè rolls from m rolls to bea, and the probability that a

roll is a is just 1
k
. Further there are

(
m−`
m−`

)
= 1 way to choosem − ` rolls to be nota.

Each of these rolls is at mosta − 1, and the probability that a roll is at mosta − 1 is
a−1

k
. Note that ifa = 0 the probability is0 (which is good as it is impossible to roll a0

with a die with sides1 throughk).
Since the rolls are independent, the probability that exactly` of m rolls area and the

remainingm− ` rolls are at mosta− 1 is(
m

`

)
1

k`

(
a− 1

k

)m−`

=
1

km

(
m

`

)
(a− 1)m−`. (5)

As ` ∈ {1, . . . ,m} we have

Prob(X[m] = a) =
m∑

`=1

1

km

(
m

`

)
(a− 1)m−`

=
1

km

[
m∑

`=0

(
m

`

)
1` · (a− 1)m−`

]
− (a− 1)m

km

=
1

km
· (1 + (a− 1))m − (a− 1)m

km
, (6)

1The random variables introduced here,X[m] andY[n], are examples of order statistics. LetX[1] ≤
X[2] ≤ · · · ≤ X[m] be theXi’s arranged in increasing order. Order statistics have many useful properties.
In this work we need very little, specifically all we need is the probability distributions ofX[m] andY[n].
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where the last line follows from the Binomial Theorem:

(A + B)m =
m∑

`=0

(
m

`

)
A` ·Bm−`. (7)

Therefore

Prob(X[m] = a) =
am − (a− 1)m

km
, (8)

which completes the proof. �

Note in the above proof we added zero (by adding and subtracting the` = 0 term),
multiplied by one (by writing1`), and used the Binomial Theorem. These are very
common techniques, useful for solving a variety of problems.

Lemma 2.2. Notation as above, if player one’s highest roll isa ∈ {1, . . . , k}, then the
probability that player one wins is(a−1)n

kn .

Proof. If X[m] = a = 1 then player one loses, and by inspection the formula is true. Let
us now assumea ≥ 2. If X[m] = a then for player one to win, player two must have
Y[n] ≤ a−1. Thus ifY[n] = b, thenb is any integer in{1, . . . , a−1}, and the probability
of this happening is

a−1∑
b=1

Prob(Y[n] = b) =
a−1∑
b=1

bn − (b− 1)n

kn

=
1

kn

a−1∑
b=1

[bn − (b− 1)n]

=
1

kn
· (a− 1)n, (9)

where the last line follows from having a telescoping series. Writing it out, we see the
sum is

[1n − 0n] + [2n − 1n] + [3n − 2n] + · · ·+ [(a− 1)n − (a− 2)n] , (10)

and all terms cancel except0n and(a− 1)n, which completes the proof. �

We can now prove our main result:

Proof of Theorem 1.1.Note that if player one wins, thenX[m] ≥ 2, so if we write
X[m] = a thena ≥ 2. We have

Prob(Player one wins) =
k∑

a=2

Prob(X[m] = a) · Prob(Y[n] ≤ a− 1)

=
k∑

a=2

Prob(X[m] = a) · (a− 1)n

kn
, (11)

where the last equality follows from Lemma 2.2 (the probability that player two has
Y[n] ≤ a− 1, or in other words, the probability that player two’s highest roll is at most
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a−1). We now use Lemma 2.1 to substitute for the probability thatX[m] = a and obtain

Prob(Player one wins) =
k∑

a=2

am − (a− 1)m

km
· (a− 1)n

kn

=
1

km+n

k∑
a=2

[am − (a− 1)m] · (a− 1)n, (12)

completing the proof. �

We use Theorem 1.1 to determine the probability that player one wins for some pairs
of m andn and a six sided die (sok = 6). We list the results in Table 1.

TABLE 1. Probabilities for some pairs ofm andn with a six sided die.

m n Prob(Player One Wins)

1 1 5/12 ≈ 41.6667%

2 1 125/216 ≈ 57.8704%
2 2 505/1296 ≈ 38.9660%

3 1 95/144 ≈ 65.9722%
3 2 3667/7776 ≈ 47.1579%
3 3 5479/15552 ≈ 35.2302%

4 1 5501/7776 ≈ 70.7433%
4 2 24529/46656 ≈ 52.5742%
4 3 112751/279936 ≈ 40.2774%
4 4 529069/1679616 ≈ 31.4994%
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3. PROOF OFTHEOREM 1.2

We may re-write the probability that player one wins by replacing the summation
with an integral. From Theorem 1.1 we know that

Prob(Player one wins) =
1

km+n

k∑
a=2

[am − (a− 1)m] · (a− 1)n; (13)

we apply the integral version of partial summation (for a proof, see, for example, [Rud],
page70), the discrete version of integration by parts. This transforms the summation to
integration.

Lemma 3.1(Partial Summation: Integral Version). Let h(x) be a continuously differ-
entiable function withh(1) = 0. LetB(x) =

∑
a≤x ba. Then∑

a≤x

bah(a) = B(x)h(x)−
∫ x

1

B(u)h′(u)du. (14)

Proof of Theorem 1.2.We may extend our sums down toa = 1 without any change, as
(1− 1)0 = 0. For us,ba = am − (a− 1)m. ThusB(u) = [u]m, where[u] is the greatest
integer less than or equal tou. Furtherh(u) = (u− 1)n soh′(u) = n(u− 1)n−1. Thus
by the integral version of partial summation we have

Prob(Player one wins) =
1

km+n

[
B(k)h(k)−

∫ k

1

B(u)h′(u)du

]
=

1

km+n

[
km · (k − 1)n −

∫ k

1

[u]m · n(u− 1)n−1du

]
,

(15)

which completes the proof. �
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4. ESTIMATING PROBABILITIES FORm,n AND k LARGE

We estimate the probability of player one winning asm, n andk tend to infinity.
For simplicity, we consider the easiest case, whenk is much, much larger thanm and
n (thoughm andn are still large). We replace[u]m with (u − 1

2
)m with small error

(explicitly, it’s error will be of lower order, of sizemum−1, and sincek is large, this will
give a smaller contribution; we chose to use−1

2
to center the error), and we find

Prob(Player one wins) ≈ 1

km+n

[
km · (k − 1)n −

∫ k

1

(
u− 1

2

)m

· n(u− 1)n−1du

]
≈ 1

km+n

[
km · (k − 1)n −

∫ k

1

n

(
u− m + 2(n− 1)

2(m + n− 1)

)m+n−1

du

]

≈ 1

km+n

[
km · (k − 1)n − n

m + n

(
k − m + 2(n− 1)

2(m + n− 1)

)m+n
]

≈ 1

km+n

[
km+n − n

m + n
km+n

]
+

1

km+n

[
−nkm+n−1 +

m + 2(n− 1)

2(m + n− 1)

n(m + n)

m + n
km+n−1

]
≈ 1− n

m + n
−

(
1− m + 2(n− 1)

2(m + n− 1)

)
n

k

≈ m

m + n
− (2m + 2n− 2)− (m + 2n− 2)

2(m + n− 1)

n

k

≈ m

m + n
− m

2(m + n− 1)

n

k
. (16)

All of the approximations above are standard (from taking the first term in binomial
expansions, for example), except the first, where we used(

u− 1

2

)m

· (u− 1)n ≈
(

u− m + 2(n− 1)

2(m + n− 1)

)m+n−1

. (17)

We used this approximation asm times we had−1
2

andn − 1 times we had−1, and

−m+2(n−1)
2(m+n−1)

is the average of the two. Equivalently, this is the same as Taylor expanding
each factor and keeping the first error term for each. The reason we wanted to use such
an approximation is now we have the integral of(u − c)m+n−1 for a fixedc, and the
anti-derivative is just(u−c)m+n

m+n
.

For m, n andk large, we give some comparisons of the above estimate to the actual
probabilities in Table 2. We see that the approximation is fairly good, and provides
a quick way to estimate the probability that player one wins for such triples. Notice
how important it was to have an expansion more than justm

m+n
(i.e., keeping a second

term). If we did not keep the second term, then ifm = n we would approximate the
probability of player one winning as 50% instead of approximately2k−n

4k
= 1

2
− n

4k
. So

if m = n = 800 andk = 1000 then the probability should be about30% and not50%.
Finally, we remark on the limit ask → ∞ for fixed m andn. This may be inter-

preted as player one choosingm numbers uniformly in[0, 1] and player two choosing
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TABLE 2. Comparisons of actual and estimated probabilities of player
one winning

m n k Actual Prob Estimated Prob
100 100 200 37.6902% 37.4372%
100 300 400 16.5094% 15.6015%
150 100 200 44.7862% 44.9398%
300 100 400 64.9785% 65.6015%
550 100 400 72.4317% 74.0222%
550 550 700 31.2905% 30.3393%
800 800 1000 30.9897% 29.9875%

n numbers uniformly in[0, 1]. By symmetry each choice is equally likely to be the
largest number (and there is now zero probability that two numbers are equal). Thus the
probability that player one wins is the probability that the largest of them + n numbers
is one of hism numbers, or m

m+n
; note this agrees beautifully with thek → ∞ limit of

(16).

5. GENERALIZATIONS

This is the first of many problems one can ask about player one and player two. Other
natural questions are

(1) For fixedk, what is the probability that player one wins asm andn tend to
infinity? Does it matterhow m andn tend to infinity? For example, is the
answer different ifm = n or m = n2?

(2) What is the probability that player one’s top two rolls exceed the top two rolls
of player two? Or, more generally, consider the largestc rolls of player one
and two. Fori ∈ {1, . . . , c}, what is the probability thatX[m+1−i] ≥ Y[n+1−i]?
What is the probability that exactlyd of theX[m+1−i] exceed the corresponding
Y[n+1−i] (with i ∈ {1, . . . , c})? Such a calculation is useful in the board game
RISK, where often the attacker uses three die and the defender two die.
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