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Abstract

We calculate the1-Level Density for the following families of primitive Dirichlet
characters:

1. all primitive characters of conductorm, m a fixed prime;

2. all primitive characters of conductorm, m an odd square-free number withr factors
(r fixed);

3. all primitive characters whose conductor is a square-free odd integerm ∈ [N, 2N ].

As M. Rubinstein [Ru] has already considered all primitive quadratic characters with
prime conductorq ∈ [N, 2N ], we do not include our notes of this case. For these families
we show the1-Level Densities agree with the Unitary Group for even Schwartz functions
φ̂ with supp(φ̂) ⊂ (−2, 2). We conclude with an appendix on “reasonable” assumptions
which would allow us to extend the support of the test functions, possibly up to(−4, 4).

These notes were written between1999 and2000 as a precursor to my dissertation;
they are meant to be a rapid introduction to the calculations, with little motivation. For
more on such calculations, see the paper by C. Hughes and Z. Rudnick [HR], where the
first family was independently considered (and by additional arguments they obtained
results for supp(φ̂) ⊂ [−2, 2]). For motivation as to why one considers such quantities,
see [ILS, Mil, Ru].

∗E-mail: sjmiller@math.brown.edu
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1 Review of Dirichlet Characters

Below we’ll examine density functions for families of primitive Dirichlet characters, as well
as sums involving Dirichlet characters.

1.1 L-Function and Functional Equation

Let χ be a primitive character modm. Let

c(m,χ) =
m−1∑
k=0

χ(k)e2πik/m. (1.1)

c(m,χ) is a Gauss sum of modulusm
1
2 . The associated L-function and its analytic con-

tinuation are given by
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L(s, χ) =
∏
p

(1− χ(p)p−s)−1

Λ(s, χ) = π−
1
2
(s+ε)Γ(

s+ ε

2
)m

1
2
(s+ε)L(s, χ), (1.2)

where

ε =

{
0 if χ(−1) = 1

1 if χ(−1) = −1

Λ(s, χ) = (−i)ε c(m,χ)

m
1
2

Λ(1− s, χ̄). (1.3)

1.2 Explicit Formula and Density Conjecture

Let φ be an even Schwartz function with compact support, say contained in the interval
(−σ, σ), and letχ be a non-trivial primitive Dirichlet character of conductorm.

∑
φ

(
γ

log(m
π
)

2π

)
=

∫ ∞

−∞
φ(y)dy

−
∑
p

log p

log(m/π)
φ̂
( log p

log(m/π)

)
[χ(p) + χ(p)]p−

1
2

−
∑
p

log p

log(m/π)
φ̂
(
2

log p

log(m/π)

)
[χ2(p) + χ2(p)]p−1

+O

(
1

logm

)
. (1.4)

We then sum over all curves in a family.

Definition 1.1 (First and Second Sums). We call the two sums above the First Sum and the
Second Sum (respectively).

The Density Conjecture states that the family average should converge to the Unitary
Density: ∫ ∞

−∞
φ(y)dy. (1.5)

We will prove this forφ with suitable support.
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2 Dirichlet Characters from a Prime Conductor

If m is prime, then(Z/mZ)∗ is cyclic of orderm − 1 with generatorg (so any element is of
the formga for somea). Let ζm−1 = e2πi/(m−1). The principal characterχ0 is given by

χ0(k) =

{
1 if (k,m) = 1

0 if (k,m) > 1.
(2.6)

Each of them − 2 primitive characters are determined (because they are multiplicative)
once their action on a generatorg is specified. As eachχ : (Z/mZ)∗ → C∗, for eachχ there
exists anl such thatχ(g) = ζ lm−1. Hence for eachl, 1 ≤ l ≤ m− 2 we have

χl(k) =

{
ζ lam−1 if k ≡ ga mod m

0 if (k,m) > 0.
(2.7)

So{χ0} ∪ {χl}1≤l≤m−2 are all the characters modm, and as eachχl is primitive, we may
use the Explicit Formula. Consider the family of primitive characters mod a primem. There
arem− 2 elements in this family. Then we must study

∫ ∞

−∞
φ(y)dy − 1

m− 2

∑
χ6=χ0

∑
p

log p

log(m/π)
φ̂
( log p

log(m/π)

)
[χ(p) + χ(p)]p−

1
2

− 1

m− 2

∑
χ6=χ0

∑
p

log p

log(m/π)
φ̂
(
2

log p

log(m/π)

)
[χ2(p) + χ2(p)]p−1

+ O

(
1

logm

)
. (2.8)

2.1 The First Sum

We must analyze (form prime)

S1 =
1

m− 2

∑
χ6=χ0

∑
p

log p

log(m/π)
φ̂
( log p

log(m/π)

)
[χ(p) + χ(p)]p−

1
2 . (2.9)

Since ∑
χ

χ(k) =

{
m− 1 if k ≡ 1 mod m

0 otherwise.
(2.10)

we have for any primep 6= m

∑
χ6=χ0

χ(p) =

{
m− 2 if p ≡ 1 mod m

−1 otherwise.
(2.11)
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Let

δm(p, 1) =

{
1 if p ≡ 1 mod m

0 otherwise.
(2.12)

The contribution to the sum fromp = m is zero; if instead we substitute−1 for
∑

χ6=χ0
χ(m),

our error isO( 1
logm

) and hence negligible.

We now calculateS1, suppressing the errors ofO( 1
logm

). φ̂ will be an even Schwartz
function with support in(−σ, σ).

S1 =
1

m− 2

∑
χ6=χ0

∑
p

log p

log(m/π)
φ̂
( log p

log(m/π)

)
[χ(p) + χ(p)]p−

1
2

=
1

m− 2

∑
p

log p

log(m/π)
φ̂
( log p

log(m/π)

) ∑
χ6=χ0

[χ(p) + χ(p)]p−
1
2

=
2

m− 2

∑
p

log p

log(m/π)
φ̂
( log p

log(m/π)

)
p−

1
2 (−1 + (m− 1)δm(p, 1))

=
−2

m− 2

mσ∑
p

log p

log(m/π)
φ̂
( log p

log(m/π)

)
p−

1
2

+ 2
m− 1

m− 2

mσ∑
p≡1(m)

log p

log(m/π)
φ̂
( log p

log(m/π)

)
p−

1
2

� 1

m

mσ∑
p

p−
1
2 +

mσ∑
p≡1(m)

p−
1
2

� 1

m

mσ∑
k

k−
1
2 +

mσ∑
k≡1(m)
k≥m+1

k−
1
2

� 1

m

mσ∑
k

k−
1
2 +

1

m

mσ∑
k

k−
1
2

� 1

m
mσ/2. (2.13)

Note: in the above, one must be careful with the estimates of the second sum. Each residue
class ofk modm has approximately the same sum, with the difference between two classes
bounded by the first term of whichever class has the smallest element. Since we are dropping
the first term(k = 1), the class ofk ≡ 1(m) has the smallest sum of them classes. Hence
if we add all the classes and divide bym, we increase the sum, so the above arguments are
valid.
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HenceS1 = 1
m
mσ/2 +O

(
1

logm

)
, implying that there is no contribution from the first sum

if σ < 2.

2.2 The Second Sum

We must analyze (form prime)

S2 =
1

m− 2

∑
χ6=χ0

∑
p

log p

log(m/π)
φ̂
(
2

log p

log(m/π)

)
[χ2(p) + χ2(p)]p−1. (2.14)

If p ≡ ±1(m) then
∑

χ6=χ0
[χ2(p) + χ2(p)] = 2(m − 2). Otherwise, fix a generatorg and

write p ≡ ga(m). Asp 6≡ ±1, a 6≡ 0, m−1
2

mod(m− 1), as(Z/mZ)∗ is cyclic of orderm− 1.
Hencee4πia/(m−1) 6= 1. Recallζm−1 = e2πi/(m−1). Letx = e4πia/(m−1) 6= 1.

S =
∑
χ6=χ0

[χ2(p) + χ2(p)] =
m−2∑
l=1

[χ2
l (p) + χ2

l (p)]

=
m−2∑
l=1

[χ2
l (g

a) + χ2
l (g

a)]

=
m−2∑
l=1

[(χl(g))
2a + (χl(g))

2a]

=
m−2∑
l=1

[(ζ lm−1)
2a + (ζ lm−1)

−2a]

=
m−2∑
l=1

[(ζ2a
m−1)

l + (ζ−2a
m−1)

l]

=
m−2∑
l=1

[xl + (x−1)l]

=
x− 1

1− x
+
x−1 − 1

1− x−1
= −2. (2.15)

The contribution to the sum fromp = m is zero; if instead we substitute−2 for
∑

χ6=χ0
χ2(m),

our error isO( 1
logm

) and hence negligible.
Therefore ∑

χ6=χ0

[χ2(p) + χ2(p)] =
{2(m− 2) p ≡ ±1(m)

−2 p 6≡ ±1(m).
(2.16)

Let
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δm(p,±) =

{
1 if p ≡ ±1 modm

0 otherwise
(2.17)

Up toO
(

1
logm

)
we find that

S2 =
1

m− 2

∑
χ6=χ0

∑
p

log p

log(m/π)
φ̂
(
2

log p

log(m/π)

)
[χ2(p) + χ2(p)]p−1

=
1

m− 2

∑
p

log p

log(m/π)
φ̂
(
2

log p

log(m/π)

) ∑
χ6=χ0

[χ2(p) + χ2(p)]p−1

=
1

m− 2

mσ/2∑
p

log p

log(m/π)
φ̂
(
2

log p

log(m/π)

)
p−1[−2 + (2m− 2)δm(p,±)]

� 1

m− 2

mσ/2∑
p

p−1 +
2m− 2

m− 2

mσ/2∑
p≡±1(m)

p−1

� 1

m− 2

mσ/2∑
k

k−1 +
mσ/2∑

k≡1(m)
k≥m+1

k−1 +
mσ/2∑

k≡−1(m)
k≥m−1

k−1

� 1

m− 2
log(mσ/2) +

1

m

mσ/2∑
k

k−1 +
1

m

mσ/2∑
k

k−1 + O(
1

m
)

� logm

m
+

logm

m
+

logm

m
. (2.18)

ThereforeS2 = O( logm
m

), so for allσ there is no contribution.

2.3 Density Function from a Prime Conductor

Theorem 2.1(Density Function from a Prime Conductor). Let φ̂ be an even Schwartz function
with supp(φ̂) ⊂ (−2, 2), m a prime, andFm = {χ : χ is primitive modm}. Then assuming
GRH we have

1

Fm

∑
χ∈Fm

∑
γ:L( 1

2
+iγ,χ)=0

φ
(
γ

log(m/π)

2π

)
=

∫ ∞

−∞
φ(y)dy +O(

1

logm
). (2.19)

3 Dirichlet Characters from a Square-free Number

Fix anr and letm1, . . . ,mr be distinct odd primes. Let
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m = m1m2 · · ·mr

M1 = (m1 − 1)(m2 − 1) · · · (mr − 1) = φ(m)

M2 = (m1 − 2)(m2 − 2) · · · (mr − 2). (3.20)

M2 is the number of primitive characters modm, each of conductorm. For eachli ∈
[1,mi − 2] we have the primitive character discussed in the previous section,χli. A general
primitive character modm is given by a product of these characters:

χ(u) = χl1(u)χl2(u) · · ·χlr(u) (3.21)

Let F = {χ : χ = χl1χl2 · · ·χlr}. Then|F| = M2, and we are led to investigating the
following sums:

S1 =
1

M2

∑
p

log p

log(m/π)
φ̂
( log p

log(m/π)

)
p−

1
2

∑
χ∈F

[χ(p) + χ(p)]

S2 =
1

M2

∑
p

log p

log(m/π)
φ̂
(
2

log p

log(m/π)

)
p−1

∑
χ∈F

[χ2(p) + χ2(p)] (3.22)

3.1 The First Sum (m Square-free)

We must study
∑

χ∈F χ(p) (the sum withχ is handled similarly). In the previous section we
showed

mi−2∑
li=1

χli(p) =

{
mi − 1− 1 if p ≡ 1 mod mi

−1 otherwise.
(3.23)

Define

δmi
(p, 1) =

{
1 if p ≡ 1 mod mi

0 otherwise.
(3.24)

Then

∑
χ∈F

χ(p) =

m1−2∑
l1=1

· · ·
mr−2∑
lr=1

χl1(p) · · ·χlr(p)

=
r∏
i=1

mi−2∑
li=1

χli(p)

=
r∏
i=1

(−1 + (mi − 1)δmi
(p, 1)). (3.25)
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Let us denote byk(s) an s-tuple(k1, k2, . . . , ks) with k1 < k2 < · · · < ks. This is just a
subset of(1, 2, . . . , r). There are2r possible choices fork(s). We will use these to expand the
above product. Define

δk(s)(p, 1) =
s∏
i=1

δmki
(p, 1). (3.26)

If s = 0 we defineδk(0)(p, 1) = 1 ∀p. Then

r∏
i=1

(−1 + (mi − 1)δmi
(p, 1)) =

r∑
s=0

∑
k(s)

(−1)r−sδk(s)(p, 1)
s∏
i=1

(mki
− 1) (3.27)

Let h(p) = 2 log p
log(m/π)

φ̂
(

log p
log(m/π)

)
� ||φ̂||. Then

S1 =
mσ∑
p

1

2
h(p)p−

1
2

1

M2

∑
χ∈F

[χ(p) + χ(p)]

=
mσ∑
p

h(p)p−
1
2

1

M2

r∑
s=0

∑
k(s)

(−1)r−sδk(s)(p, 1)
s∏
i=1

(mki
− 1)

�
mσ∑
p

p−
1
2

1

M2

(
1 +

r∑
s=1

∑
k(s)

δk(s)(p, 1)
s∏
i=1

(mki
− 1)

)
. (3.28)

Observing thatm/M2 ≤ 3r we see thes = 0 sum contributes

S1,0 =
1

M2

mσ∑
p

p−
1
2 � 3rm

1
2
σ−1, (3.29)

hence negligible forσ < 2. Now we study

S1,k(s) =
1

M2

s∏
i=1

(mki
− 1)

mσ∑
p

p−
1
2 δk(s)(p, 1). (3.30)

The effect of the factorδk(s)(p, 1) is to restrict the summation to primesp ≡ 1(mki
) for

ki ∈ k(s). The sum will increase if instead of summing over primes satisfying the congruences
we sum over all numbersn satisfying the congruences (withn ≥ 1+

∏s
i=1mki

). But now that
the sum is over integers and not primes, we can use basic uniformity properties of integers to
bound it. We are summing integers mod

∏s
i=1mki

, so summing over integers satisfying these
congruences is basically just

∏s
i=1(mki

)−1
∑mσ

n=1 n
− 1

2 =
∏s

i=1(mki
)−1m

1
2
σ. We can do this

as the sum of the reciprocals from the residue classes of
∏s

i=1mki
differ by at most their first
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term. Throwing out the first term of the class1 +
∏s

i=1mki
makes it have the smallest sum of

the
∏s

i=1mki
classes, so adding all the classes and dividing by

∏s
i=1mki

increases the sum.
Hence (recallingm/M2 ≤ 3r)

S1,k(s) � 1

M2

s∏
i=1

(mki
− 1)

s∏
i=1

(mki
)−1m

1
2
σ

� 3rm
1
2
σ−1. (3.31)

Therefore,∀s theS1,k(s) contribute3rm
1
2
σ−1. There are2r choices, yielding

S1 � 6rm
1
2
σ−1, (3.32)

which is negligible asm goes to infinity for fixed r ifσ < 2. We cannot letr go to infinity
in the arguments above because ifm is the product of the firstr primes, then forr large,

logm =
r∑

k=1

log p

=
∑
p≤r

log p ≈ r

→ 6r ≈ mlog 6 ≈ m1.79. (3.33)

3.2 The Second Sum (m Square-free)

We must study
∑

χ∈F χ
2(p) (the sum withχ is handled similarly). In the previous section we

showed

mi−2∑
li=1

χ2
li
(p) =

{
mi − 1− 1 if p ≡ ±1 mod mi

−1 otherwise.
(3.34)

Then

∑
χ∈F

χ2(p) =

m1−2∑
l1=1

· · ·
mr−2∑
lr=1

χ2
l1
(p) · · ·χ2

lr(p)

=
r∏
i=1

mi−2∑
li=1

χ2
li
(p)

=
r∏
i=1

(−1 + (mi − 1)δmi
(p, 1) + (mi − 1)δmi

(p,−1)). (3.35)
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We now show the Second Sum is negligible for allσ. Instead of having2r terms we have
3r. Let k(s) be as before, and letj(s) be an s-tuple of±1s. Ass ranges from0 to r we get
each of the3r possibilities, as for a fixeds, there are

(
r
s

)
choices fork(s), each of these having

2s choices forj(s). But
∑r

s=0 2s
(
r
k

)
= (1 + 2)r. Let h(p) = 2 log p

log(m/π)
φ̂
(
2 log p

log(m/π)

)
� ||φ̂||.

Define

δk(s)(p, j(s)) =
s∏
i=1

δmki
(p, ji). (3.36)

Then

∑
χ∈F

χ2(p) =
r∑
s=0

∑
k(s)

∑
j(s)

(−1)r−sδk(s)(p, j(s))
s∏
i=1

(mki
− 1) (3.37)

Therefore

S2 =
1

M2

∑
p

log p

log(m/π)
φ̂
(
2

log p

log(m/π)

)
p−1

∑
χ∈F

[χ2(p) + χ2(p)]

=
1

M2

∑
p

h(p)
r∑
s=0

∑
k(s)

∑
j(s)

p−1(−1)r−sδk(s)(p, j(s))
s∏
i=1

(mki
− 1)

� 1

M2

∑
p

r∑
s=0

∑
k(s)

∑
j(s)

p−1δk(s)(p, j(s))
s∏
i=1

(mki
− 1)

=
r∑
s=0

∑
k(s)

∑
j(s)

S2,k(s),j(s). (3.38)

The term wheres = 0 is handled easily (recallm/M2 ≤ 3r):

S2,0,0 =
1

M2

mσ∑
p

p−1 � 3r
logmσ

m
. (3.39)

We would like to handle the terms fors 6= 0 analogously as before. The congruences
on p from k(s) and j(s) force us to sum only over certain primes mod

∏s
i=1mki

, with
each prime satisfyingp ≥ mki

± 1. We increase the sum by summing over all integers
satisfying these congruences. As each congruence class mod

∏s
i=1mki

has basically the
same sum, we can bound our sum over primes satisfying the congruencesk(s), j(s) by∏s

i=1(mki
)−1

∑mσ

n=1 n
−1 =

∏s
i=1(mki

)−1 logmσ.
There is one slight problem with this argument. Before each prime was congruent to1

mod each primemki
, hence the first prime occurred no earlier than at1 +

∏s
k=1mki

. Now,
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however, some primes are congruent to+1 modmki
, some to−1, and it is possible the first

such prime occurs before
∏s

k=1mki
.

For example, say the prime is congruent to+1 mod11, and−1 mod3, 5, 17. We want the
prime to be greater than3 · 5 · 11 · 17, but3 · 5 · 17− 1 is congruent to−1 mod3, 5, 17 and+1
mod11. (Fortunately it equals 254, which is composite).

So, for each pair(k(s), j(s)) we handle all but the possibly first prime as we did in the
First Sum case. We now need an estimate on the possible error for low primes. Fortunately,
there is at most one for each pair, and as our sum has a1

p
, we can expect cancellation if it is

large.
Fix now a pair (remember there are at most3r pairs). As we never specified the order

of the primesmi, without loss of generality (basically, for notational convenience) we may
assume that our primep is congruent to+1 modmk1 · · ·mka, and−1 modmka+1 · · ·mks .

The contribution to the second sum from the possible low prime in this pair is

1

M2

1

p

s∏
i=1

(mki
− 1). (3.40)

How small canp be? The+1 congruences imply thatp ≡ 1(mk1 · · ·mka), sop is at least
mk1 · · ·mka +1. Similarly the−1 congruences implyp is at leastmka+1 · · ·mks−1. Since the
product of these two lower bounds is greater than

∏s
i=1(mki

− 1), at least one must be greater

than
( ∏s

i=1(mki
− 1)

) 1
2
. Therefore the contribution to the second sum from the possible low

prime in this pair is bounded by (rememberm/M2 ≤ 3r)

1

M2

( s∏
i=1

(mki
− 1)

) 1
2 ≤ m

1
2

M2

≤ 3rm− 1
2 . (3.41)

Combining this with the estimate for the primes larger than
∏s

i=1(mki
− 1) yields

S2,k(s),j(s) � 3rm− 1
2 +

3r

m
logmσ, (3.42)

yielding (as there are3r pairs)

S2 =
r∑
s=0

∑
k(s)

∑
j(s)

S2,k(s),j(s) � 9rm− 1
2 . (3.43)

3.3 Density Function in the Square-free case

Theorem 3.1(Density Function for Square-free m). Let φ̂ be an even Schwartz function with
supp(φ̂) ⊂ (−2, 2). Fix an r ≥ 1. LetFm = {χ : χ is primitive modm}, wherem is a

12



square-free odd integer. Then assuming GRH we have

1

Fm

∑
χ∈Fm

∑
γ:L( 1

2
+iγ,χ)=0

φ
(
γ

log(m/π)

2π

)
=

∫ ∞

−∞
φ(y)dy +O(

1

logm
). (3.44)

We note for future reference the following bounds on the First and Second sums:

Lemma 3.2. Letm be a square-free odd integer withr = r(m) factors. Letm =
∏r

i=1mi

andM2 =
∏r

i=1(mi − 2). Consider the familyFm of primitive characters modm. There are
M2 such characters, and the First and Second sums satisfy the following bounds:

S1 � 1

M2

2rm
1
2
σ

S2 � 1

M2

3rm
1
2 . (3.45)

4 Dirichlet Characters from Square-free Numbers

We now generalize the results of the previous section to consider the familyFN of all primitive
characters whose conductor is an odd square-free integer in[N, 2N ]. Some of the bounds
below can be improved, but as the improvements do not increase the range of convergence,
they will only be sketched.

First we calculate the number of primitive characters arising from odd square-free numbers
m ∈ [N, 2N ]. Let n = n1n2 · · ·nr. Thenn contributes(n1 − 2) · · · (nr − 2) characters. On
average we might expect this to be (up to a constant)N , and as a positive percent of numbers
are square-free, we might expect there to becN2 characters.

Instead we prove there are at leastN2/ log2N primitive characters in the family. There
are at leastN/ log2N + 1 primes in the interval. For each primep (except possibly the first)
we havep − 2 ≥ N . Hence there are at leastN · N

log2N
= N2 log−2N primitive characters.

LetM = |F|. Then

M ≥ N2 log−2N ⇒ 1

M
≤ log2N

N2
. (4.46)

We recall the results from the previous section. Fix an odd square-free numberm ∈
[N, 2N ], and saym hasr = r(m) factors. Before we divided the First and Second sums by
M2 = (m1 − 2) · · · (mr − 2), as this was the number of primitive characters in our family.
Now we divide byM . Hence the contribution to the First and Second sum from this m is

13



S1,m � 1

M
2r(m)m

1
2
σ

S2,m � 1

M
3r(m)m

1
2 . (4.47)

Note that2r(m) = τ(m), the number of divisors ofm. While it is possible to prove

∑
n≤x

τ l(n) � x(log x)2l−1 (4.48)

the crude bound

τ(n) ≤ c(ε)nε (4.49)

yields the same region of convergence. Note3r(m) ≤ τ 2(m). Therefore the contributions
to the first sum is majorized by

S1 =
2N∑

m=N
m squarefree

S1,m

�
2N∑
m=N

1

M
2r(m)m

1
2
σ

� 1

M
N

1
2
σ

2N∑
m=N

τ(m)

� 1

M
N

1
2
σc(ε)N1+ε

� log2N

N2
N

1
2
σc(ε)N1+ε

� c(ε)N
1
2
σ+ε−1 log2N. (4.50)

Forσ < 2, choosingε < 1 − 1
2
σ yieldsS1 goes to zero asN tends to infinity. ForS2 we

have
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S2 =
2N∑

m=N
m squarefree

S2,m

�
2N∑
m=N

1

M
3r(m)m

1
2

� 1

M
N

1
2

2N∑
m=N

τ 2(m)

� c(ε)
log2N

N2
N

1
2N1+2ε

� c(ε)N2ε− 1
2 log2N. (4.51)

which converges to zero asN tends to infinity for allσ. Hence we have proved

Theorem 4.1(Dirichlet Characters from Square-free Numbers). LetFN denote the family of
primitive Dirichlet characters arising from odd square-free numbersm ∈ [N, 2N ]. Denote
the conductor ofχ by c(χ). Then∀σ < 2

1

FN

∑
χ∈FN

∑
γ:L( 1

2
+iγ,χ)=0

φ
(
γ

log(c(χ)/π)

2π

)
=

∫ ∞

−∞
φ(y)dy +O(

1

logN
). (4.52)

5 Summary

In all the cases investigated, we observe the First and Second sums do not contribute for even
Schwartz test functionsφ with supportσ < 2.

Thus, in the notation of Katz and Sarnak, the1-level densities for these families is
∫

R φ(x)dx,
which agrees with the1-level density for Unitary matrices.

A similar calculation should yield the2-level densities agreeing with that of Unitary ma-
trices, though only up to supportσ < 1.

A Natural Conjectures to Extend the Support

Trivial estimation of prime sums yield the1-level density for families of DirichletL-functions
for supp(φ̂) ⊂ (−2, 2). We discuss some natural (we hope!) conjectures for the distribution of
primes in residue classes, and how these would allow us to increase the support. Specifically,
consider estimates of errors for the distribution of primes in residue classes. Assuming GRH
(and anything else that you find reasonable!), how are the errors or excesses split among the
various classes? Specifically, what is the modulus dependence on average.
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A.1 Definitions and Preliminaries

Letm either be a prime or range over primes in[N, 2N ]. Let

ψ(x) =
∑
n≤x

Λ(n)

ψ(x, q, a) =
∑
n≤x

n≡a mod q

Λ(n)

E(x, q, a) = ψ(x, q, a)− ψ(x)

φ(q)
. (A.53)

If we assume GRH, we have (we could replaceε with powers oflog below) that

ψ(x) = x+O(x
1
2
+ε)

ψ(x, q, a) =
ψ(x)

φ(q)
+O(x

1
2 · (xq)ε)

E(x, q, a) = O(x
1
2 · (xq)ε). (A.54)

Probabilistic arguments suggest thatE(x, q, a) should be much smaller. Expecting square-
root cancellation, we haveφ(q) residue classes. If the error of sizex

1
2
+ε is spread among

theseφ(q) classes equally, we expect eachψ(x, q, a) to be of sizeψ(x)
φ(q)

with errors of size√
x
φ(q)

· (xq)ε; see [Mon1]. It is by gaining some savings inq in the error that we can increase

the support for families of DirichletL-functions.
Consider the total variance

V (x, q) =

q∑
a=1

(a,q)=1

∣∣∣∣ψ(x, q, a)− x

φ(q)

∣∣∣∣2 ; (A.55)

dividing by 1
φ(q)

would give the average variance. Note we subtractx
φ(q)

and notψ(x)
φ(q)

, though
assuming GRH, either gives the same results in terms of increasing the support.

Goldston and Vaughan [GV] have shown that under GRH,∑
q≤Q

V (x, q) = Qx logQ− cxQ+O
(
Q2(x/Q)

1
4
+ε + x

3
2 (log 2x)

5
2 (log log 3x)2

)
. (A.56)

If eachE(x, q, a) were of size
√

x
φ(q)

· (xq)ε, we would expect

V (x, q) ≈ x · (xq)ε (A.57)

and ∑
q≤Q

V (x, q) ≈ Qx · (xQ)ε. (A.58)

In fact, Hooley has conjectured that (A.57) holds for some unspecified range ofq (replacingε
with logarithms).
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A.2 Conjectures for Distribution Among Residue Classes

Conjecture A.1. Assume∃θ ∈ [0, 1] such that either of the following hold:

1. for all (or at least a sequence of primes tending to infinity) primem�
√
u� m2−θ,

E(u,m, 1)2 � mθ · 1

φ(m)

m∑
a=1

(a,m)=1

E(u,m, a)2. (A.59)

2. for primem ∈ [N, 2N ] withN �
√
u� N2−θ,

2N∑
m=N

m prime

E(u,m, 1)2 � N θ · 1

N

2N∑
m=N

m prime

m∑
a=1

(a,m)=1

E(u,m, a)2. (A.60)

Then the1-level density for the family of DirichletL-functions can be extended to hold for test
functions whose Fourier transforms are supported in(−4 + 2θ, 4− 2θ).

This conjecture is trivially true forθ = 1, and is unlikely to be true forθ = 0. Is it
reasonable to expect either version to hold for sayθ = ε (for anyε > 0)? Basically, what we
need is some control over biases of primes to be congruent to1 mod m. For the residue class
a mod m, E(u,m, a)2 is the variance; the above conjecture can be interpreted as bounding
E(u,m, 1)2 in terms of the average variance. Interestingly,θ = 1 recovers the1-level density
result of support in(−2, 2).

Bounds such as these are useful as, by using the Cauchy-Schwartz inequality, the variance
E(u,m, 1)2 surfaces in investigating the1-level density sums. If we can express the vari-
anceE(u,m, 1)2 in terms of the average variance, the bounds from Goldston-Vaughan are
applicable. There is also the possibility of using higher moment bounds and Holder’s Inequal-
ity instead of Cauchy-Schwartz (see [Va]); unfortunately, Vaughan’s results only hold form
“close” to u. Explicitly, u

3
4
+ε � m � x. To obtain better support than(−2, 2), we need

u� √
q.

The question is: for whatθ is the above conjecture “reasonable”? Can we glean a rea-
sonable value forθ from the arguments in say [RubSa], or from probabilistic arguments on
random primes (where with probability one we know RH is true for a random sequence of
primes – what is known there about error terms in congruence classes, and how that depends
on the modulus)?

One could probably work with all square-freem and not just primem in the Dirichlet
L-function’s densities; however, as the variances are positive, if bounds like this don’t hold
for m restricted to prime values, they won’t hold form square-free (because we are going for
more than a logarithm savings).
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