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Abstract

We calculate the-Level Density for the following families of primitive Dirichlet
characters:

1. all primitive characters of conductet, m a fixed prime;

2. all primitive characters of conductor, m an odd square-free number witlfactors
(r fixed);

3. all primitive characters whose conductor is a square-free odd integefV, 2NV ].

As M. Rubinstein [Ru] has already considered all primitive quadratic characters with
prime conductog € [N, 2N], we do not include our notes of this case. For these families
we show thel-Level Densities agree with the Unitary Group for even Schwartz functions
é with supp(é) C (—2,2). We conclude with an appendix on “reasonable” assumptions
which would allow us to extend the support of the test functions, possibly (p404).

These notes were written betwetP9 and2000 as a precursor to my dissertation;
they are meant to be a rapid introduction to the calculations, with little motivation. For
more on such calculations, see the paper by C. Hughes and Z. Rudnick [HR], where the
first family was independently considered (and by additional arguments they obtained
results for supfp) C [—2,2]). For motivation as to why one considers such quantities,
see [ILS, Mil, Ru].

*E-mail: sjmiller@math.brown.edu
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1 Review of Dirichlet Characters

Below we’ll examine density functions for families of primitive Dirichlet characters, as well
as sums involving Dirichlet characters.

1.1 L-Function and Functional Equation

Let x be a primitive character mad. Let

[y

c(m,x) = X(k)e%ik/m. (1.1)
0

3

i

c(m, ) is a Gauss sum of modulusz. The associated L-function and its analytic con-
tinuation are given by



L(s,x) = JJO=xpp—)""

P
S+e€

o) m=TIL(s, ). (12)

AGs,x) = 20791

where

1 if y(=1) = -1

As,x) = (—i)EMA(l—s,x). (1.3)

m

o {0 if Y(—1) = 1

N|—=

1.2 Explicit Formula and Density Conjecture

Let ¢ be an even Schwartz function with compact support, say contained in the interval
(—o,0), and lety be a non-trivial primitive Dirichlet character of conducter

S - [Lome

g(m/m) " \log(m/m
logp - logp 2 —2 -1
—Z og (/) cb( 10g(m/7r)>[ (p) + X (p)]p
1
() »

We then sum over all curves in a family.

Definition 1.1 (First and Second Sums)Ve call the two sums above the First Sum and the
Second Sum (respectively).

The Density Conjecture states that the family average should converge to the Unitary

Density:
| otwas (L5)

We will prove this for¢ with suitable support.



2 Dirichlet Characters from a Prime Conductor

If m is prime, then(Z/mZ)* is cyclic of orderm — 1 with generato (so any element is of
the formg® for somea). Let(,,_; = /=1, The principal charactey, is given by

1 if(km) =1
Xo(k) = {o it (k,m) > 1. (2.6)

Each of them — 2 primitive characters are determined (because they are multiplicative)
once their action on a generatprs specified. As each : (Z/mZ)* — C*, for eachy there
exists an such thaty(g) = ¢!,_,. Hence for each, 1 <! < m — 2 we have

la

., Ifk=g*modm
k) = {>mt 2.7
xi(k) {0 if (k,m) > 0. 27

So{xo} U {x:i}1<i<m—2 are all the characters med, and as eacl; is primitive, we may
use the Explicit Formula. Consider the family of primitive characters mod a prim&here
arem — 2 elements in this family. Then we must study

| oty - Zzlobgp (ol Yixto) + X

g(m/m) " \log(m/m)
Z Z 10 log p QZB(2 log p )[XQ(p> 4 YQ(p)]p_l

2 2 2 iog(m/m) " \“loa(m/7)

+ O( ! ) (2.8)
logm

2.1 The First Sum

We must analyze (fom prime)

log p A log p _ 1
2, 2.
m—2 Z Zlog (m/m) <log(m/7r)>[X(p)+X(p)]p (2.9)
X#Xo P
Since
m—1 ifk=1modm
k) = 2.10
XX:X< ) {0 otherwise. (2.10)
we have for any prime # m
m—2 ifp=1modm
S xp) = { b= (2.11)
—1 otherwise.
XFX0



Let

1 ifp=1modm
om(p, 1) = _ 2.12
(p. 1) {0 otherwise. ( )

The contrlbutlon to the sum from= m is zero; if instead we substitutel for > © , ~x(m),
our error |sO( —) and hence negligible.

We now calculategl, suppressing the errors 61( —). gb will be an even Schwartz
function with support in—o, o).

S= Z > logbi]jﬂ A(loglﬁifjﬁ))mp) ()
- s Z logl"?i]jﬂ () 3 o)+ 30l
T m_2 Z loglosf;ﬂ A(logl?iz;w)>p_é(_1 +(m = 1)om(p, 1))
- mzlom (s

log p log p

* 2m—2p:1Z log(m/m) (log(m/w))p_
< %Zp‘é + Z p_%
P 1

1
2

1 1 1
< =) ke ke
ot

1 ! 1 & !
— k™2 — k2
< mz + m%:
1
< _ma/2. (213)

Note: in the above, one must be careful with the estimates of the second sum. Each residue
class ofk modm has approximately the same sum, with the difference between two classes
bounded by the first term of whichever class has the smallest element. Since we are dropping
the first term(k = 1), the class ok = 1(m) has the smallest sum of the classes. Hence
if we add all the classes and divide by, we increase the sum, so the above arguments are
valid.



logm

HenceS; = Lm?/2 + 0O <

) implying that there is no contribution from the first sum
if o <2.

2.2 The Second Sum

We must analyze (fom prime)

— Z Z 10 logp A( log p >[X2(p> _i_YQ(p)]pfl. (2.14)

& 2= Toglm/m) "\ log(m /)

If p=+1(m) thend_ . [x*(p) +X*(p)] = 2(m — 2). Otherwise, fix a generatgrand
write p = g%(m). Asp # £1,a # 0, =+ mod(m — 1), as(Z/mZ)* is cyclic of orderm — 1.
Hencee*™@/(m=1) £ 1. Recall(,,_, = e*™/(m=1, Letx = emie/(m=1) £ 1,

m—2

S = Z[X2 p)+Xi(p

XFX0 z:1

r—1 zt'—=1
— = 92 2.15
1—x+1—x—1 ( )

The contrlbutlon to the sum from= m is zero; if instead we substitute2 for 3., *(m),
our error |sO( —) and hence negligible.
Therefore
_ 2(m —2) p==+1(m)
> _Cm) + @) = (2.16)
= { -2 p # £1(m).
Let



1 ifp==£1modm
Sm(p, £) = _ 2.17
(b, £) {0 otherwise ( )

UptoO ( ) we find that

logp P log p 9 g 4

5 = — 2 Z Z log(m/m) ( log(m/ﬂ))[x (p) + X" (p)lp
1ng A log p 2 =2 -1

- = Z s Clogtofy) 2 W)+ X0l

- -2 Z log( o gf;(?lo;?iz;ﬂ))p_l[_z + (2m = 2)0,(p, £)]

o/2 mo/2
1 L, 2m =2
< TP ;2 P
p p=+1(m
mo/2 mo/2 mo/2

< Zk1+2k1+ > k!

k=1(m) k=—1(m)
k>m+1 k>m—1
mo/2 mo/2
< 5 log(m o/2) +—Zk1+—2k1+0( )
logm logm logm
< Bme, osm, 0BT (2.18)
m m m

ThereforeS, = O(*&™

), so for allo there is no contribution.

2.3 Density Function from a Prime Conductor

Theorem 2.1(Density Function from a Prime Conductol:)eté be an even Schwartz function
with supd¢) C (—2,2), m a prime, and?,, = {x : x is primitive modm}. Then assuming
GRH we have

_Z > ¢<7M /cb dy+0( ). (2.19)

™ XEFm y:L(%+iv,x)=0

3 Dirichlet Characters from a Square-free Number

Fix anr and letm,, ..., m, be distinct odd primes. Let



My = (mi—1)(mz—1)---(m, — 1) = ¢(m)
My, = (my—2)(mg—2)---(m, — 2). (3.20)

M, is the number of primitive characters med each of conductom. For eachl; €
[1,m; — 2] we have the primitive character discussed in the previous segtiorA general
primitive character modah is given by a product of these characters:

x(u) = xi, (w)xa, (w) - - - X1, (u) (3.21)

LetF = {x : x = xu, X - - Xxi. ;- Then|F| = M,, and we are led to investigating the
following sums:

o = Zlogloqiz;w (10;()51];@)1’_;);[X(p)vﬁ(p)]
» Xhéﬁﬂé@mﬁﬁﬂFIZ;W@+?@l (3.22)

3.1 The First Sum (n Square-free)

We must study> - x(p) (the sum withy is handled similarly). In the previous section we
showed

m; —1—1 if p=1modm;
- 3.23
Z X { 1 otherwise. ( )
Define
1 if p=1modm;
Om.(p, 1) = ) 3.24
(p,1) {O otherwise. ( )
Then
mi1—2 my—2
Yoxp) = > D> @ x(p)
XEF =1 =1
= H Z Xl
=1 I;=1
= JI(=1+ (mi — 1)é, (p.1)). (3.25)

=1



Let us denote by:(s) an s-tuple(ky, ko, . .., ks) With &y < ky < -+ < k,. Thisis just a
subsetof1,2,...,r). There ar@" possible choices fadt(s). We will use these to expand the
above product. Define

k(s)(ps 1 Hdmk p,1). (3.26)

If s =0 we define,(p,1) = 1Vp. Then

T S

TT(=1+ (mi = 1)8,n, (p, 1 ZZ ) k)2, 1) [J(me, = 1) (3.27)
i=1 5=0 k(s) i=1
Leth(p) = 2=280— 6 (=t ) < ||¢]|. Then
log(m/w log(m/7)
2 1 B
Sio= Y h®pr = 5 D (@) +X)
p 2 XEF
m° B 1 r - s
= Y hmp = DY (1) bk () [ (s, — 1)
p 2 =0 k(s) i=1
m? . 1 r S
< ;p : E(1 + ; % Sy (P, 1) g(mki _ 1)). (3.28)
Observing thatn/M, < 3" we see the = 0 sum contributes
1 < -1 r, to-1
S10= 31 > pr <3 mao! (3.29)

hence negligible fos < 2. Now we study

1 KR
S1k(s) = A H(mki —1) Zp_55k(s)(p, 1). (3.30)
=1 p

The effect of the factod,(p, 1) is to restrict the summation to primgs= 1(my,) for
k; € k(s). The sumwill increase |f instead of summing over primes satisfying the congruences
we sum over all numberssatisfying the congruences (with> 1+ ]];_, my,). But now that
the sum is over integers and not primes, we can use basic uniformity properties of integers to
bound it. We are summing integers mpg_, m,, S0 summing over integers satisfying these

o

congruences is basically jupf;_, (my,) ' S, n~2 = [[°_,(m4,) 'mz°. We can do this
as the sum of the reciprocals from the residue classg§;of m, differ by at most their first

9



term. Throwing out the first term of the class- [ [;_, m;, makes it have the smallest sum of
the[;_, my, classes, so adding all the classes and dividin§ [y, m;, increases the sum.
Hence (recallingn/M, < 37)

S S

1
Sl,k(s) < E I_I(Tnk1 — 1) H(mki)_lméa

=1 =1

< 3mz Tl (3.31)
Thereforeys the S () contribute3"mz2°~!, There ar&@" choices, yielding

Sp < 6'mz"1, (3.32)

which is negligible asn goes to infinity for fixed r ife < 2. We cannot let go to infinity
in the arguments above becauseifs the product of the first primes, then for large,

logm = ilogp

= Zlogp ~

p<r

— 6"~ mt ~ Mt (3.33)

3.2 The Second Sumv Square-free)

We must study . - x2(p) (the sum withy is handled similarly). In the previous section we
showed

m;—2 .
. m; —1—1 if p=41modm;
ST i) = b== (3.34)
= -1 otherwise.
Then
mi1—2 my—2
Z X’(p) = Z Z Xl1 er p)
XEF =1 =1
r o m;—2
= 1> xi(p
=1 [;=1
= JJ(=1+ (mi = 1)6,(p, 1) + (m; = 1)6m, (p, —1)). (3.35)

=1

10



We now show the Second Sum is negligible forallinstead of havin@” terms we have
3". Letk(s) be as before, and lg(s) be an s-tuple of:1s. Ass ranges from to » we get
each of the3” possibilities, as for a fixed, there arg") choices fork(s), each of these having

2* choices forj(s). BUt Y] 2°(}) = (1+2)". Leth(p) = 20506 (2250 ) < 161
Define

Or(s) (P> 4 (s)) = H Orm, (P Ji)- (3.36)

Then

> X ) = (—=1)"*6x(s) (. 5(s)) [ [ (e, — 1) (3.37)

XEF s=0 Ek(s) j(s) i=1

Therefore

1 logp log p 1 2 =2
Sy = Eg ¢><210g<m/7r)>p > PP + X))

log(m/m) =
- L zzzp—l " ~“duco (p(s)) [T me, ~ 1)
s=0 k(s) i=1
< ZZZZP ") (ps 4 (s )H(mki - 1)
= ZZZSM (3.38)
5=0 Kk(s) j(s)

The term where = 0 is handled easily (recath /M, < 3"):

5200]\}2Zp1<<37"1%nm . (3.39)

We would like to handle the terms far # 0 analogously as before. The congruences
on p from k(s) and j(s) force us to sum only over certain primes mpf_, my,, with
each prime satisfying > my, £ 1. We increase the sum by summing over all integers
satisfying these congruences. As each congruence clasq fiigdn,, has basically the
same sum, we can bound our sum over primes satisfying the congruefes(s) by
[T (ms,) ™ Z:; nt =TI, (my,) " logm?.

There is one slight problem with this argument. Before each prime was congruent to
mod each primen,,, hence the first prime occurred no earlier than at [];_, my,. Now,

11



however, some primes are congruentto modm,,, some to—1, and it is possible the first
such prime occurs befold;_, my,.

For example, say the prime is congruenttbmod11, and—1 mod3, 5, 17. We want the
prime to be greater thad- 5-11-17, but3-5-17 — 1 is congruent to-1 mod3, 5, 17 and+1
mod11. (Fortunately it equals 254, which is composite).

So, for each paifk(s), j(s)) we handle all but the possibly first prime as we did in the
First Sum case. We now need an estimate on the possible error for low primes. Fortunately,
there is at most one for each pair, and as our sum @am can expect cancellation if it is
large.

Fix now a pair (remember there are at m8stpairs). As we never specified the order
of the primesm;, without loss of generality (basically, for notational convenience) we may
assume that our primeis congruent toi-1 modmy, - - - my,, and—1 modmy,,,, - - - my

The contribution to the second sum from the possible low prime in this pair is

<"

—— | |(my, — 1). (3.40)

How small carp be? Thet+1 congruences imply that = 1(my, - --my,), SOp is at least
my, - - - my, + 1. Similarly the—1 congruences imply is at leasiny, , - - - my, — 1. Since the
product of these two lower bounds is greater th§n, (m,, — 1), at least one must be greater

1

than ( [, (my, — 1)) * . Therefore the contribution to the second sum from the possible low
prime in this pair is bounded by (remembey M, < 3")

s

b 1
M%(H(mki - 1))2 < ”]\2—2 <3'mz, (3.41)

=1
Combining this with the estimate for the primes larger th§n, (m;, — 1) yields

37‘
Sok(s)i(s) K 3'mz + Elog m?, (3.42)

yielding (as there arg’ pairs)

Sy = Z Z Z S2,k(s),j(s) <K 9’”m*%. (343)

s=0 k(s) j(s)

3.3 Density Function in the Square-free case

Theorem 3.1(Density Function for Square-free m)et ¢ be an even Schwartz function with
sup¢) C (—2,2). Fixanr > 1. LetF,, = {x : x is primitive modm}, wherem is a

12



square-free odd integer. Then assuming GRH we have

}“Lm DS ¢<7%> =/_(:¢(y)dy+0(®). (3.44)

XEFm 'y:L(%—l—iv,)():O
We note for future reference the following bounds on the First and Second sums:

Lemma 3.2. Letm be a square-free odd integer with= r(m) factors. Letm = [[_, m;
and M, = [[;_,(m; — 2). Consider the familyF,, of primitive characters moeh. There are
M, such characters, and the First and Second sums satisfy the following bounds:

S, <« —2'm3°

Sy, <« —3'mz. (3.45)

4 Dirichlet Characters from Square-free Numbers

We now generalize the results of the previous section to consider the famiby all primitive
characters whose conductor is an odd square-free integéf,21vV]. Some of the bounds
below can be improved, but as the improvements do not increase the range of convergence,
they will only be sketched.

First we calculate the number of primitive characters arising from odd square-free numbers
m € [N,2N]. Letn = niny---n,. Thenn contributes(n; — 2) -- - (n,, — 2) characters. On
average we might expect this to be (up to a const&htnd as a positive percent of numbers
are square-free, we might expect there taNé characters.

Instead we prove there are at least/ log> N primitive characters in the family. There
are at leastV/ log> N + 1 primes in the interval. For each primpgexcept possibly the first)

we havep — 2 > N. Hence there are at lea’t - bgf‘{N = N?log™? N primitive characters.
Let M = |F|. Then
M > Nlog PN = o< N (4.46)
> 0g 7S TN .

We recall the results from the previous section. Fix an odd square-free numkber
[N,2N], and saym hasr = r(m) factors. Before we divided the First and Second sums by
My = (my — 2)---(m, — 2), as this was the number of primitive characters in our family.
Now we divide by)M . Hence the contribution to the First and Second sum from this m is

13



1 .
Sl,m << MQT(m)mQ

1 .
Som < M3T<m>m5. (4.47)

Note tha"™ = 7(m), the number of divisors af.. While it is possible to prove

> ) < w(logx)? ! (4.48)

n<x

the crude bound

T(n) < c(e)nf (4.49)

yields the same region of convergence. Nt < 72(m). Therefore the contributions
to the first sum is majorized by

2N
Sl = Z Sl,m
m=N
m squarefree
2N 1
< Z M2r(m)m§a
m=N
1 2N
< Ny r(m)
m=N
1
< MNEUC(E)NPFG
10g2 N 1, .
< e N2%¢(e)N'*
< c(e)Nz7T 1 og? N. (4.50)

Foro < 2, choosing < 1 — %0 yields S, goes to zero a8/ tends to infinity. ForS, we
have

14



2N

SQ == Z SZ,m

m=N
m squarefree

2N 1
< Z —37my,
m=N M

2N

[

<

< c(e)
< c(e)N*"z1og? N. (4.51)
which converges to zero &é tends to infinity for allo. Hence we have proved

Theorem 4.1(Dirichlet Characters from Square-free Numbelst 7, denote the family of
primitive Dirichlet characters arising from odd square-free numberse [N, 2N]. Denote
the conductor of by ¢(x). Thenvo < 2

%N > 2 cb(vW) Z/_OO ¢(y)dy+0(ﬁ). (4.52)

XEFN y:L(5+iv,x)=0

5 Summary

In all the cases investigated, we observe the First and Second sums do not contribute for even
Schwartz test functiong with supporto < 2.

Thus, in the notation of Katz and Sarnak, thkevel densities for these families s ¢(x)dx,
which agrees with thé-level density for Unitary matrices.

A similar calculation should yield th2-level densities agreeing with that of Unitary ma-
trices, though only up to suppart< 1.

A Natural Conjectures to Extend the Support

Trivial estimation of prime sums yield thielevel density for families of DirichleL-functions

for sup¢) C (—2,2). We discuss some natural (we hope!) conjectures for the distribution of
primes in residue classes, and how these would allow us to increase the support. Specifically,
consider estimates of errors for the distribution of primes in residue classes. Assuming GRH
(and anything else that you find reasonable!), how are the errors or excesses split among the

various classes? Specifically, what is the modulus dependence on average.

15



A.1 Definitions and Preliminaries

Let m either be a prime or range over primeg M 2N]. Let

W) = ) A

n<x

U(r,g,0) = Y Aln)

n<x
n=a mod gq

E(z,q,a) = 9(z,q,a)— zgz)) (A.53)
If we assume GRH, we have (we could replasath powers oflog below) that
Y(z) = z+0(*)
vaga) = 2940wk ()
o ¢(q)
E(xz,q,a) = O(x% - (2q)). (A.54)

Probabilistic arguments suggest thigtr, ¢, a) should be much smaller. Expecting square-
root cancellation, we have(q) residue classes. If the error of size*e is spread among
thesep(q) classes equally, we expect eaghe, ¢,a) to be of sizeﬁgz)) with errors of size
R (zq); see [Monl]. Itis by gaining some savingsqitn the error that we can increase
the support for families of DirichleL-functions.

Consider the total variance

2

: (A.55)

V(£7Q) = Z ‘w(%q’a)—ﬁ

(a,q)=1

dividing by e would give the average variance. Note we subtﬁ(ﬁtand notﬁg)), though

1
¢
assuming G%H, either gives the same results in terms of increasing the support.
Goldston and Vaughan [GV] have shown that under GRH,

Z V(z,q) = QrlogQ — cz@Q + O (QQ(x/Q)i“ + x%(log 21’)g (loglog 31:)2) . (A.56)
9<Q

If eachE(z, ¢, a) were of size, /== - (xq)°, we would expect

V(z,q) = z-(zq) (A.57)
and

S V(g ~ Qu-(2Q)". (A.58)
9<Q
In fact, Hooley has conjectured that (A.57) holds for some unspecified ranggexlacinge
with logarithms).

16



A.2 Conjectures for Distribution Among Residue Classes

Conjecture A.1. Assumeld € [0, 1] such that either of the following hold:

1. for all (or at least a sequence of primes tending to infinity) prime< /u < m?~°,

E(u,m,1)> < m? - —— Z (u,m,a) (A.59)

2. for primem € [N,2N] with N < u < N2,

2N

ZE(uml) < N°Y. NZ Z (u,m, a)? (A.60)

m=N
m prime m pnme (a, m) 1

Then thel-level density for the family of Dirichlgt-functions can be extended to hold for test
functions whose Fourier transforms are supported-in + 26,4 — 26).

This conjecture is trivially true fo# = 1, and is unlikely to be true fof = 0. Is it
reasonable to expect either version to hold for &ay ¢ (for anye > 0)? Basically, what we
need is some control over biases of primes to be congrudnti@d m. For the residue class
a mod m, E(u,m,a)? is the variance; the above conjecture can be interpreted as bounding
E(u,m,1)%in terms of the average variance. Interestingly; 1 recovers tha-level density
result of support inf—2, 2).

Bounds such as these are useful as, by using the Cauchy-Schwartz inequality, the variance
E(u,m,1)? surfaces in investigating thelevel density sums. If we can express the vari-
anceE(u,m,1)? in terms of the average variance, the bounds from Goldston-Vaughan are
applicable. There is also the possibility of using higher moment bounds and Holder’s Inequal-
ity instead of Cauchy-Schwartz (see [Va]); unfortunately, Vaughan'’s results only hotd for
“close” to u. Explicitly, ui*c < m < z. To obtain better support thanr-2,2), we need
u>>\/q.

The question is: for what is the above conjecture “reasonable”? Can we glean a rea-
sonable value foé from the arguments in say [RubSa], or from probabilistic arguments on
random primes (where with probability one we know RH is true for a random sequence of
primes — what is known there about error terms in congruence classes, and how that depends
on the modulus)?

One could probably work with all square-free and not just primen in the Dirichlet
L-function’s densities; however, as the variances are positive, if bounds like this don’t hold
for m restricted to prime values, they won't hold fer square-free (because we are going for
more than a logarithm savings).
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