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April 7, 2006

1 Introduction

We begin with a few definitions. We say that a complex number α is algebraic if it is a root of a
polynomial with integer coefficients. So 1,

√
2 and i are all algebraic because they are the roots of

the polynomials x− 1, x2 − 2 and x2 + 1, respectively. If α fails to be algebraic then it is said to
be transcendental.

When proving it is impossible to ‘square’ the circle by a ruler–and–compass construction we
have to appeal to the theorem that π is transcendental. It is our goal to prove this theorem. Since the
algebraic numbers are the roots of integer polynomials, they are countably many. Cantor’s proof
in 1874 of the uncountability of the real numbers guaranteed the existence of (uncountably many)
transcendental numbers. Thirty years earlier Liouville had actually constructed the transcendental
number

+∞∑
n=0

1
10n!

,

called Liouville’s constant. This number is proven to be transcendental using Liouville’s approxi-
mation theorem, which states: for any algebraic number α of degree n ≥ 2, a rational approxi-
mation p/q to α must satisfy ∣∣∣∣α− p

q

∣∣∣∣ >
1
qn

for sufficiently large q. However, no naturally occurring number, such as e or π, had been proven
to be transcendental until in 1873 Hermite disposed of e. Then in 1882 π was proven to be tran-
scendental by Lindemann, using methods related to those of Hermite. In 1900 Hilbert proposed
the problem:
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If α, β are algebraic and α 6= 0, 1 and β is irrational, prove that αβ is transcendental.

This problem was solved independently in 1934 by Gelfond and Schneider, and this will follow
as a corollary of our main theorem.

2 The Main Theorem

Recall that if K is an extension of a field k then the transcendence degree of K over k is the
greatest cardinality of algebraically independent subsets of K over k.

To state the main theorem we will need some definitions from complex analysis. Let f be an
entire function, i.e., f is holomorphic on the whole complex plane. For our purposes we say that f
is of order ≤ ρ if there exists a number C > 1 such that for all large R we have

|f(z)| ≤ CRρ
, whenever |z| ≤ R.

A meromorphic function, i.e., a function holomorphic outside of a discrete set of poles, is said to
be of order ≤ ρ if it is the quotient of two entire functions of order ≤ ρ. Now we are ready to state
our main theorem.

Theorem 1. Let K be a finite extension of the rational numbers. Let f1, . . . , fN be meromor-
phic functions of order ≤ ρ. Assume that the field K(f1, . . . , fN ) has transcendence degree
≥ 2 over K and that the derivative D = d/dz maps the ring K[f1, . . . , fN ] into itself. Let
w1, . . . , wm be distinct complex numbers not lying among the poles of the fi, such that

fi(wv) ∈ K, for all i = 1, . . . , N and v = 1, . . . ,m.

Then m ≤ 32ρ[K : Q].

Corollary 1 (Hermite–Lindemann). If α is algebraic (over Q) and α 6= 0, then eα is tran-
scendental. Hence e and π are transcendental.

Proof. Suppose α and eα are algebraic. Let K = Q(α, eα). The functions z and ez are alge-
braically independent over K since if ez is the root of some polynomial q(T ) (in K[z])

(ez)n + an−1(ez)n−1 + · · ·+ a1e
z + a0 = 0,

then the term (ez)n = enz on the left dominates all the other terms for large z, which contradicts
the above equality. The ring K[z, ez] is obviously mapped into itself by the derivative. Now for
any m ≥ 1 we can set

w1 := α, w2 := 2α, . . . , wm := mα,

and our functions z and ez take on algebraic values at all wi. This implies that m ≤ 32[K : Q]
for any m, contradicting the assumption that K is an algebraic, (and thus a finite) extension of Q.
(Note that ρ = 1). Since e1 = e and e2πi = 1, it follows that e and π are transcendental.
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Corollary 2 (Gelfond–Schneider). If α is algebraic, α 6= 0, 1 and if β is algebraic and irra-
tional then αβ = eβ log α is transcendental.

Proof. We proceed as in proving Corollary 1, but now we consider the functions eβz and ez. If they
are algebraically dependent then eβz and ez would be the roots of a polynomial q(T1, T2), so

0 = q(eβz) =
N∑

i,j=0

bij(eβz)i(ez)j =
N∑

i,j=0

bije
(iβ+j)z.

For this equation to hold we must have cancellations of two or more terms, i.e., for some i1, i2 and
j1, j2 we have i1β + j1 = i2β + j2, or

(i1 − i2)β = j2 − j1.

This implies that either i1 = i2 and j1 = j2 or β is rational. Now let

w1 := log α, w2 := 2 log α, . . . , wm := m log α,

so our functions ez and eβz take on algebraic values at the wi. This gives the desired contradiction
on the degree of K = Q[α, αβ].

3 The Lemmas

The first lemma is due to Siegel and is very important and useful both in algebraic number theory
and algebraic geometry. It appears as one of the lemmas on the way in Falting’s proof of the
Mordell conjecture, which claims that Diophantine equations which give rise to surfaces with two
or more holes have only finitely many solutions in Gaussian integers. Falting received the Fields
medal in 1986 for his proof.

Lemma 1 (Siegel). Let

a11x1 + · · ·+ a1nxn = 0
...

ar1x1 + · · ·+ arnxn = 0

be a system of linear equations with integer coefficients aij , and n > r. Let A be a number such
that |aij | ≤ A for all i, j. Then there exists an integral, non–trivial solution with

|xj | ≤ 2(3nA)r/(n−r).

3



Transcendence of e and π

Proof. If A < 1 then all the coefficients are 0 and we can take any solution we want. So assume
that A ≥ 1. We view our system of linear equations as a linear equation L(X) = 0, where L is a
linear map, L : Z(n) → Z(r), determined by the matrix of coefficients. If B is a positive number,
we denote by Z(n)(B) the set of vectors X in Z(n) such that |X| ≤ B (where |X| is the maximum
of the absolute values of the coefficients of X). For our purposes we will assume that B ≥ 1. Then
L maps Z(n)(B) into Z(r)(nBA). The number of elements in Z(n)(B) is bounded below by Bn,
(actually by (2B − 1)n but for our purposes this ‘worse’ lower bound will be better suited) and by
above by (2B + 1)n. We seek a value of B such that there will be two distinct elements in X, Y in
Z(n)(B) having the same image, L(X) = L(Y ). For this it will suffice that Bn ≥ (3nBA)r, since
3nBA > 2nBA + 1. Thus it will suffice that

B = (3nA)r/(n−r).

We take X − Y as the solution of our problem.

Let K be a finite extension of Q, and let OK be the integral closure of Z in K, i.e., the set
of elements of K satisfying a monomial with coefficients in Z. We call OK the set of algebraic
integers. The set OK is a free module over Z of dimension [K : Q] (see either Exercise 5 of
Chapter IX in [1] or Theorem 29 of Section 15.3 in [2]). We view K as contained in the complex
numbers. If α is an element of K, a conjugate of α is an element σα where σ is an embedding of K
in C. Since K is a finite extension of Q, it is in particular algebraic. If α has a minimal polynomial
q then the conjugates of α must also be roots of this polynomial, so there can be only finitely many
conjugates of one element. We define the size of a set of elements of K to be the maximum of the
absolute values of all conjugates of these elements. By the size of a vector X = (x1, . . . , xn) we
shall mean the size of its coordinates.

For any α ∈ K we define its trace to be

Tr(α) =
∑

σ

σα,

where the sum is taken over distinct conjugates of α. Let ω1, . . . , ωM be a basis of OK over Z. Let
α ∈ OK and write

α = a1ω1 + · · ·+ aMωM .

Let ω′1, . . . , ω
′
M be the dual basis of ω1, . . . , ωM with respect to the trace. Then we can express the

coefficients of aj as a trace,
aj = Tr(αω′j).

This is possible since the trace is a non–degenerate bilinear form on OK ×OK , and we just choose
the dual basis such that Tr(ωiω

′
j) = δij , where δij is the Kronecker delta symbol.

The trace is a sum over the conjugates. Hence the size of these coefficients is bounded by the
size of α times a fixed constant depending on the size of the elements ω′j .
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Lemma 2 (Siegel). Let K be a finite extension of Q. Let

α11x1 + · · ·+ α1nxn = 0
...

αr1x1 + · · ·+ αrnxn = 0

be a system of linear equations with coefficients in OK , and n > r. Let A be a number such
that size(αij) ≤ A for all i, j. Then there exists a non–trivial solution X in OK such that

size(X) ≤ C1(C2nA)r/(n−r),

where C1, C2 are constants depending only on K.

Proof. Let ω1, . . . , ωM be a basis of OK over Z. Each xj can be written

xj = ξj1ω1 + · · ·+ ξjMωM

with unknowns ξjλ ∈ Z. Each αij can be written

αij = aij1ω1 + · · ·+ aijMωM

with integers aijλ ∈ Z. If we multiply out (in K) the αijxj we find that our linear equations with
coefficients in OK are equivalent to a system of rM linear equations in the nM unknowns ξjλ

αijxj =
M∑

k,l=1

aijkωkωlξjl =
M∑
l=1

(
M∑

k=1

aijkωkωl)ξjl,

and from the trace estimate above aijk is bounded by Csize(αij) where C is a constant depending
on the size of the elements ω′j , (i.e., depending only on K). This implies that

M∑
k=1

aijkωkωl ≤ C ′A,

where C ′ is a constant depending on C and the size of the products ωkωl. Therefore the linear
system in terms of the ξjλ will have integer coefficents bounded by C ′′A, where C ′′ is a constant
depending on C ′ and the size of the elements ωλ. In other words C ′′ depends only on K. Applying
Lemma 1 we obtain a solution in terms of the ξjλ bounded by

2(3nMC ′′A)rM/(nM−rM) = 2(3nMC ′′A)r/(n−r),

and hence a solution X = (xj) in OK that satisfies

size(xj) ≤ 2L(3nMC ′′A)r/(n−r),

where L is a constant depending on the sizes of the elements ωλ. So setting C1 = 2L and C2 =
3nMC ′′ we obtain our desired bound.
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The next lemma has to do with estimates of derivatives. By the size of a polynomial with coef-
ficients in K we shall mean the size of its set of coefficients. A denominator for a set of elements of
K will be any positive integer whose product with every element of the set is an algebraic integer,
i.e., an element ofOK . We define in a similar way a denominator for a polynomial with coefficients
in K. We abbreviate ‘denominator’ by den.

Remark. Denominators always exist: It suffices to look at a single element α of K. Since K is al-
gebraic over Q, α satisfies some polynomial with integer coefficients, q(x) = anxn +an−1x

n−1 +
· · ·+ a1x + a0. We set denα = an so denα · α = anα which satisfies a monomial

(anα)n + an−1(anα)n−1 + · · ·+ an−2
n a1(anα) + an

n−1a0

=an
nαn + an−1

n an−1α
n−1 + · · ·+ an−1

n a1α + an−1
n a0

=an−1
n (anαn + an−1α

n−1 + · · ·+ a1α + a0)
=0.

Let
P (T1, . . . , TN ) =

∑
(v)

α(v)M(v)(T )

be a polynomial with complex coefficients, and let

Q(T1, . . . , TN ) =
∑
(v)

β(v)M(v)(T )

be a polynomial with non–negative real coefficients. Here (v) is a multi–index, which is an N–
tuple (v1, . . . , vN ) of integers. So in the two sums above, where we sum over all N–tuples
(v) = (v1, . . . , vN ), we must require that α(v) and β(v) are nonzero for only finitely many (v).
Note also that the symbol M(v)(T ) represents the monomial T v1

1 T v2
2 · · ·T vN

N .
In this setup we say that Q dominates P if

∣∣α(v)

∣∣ ≤ β(v) for all (v). It is then immediately
verified that dominance is preserved under addition, multiplication, and taking partial derivatives
with respect to the variables T1, . . . , TN .

Lemma 3. Let K be a finite extension of Q. Let f1, . . . , fN be functions, holomorphic on a
neighborhood of a point w ∈ C, and assume that D = d/dz maps the ring K[f1, . . . , fN ] into
itself. Assume that fi(w) ∈ K for all i. Then there exists a number C having the following
property. Let P (T1, . . . , TN ) be any polynomial with coefficients in K, of degree ≤ r. If we set
f := P (f1, . . . , fN ), then we have for all positive integers k,

size(Dkf(w)) ≤ size(P )rkk!Ck+r.

Furthermore, there is a denominator for Dkf(w) bounded by den(P )Ck+r. 1

1Note that r must satisfy r ≥ h where h is an integer depending only on the fi. See the proof for the details.

6



Transcendence of e and π

Before the proof we need a definition. A derivation on the polynomial ring K[T1, . . . , TN ] is
an additive homomorphism

D : K[T1, . . . , TN ] → K[T1, . . . , TN ],

D(P + Q) = D(P ) + D(Q),

also satisfying a Leibnitz condition

D(PQ) = D(P )Q + PD(Q).

Proof. There exist polynomials Pi(T1, . . . , TN ) with coefficients in K such that

Dfi = Pi(f1, . . . , fN ).

Let h be the maximum of their degrees. There exists a unique derivation D on K[T1, . . . , TN ] such
that DTi = Pi(T1, . . . , TN ). For any polynomial P we have

D(P (T1, . . . , TN )) =
N∑

i=1

(DiP )(T1, . . . , TN ) · Pi(T1, . . . , TN ),

where D1, . . . , DN are the partial derivatives. The polynomial P is dominated by

size(P )(1 + T1 + · · ·+ TN )r,

and each Pi is dominated by size(Pi)(1 + T1 + · · ·+ TN )h. Thus DP is dominated by

size(P )C2r(1 + T1 + · · ·+ TN )r+h,

where C2 := N maxi(size(Pi)). Now if we differentiate again we find that D
2
P is dominated by

N∑
i=1

size(P )C2r(r + h)(1 + T1 + · · ·+ TN )r+hPi(1 + T1 + · · ·+ TN )

≤ size(P )C2
2r22(1 + T1 + · · ·+ TN )r+2h,

and as we can assume that r ≥ h we replaced r + h by 2r. Proceeding inductively, one sees that
D

k
P is dominated by

size(P )Ck
2 rkk!(1 + T1 + · · ·+ TN )r+kh.

Substituting the values fi(w) for Ti, we obtain the desired bound on Dkf(w):

size(Dkf(w)) = size(Dk
P (w))

≤ size(P )Ck
2 rkk!(1 + f1(w) + · · ·+ fN (w))r+kh

= size(P )rkk!Ck+r,

where we have collected together some consants in C. Note that the first equality above follows
from the chain rule. The second assertion in the theorem concerning denominators is also proved
by induction.

Exercise 1. Prove the existence and uniqueness of the derivation D in the proof above.
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4 Proving the Main Theorem

This proof is a prime example of methods for analyzing Diophantine equations.

Proof of the main theorem. Let K be a finite extension of Q. Let f1, . . . , fN be meromorphic func-
tions of order≤ ρ. Assume that the field K(f1, . . . , fN ) has transcendence degree≥ 2 and that the
derivative D = d/dz maps the ring K[f1, . . . , fN ] to itself. Let w1, . . . , wm be distinct complex
numbers not lying among the poles of the fi, such that

fi(wv) ∈ K, for all i = 1, . . . , N and v = 1, . . . ,m.

We need to show that m ≤ 32ρ[K : Q].
Let g and h be two functions among f1, . . . , fN which are algebraically independent over K,

i.e., for all non–zero polynomials p(x, y) ∈ K[x, y] we have p(g(z), h(z)) 6= 0 for some z ∈ C.
Let t be a positive integer divisible by 2m. We shall let t tend to infinity at the end of the proof.
Define

f(g, h) :=
t∑

i,j=1

bijg
ihj

with bij ∈ K. Let l = t2/2m. Consider the linear system

Dkf(wv) = 0, k = 0, . . . , l − 1 and v = 1, . . . ,m (1)

of lm equations and 2lm unknowns bij with coefficients Dkgihj |wv ∈ K. Let bij denote a par-
ticular (such that Lemma 2 applies later) non–trivial solution. We multiply these equations by
the denominator for the coefficients (without changing notation). Now Dkgihj |wv ∈ OK and
bij ∈ OK .

Next we estimate size(bij). We are going to apply Lemma 3 with P (g, h) := gihj |wv . Then
size(P ) = 1. So for all 1 ≤ i, j ≤ t and for all k = 0, . . . , l − 1

size
(
Dk

[
gihj

]
|wv

)
≤ tkk!Ck+t ≤ l(l−1)/2(l − 1)!C l−1+

√
l.

Then an application of Lemma 2 with r
n−r = lm

2lm−lm = 1 yields for large l

size(bij) ≤ C
(
l · l(l−1)/2(l − 1)!C l+

√
l
)1
≤ O

(
l3l

)
, (2)

because the exponent of l satisfies 1 + l
2 −

1
2 + l − 1 + l +

√
l ≤ 3l.

Since g, h are algebraically independent over K, the function f is not identically zero. Let s be
the smallest integer such that all derivatives of f up to order s− 1 vanish at all points w1, . . . , wm,
but Dsf does not vanish at one of the w, say w1. Then l ≤ s. Define

γ := Dsf(w1) ∈ K\{0}.
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Let b be the denominator of γ. Recall that bij ∈ OK . So den(f) = 1. By the last statement of
Lemma 3 for large l

size(b) ≤ Cs−1+
√

sden(f) ≤ O
(
C3s/2

)
.

We introduce the notion of a norm NK
Q (β) of β ∈ K from K to Q. Let σ1, . . . , σ[K:Q] be the

linearly independent embeddings of K into an algebraic closure Q̄ of Q. Define

NK
Q (β) :=

[K:Q]∏
µ=1

σµβ.

With this NK
Q (bγ) is non–zero (because bγ 6= 0) and an integer. Indeed, we know that bγ is

an algebraic integer. So the σµbγ are algebraic integers (they solve the same polynomial). As a
product of algebraic integers, NK

Q (bγ) is an algebraic integer. Since the norm is invariant under
Gal(Q̄/Q), it is an algebraic integer in Q. Finally, a rational number q = u

v (reduced to lowest
terms with v > 0) has minimal polynomial mq(x) = vx−u, so q is an algebraic integer if and only
if mq(x) is monic, i.e., v = 1. This is equivalent to q ∈ Z. Since the definition of the size of an
element is the maximum of the absolute values of all conjugates, each conjugate of bγ is bounded
by

Csize(b)size
(
Dkgihj |wv

)
size(bij) ≤ O

(
s8s

)
,

where k = 0, . . . , s. Consequently, we get

1 ≤ |NK
Q (bγ)| ≤ O

(
s8s

)[K:Q]−1 |γ|.

It remains to establish the estimate

|γ| ≤ s4sCs

sms/(4ρ)
(3)

using global arguments. Indeed, when we let t tend to infinity, then l and s tend to infinity (recall
that l ≤ s). Combining the last two inequalities, for large t

1 ≤ O
(
s8s

)[K:Q]−1 s4sCs

sms/(4ρ)
= O

(
s8s[K:Q]−3s−ms/(4ρ)

)
.

So the powers of this estimate satisfy

0 ≤ 8s[K : Q]− 3s−ms/(4ρ) ≤ 8s[K : Q]−ms/(4ρ),

which is equivalent to
m ≤ 32ρ[K : Q].
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For the proof of inequality (3), let θ be an entire function of order ≤ ρ such that θg and θh are
entire (of order ≤ 2ρ) and θ(w1) 6= 0. Then θ2tf is entire. We consider the entire function

H(z) :=
θ(z)2tf(z)
m∏

v=1
(z − wv)s

.

By the maximum modulus principle, the absolute value of H(w1) is bounded by the maximum of
|H(z)| on a large circle of radius R. If we take R large, then the factors z−wv have approximately
the same absolute value as R. By the definition of the order of an entire function, for |z| = R and
large R we have

|θ(z)g(z)|i ≤ CiR2ρ
and |θ(z)h(z)|j ≤ CjR2ρ

.

Combination of the latter two statements with estimate (2) on the size of the bij yields

|H(z)| ≤ s3sC2tR2ρ

Rms
≤ s3sC2t

√
s

sms/(4ρ)
for |z| = R := s1/(4ρ), s large.

Since f satisfies system (1), we have Dkf(w1) = 0 for k = 0, . . . , s− 1, and by Taylor expansion

f(z) =
(z − w1)s

s!
Dsf(w1) + O

(
(z − w1)s+1

)
for z near w1. We obtain

H(w1) =
θ(w1)2t

Css!
Dsf(w1).

So for large t, taking t ∼
√

s yields

|γ| = |Dsf(w1)| ≤ Css!
s3sC2t

√
s

sms/(4ρ)
≤ s4sCs

sms/(4ρ)
,

which completes the proof.

5 Conclusion

We have given a classical proof of Hilbert’s problem:

If α, β are algebraic and α 6= 0, 1 and β is irrational, prove that αβ is transcendental.

We used the techniques of Gelfond and Schneider. This allowed us to prove the transcendence of π
and e, along with numbers such as p

√
p for p prime. Note however that we can only get countably

many transcendentals in this way. So there are still uncountably many out there! The following
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construction, shown to us by Steven J. Miller, gives an explicit formula for uncountably many
transcendental numbers. Let α be an irrational number in [0, 1] with binary expansion

α =
∞∑

n=1

an(α)
2n

,

where an(α) ∈ {0, 1}. As α is irrational, infinitely many an(α) equal 1. Define the number

χ(α) =
∞∑

n=1

1
10−(an(α)+1)(2n)!

.

Now, χ(α) is too well approximated by rational numbers, and so is transcendental by Liouville’s
theorem. Since there are uncountably many irrational numbers in [0, 1] we get an uncountable col-
lection of transcendental numbers by this construction.

Some famous numbers which are still not known to be transcendental are

– Apéry’s constant ζ(3) =
∑ 1

n3 ,

– πe and π + e, although it is known that they cannot both be algebraic,

– ee, ππ, πe.

A conjecture made by Schanuel is:
If λ1, . . . , λn are complex numbers, linearly independent over the rationals, then

Q(λ1, . . . , λn, eλ1 , . . . , eλn)

has transcendence degree at least n.

If this conjecture is true then it follows that e and π are algebraically independent (set λ1 = 1 and
λ2 = 2πi), which would imply that both e + π and eπ are transcendental.
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