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PRELIMINARIES

Anyone meeting a continued fraction expansion

1
ag + 1
ai + 1
az + 1
as + 1
ay + ——
as +
will see that a less wasteful notation, say [ag, a1, a2, ...], is needed to represent
it. Anyone attempting to compute the truncations [ag , a1 , ..., an] = pn/qn will
be delighted to notice that the definition [ag, a1 ,...,an] =ao+1/[a1, ..., an]

immediately implies by induction on h that there is a correspondence

a 1\ (a1 1 ap 1\ _ (pn Pr-1 _
(0 ) (5 )= (2 )l =
between products of certain two by two matrices and continued fractions.

1. INTRODUCTION

Different explanations of a phenomenon often provide new insights and greater
understanding. Thus our purpose here is to re-explore the phenomena reported
and proved in [1].

Consider the two purely periodic continued fraction expansions
a=[1,14,1,4,1,3,12,3,1,4]andB=([1,1,4,2,55,2,4,1,1,2,2].
There’s nothing immediately hitting the eye that suggests that the two expansions

represent quadratic irrationals in the same quadratic number field. So if such a
thing is claimed, there’s then nothing for it but to do some computation, at least
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to the extent of evaluating the two expansions for an entire period. The respective
tableaux

h 01 2 3 4 5 6 7 8 9
G, h 114 1 4 1 3 12 3 1 4
DPan |01 1 15 16 79 95 364 4463 13753 18216 86617
Gop |1 01 14 15 74 89 341 4181 12884 17065 81144
and
h 012 3 4 5 6 7 8 9 10
bs.n 114 2 55 2 4 1 1 2 2
pr| 01129 20 1109 2238 10061 12299 22360 57019 136398
gsn|1 0115 11 610 1231 5534 6765 12299 31363 75025

then invite us to study the matrices

86617 18216 136398 57019
Ma‘(81144 17065) and Mﬁ_(75025 31363)'

The rule of the game now is that each matrix
/

M= <x x/)
Yy vy

_(x —Ny
My = (y x—Ty)’

where T' = T, is the trace v + 7%, and where N = N, is the norm 7, of the
element v whose period has produced M .

Specifically, 86617 — 17065 = (o + @) - 81144 and 18216 = —aa - 81144. Plainly,
we can now compute the trace T,, and norm N,, of «. If we recall that a real
quadratic irrational has a purely periodic continued fraction expansion if and only
if it is greater than 1 and its conjugate lies between —1 and 0, then we know we
need the positive zero of the defining polynomial. Pressing buttons on our calculator
yields o = 1.067447993571368484 ... ; and we’re little the wiser. Moreover, since
our real object is to decide whether o and (8 belong to the same quadratic number
field it might have demonstrated greater wisdom had we computed the discriminant
A, of a. Tt is T2 — 4N, = 1.632653061224489795918367346 . .. . Perhaps, we're
still in trouble!

How about we also compute Ag. When we do that, we find that T = 7/5,
Ng = —19/25, and A/g =35.

Recovering our senses, we now notice that

1.632653061224489795918367346... =[1,1,1,1,2,1,1,2] =80/49,

is of a special shape; namely

so that A, = (42/7%)-5, and plainly the quadratic number field containing both «
and 3 is Q(v/5). In fact, backtracking a little, it’s now clear that a = (3+2v/5)/7
and 3 = (7+5v/5)/10. Checking the continued fractions of those numbers confirms
that conclusion.

However, all this is not quite to the point. In [1] it is remarked, in effect, that
the two matrices

M25 — (Pa219 —Naga,249 and M3 = P3,263 —Npqp,263
G249 pa,249—Ta(Za,249 43,263 pB,QGS_T,BQ,B,%?)
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have the same trace

2469358527651528622763891388578931265566414510770004830269847 \
83952895665381795073894321138832344188651015460198346838080800002 .

Given, moreover, that the integers 250 = 25 - 10 and 264 = 24 - 11 have the same
parity, it is then suggested that this pair of coincidences of itself entails that o and
£ belong to the same quadratic number field. Worse, it is then proved in [1] that
such coincidence of trace and parity is necessary and sufficient for two given pure
periodic elements to belong to the same quadratic number field.

All this is rather surprising, sufficiently so as to make one confident that the
result must be entirely natural. Indeed, we will show it to be a manifestation of
readily recalled properties of the group of units of the real quadratic number field.

2. WHAT IS GOING ON

2.1. The core fact is

Theorem 1. Suppose that [ag , a1 ,...,ar-1,a,] = x/y and that the previous
convergent [ag , a1 , ..., ar—1] is denoted by x'/y'. Then the claim
(@G0, a1,...,a | =7, where ¥*—Ty+N=0,

is equivalent to the allegation

(m x’)_(x —Ny)
y v y v—Ty)"

Proof. Suppose [ag, a1, ---,ar | = «, thatis, « =[ag, a1, ..., ar,a]. By the
correspondence between continued fractions and two by two matrices we must have

z '\ (a 1\ (za+2 = i a
y ¥ )\l 0) \ya+vy vy ’
That is, (za+2')/(ya+y') =a, or ya? — (x —y')a—y' =0.

Thus if 2’ = —Ny and 3y’ = x — Ty we have y(a? —Ta+ N) =0, so a = 7.
Conversely, if « =+ a priori, then (x —3')/y=T and y'/y = —N. ]

Moreover, the kernel of this core is that the matrix M = (Z ;_NTyy) must be

unimodular , because

z —Ny\ [z 2\ _ (a0 1 ar 1\ far 1
y z—Ty) \y v/ \1 0 1 0 1 0
plainly has determinant (—1)"+!.
Corollary. The element z — vy is a unit in the ring Z[y].

Proof. The integer x — yy is an eigenvalue of the unimodular matrix M . |

2.2, Of course v = (A + BV/D)/C for some squarefree positive integer D > 1
and integers A, B and C, where B # 0 and, without loss of generality, C' > 0.
Thus ~ is an element of the quadratic number field K = Q(v/D). It is usual then
to abuse language by referring to x — vy as ‘a unit of K’.

Next, we should recall that if D =1 (mod 4) then § = £(1+ /D) is an integer;

if D # 1 (mod4) we set § = vD. We will also write n = Norm D = 6§ and
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t =Traced =&+ 6. Thus if D=1 (mod 4) then n = —%(D — 1), t = 1, while if
D #1 (mod 4) we have n=—D, t =0.

We come now to an important rule: One must write v as (P 4 f§)/Q, where
Q divides Norm(P + f§) = P? + ftP + f?n; here P, f # 0 and Q > 0 are
integers, which we may suppose not to have any redundant common factor. It is a
simple matter to transform (A+ B \/5) /C' appropriately. Other than for a possible
redundant common factor, v = (CA+CB+/D)/C? will certainly do; the additional
adjustment to change v/D to § is straightforward.

Our insistence that @ divide Norm(P + f§) is more than just a convenient
convention. One needs it to validate a correspondence between Z-modules and
ideals.

Remark 2. The Z-module Z = (Q, P + f§) is an ideal of Z[fJ].
Proof. Tt suffices to check that fé(P 4+ f§) isin Z. But
fO(P + f8) = —(P? + ftP + f*n) + (P + ft)(P + f),
and then Q’(P2 + ftP + f?n) is essential to complete the verification. ]

2.3.  Plainly, we are obliged to think of the example elements « = (3+2+/5)/7 and
B = (74+5v5)/10 as a = (74+28p)/49 and 8 = (10+50¢)/50, with ¢ = (1++/5)/2.
The corresponding eigenvalues of the respective matrices M, and My are, as noted,
Na = To — Yo and ng = 23 — ygB. That is

Ne = 86617 — 81144 and ng = 136398 — 750255.
In better terms,
Mo = 86617 — (11592 4 46368¢p) and ng = 136398 — (15005 + 75025¢).
We will find it useful to note that 46368 = 2°-32-7-23, and 75025 = 52 - 3001.

2.4. Finally, we confirm that the quantities
Na = 75025 — 46368 and ng = 121393 — 75025¢

both are units, lest we have blundered and are about to waste our effort pointlessly.
Indeed, they are; with respective norms Norm7, = 1 and Normng = —1. We
should recognise, however that the example is degenerate — not quite general —
in that D = 5 is the unique D so that ¢ is a unit. Moreover, we also notice that
ng = 46368 + 75025, so —png = 14, .

3. UNITS IN QUADRATIC NUMBER FIELDS

3.1. For nonsquare positive D there always are units z — dy, that is, positive
integers x, y satisfying “Pell’s equation” z? — tzy + ny? = £1. That follows
readily from several applications of the box principle. One first proves Dirichlet’s
result that there are infinitely many integers ¢ so that the distance to the nearest
integer ||go|| of ¢ satisfies ||gd|| < 1/q. It follows that for each such ¢ there
is an integer p so that |[p? — tpq + ng?| < (p — ¢d)/q < (6 — §) . Again by the
box principle, there is then an integer k, with |k| < (§ — §), so that the equation
p? —tpg+ng® = k has infinitely many pairs of solutions (p, q) and, once again by the
box principle, two distinct pairs of solutions (p,q) and (p’,q’) so that p = p’ and
qg=¢ (mod k). Then = = |pp’ — Dqq’'|/k?, y = |pq’ — p'q|/k? displays positive
integers = and y satisfying 2% — tzy + ny? = 1. We add that there may be a
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smaller solution (in that = or y is smaller than the minimal z, y just shown to be
a solution to 22 — taxy + ny? = 1) for the equation 2% — txy + ny? = —1.

3.2.  The following is peculiarly poorly known.

Remark. One may say that a two by two matrix (‘é 2) is column dominant if a > b

implies ¢ > d, or if a < b implies ¢ < d. A matrix that is not column dominant
will be said to be column balanced. Dually, by transposition, we similarly have
the notions of row dominant and row balanced. A matrix that is both column and
row dominant may be said to be dominant. Similarly if it is both column and row
balanced it may be said to be balanced. Happily, it is plain that

Proposition. A two by two positive integer unimodular matrix is dominant.

Even if one were to allow zero entries as well, the only exceptions that occur are

{0 1 (1 0. . ,
J = <1 0) and I—(O 1),notlcethatJ =1.

Theorem. A positive integer unimodular matrix (%5) has a unique decomposition

p r\_(a 1\ ([ ax 1\ [am 1
g s/ \1 0 1 0 1 0)
in positive integers a;, other than perhaps for ag or a,, which may be zero.

Proof. Apply the Euclidean algorithm to the rows of the matrix. Thus step 0 of
the decomposition is

p T\ _(ap 1 q s
g s)  \1 0)\p—apq r—ags/’

with ag selected maximally so that the remainders p — agqg and r — ags both are
nonnegative. Plainly one is left with a matrix whose first row dominates its second
row. Thus on repeating the process the succeeding a; are positive, at any rate until
one is left with a balanced matrix.

Dually, one may apply the Euclidean algorithm to the columns of the matrix,
with step 0 then being

p r\ _(r p—apr) (a, 1
qg s) \s g—ams)\ 1 0}

It follows that ag = 0 is possible only if p < ¢, and a,, = 0 only if p < r.
Moreover, p/q = [ao,a1,...,as] and r/s = [ag, a1, ..., as—1]. Furthermore,
the preliminary description of the notion ‘continued fraction’, as well as the matrix
correspondence, entails that [ag, a1 ,...,as-1,0]=[ag,a1,...,as—2].

3.3.  Recall, see §§2.2, that we have set 6 = v/D or 3(1++/D) according as D # 1
or D=1 (mod 4); with n =86 and t =4 + 4.

Applying the peculiarly poorly known remark to the case of units = — dy, with
x and y positive integers, one checks readily that

w6 D60
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for positive integers ag, ay, ..., ar_1. Moreover, the near identity of the elements
2 and x—ty in the main diagonal (recall that ¢ = 0 or ¢ = 1, and in particular that
t is an integer) entails a,, = ag—t and that the word ajas...a,_1 is a palindrome®.

In the immediate sequel =, y is the minimal pair of positive integers satisfying

2% — tzy + ny? = £1, and M; is the matrix

[z —ny
M5_<y w—ty>

corresponding to the fundamental unit n = 2 — §y of K = Q(v/D).

It is fairly easy to see naively that +n", h € Z yields all the units of K = Q(v/D).
For if there were another unit ¢, say, one could readily construct a unit 4n*¢, some
k € Z, ‘smaller than’ the fundamental unit.

Remark. In the case D =5 the fundamental unit is 1 — ¢ (recall that above we set
¢=11+V5)). Thenz=1,y=1and n=—-1,t=1,50 a, =ap—1=0 and

w= ()= @0,

3.4. It is a manifestation of the Cayley-Hamilton Theorem that

as claimed.

(3.1) M2 = (22 — ty) MPT — (2% — toy + ny®)MY, heZ.
If we now set M! = M, then (3.1) becomes the recurrence relation

Mo = (22 — ty)Myy1 — (2% —tey +ny®)M;, h=0,1 ...,
reporting that the units n” = x;, — dy;, are given by the recurrence relations

Thio = (22 — ty)xpe1 Far and  ypio = 22 —ty)yps1 Fyn h=0,1, ....

Here n° =1—6-0 and n' = 2 — §y. The sign F is chosen according as 77 = +1.
In the example case D =5 the recurrence relation is

nh+2:nh+1+nh with n° =1 and n=1— ¢,

so the sequence (yp)p>0 is 0, 1, 1, 2, 3, 5, ..., yoq = 46368, ya25 = 75025, ....
By the way, this calculation is computationally easy. One does not have to wade
stepwise all the way up to h = 24. Nor is this ease just a consequence of our
happening to be looking at the Fibonacci numbers.
In general, it is a familiar fact from the theory of recurrence sequences, and is
in any case easy to verify directly, that

(3-2) yn =y(m" =7")/(n=7).

Since, moreover, always —1 < & < 0, it is plain that y, ~ yn"/(n —7), and it is
easy to compute h given yy, .

IRecall that a palindrome is never even, indeed, it’s never odd or even. It’s a toyota.
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3.5. Now it is all very well to talk blithely about the fundamental unit 7 of
K= Q(\/ﬁ) but, rather more precisely, 77 is the fundamental unit of the domain
Z[6] (recall that if D is squarefree then Z[d] is the domain of all integers of K).
This ‘precision’ is of importance. While 1 — ¢ = P is the fundamental unit of
Z[3(1+4v/5)], the fundamental unit of the domain Z[v/5] cannot be 1 — ¢ because
¢ does not even belong to Z[v/5]. Indeed, from the expansion v5 = [2,4] we
learn immediately that the fundamental unit of Z[v/5] = Z[2¢] has trace 4 and
norm —1, and thus is 2 — /5 = %°. Just so, a = $>* is the fundamental unit of
Z[92736¢], while 3 = %** is the fundamental unit of the domain Z[15050¢)].

Remark. We should confess that any one of the four units +7, +7 has the right
to step forward and to insist it generates all the units of Z[d]. Our selecting = — dy
for the qualification ‘fundamental’ if both = and y are positive integers, is just a
convention convenient for the present context.

3.6. One might well wonder how, given the fundamental unit, 7, say, of the
domain Z[gé] one finds the fundamental unit, n; say, of Z[f], where g|f. Recall,
however, that to compute 7y our remarks at §§3.3 point out that it suffices to find
the period of fd. So the point of the following remarks is to explain the relationship
between 7, and ny. Indeed, if we have not insisted that D be squarefree it suffices
to ask what power of the fundamental unit n = xz — dy has y divisible by f.

The first fact we recall is that if p is a rational prime and F' is a polynomial
with integer coefficients then F'(X)? = F(XP) (mod p). Hence if v is a zero of
F it follows that 47 =+ (mod p), where 7 is some zero of F'. Thus if F is the
defining polynomial of n = 2 — dy then n? =n or n? =7 (mod p).

Let p # 2. Suppose first that p|D. It is then immediate by the binomial
expansion that 7P is equivalent to a rational integer modulo p; so 7P is in Z[pd].
If p*D then similarly n?~! = 1 (mod p), respectively n**! =7n = £1 (mod p),
entail that nP~1, respectively nP*!, is in Z[pd]. The last two cases are p splits,
respectively p is inert, in K = Q(d). So if € = (%) denotes the Kronecker symbol
then all three cases speak of nP~¢.

Suppose now that p = 2. Plainly (z — yv/D)? is then always in Z[2v/D]. A
trifle less obviously, if D =1 (mod 4) then also (z — yd)? is in Z[24].

3.7. Returning to the example, it happens that 46368 = 2°-32.7-23 and 75025 =
52 . 3001. By our previous computations we already know that a?® = 324, but
it also seems worthwhile to check this in the light of the immediately preceding
remarks. By those remarks, the smallest power of « that can have a 5 in its ‘y’
is a® and one notes that a° is not in Z[5%¢]. Thus we need o> and it, indeed,
is in Z[5? - 3001¢]. Had we endeavoured to get that 3001 as such, we should have
considered a™ for m dividing 3000, discovering once again that m = 25 will do.

3.8. In particular it must be that the two matrices M35 and Mﬁ24 determine the
same unit. In other words, they have the same eigenvalues. In particular, they have
the same ‘norm’ — that is, determinant — and the same trace. Since the only two
possibilities for the determinant are +1, the coincidence of parities chatted about
above is simply there to ensure the coincidence of norms.

3.9.  We have said enough to make plain that (Theorem 1 of [1])
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Theorem 3. Given a pure periodic element o = [ag, ar, ..., @y | set
lag,a1,...,ar] =par/qar and [ag,a1,...,ar—1]=DPar—1/qa;r-1;
equivalently
-3 )0 - - 2)
1 0 1 0 1 0 Ga,r  Gar—1
Let 3= [by,b1,...,bs]. Then a and B belong to the same quadratic number

field if and only if there are positive integers uw and v so that the matrices MY and
M 5 are similar, that is, have the same determinant and trace; equivalently,

Pa,u(r+1)—1 + Go,u(r+1)—2 = PBu(s+1)—1 + 4B,v(s+1)—2 5>
and u(r+1), v(s+ 1) have the same parity.

Remark. One can readily compute traces of powers of the matrices M" featuring
above by noticing that those traces satisfy a second order recurrence relation; to
wit that satisfied by the M".

4. PURE PERIODICITY AND REDUCTION

It is difficult to avoid feeling that our story is incomplete because we deal only with
purely periodic continued fraction expansions.

4.1. Strictly speaking, there is nothing to add. The argument sketched at §§3.1
is readily adjusted to show that, given an arbitrary generator - of a quadratic
number field, there are integers a and b so that Norm(a — vb) = 1. A review of
Theorem 1 shows that its core story only tacitly supposes that the partial quotients
ap, ay, ... all are positive integers. So we may consider finite decompositions

M:a—va:col cll'uctl
b a—-T,b 1 0 1 0 1 0

in not necessarily positive integers ¢; and deduce from Theorem 1 that v has a
purely periodic expansion [Cg, ¢1, ..., ¢ |. One then works with that period,
albeit that it is not unique. Then every generator of a quadratic number field has
a purely periodic expansion.

There’s little harm in working en passant with nonpositive partial quotients.
Indeed, at §§3.3 we admit 0 as a partial quotient, presuming that the reader will
recognise that [...,a,0,b,...] =[...,a+b,...]. In similar spirit, it is also
not difficult to get rid of negative partial quotients; for example see the remarks at
p363 of [3].

4.2. If, on the other hand, one insists that continued fraction expansions have all
their partial quotients (other perhaps than the 0-th) positive — in other words
that the expansions be ‘admissible’, then there’s nothing for it but to deal only
with reduced elements p. From here on our expansions are admissible.

Suppose one is given a sequence (ap)p>1 of positive integers, and ag € Z. Then
there is a real number a with continued fraction expansion [ag,a1,as,...... ].
Given an arbitrary irrational complex number 3 = 3y one may define the sequence
(Br)n>1 by Bnt1 = (Bn —an)~'. Vincent’s Theorem (1836) points out that unless
B = « there is some k = k(5,«) so that for h > k necessarily ), is in the left
hand half of the unit circle.
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Accordingly, consider the sequence of polynomials (f3)p>0 obtained from f(Y) =
fo(Y) = Ao)oyr + Ao’lyr—l + -+ AO,T by the rule

(4.1) 1 (Y) =Y frlan +Y7h).

The choice of sign in (4.1) is not particularly important, but morally should be
made so that the f; have positive leading coefficient; after a while the — sign will
always do. One sees readily that any zero 8 of f is transformed into a zero [
of fn. In particular, if « is itself a non-multiple zero of a polynomial f without
rational zeros then there is an k = k(f) so that for h > k all the zeros ), of f
lie in the left hand half of the unit circle, other than for the zero «j which is real
and greater than 1. In [2] the polynomials f5 (h > k) are said to be ‘reduced’, in
analogy with the case r = 2 — where that terminology is standard.

Thus the continued fraction process eventually reduces all algebraic elements.
Plainly o = —(ga,k—1® — Pa,k—1)/(Ga, k& — Da,k) generates the same number field
over Q as does a, so it suffices to work just with reduced elements p = «y.

4.3. Specifically, a quadratic irrational p is reduced if p > 1 but its conjugate
p satisfies —1 < p < 0. It is a theorem attributed to Galois that p has a purely
periodic continued fraction expansion if and only if p is reduced.

To see that clearly, suppose r denotes the integer part of p. Then the tableau
yielding the continued fraction expansion of p begins with the line

p=r—(r—=T,+p).

We know that the said tableau is eventually periodic. Now consider the conjugate
of the tableau, and in particular the conjugate

r=T,+p=r—p
of the given line. Because p is reduced, this too is a line in some continued fraction
tableau.

The preceding lines of this conjugate tableau are, albeit in reverse order, the
conjugates of the succeeding lines of the original tableau. So they are periodic
because the original tableau is periodic. But a period with its order reversed is a
period. We invite the reader to see it now manifest that the conjugate tableau, and
therefore also the original tableau, must be purely periodic.
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