
A SPECIALISED CONTINUED FRACTION

A. J. van der Poorten1 and J. Shallit2

Macquarie University and Waterloo

We display a number with a surprising continued fraction expansion and show that

we may explain that expansion as a specialisation of the continued fraction expansion

of a formal series: A series
∑

chX−h has a continued fraction expansion with partial

quotients polynomials in X of positive degree (other, perhaps than the 0-th partial

quotient). Simple arguments, let alone examples, demonstrate that it is noteworthy

if those partial quotients happen to have rational integer coefficients only. In that

special case one may replace the variable X by an integer ≥ 2 ; that is: one may

‘specialise’ and thereby proceed to obtain the regular continued fraction expansion of

values of the series. And that is significant because, generally, it is difficult to obtain

the explicit continued fraction expansion of a number presented in different shape.

Our example leads to a series with a specialisable continued fraction expansion and,

a little surprisingly, our arguments suggest that the phenomenon of specialisability

for series of the kind appearing here may be reserved to just the special subclass of

series we happen to have stumbled upon.

1. Introduction

A dozen or so years ago, one of us, heavily influenced by the cult of Fibonacci,
noticed the continued fraction expansion

(1) 2−1 + 2−2 + 2−3 + 2−5 + · · ·+ 2−Fh + · · ·
= [0 , 1 , 10 , 6 , 1 , 6 , 2 , 14 , 4 , 124 , 2 , 1 , 2 , 2039 , 1 , 9 , 1 , 1 , 1 , 262111 , 2 , 8 ,

1 , 1 , 1 , 3 , 1 , 536870655 , 4 , 16 , 3 , 1 , 3 , 7 , 1 , 140737488347135 , . . . ] .

The increasing sequence of very large partial quotients demands explanation; trun-
cations of the sum do not yield convergents and the shape of the very good ap-
proximations is not immediately obvious. We show here that a correct context
for the cited expansion can be discovered in remarks of Mendès France and van
der Poorten [6], wherein one considers continued fractions of formal Laurent series

1 Work supported in part by grants from the Australian Research Council.
2 Supported in part by a grant from NSERC Canada.

1991 Mathematics subject classification: 11A55, 11Y65, 11J70

Typeset by AMS-TEX



2 Alf van der Poorten and Jeffrey Shallit

and then specialises the variable to an appropriate integer. Indeed, we found the
arguments detailed in [4] and at that time noticed experimentally that

(2) X−1 + X−2 + X−3 + X−5 + · · ·+ X−Fh + . . .

= [0 , X−1 , X2+2X+2 , X3−X2+2X−1 , −X3+X−1 , −X , −X4+X , −X2,

−X7 + X2 , −X − 1 , X2 −X + 1 , X11 −X3 , −X3 −X , −X , X , X18 −X5,

−X , X3 + 1 , X , −X , −X − 1 , −X + 1 , −X29 + X8 , X − 1 , . . . ] .

The limited number of shapes for the partial quotients, the phenomenon of self-
similarity whereby bits and pieces from early in the sequence of partial quotients
reappear subsequently, and of most importance the fact that all of the partial quo-
tients have rational integer coefficients, all demand explanation and generalisation.
We provide that here.

Above, and in the sequel, (Fh) denotes the sequence of Fibonacci numbers defined
by the recurrence relation Fh+2 = Fh+1+Fh and the initial values F0 = 0, F1 = 1.

Not too surprisingly, the phenomenon (1) has been noticed by others; our corre-
spondence contains a letter of March, 1989 from M. J. Knight enquiring about the
continued fraction of

∑
n≥1 B−Fn .

2. First principles

Our viewpoint is formal. A continued fraction is of course an expression of the
shape

a0 + 1
a1 + 1

a2 + 1
a3 + .. .

which we denote in a space-saving flat notation by

[a0 , a1 , a2 , a3 , . . . . . . ] .

Everything follows from the correspondence whereby one has
(

a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)
for n = 0, 1, 2, . . . . . .

if and only if

pn

qn
= [a0 , a1 , . . . . . . , an] for n = 0, 1, 2, . . . . . . , .

Thus, for example, taking the transpose in the correspondence we see that

(3) [an , an−1 , . . . , a1] =
qn

qn−1
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and, taking determinants, that

pnqn−1 − pn−1qn = (−1)n+1 so
pn

qn
=

pn−1

qn−1
+ (−1)n−1 1

qn−1qn
.

From this last observation once sees easily that if the partial quotients ah are
polynomials of degree at least 1 then the convergents ph/qh converge to a formal
series in X−1 . These remarks are given in [6].

The regular continued fraction expansion of a real number has partial quotients ah

that are positive integers (other than perhaps for a0 which may take any integer
value); zero, negative and fractional partial quotients are termed inadmissible. Sim-
ilarly, the admissible partial quotients ah of a formal series in X−1 are polynomials
of degree at least 1 (except perhaps for a0 ).

We can readily see the following invaluable lemma:

Folding Lemma.

pn

qn
+

(−1)n

xq2
n

= [a0 , −→w , x− qn−1

qn
] = [a0 , −→w , x , −←−w ] .

Here −→w is a convenient abbreviation for the word a1 , a2 , . . . , an and, accordingly,
−←−w denotes the word −an , −an−1 , . . . , −a1 .

For a proof, see [5] or [8].

The name of the lemma comes from the observation that its iterated application
leads to a pattern of signs corresponding to the creases in a sheet of paper repeatedly
folded in half; for details, see [8].

3. Our Program

We shall show that the continued fraction expansion of the series X−1 + X−2 +
X−3 + X−5 + · · ·+ X−Fh + . . . indeed has partial quotients of limited shapes and
that all have integer coefficients. Then we specialise by replacing X by an integer
x with |x| ≥ 2, obtaining a convergent continued fraction with integral partial
quotients. Of course, there may well be negative or zero partial quotients. But it
is easily verified that

(4) [. . . , a , 0 , b , . . . ] = [. . . , a + b , . . . ] ,

and

(5) [. . . , a , −β ] = [. . . , a , 0 , −1 , 1 , −1 , 0 , β ] = [. . . , a− 1 , 1 , β − 1];

this yields a technique for rendering negative partial quotients positive. The case
β = 1 will not arise below; but it is easy to verify that [. . . , a− 1 , 1 , 0 ] =
[. . . , a− 1 ], and clearly [. . . , a , −1 ] = [. . . , a− 1 ].



4 Alf van der Poorten and Jeffrey Shallit

4. Calculations and Guesses

Set sn = X−1 + X−2 + X−3 + X−5 + · · ·+ X−Fn . Computation reveals that

s2 = [0 , X] ,

s3 = [0 , X − 1 , X + 1] ,

s4 = [0 , X − 1 , X2 + X + 1] ,

s5 = [0 , X − 1 , X2 + 2X + 2 , −X2 + X − 1] ,

s6 = [0 , X − 1 , X2 + 2X + 2 , X3 −X2 + 2X − 1 , X , −X] ,

s7 = [0 , X − 1 , X2 + 2X + 2 , X3 −X2 + 2X − 1 , −X3 + X − 1 , −X , X , X + 1 , X − 1] ,

s8 = [0 , X − 1 , X2 + 2X + 2 , X3 −X2 + 2X − 1 , −X3 + X − 1 , −X , −X4 + X , −X2 ,

X2 , X2 + X + 1 , X − 1] ,

s9 = [0 , X − 1 , X2 + 2X + 2 , X3 −X2 + 2X − 1 , −X3 + X − 1 , −X , −X4 + X , −X2 ,

−X7 + X2 , −X − 1 , X2 −X + 1 , −X3 , −X2 + X − 1 , X2 + 2X + 2 , X − 1] ,

s10 = [0 , X − 1 , X2 + 2X + 2 , X3 −X2 + 2X − 1 , −X3 + X − 1 , −X , −X4 + X , −X2 ,

−X7 + X2 , −X − 1 , X2 −X + 1 , X11 −X3 , −X3 −X , −X , X , −X5,

−X , X , X3 −X2 + 2X − 1 , X2 + 2X + 2 , X − 1] ,

s11 = [0 , X − 1 , X2 + 2X + 2 , X3 −X2 + 2X − 1 , −X3 + X − 1 , −X , −X4 + X , −X2,

−X7 + X2 , −X − 1 , X2 −X + 1 , X11 −X3 , −X3 −X , −X , X , X18 −X5 ,

−X , X3 + 1 , X , −X , −X − 1 , −X + 1 , X8 , X − 1 , X + 1 , X,

−X , −X3 + X − 1 , X3 −X2 + 2X − 1 , X2 + 2X + 2 , X − 1] .

These, and yet more extended calculations which we eschew reporting, suggest
a symmetry in the expansion of sh and that suggests employing the lemma and
induction. Accordingly we set sh = [0 , fh] with the word fh assumed to be of
even length (as indeed it appears to be for h ≥ 7). The general theory entails that
sh = [0 , fh] = p/q with the polynomial q a constant multiple of XFh . Again the
data suggests the assumption that q = ±XFh (in fact +XFh for h ≥ 7). With
this assumption, noting that Fh+1 − 2Fh = −Fh−2 ,

sh+1 = sh + X−Fh+1 =
p

q
+

1
X−Fh−2q2

and the lemma yields
sh+1 = [0 , fh , X−Fh−2 , −←−fh ]

with a nastily inadmissible partial quotient X−Fh−2 .
At this point, one might be tempted to give up and apply the methods in [1].
However, in hindsight, it is better to stay with the result provided directly by the
Folding Lemma, namely

(6) sh+1 = sh + X−Fh+1 =
p

q
+

1
X−Fh−2q2

= [0 , fh , X−Fh−2 − q′/q] .
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Here q′ denotes the denominator of the next to last convergent to sh and, as
already remarked, we may take q = ±XFh . This approach succeeds because q′ has
a particularly simple and congenial shape which, moreover, is readily found.

5. The Main Result

We now state the main result of this paper:

Theorem 1. Let (Fh) be the sequence of Fibonacci numbers defined by the recur-
rence relation Fh+2 = Fh+1 + Fh and initial conditions F0 = 0 , F1 = 1 . Set

sh = X−1 + X−2 + X−3 + X−5 + · · ·+ X−Fh = [0 , fh] .

Then the words fh , 2 ≤ h ≤ 11 , are given by sh = [0 , fh] as listed in §4. Let gh

be the word
gh = fh−1 , 0 , −fh−5 , −XLh−5 ,

←−−
fh−5 , 0 , −fh−4 .

Then for h ≥ 11

sh+1 = [0 , fh , 0 , −fh−4 , −XLh−4 ,
←−−
fh−4 , 0 , −fh−3 , XFh−4 ,

←−−
fh−3]

= [0 , gh , XFh−5 ,
←−−
fh−4 , 0 , −fh−4 , −XLh−4 ,

←−−
fh−4 , 0 , −fh−3 , XFh−4 ,

←−−
fh−3]

= [0 , gh , XFh−5 −XLh−4 ,
←−−
fh−4 , 0 , −fh−3 , XFh−4 ,

←−−
fh−3] = [0 , gh+1 , XFh−4 ,

←−−
fh−3] ,

and
s∞ = X−1 + X−2 + X−3 + X−5 + · · · = lim

h→∞
[0 , gh].

Proof. The proof is by induction on h . The base case is h = 11. Our induction
hypothesis also includes the assumption that sh = [0, fh] has fh of even length for
h ≥ 7. This can easily be verified for 7 ≤ h ≤ 11 by examining the computations
in §4, and its truth in general will follow from our computations below.

We notice that q′ is that polynomial of degree less than Fh satisfying pq′ − p′q =
−1, with p′ a polynomial also of degree less than Fh . Here we apply our convention
whereby p/q denotes the last partial quotient and p′/q′ the penultimate partial
quotient. On dividing by q2 , this is

(7) sh(q′/q) = −1/X2Fh + (p′/q).

But
sh(sh −X−Fh−3 − 2X−Fh)

is of the shape (7) by virtue of the fact that the sequence (Fh) is strictly increasing
with Fh−2 + Fh−1 ≤ Fh and 2Fh−1 = Fh−3 + Fh . Indeed, the inequality (actually
an equality for the sequence (Fh)) entails that in sh(sh−2X−Fh) the only terms of
degree less than −Fh are −X−2Fh as required, and X−2Fh−1 . Subtracting X−Fh−3



6 Alf van der Poorten and Jeffrey Shallit

from sh−2X−Fh yields the additional term −X−Fh−3−Fh of degree less than −Fh

which, by the recurrence relation just cited, cancels the offending term. Thus

(8) q′/q = sh −X−Fh−3 − 2X−Fh .

Of course it happened that we noticed this from our experimental evidence, but, in
hindsight, it is apparent that q′/q can readily be found without such guidance.

Combining (8) with (6) we get

sh+1 = [0 , fh , X−Fh−2 − q′/q]

= [0 , fh , −(sh −X−Fh−3 − 2X−Fh −X−Fh−2)] = [0 , fh , −(sh−4 + X−Fh−1 −X−Fh)] .

So all we need do is determine the continued fraction expansion of

−(sh−4 + X−Fh−1 −X−Fh) .

If h ≥ 11, then by induction, Fh−1 − 2Fh−4 = Fh−3 + Fh−5 , and the lemma,

(9) sh−4 + X−Fh−1 = [0 , fh−4 , XLh−4 , −←−−fh−4] ;

here, as is traditional, (Lh) denotes the sequence of Lucas numbers defined by
L0 = 2, L1 = 1 and Lh+2 = Lh+1 + Lh (that is, Lh+1 = Fh + Fh+2 ). Finally,
using the folding lemma again, we can add −X−Fh to sh−4 + X−Fh−1 and obtain
the expansion of sh−4 +X−Fh−1 −X−Fh by noting that Fh− 2Fh−1 = −Fh−3 and
according to (6) appending the partial quotient X−Fh−3 − q′/q . That is,

sh−4 + X−Fh−1 −X−Fh = [0 , fh−4 , XLh−4 , −←−−fh−4 , X−Fh−3 − q′/q] .

Here, q′/q refers to (9) in which the word following the 0-th partial quotient is of
odd length, q = XFh−1 , and we find q′/q in virtue of

(sh−4 + X−Fh−1)(−sh−4 + X−Fh−1) = X−2Fh−1 + p′/XFh−1

having the appropriate shape (7). We have

X−Fh−3 − q′/q = sh−4 −X−Fh−1 + X−Fh−3

= sh−3 −X−Fh−1 = [0 , fh−3 , −XFh−4 , −←−−fh−3] ,

where we have used Fh−1 − 2Fh−3 = Fh−4 , the lemma and the fact that h ≥ 11.
Thus

sh−4 + X−Fh−1 −X−Fh = [0 , fh−4 , XLh−4 , −←−−fh−4 , 0 , fh−3 , −XFh−4 , −←−−fh−3] .

So our inductive assumptions entail for h ≥ 11 that

(10) sh+1 = [0 , fh , 0 , −fh−4 , −XLh−4 ,
←−−
fh−4 , 0 , −fh−3 , XFh−4 ,

←−−
fh−3] ,
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and the principal remaining problem remains to check the initial conditions. It
suffices to note the computations at the beginning of §4.

To complete the proof, we apply (10) to replace fh by

fh−1 , 0 , −fh−5 , −XLh−5 ,
←−−
fh−5 , 0 , −fh−4 , XFh−5 ,

←−−
fh−4 ,

to explicitly reveal the partial quotients XFh−5 − XLh−4 . Of course it suffices to
report that s∞ is the direct limit of the expansions [0 , fh] but it remains useful
to notice that it is the prefix gh of fh that persists, and that it is given by

gh+1 = gh , XFh−5 −XLh−4 ,
←−−
fh−4 , 0 , −fh−3 .

Finally, we note that from Eqs. (4) and (10), it follows that fh+1 has even length.

6. Corollaries to the Main Result

Our main result allows us to explicitly characterise the partial quotients in the
continued fraction for s∞ :

Corollary 1.1. A polynomial a is a partial quotient in the expansion of s∞ if and
only if a or −a occurs in the following list: X +1 ; X2±X +1 ; X2+2X +2 ; X3+
1 ; X3+X ; X3−X+1 ; X3−X2+2X−1 ; XFn ; XLn+2 ; XLn+2−XFn+1 , for n ≥
1 .

Corollary 1.2. The large partial quotients

2039, 262111, 536870655, 140737488347135, 75557863725914321321983, . . .

in the continued fraction expansion of 2−1 +2−2 +2−3 +2−5 + · · · differ by 1 from
the numbers 2Lh+1 − 2Fh , for h ≥ 4 .

Proof. These partial quotients of course arise from the partial quotients XFh−5 −
XLh−4 after specialising X to 2. Now rendering the specialised expansion admissi-
ble (by making all partial quotients positive) yields the observed partial quotients.

Theorem 1 allows us to give a new proof of the following result (see [4]), a new
explicit irrationality measure:

Proposition 1.3. The sum 2−1 + 2−2 + 2−3 + 2−5 + · · · converges to a transcen-
dental number.

Proof. Our remarks at Eq. (7) entail that

(11) (X−Fh−2 + X−Fh−1 −X−Fh)s∞ = terms of degree ≥ −Fh − Fh−4

+ X−Fh−1−Fh+1 + terms of yet lower degree.
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The content of this observation is that there is no term of degree −2Fh−1 because
2Fh−1 = Fh + Fh−3 and no term of degree −Fh−2 −Fh+1 because Fh−2 + Fh+1 =
2Fh ; and of course Fh−2 + Fh−1 = Fh .

Accordingly, we set qh = qh(X) = XFh+Fh−4(X−Fh−2 +X−Fh−1 −X−Fh) and note
that deg qh = Fh + Fh−4 − Fh−2 = Fh−1 + Fh−4 . Then (11) asserts that there is a
polynomial ph in the variable X so that

deg(qhs∞ − ph) = −(Fh−1 + Fh+1 − Fh − Fh−4) = −deg qh − (Fh−3 + Fh−5) .

By easy arguments detailed in [6], it follows that ph/qh is a convergent to s∞ and
that the next partial quotient has degree Fh−3 + Fh−5 .

Set φ = (1 +
√

5)/2 and note that as h→∞

(Fh−3+Fh−5)/(Fh−1+Fh−4)→ (φh−3+φh−5)/(φh−1+φh−4) = (φ2+1)/(φ4+φ) ≈ 0.427 .

It follows that on specialising X to 2 we have a sequence of rational approximations
ph(2)/qh(2) so that for sufficiently large h

|2−1 + 2−2 + 2−3 + 2−5 + · · · − ph(2)/qh(2)| < qh(2)−2.42 ,

proving our assertion by Roth’s Theorem [9].

Remark 1.4. On specialising X to an integer x with |x| ≥ 4 one immediately has
the nearest integer continued fraction expansion for the corresponding transcenden-
tal number.

Comment 1.5. The number th for h = 0, 1, . . . of partial quotients in the word
fh+2 (after cancellations) happens to satisfy the recurrence relation

th+10 = 2th+9 − th+8 + 2th+6 − 4th+5 + 2th+4 + 2th+1 − 2th,

with initial conditions 1, 2, 2, 3, 5, 8, 10, 14, 20, 30 . The characteristic polynomial of
the recurrence sequence is

(X − 1)(X + 1)(X8 − 2X7 + 2X6 − 2X5 + 2X3 − 2X2 + 2X − 2),

with dominant root λ = 1.3706175926 . . . . So the number of terms grows approxi-
mately like λh .

7. Generalisations

Careful inspection of our arguments suggests that the properties of the Fibonacci
numbers actually used above are that the sequence (Fh) is strictly increasing with
Fh−2 + Fh−1 ≤ Fh and 2Fh−1 = Fh−3 + Fh , and of course that the initial partial
quotients computed at §6 have integer coefficients. It follows immediately that,
subject to the last condition — but it seems to be satisfied as soon as we choose an
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appropriate starting point for the sequence (in our example we started with F2 ),
our arguments apply to strictly increasing Lucas sequences generally.

Generally, it is plain that, at worst, any denominators that do occur amongst the
coefficients of the partial quotients are composed of just finitely many different
primes. In more formal terminology, the phenomenon that we have called special-
isability is a matter of good reduction everywhere; whilst, more generally, one has
good reduction almost everywhere. That is, our expansion in Theorem 1 makes
sense for every finite base field Fp . With an inappropriate starting point the ex-
pansion makes sense for almost every such base field. For example, starting with
F0 leads to bad reduction only at p = 2.

A little more seems evident and we state it confidently as a conjecture.

Conjecture 2. Let (Tn) be an increasing sequence of nonnegative integers satis-
fying a recurrence relation

Th+d = Th+d−1 + Th+d−2 + · · ·+ Th with d > 1 ,

and set

sn = X−Td + X−Td+1 + X−Td+2 + · · ·+ X−Tn ; sn = [0, tn] .

Then, subject to appropriate initial conditions on the Th , the words th consist of
polynomials with integer coefficients, which is to say that s∞ has a specialisable
continued fraction expansion.

Remark. The point is that it is easy to see that we have 2Th = Th+1 + Th−d

and Th−2 + Th−1 ≤ Th . Moreover, our computations show that for small d =
3, 4, 5, 6, . . . and initial values 0, . . . , 0, 1 the commencing partial quotients are
specialisable.

Before giving some additional vindication, including some details of the proof for
the cases d = 3 and d = 4, we mention a related but independent proposition
(cf. [4]).

Proposition 2.1. Let x ≥ 2 be an integer. Then the numbers x−T0 + x−T1 +
x−T2 + · · · are transcendental.

Proof. We see, by following the argument presented in Corollary 1.2, that the
product

(X−Th−d + X−Th−d+1 + · · ·+ X−Th−1 −X−Th)s∞

consists of terms with exponents ≥ −Th−d−2 − Th , there then is a gap, and the
remaining terms have degree ≤ −Th−d+1 − Th+1 .

Accordingly, we set

qh = qh(X) = XTh+Th−d−2(X−Th−d + · · ·+ X−Th−1 −X−Th)
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and note that deg qh = Th + Th−d−2 − Th−d . Thus there is a polynomial ph in the
variable X so that

deg(qhs∞ − ph) = −
(
(Th−d+1 + Th+1)− (Th + Th−d−2) )

= −deg qh−
(
(Th−d+1+Th+1)−(2Th−d−2+2Th−Th−d)

)
= −deg qh−(Th−d+1−2Th−d−2) .

Hence ph/qh is a convergent to s∞ and the next partial quotient has degree
Th−d+1 − 2Th−d−2 .

Let τ denote the unique zero of Xd − Xd−1 − · · · − 1 outside the unit circle (cf.
[7]), and note that as h→∞ , we have

(Th−d+1 − 2Th−d−2)/(Th−d−2 + Th − Th−d)→ (τ3 − 2)/(τd+2 − τ2 + 1) = θ > 0 .

It follows that on specialising X to x we have a sequence of rational approximations
ph(x)/qh(x) so that for sufficiently large h

|x−T1 + x−T2 + x−T3 + · · · − ph(x)/qh(x)| < qh(x)−(2+θ) ,

proving our claim.

Remark. The size of τ can be conveniently estimated by τd+1 − 2τd + 1 = 0, so
2 > τ > 2− (2d − d/τ)−1 .

Evidence in support of the conjecture. We may suppose that |th| is odd for all appro-
priately large h , for if not we can substitute [. . . , a] = [. . . , a− 1 , 1] and deal with
the inadmissible partial quotient later by the rule [. . . , a , 1 , β] = [. . . , a + 1 , −β − 1]
as explained in §3. The cryptic notation below is that already explained and em-
ployed in §6. Thus to begin with we have

sn+1 = sn + X−Tn+1 = [0 , tn , −X−Tn−d − q′/q]

because Tn+1 − 2Tn = −Tn−d . Moreover,

−(sn−1 + X−Tn)(sn−1 −X−Tn −X−Tn−d−1) = X−2Tn + p′/q

shows that we are next to append the continued fraction expansion of

−X−Tn−d − q′/q = sn−1 −X−Tn −X−Tn−d −X−Tn−d−1

= sn−d−2 + X−Tn−d+1 + · · ·+ X−Tn−1 −X−Tn .

But

sn−d−2 + X−Tn−d+1 = [0 , tn−d−2 , −XTn−d+1−2Tn−d−2 , −←−−−−tn−d−2] ;

that is, we apply the Folding Lemma explicitly.
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For large d we now note that

−(sn−d−2 + X−Tn−d+1)(sn−d−2 −X−Tn−d+1) = X−2Tn−d+1 + p′/q

and Tn−d+2 − 2Tn−d+1 = −Tn−2d+1 together entail that computing the continued
fraction expansion of sn−d−2 +X−Tn−d+1 +X−Tn−d+2 is a matter of appending the
expansion of
(12)
sn−d−2−X−Tn−d+1−X−Tn−2d+1 = sn−2d+X−Tn−2d+2 +· · ·+X−Tn−d−2−X−Tn−d+1 .

We need not slip ever deeper into a mire of increasing complexity as the case d = 3
illustrates too amply. Indeed in that case the right hand side of (12) is just

sn−5 −X−Tn−2 −X−Tn−5 = sn−6 −X−Tn−2

and its expansion is
[0 , tn−6 , XTn−2−2Tn−6 , −←−−tn−6] .

Then for d = 3 it only remains to deal with subtracting X−Tn . Fortunately, by

−(sn−5 + X−Tn−2 + X−Tn−1)(sn−6 + X−Tn−2 −X−Tn−1) = X−2Tn−1 + p′/q ,

with the operative observation being that 2Tn−2 = Tn−1 + Tn−5 , this is just a
matter of appending the expansion of

sn−6 + X−Tn−2 −X−Tn−1 + X−Tn−4 ,

because Tn − 2Tn−1 = Tn−4 . But

sn−6 + X−Tn−4 + X−Tn−2 = [0 , tn−6 , −XTn−4−2Tn−6 , −←−−tn−6 ,

−XTn−2−2Tn−4 , tn−6 , XTn−4−2Tn−6 , −←−−tn−6] .

Now by

−(sn−6 + X−Tn−4 + X−Tn−2)(sn−6 + X−Tn−4 −X−Tn−2) = X−2Tn−2 + p′/q

and Tn−1−2Tn−2 = Tn−5 , we have only to append the continued fraction expansion
of

sn−6 + X−Tn−4 −X−Tn−2 + X−Tn−5 = sn−4 −X−Tn−2 .

When some dust has settled we see that for d = 3

(13) sn+1 = [0 , tn , 0 , tn−5 , −XTn−2−2Tn−5 , −←−−tn−5 , 0 , tn−6 , XTn−2−2Tn−6 ,

−←−−tn−6 , 0 , tn−6 , −XTn−4−2Tn−6 , −←−−tn−6 , −XTn−2−2Tn−4 ,

tn−6 , XTn−4−2Tn−6 , −←−−tn−6 , 0 , tn−4 , XTn−2−2Tn−4 , −←−−tn−4] .
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The reader will notice an obvious cancellation as well as the practicability, much as
in Theorem 1, of determining the portion of the expansion that remains invariant
with increasing n . Yet more succinctly, when d = 4 the right hand side of (12) is

sn−8 + X−Tn−6 −X−Tn−3 ,

which we expand by two folds. We note that

−(sn−6+X−Tn−3+X−Tn−2)(sn−6−X−Tn−7+X−Tn−3−X−Tn−2) = X−2Tn−2+p′/q ,

whence adding X−Tn−1 is a matter of appending the expansion of

sn−6 −X−Tn−7 + X−Tn−3 −X−Tn−2 −X−Tn−6 = sn−8 + X−Tn−3 −X−Tn−2 .

After appending one fold, that leads us to appending the continued fraction expan-
sion of

sn−8 + X−Tn−3 + X−Tn−7 = sn−7 + X−Tn−3 ,

which is again just a fold. Subtracting X−Tn now turns out to be a matter of
appending the expansion of

sn−6 −X−Tn−6 + X−Tn−3 + X−Tn−2 −X−Tn−1 + X−Tn−5

= sn−7 + X−Tn−5 + X−Tn−3 + X−Tn−2 −X−Tn−1 ,

which is of a level of complication with which we have already dealt. We do not
trouble the printer with an explicit statement of the eventual result.

Bemusingly, the case of larger d is rather different. The success of the program
outlined above appears eventually to rely on the expansions of sums such as

sk + X−Tk+2 + · · ·+ X−Tk+d−2 k = 1, . . . , d− 1

being specialisable. So that we may glimpse this we give some cursory details of
the case d = 5. Here the right hand side of (12) is

sn−10 + X−Tn−8 + X−Tn−7 −X−Tn−4

and when, after an easy fold, we attempt to add X−Tn−7 we find ourselves endeav-
ouring to expand

sn−10 −X−Tn−8 −X−Tn−13 = sn−14 + X−Tn−12 + X−Tn−11 −X−Tn−8 .

This is an ‘and so on’ which seems to terminate in the manner indicated above.
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8. Remarks and Reflections

The results given here are an interesting consequence of mathematical experimen-
tation. The numerical observation (1) raised questions first answered by the ex-
perimental result (2). Ultimately Theorem 1 proves (2). En route we were led to
experiments that suggest results as in Conjecture 2. There we prove (13) for the
case d = 3 and say enough to have proved the Conjecture for d = 4. For the rest
we give only a glimpse at, and less than a sketch of, a possible proof. Indeed, we
are not entirely confident that we are recommending a viable program.

The pattern in (2) is only just vivid enough to be able to deduce something of the
genre of Theorem 1 by eye. With increasing d the experimental data is almost
hopelessly complicated and the arguments suggested after Conjecture 2 become
correspondingly the more instructive.

Whatever, it seems clear that Theorem 1 could not have been guessed and would
not have been motivated without computer aid. The computations yielding (1) are
almost infeasible by hand, and those yielding (2) are totally impractical without
machine help.

Generally, on being shown (2) one might well guess the following: Suppose (Uh) is a
integer recurrence sequence, that is the solution of a linear homogeneous recurrence
relation

Uh+n = s1Uh+n−1 + · · ·+ snUh h = 0, 1, . . . ,

with integer coefficients s1 , . . . , sn and integer initial values U0 , . . . , Un−1 . Sup-
pose further that the sequence (Uh) is strictly increasing with limh→∞ Uh+1/Uh =
ρ > 1. Then the series

X−U0 + X−U1 + X−U2 + · · ·

has a specialisable continued fraction expansion.

With ρ > 2 this is trivially true by the folding lemma, perhaps with the qualification
that we must omit some initial terms of the series to ensure that always Uh+1/Uh ≥
2 (and then ρ = 2 will do); cf. [2,3,10,11]. However, when 1 < ρ < 2 we have not
as yet noticed any examples, except for the cases, relying on the identity 2Uh+n =
Uh+n+1 + Uh , discussed here. We do not know what weight to give to our negative
evidence. It is not utterly compelling because it is clear that any conjecture as
above must be adjusted to allow the sequence to start with some term subsequent
to U0 . On the other hand the evidence given in support of Conjecture 2 suggests
that our present techniques are not up to constructing favourable examples, if there
are any.
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10. Dedication

Whilst this paper was being completed my colleague and research assistant Ross
Talent tragically died in a car accident. In the course of the 18 months that I
worried about the problems settled here Ross helped by listening patiently. Ross
shared an office with Jeff Shallit during Jeff’s visit to Macquarie University when
we finally learned how to explain the curious expansion (1). Ross would have read
this manuscript and would have suggested how to avoid its remaining infelicities. I
shall miss Ross grievously. AvdP
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