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We exhibit uncountably many binary decimals together with their explicit continued fraction

expansions. These expansions require only the partial quotients 1 or 2 . The pattern of valleys

and ridges in a sheet of paper repeatedly folded in half plays a critical rôle in our construction.

1. Introduction

It is notorious that it is generally damnably difficult to explicitly compute the continued
fraction of a quantity presented in some other form. However, we shall exhibit a class
of series, and thence of numbers presented in effect as binary decimals for which we can
display the continued fraction expansions. In particular, the uncountably many numbers

2
∞∑

h=0

±2−2h

all have continued fraction expansions with partial quotients 1 or 2 only.

Our result that the series

X
∞∑

h=0

±X−2h

all have folded continued fractions is new, whilst our specialisations generalise and complete
remarks on special cases in [3] and [8].

By a result of Loxton and van der Poorten [5], generalising inter alia a result of Kempner
[4], these numbers all are transcendental. Thus our result gives no information on the
the conjecture that all algebraic numbers of degree at least 3 have unbounded partial
quotients.
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2. Continued fractions

A continued fraction is an object of the form

c0 + 1
c1 + 1

c2 + 1
c3 +

.. .

denoted, to save vertical space, in the flat notation [c0 , c1 , c2 , c3 , . . . ] . Essentially all
one needs to understand the behaviour of these objects is contained in the fundamental
correspondence whereby:

Proposition 1. For h = 0 , 1 , 2 , . . .

ph

qh
= [c0 , c1 , . . . , ch]

if and only if (
c0 1
1 0

) (
c1 1
1 0

)
· · · · · ·

(
ch 1
1 0

)
=

(
ph ph−1

qh qh−1

)
.

Proof. The correspondence defines the convergents ph/qh by matrix products and is readily
verified by induction on the number h+1 of partial quotients cn , respectively the number
of matrices.

The fundamental correspondence is just the observation that the well known recursion
formulæ

pn+1 = an+1pn + pn−1

qn+1 = an+1qn + qn−1

together with (
p−1 p−2

q−1 q−2

)
=

(
1 0
0 1

)
,

define the sequence of convergents.

By taking the transpose of the matrix product we have, for example,(
cn 1
1 0

) (
cn−1 1

1 0

)
· · · · · ·

(
c1 1
1 0

) (
c0 1
1 0

)
=

(
pn qn

pn−1 qn−1

)

←→ [cn , cn−1 , . . . . . . , c1 , c0] ,

where ←→ denotes the correspondence between matrix products and continued fractions,
so

[cn , cn−1 , . . . . . . , c1] =
qn

qn−1
.

In this spirit, we also recall that:
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Proposition 2.

pn

qn
+

(−1)n

xq2
n

= [c0 , −→w , x− qn−1

qn
] = [c0 , −→w , x , −←−w ] .

Here −→w is a convenient abbreviation for the word c1, c2, . . . , cn and, accordingly, −←−w
denotes the word −cn,−cn−1, . . . ,−c1 .

Proof. Indeed,

[c0 , −→w , x− qn−1

qn
]←→

(
pn pn−1

qn qn−1

) (
x− qn−1/qn 1

1 0

)

=
(

xpn −
(
pnqn−1 − pn−1qn

)
/qn pn

xqn qn

)
←→ pn

qn
+

(−1)n

xq2
n

since
(
pnqn−1 − pn−1qn

)
= (−1)n−1 ; and, of course, x− qn−1/qn = [x , −←−w ] .

Unless one adopts conventions restricting partial quotients in some appropriate manner, a
continued fraction expansion is not unique. For example, the computation

x− qn−1/qn = x− 1 + (qn − qn−1)/qn

qn/(qn − qn−1) = 1 + qn−1/(qn − qn−1)

(qn − qn−1)/qn−1 = −1 + qn/qn−1

qn−1/qn = 0 + qn−1/qn

qn/qn−1 =←−w

allows one to rewrite the principal remark above as

pn

qn
+

(−1)n

xq2
n

= [c0 , −→w , x− 1 , 1 , −1 , 0 ,←−w ] .

This formulation seems convenient in numerical examples and is the one employed in the
survey [3]. Whilst such reformulations may momentarily seem mysterious, the present one
is no more than the pair of remarks

Proposition 3.
[. . . , a , 0 , b , . . . ] = [. . . , a + b , . . . ]

and

−[a , b , c , . . . ] = [0 , −1 , 1 , −1 , 0 , a , b , c , . . . ] = [0 , −1 , 1 , a− 1 , b , c , . . . ] .

Proof. The first remark is just
(

a 1
1 0

) (
0 1
1 0

) (
b 1
1 0

)
=

(
a + b 1

1 0

)
.



4 Alf van der Poorten and Jeffrey Shallit

The second is most easily seen by noting that

−y = 0 + 1
−1 + 1

1 + 1 .
y − 1

This result is rather better known in the form

−[a , b , c , . . . ] = [−a , 0 , −1 , 1 , −1 , 0 , b , c , . . . ] = [−a− 1 , 1 , b− 1 , c , . . . ] ;

for example

−π = −[3 , 7 , 15 , 1 , 292 , 1 , . . . ] = [−4 , 1 , 6 , 15 , 1 , 292 , 1 , . . . ] .

Our preceding remarks are formal. Turning to analysis, we note that taking determinants
in the fundamental correspondence yields

pnqn−1 − pn−1qn = (−1)n+1 ,

which we have already used above.

It follows that
pn

qn
− pn−1

qn−1
= (−1)n−1 1

qn−1qn
,

whence, by induction on n ,

pn

qn
= c0 +

1
q0q1

− 1
q1q2

+ · · ·+ (−1)n−1 1
qn−1qn

.

Hence, if, in some appropriate metric, the sequence (qh) is strictly increasing, the sequence
of convergents (ph/qh) converges to an element of the relevant completion.

We will be interested in two cases: The first is the familiar one of regular continued fractions
of real numbers in which the partial quotients ch are admissible if they are positive integers
for h ≥ 1 (c0 may be any element of Z). The second case, that of continued fractions
of formal Laurent series in X−1 , requires the partial quotients to be polynomials in X
of degree at least 1 (except c0 , which may be constant). In this case the sequence of
convergents converges to a Laurent series

∞∑
h=d

ahX−h d ∈ Z

in the variable X−1 . Incidentally, this latter case can be made to include continued
fractions converging to p -adic rationals just by writing X−1 = p .
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3. Paperfolding

A sheet of paper can be folded in half lengthways in two ways: right half over left and
right half under left. We refer to the first as a positive fold and to the second as a negative
fold. After having been folded a number of times, say n times, a sheet of paper may be
unfolded to display, reading from left to right, a sequence of 2n − 1 creases. It will be
convenient to denote valleys ∨ by 1 and ridges ∧ by −1.
Accordingly, a word i1i2 . . . in with ih ∈ {−1, 1} may be deemed to be instructions to
fold so that the h th fold is positive or negative corresponding to the sign of ih , and
these folding instructions then induce a word f1f2 . . . f2n−1 , again with the fh ∈ {−1, 1} ,
denoting the sequence of creases in the sheet of paper. It is in the nature of paper, because
the f2h are the original creases, that for h = 0, 1, . . . , n − 1 one has f2h = in−h . It is
only slightly less obvious that, for k in the range so that the cited crease actually occurs,

f2h+k2h+1 = (−1)kin−h .

This gives the paperfolding word explicitly in terms of its folding instructions.
We shall make use of an alternative description of the sequence of creases: Namely, if
the sheet is folded n times according to the instructions i1i2 . . . in , then the left half of
the sheet of paper is folded n− 1 times according to the instructions i2i3 . . . in , and this
induces creases on this half-sheet given by the paperfolding word −→w , say. Then comes the
central fold i1 , and now the right half of the sheet, which lies over or under the left half
(according to the sign of i1 ) necessarily displays creases given by the paperfolding word
−←−w induced by the instructions −i2, i3 . . . in .
Given this description of the sequence of creases, let Fi to be the folding map

Fi : −→w 
→ −→w i −←−w .

Then the folding word f1f2 . . . f2n−1 is induced by the folding instructions i1i2 . . . in if
and only if

Fi1 · · · Fin−1Fin( ) = f1f2 . . . f2n−1 .

As is apparent, ( ) denotes the empty word; or, if one prefers, a tabula rasa — a fresh
sheet of paper. These and the matters immediately below are detailed in the survey ‘Folds!’
[3].
If we now place the usual topology on the set of paperfolding words — whereby two
sequences are ‘close together’ if they commence with the same word — then the cluster
points, the paperfolding sequences

f1f2f3 . . . . . . ,

are all sequences on symbols from {−1, 1} so that f2f4f6 . . . . . . is again a paperfolding
sequence and for h ≥ 0

f2h+1 = (−1)hf1 .

So paperfolding sequences are determined by their sequence of unfolding instructions
f1f2f4 . . . f2h . . . . . . = j0j1j2 . . . jh . . . . . . , say. Thus, by setting (−1)ah = f2h = jh , dif-
ferent binary decimals 0.a1a2a3 . . . may be interpreted as distinct sequences of unfolding
instructions and they induce distinct paperfolding sequences.
Whilst paperfolding sequences are not very complicated they are never trivial; no paper-
folding sequence is periodic.
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4. A folded continued fraction

Theorem 1. Let a be a binary decimal a = 0.a1a2a3 . . . , set a0 = 0 and denote by Fa

the formal series

Fa(X) = X
∞∑

h=0

(−1)ahX−2h

.

Given a word −→p , let F−→p be the folding map which acts on words −→w of partial quotients

F−→p : −→w 
→ −→w ,−→p ,−←−w

producing the word −→w ,−→p ,−←−w of partial quotients. Then, with jh denoting (−1)ah , the
continued fraction expansion of Fa is given by

Fa(X) = [1 ,
∞∏

h=2

F−X(−1)ah ((−1)a1X)] = [1 , · · · F−j4XF−j3XF−j2X(j1X)] .

Proof. For tidiness we detail the case with all the ah = 0 since the general case raises no
new principle. Evidently

1 + X−1 = [1 , X] =
p1

q1
,

with q1 = X . If

1 + X−1 + X−3 + · · ·+ X−2h+1 = [1 , −→w ] = [1 , Fh−1
−X (X)] =

pn

qn

we have |w| = n odd, qn = X2h−1 and, applying Proposition 2,

1 + X−1 + X−3 + · · ·+ X−2h+1 + X−2h+1+1 =
pn

qn
+

(−1)n

−Xq2
n

= [1 , −→w , −X , −←−w ] = [1 , Fh
−X(X)] .

It follows by induction on h that

F0 = [1 , F∞
−X(X)] .

The general case follows by the same argument.

5. Main result

The formal convergence that makes sense of the foregoing only presumes an absolute value
| | with |X| > 1. Hence, we should be able to set X = 2 and obtain a meaningful
numerical result. With jh written for (−1)ah , we get

Fa(2) = 2
∞∑

h=0

(−1)ah2−2h

= [1 , · · · F−2j4F−2j3F−2j2(2j1)] .

The series Fa(2) converges but the partial quotients appearing in the continued fraction
expansion include −2 and are not all admissible. Nevertheless, one may readily transform
the present remark to obtain:
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Theorem 2. Let a be a binary decimal a = 0.a1a2a3 . . . , set a0 = 0 and denote by
Fa(2) the number

Fa(2) = 2
∞∑

h=0

(−1)ah2−2h

.

Then the continued fraction expansion of Fa(2) consists of just the partial quotients 1
and 2 .

Proof. Given Theorem 1, we have to show that a continued fraction

[1 , 2f1 , 2f2 , 2f3 , . . . . . . ] ,

with (fh) a folded sequence, simplifies to a continued fraction with admissible partial
quotients 1 or 2 only. We shall show more, using only the property that the sequence
(fh) can be unfolded at least once: that is, that the sequence (f2h+1) is alternating in
sign.

We need the auxiliary result:

[a , −b , c] = [a− 1 , 1 , b− 2 , 1 , c− 1] .

This is readily checked by the fundamental correspondence or by invoking Proposition 3
whereby

[a , −b , c , d , . . . ] = [a , 0 , −1 , 1 , −1 , 0 , b , −c , −d , . . . ]

= [a− 1 , 1 , b− 1 , 0 , −1 , 1 , −1 , 0 , c , d , . . . ] = [a− 1 , 1 , b− 2 , 1 , c− 1 , d , . . . ] .

Applying this result to remove the inadmissible −2 s and again recalling that

[. . . , a , 0 , b , . . . ] = [. . . , a + b , . . . ] ,

we obtain

[1 , 2 , a , −2 , b , 2 , c , −2 , d , 2 , e , −2 , f , . . . ]

= [1 , 2 , a− 1 , 2 , b− 1 , 2 , c− 1 , 2 , d− 1 , 2 , e− 1 , 2 , f − 1 , . . . ] ,

whilst
[1 , −2 , a , 2 , b , −2 , . . . ] = [0 , 2 , a− 1 , 2 , b− 1 , 2 , . . . ] .

It remains only to remove those partial quotients a− 1, b− 1, . . . that are inadmissible.
Without losing generality we may suppose that a − 1 is inadmissible, in which case we
have

[2 , a− 1 , 2] = [1 , 1 , −a− 1 , 1 , 1] = [1 , 1 , 1 , 1 , 1] ,

because a− 1 = −3. If also b− 1 is inadmissible, then

[1 , 1 , b− 1 , 2] = [1 , 0 , 1 , −b− 1 , 1 , 1] = [2 , 1 , 1 , 1] .
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Evidently, and surprisingly, this covers all cases required to demonstrate that if a sequence
of ±2 s can be unfolded at least once then, considered as a sequence of partial quotients,
it yields a sequence of partial quotients consisting just of 1 s or 2 s. Indeed, we could have
started with yet more general sequences of partial quotients, namely those consisting of
±2 s or ±3 s folded once by ±2 s: in the sense that either (f2h+1) = (−2)h for all h > 0
or (f2h+1) = −(−2)h for all h > 0.

In our introduction we promised explicit continued fraction expansions for explicit binary
decimals. Our numbers

2
∞∑

h=0

±2−2h

become explicit binary decimals on repeated use of the remark

1− 2−m = 0. 11 . . . 111︸ ︷︷ ︸
m digits

and Theorem 2 yields a sufficiently simple algorithm to satisfy the remainder of our under-
taking. But, with only a little work, we can be less implicitly explicit. As a preliminary,
we mention that maps S−→p : −→w 
→ −→w−→p ←−w perturb symmetry in the sense that a word

−→w−→p1
←−w−→p2

−→w←−p1
←−w−→p3

−→w−→p1
←−w←−p2

−→w←−p1
←−w−→p4

−→w−→p1 . . .

resulting from repeated application of such maps is symmetric if and only if the inserted
perturbations −→ph each are symmetric. Notice that these sequences have an arrow sequence
that is folded. In fact it is just these sequences that are described as ‘folded sequences’ in
[3]; see also [9].

Theorem 3. Let a be a binary decimal a = 0.a1a2a3 . . . , set a0 = 0 and denote by
Fa(x) the number

Fa(x) = x

∞∑
h=0

(−1)ahx−2h

,

where x ≥ 2 is a rational integer.

Given a word −→p , let S−→p be the perturbed symmetry map which acts on words −→w of
partial quotients

S−→p : −→w 
→ −→w ,−→p ,←−w

producing the word −→w ,−→p ,←−w of partial quotients. Then the continued fraction expansion
of Fa(x) is given by:

F0.a1a2a3a4...(x) = [ba1a2 ,
∞∏

h=3

S−−−−−→pa1a2ah
(−−−−→wa1a2a3) ]

= [1 , X − 1 , 1 , · · · S−−−−−→pa1a2a5
S−−−−−→pa1a2a4

S−−−−−→pa1a2a3
(−−−−→wa1a2a3) ] ,
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where

b00 = [1 , x− 1 , 1], w000 = [x− 1 , x , x− 1 , 1 , x− 1 , x− 1]

and p000 = [1 , x− 1 , x− 1 , 1 , x− 2 , 1] ;

b01 = [1 , x], w010 = [x− 1 , 1 , x− 1 , x− 1 , 1 , x− 2 , 1 , x− 1]

and p010 = [x , x− 1 , 1 , x− 1] ;

b10 = [0 , 1 , x− 1], w010 = [x− 1 , 1 , x− 2 , 1 , x− 1 , x− 1 , 1 , x− 1]

and p100 = [x− 1 , 1 , x− 1 , x− 1] ;

b11 = [0 , 1 , x− 2 , 1], w110 = [x− 1 , x− 1 , 1 , x− 1 , x , x− 1]

and p110 = [1 , x− 2 , 1 , x− 1 , x− 1 , 1] ,

while
−−−−→wa1a21 =←−−−−wa1a20 and −−−→pa1a21 =←−−−pa1a20 .

If x = 2 , the simplification that ensues from removing the inadmissible 0 partial quotients
is plain.

Proof. Folding yields perturbed symmetry because

[b , Fx(c, d,−→w , d, c)] = [b , c , d , −→w , d , c , x , −c , −d , −←−w , −d , −c]

= [b , c , d , −→w , d , c , x− 1 , 1 , c− 1 , d ,←−w , d , c]

= [b , c , d , S−→p (−→w ) , d , c] ,

with −→p = d, c, x− 1, 1, c− 1, d . Moreover, folding once with −x yields the same result
other than that the perturbation must be replaced by ←−p .

There are four possible beginnings for the continued fractions of F0.a1a2...(x), namely

f0.00(x) = [1 , x , −x , −x]=[1 , x− 1 , 1 , x− 1 , x]

f0.01(x) = [1 , x , x , −x] =[1 , x , x− 1 , 1 , x− 1]

f0.10(x) = [1 , −x , −x , x]=[0 , 1 , x− 1 , x− 1 , 1 , x− 2 , 1]

f0.11(x) = [1 , −x , x , x] =[0 , 1 , x− 2 , 1 , x− 1 , x− 1 , 1]

where foresight brought by hindsight suggests writing the latter two continued fractions so
as to produce an even number of partial quotients in each case. Each yields two beginnings

f0.000(x) = [1 , x− 1 , 1 , x− 1 , x , x , −x , −x + 1 , −1 , −x + 1]

= [1 , x− 1 , 1 , x− 1 , x , x− 1 , 1 , x− 1 , x− 1 , 1 , x− 1]

= [1 , x− 1 , 1 , −−→w000 , 1 , x− 1]

and
f0.001(x) = [1 , x− 1 , 1 ,←−−w000 , 1 , x− 1] ;
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f0.010(x) = [1 , x , x− 1 , 1 , x− 1 , x , −x + 1 , −1 , −x + 1 , −x]

= [1 , x , x− 1 , 1 , x− 1 , x− 1 , 1 , x− 2 , 1 , x− 1 , x]

= [1 , x , −−→w010 , x]

and
f0.011(x) = [1 , x ,←−−w010 , x] ;

f0.100(x) = [0 , 1 , x− 1 , x− 1 , 1 , x− 2 , 1 , x , −1 , −x + 2 , −1 , −x + 1 , −x + 1 , −1]

= [0 , 1 , x− 1 , x− 1 , 1 , x− 2 , 1 , x− 1 , x− 1 , 1 , x− 1 , x− 1 , 1]

= [0 , 1 , x− 1 , −−→w100 , x− 1 , 1]

and
f0.101(x) = [0 , 1 , x− 1 ,←−−w100 , x− 1 , 1] ;

f0.110(x) = [0 , 1 , x− 2 , 1 , x− 1 , x− 1 , 1 , x , −1 , −x + 1 , −x + 1 , −1 , −x + 2 , −1]

= [0 , 1 , x− 2 , 1 , x− 1 , x− 1 , 1 , x− 1 , x , x− 1 , 1 , x− 2 , 1]

= [0 , 1 , x− 2 , 1 , −−→w110 , 1 , x− 2 , 1]

and
f0.111(x) = [0 , 1 , x− 2 , 1 ,←−−w110 , 1 , x− 2 , 1] .

In each case wa1a20 has been chosen to ensure a ready interpretation of the final result in
the special case x = 2.

The opening remark of the proof now yields the theorem.

Note. Special cases of this detailed result are first remarked on in [8]. Those observations
are alluded to in [3], where a blunder, see [1], hints at the present general result. There
are different ways for a sequence to display its perturbed symmetry. Thus, indeed,

F0(x) = [1 , x− 1 , 1 , x− 1 ,

∞∏
h=0

S1 , x−1 , x−1 , 1 , x−2 , 1(x− 1 , x , x− 1 , 1 , x− 1 , x− 1) ]

= [1 , x− 1 , 1 ,

∞∏
h=0

Sx−1 , 1 , x−1 , x−1 , 1 , x−2 , 1 , x−1(x , x− 1 , 1 , x− 1) ]

confirming the correction suggested in [1].

6. Divide and conquer

We shall briefly sketch a technique for obtaining, from our results, explicit continued
fraction expansions of the numbers

∞∑
h=0

±x−2h

.
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Indeed, we shall divide our results above by x . To that end we recall the fundamental
correspondence whereby one defines the convergents by matrix products. For our present
purpose it will be convenient to view those products a little differently. Accordingly, set

J =
(

0 1
1 0

)
R =

(
1 1
0 1

)
L =

(
1 0
1 1

)
,

noticing that JR = LJ , JL = RJ and J2 = I . Then, on observing that for d ∈ Z ,

Rd =
(

1 d
0 1

)
Ld =

(
1 0
d 1

)
,

we may write, with a formal interpretation intended,(
c0 1
1 0

) (
c1 1
1 0

) (
c2 1
1 0

)
· · · · · · = Rc0Lc1Rc2 · · · · · · ,

that is, with ←→ denoting the fundamental correspondence between matrix products and
continued fractions,

[c0 , c1 , c2 , . . .]←→ Rc0Lc1Rc2 · · · .

Then
x−1[c0 , c1 , c2 , . . .]←→ A′Rc0Lc1Rc2 · · · ,

where we set

A =
(

x 0
0 1

)
A′ =

(
1 0
0 x

)
.

Of course the matrix product on the right in the correspondence just given does not
correspond to a continued fraction, but using the transition formulae

ALRx−1 = Rx−1LA′

ALR−x−1 = −IRx+1L−1A′
A′RLx−1 = Lx−1RA

A′RL−x−1 = −ILx+1R−1A

together with the remark that multiplication by a matrix dI does not change the corre-
sponding continued fraction, we can transit the multiplier A′ through the R–L sequence
until it disappears into the · · · · · · on the right.
For example, recalling that

F0(x) = [1 , x , −x , −x , −x , x , x , −x , −x , . . . ] ,

we can compactly show the transduction as

F0(x)

G0(x)

RLx−1

A′

Lx−1R

LR−x−1

A

Rx+1L−1

RL−x−1

A′

Lx+1R−1

LR−x−1

A

Rx+1L−1

RLx−1

A′

Lx−1R

LRx−1

A

Rx−1L

RL−x−1

A′

Lx+1R−1

LR−x−1

A

Rx+1L−1

· · ·

and see that

G0(x) =
∞∑

h=0

x−2h

= [x− 1 ,
−−−−−→
x + 2 , x ,

−−−−−→
x , x− 2 ,

←−−−−−
x , x + 2 , x , . . . ] .

In this manner the energetic reader can readily rediscover the results of [8], [9] and more
— see [6]. The technique used above is suggested by work of Raney [7]. A surprising
application can be found in [2].
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