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It is well known that one can obtain explicit continued fraction expansions of ez

for various interesting values of z ; but the details of appropriate constructions are
not widely known. We provide a reminder of those methods and do that in a way
that allows us to mention a number of techniques generally useful in dealing with
continued fractions. Moreover, we choose to consider some expansions in Gaussian
integers, allowing us to display some new results and to indicate some generalisations
of classical results.

1. Introduction

We have fun with continued fractions. That ‘fun’ is intended to demystify a variety
of simple facts often disguised in the literature, or proved by turgid methods. In
particular we provide some brief notes sketching an explanation for some of the well
known continued fraction expansions of ez for special values of z . Our remarks
are motivated by suggestions [5] of Jerome Minkus on Gaussian integer continued
fraction expansions of certain complex values of the exponential function. With his
permission we mention and give our proof of his new results and conjectures. Once
again we show the power and congeniality of the matrix methods inspired, for this
author, by observations of Stark [10] and reintroduced in [7] and [8]. These methods
had of course been used earlier, for example by Walters [11]; indeed, precisely in
the context of the exponential function. We make liberal use of Walters’ remarks
below. Incidentally, the earliest mention of these matrix methods for continued
fractions which I have looked at is Kolden [4]; scholarly colleagues also remind me
to mention Frame [2]. I am occasionally asked who ‘invented’ the matrix approach
to continued fractions. I feel that the correct answer is that the approach was
invented by those who invented matrices. It is after all obvious to anyone who has
learned matrix notation that the traditional recurrence formulas for the convergents
insist on a matrix formulation.
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2. First principles

Suppose we are given a sequence of arbitrary nonsingular 2× 2 matrices, say with
complex elements, or even polynomials over C ,

(
An Bn

Cn Dn

)
n = 0, 1, 2, . . .

with the property that the two limits limn→∞ An/Cn and limn→∞ Bn/Dn are
equal to one another. Suppose the common limit is α . Then we will say that the
sequence yields an expansion for α .

We claim that a sequence of 2 × 2 matrices yielding an expansion for α yields a
formal continued fraction expansion of α . Indeed, there is no loss of generality in
arranging that the matrices be unimodular, since multiplying each matrix of the
sequence by some complex kn �= 0 does not change α , and then those matrices have
a decomposition as a product of elementary unimodular matrices corresponding to
a continued fraction expansion. We remind the reader that:

A continued fraction is an expression of the shape

a0 + 1
a1 + 1

a2 + 1
a3 + .. .

which one denotes in a space-saving flat notation by

[a0 , a1 , a2 , a3 , . . . . . . ] .

Everything one needs now follows from the correspondence whereby

(
a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)
for n = 0, 1, 2, . . . . . .

entails
pn

qn
= [a0 , a1 , . . . . . . , an] for n = 0, 1, 2, . . . . . . ;

and conversely, up to the ambiguities in choosing the pn and qn given just their
quotients pn/qn . If the an all are positive integers for n ≥ 1 it suffices that pn

and qn be chosen relatively prime.

Our remark is now no more than the observation that every unimodular matrix has
decompositions corresponding, in the sense just indicated, to a continued fraction
expansion; and this is not intended to be more than the remark that a unimodular
matrix can be written as a product of elementary row transformations.
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3. The exponential function

It is not too difficult to verify directly that the continued fraction expansion of ez

corresponds, in the sense just described, to the sequence of matrices

(1)
(

An Bn

Cn Dn

)
=

n∏
h=0

(
(2h + 1) + z (2h + 1)

(2h + 1) (2h + 1)− z

)
.

Indeed, AnDn − BnCn = (−1)n+1z2(n+1) shows that the formal power series
lim An/Cn and limBn/Dn coincide. One sees readily that An(z) = Dn(−z) and
Bn(z) = Cn(−z) and one confirms more laboriously that

n!An(z)/(2n + 1)! = e
1
2 z

(
1 +

z

2(n + 1)
− z2

8(2n + 1)
+ . . .

)

and

n!Bn(z)/(2n + 1)! = e
1
2 z

(
1− z

2(n + 1)
− z2

8(2n + 1)
+ . . .

)
.

For further details see Walters [11].

Since (
2h + 2 2h + 1
2h + 1 2h

)
=

(
1 1
1 0

) (
2h 1
1 0

) (
1 1
1 0

)
,

we immediately obtain the expansion

e = [1 , 0 , 1 , 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , 1 , . . . ].

Noting that

(2)
(

x 1
1 0

) (
0 1
1 0

) (
y 1
1 0

)
=

(
x + y 1

1 0

)

we have the familiar expansion

e− 1 = [1 , 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , . . . ] = [1 , 1 , 2h ]
∞
h=1 .

Here the overline indicates quasi-periodicity with the variable h sequentially taking
the values 1, 2, . . . with each repetition of the quasi-period.

4. Digression: Fun with 2 × 2 matrices

Everyone knows about the transpose

At =
(

a c
b d

)
of a matrix A =

(
a b
c d

)
,
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but, correctly, less well known1 is the false transpose

A′ =
(

d b
c a

)
.

Writing J =
(

0 1

1 0

)
, we see that JAJ = A′t = At′ is appropriately called the double

transpose of A and then A′ = (JAJ)t readily yields such properties of the false
transpose as (AB)′ = B′A′ .

We already know that continued fraction expansions correspond to matrix products
(

a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
an 1
1 0

)
.

In the sequel it will be convenient to define

L =
(

1 0
1 1

)
and R =

(
1 1
0 1

)
, and to note that JLx = RxJ =

(
x 1
1 0

)
.

Then, observing that J2 = I , we see that continued fraction expansions also cor-
respond to so-called RL–sequences in the sense that

(
a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
an 1
1 0

)
· · · =

= Ra0J · JLa1Ra2J · · · · = Ra0La1Ra2 · · · .

5. Some expansions in Gaussian integers

We notice the decomposition
(

(2a + 1) + 2i (2a + 1)
(2a + 1) (2a + 1)− 2i

)
=

=
(

1 1
0 1

) (
1 0
−ia 1

) (
1 −1 + i
0 1

) (
1 + i −1− i

1 1− 2i

)
,

whence alternatively it also equals
(

1 + 2i −1 + i
1 1− i

) (
1 −1− i
0 1

) (
1 0
ia 1

) (
1 1
0 1

)
.

Of course one need do no more than check a claim of this kind, yet it warrants
explanation. The first decomposition is a more or less natural row decomposition;

1Cynical remark to be omitted by publications that believe that mathematics cannot be fun:
However, it seems that 32% of undergraduate students cannot distinguish the false transpose and
the transpose; if students are explicitly warned to avoid this blunder this number increases to
45%. One also must not tell students that the double transpose has the congenial property that
the double transpose of a product is the product of the double transposes without any bothersome
reversal of order.
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the fun way to obtain the second from it is to note that the conjugate of the given
matrix is its false transpose.

Next we observe that
(

1 + i −1− i
1 1− 2i

) (
b + 2i b

b b− 2i

) (
1 + 2i −1 + i

1 1− i

)
= −8

(
1 0

−b + 1 1

)
.

Finally let z = 2i in (1) and take its matrices in threes to obtain

e2i ←→
∞∏

k=0

RL−3kiR−1+iL−6k−2R−1−iL(3k+2)iR ,

which corresponds to

Theorem 1. (Minkus [5])

(3) e2i = [1 , −3hi , −1 + i , −6h− 2 , −1− i , (3h + 2)i , 2 ]
∞
h=0 .

The experienced reader will recognise, however, that hindsight assisted the quoted
calculation; it did: it is a formula demonstrated by less friendly methods in [5].

Might one have discovered (3) spontaneously? To that end consider a continued
fraction expansion of

coth 2z = (e2z + 1)/(e2z − 1).

Our remarks show that coth 2z corresponds to

(
1 1
1 −1

) n∏
h=0

(
(2h + 1) + 2z (2h + 1)

(2h + 1) (2h + 1)− 2z

)
,

and because
(

1 1
1 −1

) (
(2h + 1) + 2z (2h + 1)

(2h + 1) (2h + 1)− 2z

)

= 2
(

(2h + 1) + z (2h + 1)− z
z z

)
= 2z

(
(2h + 1)/z 1

1 0

) (
1 1
1 −1

)
,

this immediately yields a formula known to Lambert (see [4] ), that

(4)
e2z + 1
e2z − 1

= [ (2h + 1)/z ]
∞
h=0 .

Taking this as our starting point, we seek to recover an expansion for e2i by mul-
tiplying the continued fraction expansion (4) by the matrix

(
1 1
1 −1

)
=

(
1 −1
0 1

) (
2 0
0 −1

) (
1 0
−1 1

)
.
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We do that by following suggestions of Raney [9], and to that end, recalling (4),
interpret our task as being to transform the matrix product

R−1

(
2 0
0 −1

)
L−1R−iL−3iR−5iL−7iR−9iL−11i · · ·

so that it once again corresponds to a continued fraction expansion, to wit to an
RL–sequence consisting just of (Gaussian) integer powers of R and of L . We
do that by applying appropriate transition formulae to move the offending matrix
through the RL-sequence until it disappears in the . . . on the right. This will be
less complex once we see that we may write

(
1 0
0 −1

)
L−1R−iL−3iR−5iL−7iR−9iL−11i · · · =

=
(

i 0
0 1

)
LiRL−3R5L−7R9L−11 · · · .

The trick is to notice that multiplying a continued fraction [a , b , c , d , e , . . . ] by
x yields [ax , b/x , cx , d/x , ex , . . . ] . We have multiplied by i and have neglected
a −I , taking advantage of the fact that the = sign can only mean that the two
sequences of matrices yield the same continued fraction expansion.

We set

A+ =
(

1 + i 0
0 1

)
; so its conjugate is A− =

(
1− i 0

0 1

)
.

We apply the transition formulæ2

A+R =R1+iA+ A′
+L =L1+iA′

+

A+L1+i =LA+ A′
+R1+i =RA′

+

A+LiR =RLiA′
+ A′

+RiL =LRiA+

A+LRi =RiLA′
+ A′

+RLi =LiRA+

and their conjugates to obtain sequentially the transductions

LiR

A+

RLi

L−3

A′
+

L−3−3i

R4

A′
+

R2−2i

RLi

A′
+

LiR

L−7−i

A+

L−4+3i

R9

A+

R9+9i

L−11−i

A+

L−6+5i

LiR

A+

RLi

. . .

A′
+

. . .

and then

R

A−

R1−i

L−3−i

A−

L−1−2i

L−iR

A−

RL−i

R1−i

A′
−

R

R−iL

A′
−

LR−i

L−1+i

A−

L−1

R

A−

R1−i

L−4+4i

A−

L−4

L−iR

A−

RL−i

R8+10i

A′
−

R−1+9i

R−iL

A′
−

LR−i

L−7+5i

A−

L−6−i

. . .

A−
. . .

2By the way, these require only a few calculations, since they are mostly transposes and or false
transposes one of the other.
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telling us that

e2i ←→ R−1

(
i 0
0 1

)
A−A+LiRL−3R5L−7R9L−11 · · ·

= R−1

(
i 0
0 1

)
R1−iL−1−2iRL−iRLR−iL−1R1−iL−4RL−iR−1+9iLR−iL−6−i · · ·

= RiL−2+iRiL−1RiL−iRLiR1+iL4iRiL−1R−9−iL−iRL−1+6i · · ·

which corresponds to the continued fraction expansion

[i , −2 + i , i , −1 , i , −i , 1 , i , 1 + i , 4i , i , −1 , −9− i , −i , 1 , −1 + 6i , . . . ] .

The trouble is that this is not obviously the same result as (3).

6. Digression: Fun with continued fractions

The curious calculation

−α =0 +−α

−1/α =− 1 + (α− 1)/α

α/(α− 1) =1 + 1/(α− 1)
α− 1 =− 1 + α

1/α =0 + 1/α

α =α

says that

[. . . , a , −b , γ] =

= [. . . , a , 0 , −1 , 1 , −1 , 0 , b , −γ] = [. . . , a− 1 , 1 , b− 1 , −γ].

Its converse,
[A , 1 , B , Γ] = [A + 1 , −B − 1 , −Γ]

is just a special case. Almost identical trickery shows that also

[. . . , a , −b , γ] =

= [. . . , a , 0 , 1 , −1 , 1 , 0 , b , −γ] = [. . . , a + 1 , −1 , b + 1 , −γ],

with converse
[A , −1 , B , Γ] = [A− 1 , −B + 1 , −Γ]

The imaginary analogue of the first formula is just

(5) [a , b , γ] = i[−ia , ib , −iγ] =

= i[−ia− 1 , 1 , −ib− 1 , iγ] = [a− i , −i , b− i , γ]

and its converse conjugate is,

[A , i , B , Γ] = [A− i , B − i , Γ] .
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7. Related results

With some care the reader will succeed in showing that such transductions do
provide a systematic fairly uncontrived method for obtaining the expansion (3).
Specifically,

[i , −2 + i , i , −1 , i , −i , 1 , i , 1 + i , 4i , i , −1 , −9− i , −i , 1 , −1 + 6i , . . . ]

plainly commences [1 , 0 , −1 + i , . . . ] . That’s good because we’re claiming to be
rediscovering the expansion

[1 , −3hi , −1 + i , −6h− 2 , −1− i , (3h + 2)i , 2 ]
∞
h=0 .

Next
[−2 + i , i , −1 , i , . . . ] = [−2 , −1− i , i , . . . ]

and

[i , −i , 1 , 1 + i , 4i , . . . ] = [2i , 1 + i , i , 1 + i , 4i , . . . ] = [2i , 1 , 1 , 4i , . . . ] .

Fortunately

[1 , 1 , 4i , i , −1 , −9− i , δ] = [2 , −1− 4i , −i , 1 , 9 + i , −δ]

= [2 , −1− 3i , 1 , 0 , i , 9 + i , −δ] = [2 , −3i , −1 , −i , −9− i , δ]

= [2 , −3i , −1 + i , −9 , δ] .

Moreover

[−9 , −i , 1 , −1 + 6i , ε] = [−8 , −1 , 1 + i , −1 , 1− 6i , −ε]

= [−8 , −1 , i , 6i , ε] = [−8 , −1− i , 5i , ε]

and we’ve pretty well completed the second quasi-period.
Of course, if one were set on obtaining (3) one would avoid tedious applications
of this ‘fun with continued fractions’ by contriving more appropriate transition
formulæ, but that would miss the point.
Our instancing Raney’s remark that linear fractional transformations of a continued
fraction may be effected by one or more finite state transductions of a correspond-
ing RL–sequence should readily yield a proof of a generalisation, as suggested by
Minkus, of a theorem of Hurwitz [3] according to which if α has a continued fraction
expansion of the shape

[a0 , a1 , . . . , ap , f1(h) , f2(h) , . . . , fr(h) ]
∞
h=0 ,

with polynomials f1 , . . . , fr taking integer values at nonnegative integers h ,
then each linear fractional transformation (aα + b)/(cα + d) of α with

(
a b

c d

)
∈

GL2(Z) has a continued fraction expansion of the same form. The generalisation
replaces Z by the ring of integers of (or indeed, by any order of) an algebraic
number field. Our hint of the argument relies upon observing that a unimodular
transformation of α changes only the entries preceding its quasi-period, and our
example illustration that multiplication by matrices

(
p 0

0 1

)
or

(
1 0

0 p

)
corresponds

to finite state transductions of an RL–sequence should easily allow a verification
that it inter alia preserves the property of present interest.
As an example, we mention the continued fraction expansion
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Theorem 2.

(6)
e2i + i

e2i − i
= i[−5 , 2 , 2 , 3k + 2 , 1 , 12k + 16 , 1 , 3k + 4 ]

∞
k=0 .

We might obtain this from (3) by multiplying the corresponding matrix products
by M =

(
1 i

1 −i

)
. However, it happens that first principles are more convenient and

we note that

M

(
a + 2i a

a a− 2i

)
M−1 =

(
a ia + 2i

−ia + 2i a

)

=
(

1 i
0 1

) (
1 0
−ih 1

) (
1 2i
0 1

) (
4 0
i 1

)
,

with 2h + 1 = a; and also =
(

1 0
i 4

) (
1 2i
0 1

) (
1 0
−ih 1

) (
1 i
0 1

)

by false transposition.
Moreover(

4 0
i 1

) (
b ib + 2i

−ib + 2i b

) (
1 0
i 4

)
= −8

(
1 −2i(b + 2)
0 1

)
.

So, taking the matrices in threes yields

e2i + i

e2i − i
←→

(
1 i
1 −i

) ∞∏
h=0

(
(2h + 1) + 2i 2h + 1

2h + 1 (2h + 1)− 2i

)

←→
∞∏

k=0

RiL−3kiR2iR−2((6k+3)+2)iR2iL−(3k+2)i

←→ i[1 , 3k , −2(6k + 3) , 3k + 2 ]
∞
k=0 .

We now employ ‘fun with continued fractions’ to obtain (6). An expansion equiva-
lent to (6) is conjectured in [5].

8. Concluding remarks

It is useful to recall the remarks of Walters [11] and to apply those methods to re-
trieving complex analogues suggested by Minkus [5] of classical results of Euler and
Stieltjes; see Perron [6]. Our methods also provide an opportunity to mention ideas
of Raney [9] and to demonstrate the utility of a number of simple transformations
of continued fractions that we have labeled ‘fun with . . . ’.
It may not be evident from our remarks — which appear to cite just isolated
wonders — just why e1/q and e2/q , and ei/q and e2i/q , should have continued
fraction expansions of Hurwitz type whilst other powers of e seemingly do not
(see, for example, [1]). A review of our examples reveals, however, that taking the
matrices (

(2h + 1)q + x (2h + 1)q
(2h + 1)q (2h + 1)q − x

)

three at a time if |x| = 2 (or just one at a time if |x| = 1) gives 8 times a
unimodular matrix (respectively, a unimodular matrix), whilst, as [1] shows for the
case x = 3, apparently no collecting the matrices for other values of |x| yields
products of unimodular matrices multiplied just by a constant.
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