

Joint with Thealexa Becker, Alec Greaves-Tunnell, Aryeh Kontorovich and Karen Shen

AMS Special Session on Difference Equations: University of Maryland: March 29, 2014

	Simulation and New Results			
000	00	000	000	0000

Introduction

Introduction ●○○	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1-a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
Motivat	ion and Questio	ns		

- Epidemiology, networking, and other fields have questions concerning the spread of viruses.
- Using a model for infection and cure rates, look for a steady state or critical threshold relating two rates.
- If there is a steady state, what are the characteristics?
- What other information can we get from this steady state, provided it exists?
- Generalizations?

A discrete-time **SIS** (Susceptible Infected Susceptible) **model**. Each node is either Susceptible (S) or Infected (I).

Study special graphs: star graphs:

Figure: Star graph with 1 central hub and *n* spokes.

A discrete-time **SIS** (Susceptible Infected Susceptible) **model**. Each node is either Susceptible (S) or Infected (I).

Or, a more entertaining view....

A discrete-time **SIS** (Susceptible Infected Susceptible) **model**. Each node is either Susceptible (S) or Infected (I).

With infection and cure rates....

Introduction Simulation and New Results Fixed Points and Proofs: $b \le (1 - a)/\sqrt{n}$ Proofs: $b > (1 - a)/\sqrt{n}$ The Model ($a = 1 - \delta$, $b = \beta$)

A discrete-time **SIS** (Susceptible Infected Susceptible) **model**. Each node is either Susceptible (S) or Infected (I).

Parameters

- β: probability at any time step that an infected node infects its neighbors.
- δ : probability at any time step that an infected node is cured.
- $1 p_{i,t} = (1 p_{i,t-1})\zeta_{i,t} + \delta p_{i,t}\zeta_{i,t}$, where $\zeta_{i,t}$ is the probability node *i* not infected by neighbors at time *t*.
- $\zeta_{i,t} = \prod_{j \sim i} p_{j,t-1} (1 \beta) + (1 p_{j,t-1}) = \prod_{j \sim i} 1 \beta p_{j,t-1}$, where $j \sim i$ means *i* and *j* are neighbors (share an edge).
- $1 p_{i,t} = (1 p_{i,t-1})\zeta_{i,t} + \delta p_{i,t}\zeta_{i,t}$, where $\zeta_{i,t}$ is the probability that node *i* is not infected by its neighbors at time *t*.

Introduction ○○●	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
System	of Interest			

- In limit all spokes behave the same.
- Label hub behavior at time t by x_t , spokes by y_t . Evolve by

$$\left(\begin{array}{c} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \end{array}\right) = F\left(\begin{array}{c} \mathbf{x}_t \\ \mathbf{y}_t \end{array}\right),$$

where

$$F\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} f_1(x,y)\\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} 1-(1-x)(1-\beta y)^n - \delta x (1-\beta y)^n\\ 1-(1-y)(1-\beta x) - \delta y (1-\beta x) \end{pmatrix}$$
$$= \begin{pmatrix} 1-(1-ax)(1-by)^n\\ 1-(1-ay)(1-bx) \end{pmatrix}.$$

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Simulation and New Results

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 0 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 1 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 2 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 3 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
	-			

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 4 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 5 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 6 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 7 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 8 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 9 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 10 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 11 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
	-			

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 12 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$ 0000
Simula	tion			

Below is a plot of the dynamics

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 13 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
Simula	tion			

Below is a plot of the dynamics for a = .4, b = .7 and

n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 14 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
	-			

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 15 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
	-			

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 16 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
	-			

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 17 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
Simula	tion			

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 18 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 19 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 20 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 21 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 22 (point in upper right needed for display purposes)

Introduction 000	Simulation and New Results ●○	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Below is a plot of the dynamics for a = .4, b = .7 and n = 2.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 23 (point in upper right needed for display purposes)

Introduction	Simulation and New Results ○●	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$ 0000
Main Re	esult			

Theorem (BG-TKMS '13)

Let $a, b \in (0, 1)$ and F as above.

- For any initial configuration, as time evolves all the spokes converge to a common behavior.
- If $b \le (1 a)/\sqrt{n}$ then the virus dies out.
- If b > (1 − a)/√n then all points except (0,0) evolve to a unique, non-trivial fixed point (x_f, y_f).

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Fixed Points and Proofs

Introduction	Simulation and New Results	Fixed Points and Proofs ●○○	

Determining Fixed Points of *F***: Partial Fixed Points**

Goal is to find fixed points: F(x, y) = (x, y).

Easier: look for partial fixed points:

$$F(x, y) = (x, y')$$
 or $F(x, y) = (x', y)$.
Introduction 000	Simulation and New Results	Fixed Points and Proofs ●○○	

Determining Fixed Points of *F***: Partial Fixed Points**

Goal is to find fixed points: F(x, y) = (x, y).

Easier: look for partial fixed points:

$$F(x, y) = (x, y')$$
 or $F(x, y) = (x', y)$.

Introduce functions ϕ_1, ϕ_2 so that

•
$$\forall y \exists y' \text{ st } F(\phi_1(y), y) = (\phi_1(y), y').$$

•
$$\forall x \exists x' \text{ st } F(x, \phi_2(x)) = (x', \phi_2(x)).$$

Can explicitly solve for ϕ_1, ϕ_2 .

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
		000		

Determining Fixed Points of F: Partial Fixed Curves

Partial fixed points from ϕ_1 and ϕ_2 when (from left to right) $b < \frac{1-a}{\sqrt{n}}, b = \frac{1-a}{\sqrt{n}}, b > \frac{1-a}{\sqrt{n}}$ (b = 3, n = 4, a = .1, .4, .7).

$$\phi_1(y) = \frac{1 - (1 - by)^n}{1 - a(1 - by)^n} \quad \phi_2(x) = \frac{bx}{1 - a + abx}$$

Determining Fixed Points of *F*: Regions: $b > (1 - a)/\sqrt{n}$

Figure: The four regions determined by the partial fixed point functions when $b > (1 - a)/\sqrt{n}$.

Analysis easy if $b \le (1 - a)/\sqrt{n}$; (0,0) only fixed point.

Proof unique additional fixed point when $b > (1 - a)/\sqrt{n}$: concavity of the partial fixed point curves and value of derivatives at origin.

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$

Proofs: $b \leq (1 - a)/\sqrt{n}$

Introduction Simulation and New Results of the second sec

Theorem

Assume $b < (1 - a)/\sqrt{n}$. Then iterates of any point under *F* converge to the trivial fixed point (0,0).

Proved with MVT and an eigenvalue analysis of the resulting matrix.

Lemma: Let $a, b \in (0, 1)$ with $b < (1 - a)/\sqrt{n}$, and let $\lambda_1 \ge \lambda_2$ denote the eigenvalues of the matrix $\begin{pmatrix} a\alpha & nb\beta \\ b\gamma & a\delta \end{pmatrix}$, where $\alpha, \beta, \gamma, \delta \in [0, 1]$. Then $-1 < \lambda_1, \lambda_2 < 1$.

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$ ••	Proofs: $b > (1 - a)/\sqrt{n}$
Proof				

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \le (1 - a)/\sqrt{n}$ •••	Proofs: $b > (1 - a)/\sqrt{n}$
Proof				

•
$$c(t) = (1-t)\begin{pmatrix} 0\\0 \end{pmatrix} + t\begin{pmatrix} x\\y \end{pmatrix}$$
, $c'(t) = \begin{pmatrix} x\\y \end{pmatrix}$, the line connecting the trivial fixed point to $\begin{pmatrix} x\\y \end{pmatrix}$, with $c(0) = \begin{pmatrix} 0\\0 \end{pmatrix}$ and $c(1) = \begin{pmatrix} x\\y \end{pmatrix}$.

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \le (1 - a)/\sqrt{n}$ •••	Proofs: $b > (1 - a)/\sqrt{n}$
Proof				

•
$$c(t) = (1-t)\begin{pmatrix} 0\\0 \end{pmatrix} + t\begin{pmatrix} x\\y \end{pmatrix}$$
, $c'(t) = \begin{pmatrix} x\\y \end{pmatrix}$, the line
connecting the trivial fixed point to $\begin{pmatrix} x\\y \end{pmatrix}$, with $c(0) = \begin{pmatrix} 0\\0 \end{pmatrix}$
and $c(1) = \begin{pmatrix} x\\y \end{pmatrix}$.
• $\mathcal{F}(t) = f(c(t)) = \begin{pmatrix} 1-(1-atx)(1-bty)^n\\ 1-(1-aty)(1-btx) \end{pmatrix}$.

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \le (1 - a)/\sqrt{n}$ •••	Proofs: $b > (1 - a)/\sqrt{n}$
Proof				

•
$$c(t) = (1-t)\begin{pmatrix} 0\\0 \end{pmatrix} + t\begin{pmatrix} x\\y \end{pmatrix}, \quad c'(t) = \begin{pmatrix} x\\y \end{pmatrix}$$
, the line
connecting the trivial fixed point to $\begin{pmatrix} x\\y \end{pmatrix}$, with $c(0) = \begin{pmatrix} 0\\0 \end{pmatrix}$
and $c(1) = \begin{pmatrix} x\\y \end{pmatrix}$.
• $\mathcal{F}(t) = f(c(t)) = \begin{pmatrix} 1-(1-atx)(1-bty)^n\\1-(1-aty)(1-btx) \end{pmatrix}$.
• $\mathcal{F}'(t) = \begin{pmatrix} a(1-bty)^n & nb(1-atx)(1-bty)^{n-1}\\b(1-aty) & a(1-btxu) \end{pmatrix} \begin{pmatrix} x\\y \end{pmatrix}$.

Introduction 000	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$ $\circ \circ \bullet$	Proofs: $b > (1 - a)/\sqrt{n}$
Proof (continued)			

• Apply the one-dimensional chain rule twice, once to the *x*-coordinate function and once to the *y*-coordinate function.

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$ 0000
Proof (continued)			

- Apply the one-dimensional chain rule twice, once to the *x*-coordinate function and once to the *y*-coordinate function.
- Get t_1 and t_2 such that

$$f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) - f\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} a(1 - bt_1y)^n & nb(1 - at_1x)(1 - bt_1y)^{n-1} \\ b(1 - at_2y) & a(1 - bt_2x) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$ 0000
Proof (continued)			

- Apply the one-dimensional chain rule twice, once to the *x*-coordinate function and once to the *y*-coordinate function.
- Get t_1 and t_2 such that

$$f\left(\left(\begin{array}{c} x \\ y \end{array}\right) \right) - f\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right) \right) = \\ \left(\begin{array}{c} a(1 - bt_1 y)^n & nb(1 - at_1 x)(1 - bt_1 y)^{n-1} \\ b(1 - at_2 y) & a(1 - bt_2 x) \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

We have a contraction map on a compact space, completing the proof.

Introduction	Simulation and New Results	Fixed Points and Proofs	

Proofs: $b > (1 - a)/\sqrt{n}$

	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$ ••••
Prelimi	nary Results			

Recall

Figure: The four regions determined by the partial fixed point functions when $b > (1 - a)/\sqrt{n}$.

Key lemmas (proofs by algebra):

- Points in Region I strictly increase in *x* and *y* on iteration by *F*, and points in Region III strictly decrease in *x* and *y* on iteration.
- Points in Region I iterate inside Region I under *F*, and points in Region III iterate inside Region III under *F*.
- All non-trivial points in Regions I and III converge to the non-trivial fixed point under *F*.

Armed with the above lemmas, we now complete the proof.

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$ •••
Proof o	f Limiting Behav	vior		

Consider any rectangle in [0, 1]² whose lower left vertex is not (0, 0).

Introduction 000	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$ 000	Proofs: $b > (1 - a)/\sqrt{n}$ $0 \ge 0 \le 0$	
Proof of Limiting Behavior					

- Consider any rectangle in [0, 1]² whose lower left vertex is not (0, 0).
- Assume the lower left and upper right vertices are in Regions I and III.

- Consider any rectangle in [0, 1]² whose lower left vertex is not (0, 0).
- Assume the lower left and upper right vertices are in Regions I and III.
- Image of rectangle under F is strictly contained in rectangle (image of the lower left (respectively, upper right) point has both coordinates smaller (respectively, larger) than any other iterate).

- Consider any rectangle in [0, 1]² whose lower left vertex is not (0, 0).
- Assume the lower left and upper right vertices are in Regions I and III.
- Image of rectangle under F is strictly contained in rectangle (image of the lower left (respectively, upper right) point has both coordinates smaller (respectively, larger) than any other iterate).
- As lower left and upper right vertices iterate to the non-trivial fixed points (in Regions I and III), so too do all the other points in rectangle.

Introduction	Simulation and New Results	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$ $\circ \circ \bullet \circ$

Behavior Conjectures

Corollary

The amount of time it takes for all points to converge is the maximum of the time it takes $\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ to converge, for $\epsilon_1, \epsilon_2 \rightarrow 0$.

Conjecture

Points in Region II and IV exhibit one of two behaviors, dependent on a, b, n. Either:

- All points in Region II iterate outside Region II and all points in Region IV iterate outside Region IV ("flipping behavior"), or
- All points in Region II iterate outside Region IV and all points in Region IV iterate outside Region II

Introduction	Simulation and New Results	Fixed Points and Proofs	Proofs: $b \leq (1 - a)/\sqrt{n}$	Proofs: $b > (1 - a)/\sqrt{n}$
Conclu	sions and Refer	ences		

- Can extend to Generalized Star Graphs.
- Thealexa Becker, Alec Greaves-Tunnell, Leo Kontorovich, Steven J. Miller and Karen Shen), Virus Dynamics on Spoke and Star Graphs, the Journal of Nonlinear Systems and Applications 4 (2013), no. 1, 53–63.

http://arxiv.org/pdf/1111.0531.