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Motivation and Questions

Epidemiology, networking, and other fields have
questions concerning the spread of viruses.

Using a model for infection and cure rates, look for a
steady state or critical threshold relating two rates.

If there is a steady state, what are the characteristics?

What other information can we get from this steady
state, provided it exists?

Generalizations?
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The Model (a = 1 − δ, b = β)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Study special graphs: star graphs:

0 14

23

n- 1 n

Figure: Star graph with 1 central hub and n spokes.
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The Model (a = 1 − δ, b = β)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Or, a more entertaining view....
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The Model (a = 1 − δ, b = β)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

With infection and cure rates....
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The Model (a = 1 − δ, b = β)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Parameters

β: probability at any time step that an infected node infects its
neighbors.

δ: probability at any time step that an infected node is cured.

1 − pi,t = (1 − pi,t−1) ζi,t + δpi,tζi,t , where ζi,t is the probability
node i not infected by neighbors at time t .

ζi,t =
∏

j∼i pj,t−1 (1 − β) + (1 − pj,t−1) =
∏

j∼i 1 − βpj,t−1, where
j ∼ i means i and j are neighbors (share an edge).

1 − pi,t = (1 − pi,t−1) ζi,t + δpi,tζi,t , where ζi,t is the probability
that node i is not infected by its neighbors at time t .
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System of Interest

In limit all spokes behave the same.

Label hub behavior at time t by xt , spokes by yt . Evolve by
(

xt+1

yt+1

)

= F
(

xt

yt

)

,

where

F
(

x
y

)

=

(

f1 (x , y)
f2 (x , y)

)

=

(

1 − (1 − x) (1 − βy)n − δx (1 − βy)n

1 − (1 − y) (1 − βx)− δy (1 − βx)

)

=

(

1 − (1 − ax) (1 − by)n

1 − (1 − ay) (1 − bx)

)

.

8



Introduction Simulation and New Results Fixed Points and Proofs Proofs: b ≤ (1 − a)/
√

n Proofs: b > (1 − a)/
√

n

Simulation and New Results
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 0 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 1 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 2 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 3 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 4 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 5 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 6 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 7 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 8 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 9 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 10 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 11 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: t = 12 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 13 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 14 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 15 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 16 (point in upper right needed for display purposes)

26



Introduction Simulation and New Results Fixed Points and Proofs Proofs: b ≤ (1 − a)/
√

n Proofs: b > (1 − a)/
√

n

Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 17 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 18 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 19 (point in upper right needed for display purposes)

29



Introduction Simulation and New Results Fixed Points and Proofs Proofs: b ≤ (1 − a)/
√

n Proofs: b > (1 − a)/
√

n

Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 20 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 21 (point in upper right needed for display purposes)

31



Introduction Simulation and New Results Fixed Points and Proofs Proofs: b ≤ (1 − a)/
√

n Proofs: b > (1 − a)/
√

n
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Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 22 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics for a = .4, b = .7 and
n = 2.

Divide (x , y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 23 (point in upper right needed for display purposes)
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Main Result

Theorem (BG-TKMS ’13)

Let a, b ∈ (0, 1) and F as above.

For any initial configuration, as time evolves all the
spokes converge to a common behavior.

If b ≤ (1 − a)/
√

n then the virus dies out.

If b > (1 − a)/
√

n then all points except (0, 0) evolve
to a unique, non-trivial fixed point (xf , yf ).

34



Introduction Simulation and New Results Fixed Points and Proofs Proofs: b ≤ (1 − a)/
√

n Proofs: b > (1 − a)/
√

n

Fixed Points and Proofs
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Determining Fixed Points of F : Partial Fixed Points

Goal is to find fixed points: F (x , y) = (x , y).

Easier: look for partial fixed points:

F (x , y) = (x , y ′) or F (x , y) = (x ′, y).
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Determining Fixed Points of F : Partial Fixed Points

Goal is to find fixed points: F (x , y) = (x , y).

Easier: look for partial fixed points:

F (x , y) = (x , y ′) or F (x , y) = (x ′, y).

Introduce functions φ1, φ2 so that

∀y ∃y ′ st F (φ1(y), y) = (φ1(y), y ′).
∀x ∃x ′ st F (x , φ2(x)) = (x ′, φ2(x)).

Can explicitly solve for φ1, φ2.
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Determining Fixed Points of F : Partial Fixed Curves
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Φ1
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Partial fixed points from φ1 and φ2 when (from left to right)
b < 1−a√

n , b = 1−a√
n , b > 1−a√

n (b = 3, n = 4, a = .1, .4, .7).

φ1(y) =
1 − (1 − by)n

1 − a(1 − by)n φ2(x) =
bx

1 − a + abx
.
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Determining Fixed Points of F : Regions: b > (1 − a)/
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II
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Figure: The four regions determined by the partial fixed point
functions when b > (1 − a)/

√
n.

Analysis easy if b ≤ (1 − a)/
√

n; (0, 0) only fixed point.

Proof unique additional fixed point when b > (1 − a)/
√

n: concavity of
the partial fixed point curves and value of derivatives at origin.
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Convergence Case b ≤ (1−a)√
n

Theorem

Assume b < (1 − a)/
√

n. Then iterates of any point under
F converge to the trivial fixed point (0, 0).

Proved with MVT and an eigenvalue analysis of the
resulting matrix.

Lemma: Let a, b ∈ (0, 1) with b < (1 − a)/
√

n, and let
λ1 ≥ λ2 denote the eigenvalues of the matrix
(

aα nbβ
bγ aδ

)

, where α, β, γ, δ ∈ [0, 1]. Then

−1 < λ1, λ2 < 1.
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Proof

(0, 0) is the unique fixed point.
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Proof

(0, 0) is the unique fixed point.

c(t) = (1 − t)
(

0
0

)

+ t
(

x
y

)

, c′(t) =

(

x
y

)

, the line

connecting the trivial fixed point to
(

x
y

)

, with c(0) =
(

0
0

)

and c(1) =
(

x
y

)

.

43



Introduction Simulation and New Results Fixed Points and Proofs Proofs: b ≤ (1 − a)/
√

n Proofs: b > (1 − a)/
√

n

Proof

(0, 0) is the unique fixed point.

c(t) = (1 − t)
(

0
0

)

+ t
(

x
y

)

, c′(t) =

(

x
y

)

, the line

connecting the trivial fixed point to
(

x
y

)

, with c(0) =
(

0
0

)

and c(1) =
(

x
y

)

.

F(t) = f (c(t)) =

(

1 − (1 − atx)(1 − bty)n

1 − (1 − aty)(1 − btx)

)

.
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Proof

(0, 0) is the unique fixed point.

c(t) = (1 − t)
(

0
0

)

+ t
(

x
y

)

, c′(t) =

(

x
y

)

, the line

connecting the trivial fixed point to
(

x
y

)

, with c(0) =
(

0
0

)

and c(1) =
(

x
y

)

.

F(t) = f (c(t)) =

(

1 − (1 − atx)(1 − bty)n

1 − (1 − aty)(1 − btx)

)

.

F ′(t) =
(

a(1 − bty)n nb(1 − atx)(1 − bty)n−1

b(1 − aty) a(1 − btxu)

)(

x
y

)

.
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Proof (continued)

Apply the one-dimensional chain rule twice, once to the
x -coordinate function and once to the y -coordinate function.
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Proof (continued)

Apply the one-dimensional chain rule twice, once to the
x -coordinate function and once to the y -coordinate function.

Get t1 and t2 such that

f
((

x
y

))

− f
((

0
0

))

=

(

a(1 − bt1y)n nb(1 − at1x)(1 − bt1y)n−1

b(1 − at2y) a(1 − bt2x)

)(

x
y

)

.
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Proof (continued)

Apply the one-dimensional chain rule twice, once to the
x -coordinate function and once to the y -coordinate function.

Get t1 and t2 such that

f
((

x
y

))

− f
((

0
0

))

=

(

a(1 − bt1y)n nb(1 − at1x)(1 − bt1y)n−1

b(1 − at2y) a(1 − bt2x)

)(

x
y

)

.

We have a contraction map on a compact space, completing the proof.
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Proofs: b > (1 − a)/
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Recall
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Figure: The four regions determined by the partial fixed point
functions when b > (1 − a)/

√
n.
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Preliminary Results

Key lemmas (proofs by algebra):

Points in Region I strictly increase in x and y on
iteration by F , and points in Region III strictly
decrease in x and y on iteration.

Points in Region I iterate inside Region I under F , and
points in Region III iterate inside Region III under F .

All non-trivial points in Regions I and III converge to
the non-trivial fixed point under F .

Armed with the above lemmas, we now complete the
proof.
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Proof of Limiting Behavior

Consider any rectangle in [0, 1]2 whose lower left vertex is not
(0, 0).
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Proof of Limiting Behavior

Consider any rectangle in [0, 1]2 whose lower left vertex is not
(0, 0).

Assume the lower left and upper right vertices are in Regions I
and III.
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Proof of Limiting Behavior

Consider any rectangle in [0, 1]2 whose lower left vertex is not
(0, 0).

Assume the lower left and upper right vertices are in Regions I
and III.

Image of rectangle under F is strictly contained in rectangle
(image of the lower left (respectively, upper right) point has both
coordinates smaller (respectively, larger) than any other iterate).
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Proof of Limiting Behavior

Consider any rectangle in [0, 1]2 whose lower left vertex is not
(0, 0).

Assume the lower left and upper right vertices are in Regions I
and III.

Image of rectangle under F is strictly contained in rectangle
(image of the lower left (respectively, upper right) point has both
coordinates smaller (respectively, larger) than any other iterate).

As lower left and upper right vertices iterate to the non-trivial
fixed points (in Regions I and III), so too do all the other points in
rectangle.
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Behavior Conjectures

Corollary
The amount of time it takes for all points to converge is

the maximum of the time it takes
(

ǫ1

ǫ2

)

and
(

1
1

)

to

converge, for ǫ1, ǫ2 → 0.

Conjecture
Points in Region II and IV exhibit one of two behaviors,
dependent on a, b, n. Either:

1 All points in Region II iterate outside Region II and all
points in Region IV iterate outside Region IV ("flipping
behavior"), or

2 All points in Region II iterate outside Region IV and all
points in Region IV iterate outside Region II
("non-flipping behavior")56
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Conclusions and References

Can extend to Generalized Star Graphs.
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