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Introduction
°

Motivation and Questions

@ Epidemiology, networking, and other fields have
guestions concerning the spread of viruses.

@ Using a model for infection and cure rates, look for a
steady state or critical threshold relating two rates.

o If there is a steady state, what are the characteristics?

@ What other information can we get from this steady
state, provided it exists?

@ Generalizations?
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The Model (a=1—0, b =p)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Study special graphs: star graphs:
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Figure: Star graph with 1 central hub and n spokes.
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Introduction

The Model (a=1—0, b =p)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Or, a more entertaining view....
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The Model (a=1—0, b =p)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

With infection and cure rates....
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The Model (a=1—0, b =p)

A discrete-time SIS (Susceptible Infected Susceptible)
model. Each node is either Susceptible (S) or Infected (I).

Parameters

@ [: probability at any time step that an infected node infects its
neighbors.

@ J: probability at any time step that an infected node is cured.

@ 1-pit=(1-pit—1)Gt+0piiGit, Where ¢ ; is the probability
node i not infected by neighbors at time t.

@ G =[[uiPt-1(1=8)+(1—=pjt—1) =[] 1— Bpji-1, where
j ~imeansi and | are neighbors (share an edge).

@ 1-pit=(1-pit—1)Grt+0piiGit, Where ¢ is the probability
that node i is not infected by its neighbors at time t.
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System of Interest

@ In limit all spokes behave the same.

@ Label hub behavior at time t by x;, spokes by y;. Evolve by
(52) -+ ()
Yi+1 Yo )
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Simulation and New Results
°

Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 0 (point in upper right needed for display purposes)
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°

Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 1 (point in upper right needed for display purposes)
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Simulation and New Results
°

Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.
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Figure: t = 2 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 3 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 4 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 5 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 6 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 7 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 8 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 9 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 10 (point in upper right needed for display purposes)




Simulation and New Results
°

Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 11 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 12 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 13 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 14 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 15 (point in upper right needed for display purposes)




Simulation and New Results
°

Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 16 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 17 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 18 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 19 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 20 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 21 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 22 (point in upper right needed for display purposes)
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Simulation

Below is a plot of the dynamics fora = .4, b = .7 and
n=2.

Divide (x,y) space into a grid, each gridpoint a different
initial configuration, iterate.

Figure: t = 23 (point in upper right needed for display purposes)
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Main Result

Theorem (BG-TKMS '13)

Leta,b € (0,1) and F as above.

@ For any initial configuration, as time evolves all the
spokes converge to a common behavior.

@ If b < (1 — a)/+/n then the virus dies out.

@ If b > (1 — a)/+/n then all points except (0, 0) evolve
to a unique, non-trivial fixed point (¢, ys).
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Fixed Points and Proofs
[ ]

Determining Fixed Points of F: Partial Fixed Points

Goal is to find fixed points: F(x,y) = (X,Y).
Easier: look for partial fixed points:

F(x,y) = (x,y") or F(x,y)=(xy).




Fixed Points and Proofs
[ ]

Determining Fixed Points of F: Partial Fixed Points

Goal is to find fixed points: F(x,y) = (X,Y).
Easier: look for partial fixed points:

F(x,y) = (x,y") or F(x,y)=(xy).

Introduce functions ¢4, ¢, so that

o vy 3y’ stF(da(y),y) = (41(y),y').
@ VX X' st F(X, ¢2(X)) = (X', p2(X)).
Can explicitly solve for ¢4, ¢,.




Fixed Points and Proofs
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Determining Fixed Points of F: Partial Fixed Curves
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Partial fixed points from ¢; and ¢, when (from left to right)
b <72, b:l;ﬁa, b > Lﬁa (b=3,n=4a=.1, 47).
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Fixed Points and Proofs
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Determining Fixed Points of F: Regions: b > (1 —a)/v/n
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Figure: The four regions determined by the partial fixed point
functions when b > (1 —a)/v/n.

Analysis easy if b < (1 — a)/+/n; (0, 0) only fixed point.

Proof unique additional fixed point when b > (1 — a)/+/n: concavity of
the partial fixed point curves and value of derivatives at origin.




Proofs: b < (1 — a)/+/n

Proofs: b < (1 —a)/vn J
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Proofs: b < (1 — a)/+/n
°

(1-23)
Convergence Case b < V.

Assume b < (1 —a)/+/n. Then iterates of any point under
F converge to the trivial fixed point (0, 0).

Proved with MVT and an eigenvalue analysis of the
resulting matrix.

Lemma: Leta,b € (0,1) withb < (1 —a)//n, and let
A1 > A, denote the eigenvalues of the matrix

aa nb
( b~y a(sﬁ )’ where a, 5,7,0 € [0, 1]. Then

-1< /\1,/\2 < 1.

A




Proofs: b < (1 — a)/+/n
°

@ (0,0) is the unique fixed point.

A7




Proofs: b < (1 — a)/+/n
°

@ (0,0) is the unique fixed point.

° c(t) = (1t)<8)+t<; > c'(t) = (;),theline

connecting the trivial fixed point to ;(/ , with c(0) = 0 )

and c(1) = ( ;(/ )
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Proofs: b < (1 — a)/+/n
°

@ (0,0) is the unique fixed point.

° c(t) = (1t)<8)+t<; > c'(t) = (;),theline

connecting the trivial fixed point to ;(/ , with c(0) = 0 )

and c(1) = ( ;(/ )
1—(1-atx)(1— bty)"

@ F(t) = f(c(t)) = ( 1-(1—aty)(1—btx) )

A




Proofs: b < (1 — a)/+/n
°

@ (0,0) is the unique fixed point.

° c(t) = (1t)<8)+t<; > c'(t) = (;),theline

connecting the trivial fixed point to ;(/ , with c(0) = 0 )

and c(1) = ( ;(/ )

@ F(t) = f(c(t) = ( 11_,((1112;;))((11:?;); )

/ - a(1 — bty)n nb(]_ _ atx)(l _ bty)n*1
° ]:(t)_( b(1 —aty) a(1 — btxu) )(y )

AT




Proofs: b < (1 — a)/+/n
°

Proof (continued)

@ Apply the one-dimensional chain rule twice, once to the
x-coordinate function and once to the y-coordinate function.
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Proofs: b < (1 — a)/+/n
°

Proof (continued)

@ Apply the one-dimensional chain rule twice, once to the
x-coordinate function and once to the y-coordinate function.

@ Gett; and t, such that

() -((5))-

( a(1—by)" nb(1—atix)(1 — btay)"* ) ( y )
b(1 — aty a(1 — btyx) y )

A7




Proofs: b < (1 — a)/+/n
°

Proof (continued)

@ Apply the one-dimensional chain rule twice, once to the
x-coordinate function and once to the y-coordinate function.

@ Gett; and t, such that

f((i))-f(ﬂ(8>>=
(3B (- st )™ (),

@ We have a contraction map on a compact space, completing the proof.

A




Proofs: b > (1 — a)/+/n

Proofs: b > (1 —a)/v/n J
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Proofs: b > (1 — a)/+/n
[ ]

Preliminary Results

Recall

Figure: The four regions determined by the partial fixed point
functions when b > (1 —a)/y/n.




Proofs: b > (1 — a)/+/n
[ ]

Preliminary Results

Key lemmas (proofs by algebra):

@ Points in Region | strictly increase in x and y on
iteration by F, and points in Region Il strictly
decrease in x and y on iteration.

@ Points in Region | iterate inside Region | under F, and
points in Region Il iterate inside Region Il under F.

@ All non-trivial points in Regions | and Il converge to
the non-trivial fixed point under F.

Armed with the above lemmas, we now complete the
proof.




Proofs: b > (1 — a)/+/n
L o]

Proof of Limiting Behavior

@ Consider any rectangle in [0, 1]*> whose lower left vertex is not
(0,0).
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Proof of Limiting Behavior

@ Consider any rectangle in [0, 1]*> whose lower left vertex is not
(0,0).

@ Assume the lower left and upper right vertices are in Regions |
and Ill.




Proofs: b > (1 — a)/+/n
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Proof of Limiting Behavior

@ Consider any rectangle in [0, 1]*> whose lower left vertex is not
(0,0).

@ Assume the lower left and upper right vertices are in Regions |
and Ill.

@ Image of rectangle under F is strictly contained in rectangle
(image of the lower left (respectively, upper right) point has both
coordinates smaller (respectively, larger) than any other iterate).




Proofs: b > (1 — a)/+/n
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Proof of Limiting Behavior

@ Consider any rectangle in [0, 1]*> whose lower left vertex is not
(0,0).

@ Assume the lower left and upper right vertices are in Regions |
and Ill.

@ Image of rectangle under F is strictly contained in rectangle
(image of the lower left (respectively, upper right) point has both
coordinates smaller (respectively, larger) than any other iterate).

@ As lower left and upper right vertices iterate to the non-trivial
fixed points (in Regions | and IIl), so too do all the other points in
rectangle.




Proofs: b > (1 — a)/+/n
oe

Behavior Conjectures

Corollary

The amount of time it takes for all points to converge is

the maximum of the time it takes ( El ) and ( i ) to
2

converge, for e, e, — 0.

A\

Conjecture

Points in Region Il and IV exhibit one of two behaviors,
dependent on a, b, n. Either:

@ All points in Region Il iterate outside Region Il and all
points in Region IV iterate outside Region IV ("flipping
behavior"), or

@ All points in Region Il iterate outside Region IV and all
points in Region 1V iterate outside Region Il




Proofs: b > (1 — a)/+/n
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Conclusions and References

@ Can extend to Generalized Star Graphs.

@ Thealexa Becker, Alec Greaves-Tunnell, Leo
Kontorovich, Steven J. Miller and Karen Shen), Virus
Dynamics on Spoke and Star Graphs, the Journal of
Nonlinear Systems and Applications 4 (2013), no. 1,
53-63.
http://arxiv.org/pdf/1111. 0531.
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