
Chapter 2

Modern symmetric

encryption

2.1 Binary numbers and message streams

For all the classical ciphers covered in the previous chapter, we dealt with en-
cryption of messages over the standard English alphabet A, B, C, etc. Up to
some slight modifications for different languages (and possibly the inclusion of
punctuation), this was the alphabet of cryptography for thousands of years, well
into the 20th century.

In modern times, however, cryptography takes place almost entirely on com-
puters, and the internal ‘alphabet’ of computer systems is the binary number
system.

The familiar decimal number system we are all used to gets its name from
the fact that it is based on powers of 10. For example, given a number like 3,725,
each digit indicates increasing powers of 10, from right to left. The rightmost
digit is the 1’s place, the second rightmost digit is the 10’s place, the third
rightmost digit is the 100’s place, and the 4th rightmost digit is the 1000’s
place. Thus we have

3, 725 = 3 · 103 + 7 · 102 + 2 · 101 + 5 · 100.

There are 10 possible values for each digit (0 through 9), since larger digits
would be redundant (since, for example, 10 · 100 is the same as 1 · 101).

The binary number system, on the other hand, is based on powers of 2. For
example, the number 10011 in binary represents

1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 16 + 2 + 1 = 19

Rather than there being a 1’s place, 10’s place, 100’s place, and so on, there
is a 1’s place, a 2’s place, a 4’s place, etc.. The powers of 2 take the place of
the powers of 10. Moreover, in binary, we use only two possible values for each

55

56 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

digit, 0 and 1, since using any more would be redundant. (For example, even
the number 2 can be represented as 10 in binary).

If we want to represent a decimal number, say 35, in binary, we subtract the
largest power of 2 less than 35, which is 32, giving 3, and repeat. The largest
power of 2 less than 3 is 2, and subtraction gives us 1, which is itself a power
of 2. The binary representation has a 1 for each power of 2 subtracted in this
process: 100011 in this case, since we have a 1 in the 32’s place, the 2’s place,
and the 1’s place.

The fact that any number can be represented with just two distinct digit
values is what makes binary so attractive for use in computers, since two digit
types can be much more easily represented electronically (power on/power off,
magnetized/demagnetized, etc.) than can 10 different digit types.

Ex. 2.1.1. Determine which decimal number each of the following binary
numbers represents: 1011, 101, 100110, 111.

Ex. 2.1.2. Determine which decimal number each of the following binary
numbers represents: 11011, 1001, 10110, 1111.

Ex. 2.1.3. Determine which binary number each of the following decimal
numbers represents: 14, 29, 82, 4.

Ex. 2.1.4. Determine which binary number each of the following decimal
numbers represents: 33, 54, 59, 23.

Of course, for binary numbers to be useful to computers, there needs to
be ways to do arithmetic operations on them. It turns out that the ways you
learned to do arithmetic with decimal numbers carry over basically directly to
binary numbers. For example, consider the addition problem

10011
+101011

We can carry out the addition just like we would with decimal numbers, keeping
in mind that in binary, 1+1=10. Thus, for example, addition of the rightmost
digits results in a carry:

1

10011
+101011

0

Thus in the second-rightmost digit, the addition is 1+1+1, which is 11 in binary,
resulting in 1 and a carry of 1:

2.1.1.11,5,38,7

2.1.3.1110,11101,1010010,100

2.1. BINARY NUMBERS AND MESSAGE STREAMS 57

1 1

10011
+101011

10

The rest of the addition is shown below:

1 1

10011
+101011

111110

And we can check that we get the same answer through decimal arithmetic:
the binary number 10011 represents the decimal number 19, the binary num-
ber 101011 represents the binary number 43, and the binary number 111110
represents the decimal number 62, which is the sum of 19 and 43.

Ex. 2.1.5. Carry out the following binary arithmetic problems, by adapting
the standard methods for the equivalent decimal arithmetic problems. (You can
check your answers by converting to decimal numbers).

11001
+01011

101011
- 10011

101101
× 1101

Of course, computers need a way to convert between the binary used for
internal calculations and the human-readable character set presented to users.
This is done with a character encoding scheme, the most famous of which is
ASCII, which converts characters to 7 bit binary numbers (see Table 2.1. Newer
character-encoding schemes (e.g., UTF-8) allow the encoding of more characters
(accented characters, other non-English characters, special symbols, etc..)

For the purpose of doing cryptography with binary message streams, we
don’t need to be able to convert all the punctuation marks, and don’t need to
distinguish between upper- and lower-case letters. Thus we will use the con-
version given in Table 2.1, which maps characters to 5-bit binary strings. Note
that we have given a character assignment for all possible 5-bit binary number.
Using the Table, the string HELLO would become 0011100100010110101101110,
while the string 011011010101110 breaks up into 01101 10101 01110, giving NVO.

Ex. 2.1.6. Write HELLOCOMPUTER as a binary stream using Table 2.1.

Ex. 2.1.7. Convert the following to a string of letters using Table 2.1:
001110010001011010110111010010100111010000011001000110110011

2.1.1 The binary one-time pad

One can perform one-time pad encryption and decryption on binary message
streams. Assume we want to send the message HELP. This converts to the bi-
nary string 00111001000101101111. If we have generated the random keystream

58 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

Dec Char Binary

0 A 00000

1 B 00001

2 C 00010

3 D 00011

4 E 00100

5 F 00101

6 G 00110

7 H 00111

8 I 01000

9 J 01001

10 K 01010

11 L 01011

12 M 01100

13 N 01101

14 O 01110

15 P 01111

16 Q 10000

17 R 10001

18 S 10010

19 T 10011

20 U 10100

21 V 10101

22 W 10110

23 X 10111

24 Y 11000

25 Z 11001

26 . 11010

27 ! 11011

28 ? 11100

29 , 11101

30 / 11110

31 11111

Table 2.1: Binary/Character conversion table

2.1. BINARY NUMBERS AND MESSAGE STREAMS 59

Figure 2.1: An old ASCII code chart. The column determines the first three
binary digits, while the row determines the final four. Thus, for example, <
corresponds to 0111100

01010111111011010000 (and given a copy to the intended recipient of the mes-
sage) we can encrypt the message by adding it to the keystream. When we
were working with the alphabet, the addition was carried out modulo 26 for
each character. For binary streams, we will add each digit modulo 2. Note that
0 + 0 ≡ 0 (mod 2), 1 + 0 ≡ 1 (mod 2), and, finally, 1 + 1 ≡ 0 (mod 2). Thus
the encryption is given by:

00111001000101101111
⊕01010111111011010000

01101110111110111111

We indicate this bitwise addition modulo 2 by the symbol ⊕. (The operation is
also sometimes referred to as XOR1.) As discussed in the section on one-time
pads, producing random-seeming streams in a deterministic way is a difficult
problem. If we have a way of turning a small key into a large ‘random-seeming’
binary stream, then we can use such a method as a basis for an encryption

1XOR stands for eXclusive OR, since it returns 1 if the first digit is 1, OR the second digit
is 1, but not if both are 1.

60 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

method which XORs the stream and the binary message string—ciphers of
this type are called stream ciphers. In the next section, we we discuss Linear
Feedback Shift Registers as a way of producing apparently random streams from
short keys.

2.2 Linear Feedback Shift Registers

Imagine an office of imitators, who obsess about whether or not to wear hats to
work to satisfy social pressures. Jan thinks Alice is the coolest one in the office,
and wears a hat to work whenever Alice wore one the previous day. Albert
things Jan is the coolest person in the office, and so wears a hat whenever Jan
wore one on the previous day. Jeff thinks that Albert is totally awesome, and
so wears a hat whenever Albert wore on the previous day. Finally, Alice wears
a hat whenever either Jeff or Albert wore a hat on the previous day, but not if
they both did. (We will not explore the psychology behind such behavior.)

Let’s assume that on the first day of the new year, Albert wears a hat and
nobody else does. The following table shows how the days will progress in terms
of hat-wearing: (1 indicates that someone is wearing a hat on the given day; 0
indicates that they are not.)

day Alice Jan Albert Jeff
1 0 0 1 0
2 1 0 0 1
3 1 1 0 0
4 0 1 1 0
5 1 0 1 1
6 0 1 0 1
7 1 0 1 0
8 1 1 0 1
9 1 1 1 0
10 1 1 1 1
11 0 1 1 1
12 0 0 1 1

Consider now the perspective of Jeff’s lunch buddy Bobby, who never sees Alice,
Jan, and Albert, and does not know about the dedicated attempts being made
at imitation. Bobby notices that Jeff sometimes wears a hat and sometimes
doesn’t, but he knows nothing about how the decision is made for a particular
day. In fact, to Bobby, the sequence 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, . . . indicating
when Jeff decides to wear a hat (the rightmost column in the above table)
might appear to be random. In spite of this appearance, we know that there
was actually no randomness involved in the production of this sequence; instead,
it was produced by the deterministic imitations of Jeff and his coworkers.

Linear Feedback Shift Registers can be used to build ‘random-seeming’ se-
quences in the same way that Jeff’s hat-wearing sequence was produced. Con-

2.2. LINEAR FEEDBACK SHIFT REGISTERS 61

sider, for example, the following ‘transition rules’:

b3 ← b′
4

b2 ← b′
3

b1 ← b′
2

b4 ← b′
1

+ b′
2

(2.1)

These rules tell us how to transform one 4-bit string into another. By conven-
tion, the indices are written right-to left. Thus, for example, the string 1011
might correspond to the assignment b′

4
= 1, b′

3
= 0, b′

2
= 1, and b′

1
= 1. Trans-

forming this string according to the rules given above produces the sequence
0101 (corresponding to b4 = 0, b3 = 1, b2 = 0, and b1 = 1).

In fact, these rules represent the rules of imitation practiced by Jeff and his
coworkers. In this case, b4, b3, b2, b1 are the variables indicating whether Alice,
Jan, Albert, and Jeff, respectively, wear hats on a given day. The transition
rule b2 ← b′

3
, for example, implies that Albert wears a hat whenever Jan did

the day before. Notice the last transition rule b4 ← b′
1

+ b′
2
: adding the bits b′

1

and b′
2

modulo 2 gives 1 whenever exactly one of them is 1, but not both. Thus
b4 ← b′

1
+ b′

2
is exactly Alice’s hat-wearing rule: she wears a hat whenever Jeff

or Albert—but not both—wore one the day before.

In general, a Linear Feedback Shift Register (LFSR) can be specified by a
single formula like

b4 ← b′
1

+ b′
2

This formula tells us that the register has 4-bits. It is understood that the three
unspecified rules are the rules b3 ← b′

4
, b2 ← b′

3
, and b1 ← b′

2
. Similarly, the

LFSR specified by the rule

b5 ← b′
1

+ b′
2

+ b′
4

is a 5-bit LFSR whose complete transition rules are

b4 ← b′
5

b3 ← b′
4

b2 ← b′
3

b1 ← b′
2

b5 ← b′
1

+ b′
2

+ b′
4

The table of output values can be filled out beginning with a seed, which is just
an initial condition for the register. For example, if we seed this 5-bit register

62 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

with the string 10110, the output will begin with:

b5 b4 b3 b2 b1

1 1 0 1 1 0
2 1 1 0 1 1
3 1 1 1 0 1
4 0 1 1 1 0
5 0 0 1 1 1
6 0 0 0 1 1
7 0 0 0 0 1
8 1 0 0 0 0
9 1 1 0 0 0
10 1 1 1 0 0
11 1 1 1 1 0
...

...
...

...
...

...

The output stream of any LFSR is taken to be the sequence of states of the bit
b1; for the 5-bit sequence whose table of states is shown above, this sequence
would be 01101110000 LFSR’s are very commonly used as part of schemes
to generate ‘pseudo-random’ streams of bits because they are very easy to im-
plement in hardware very easily. In spite of the fact that they produce streams
that seem very random, the only operations involved in producing the streams
are simple bitwise addition, which can performed very efficiently even on very
simple computer chips.

The output of an LFSR can be used for the keystream of a stream cipher.
For example, lets encrypt the message HELP with the output from the LFSR
specified by b4 ← b′

1
+ b′

2
+ b′

4
and seeded with the string 0110. The first step is

to use Table 2.1 to translate the message HELP into the binary message stream
00111001000101101111. Next, we compute the output stream of the LFSR with
the given stream. Here is the table of output states:

b4 b3 b2 b1

1 0 1 1 0
2 1 0 1 1
3 1 1 0 1
4 0 1 1 0
5 1 0 1 1
6 1 1 0 1
7 0 1 1 0
8 1 0 1 1
9 1 1 0 1
10 0 1 1 0
11 1 0 1 1
...

...
...

...
...

2.2. LINEAR FEEDBACK SHIFT REGISTERS 63

The output sequence (the b1 column) appears to be repeating: 011011011
And indeed, we can see that the 7th state of the register is the same as the
first state; thus, the 8th state will be the same as the second state, the 9th the
same as the third state, and so on. Thus we do not need to continue filling
out the table to produce a long keystream; we can infer that the output will be
011011011011011

To encrypt the binary message stream, we add it digit by digit to the
keystream modulo 2:

00111001000101101111
⊕01101101101101101101

01010100101000000010

We can convert this back to characters using Table 2.1 to get the ciphertext
KSQC. The recipient, knowing the LFSR register and seed used, would convert
this ciphertext back into binary, find the keystream using the LFSR, and sub-
tract the keystream from the binary ciphertext modulo 2 to get the binary
message stream (which is then converted back to characters using Table 2.1.
Note that, in fact, subtracting modulo 2 is the same as adding! For example,
1−1 ≡ 0 (mod 2), but also 1+1 ≡ 0 (mod 2). This means that the decryption
operation is actually just adding the keystream to the binary ciphertext, and so
is the same as the encryption operation. The decryption for our message would
look like this:

K S Q C

01010100101000000010
⊕01101101101101101101

00111001000101101111
H E L P

Ex. 2.2.1. Encrypt the message HI using a stream cipher using the LFSR given
by b4 ← b′

3
+ b′

1
and seeded with 1011.

Ex. 2.2.2. Encrypt the message BLUE using a stream cipher using the LFSR
given by b5 ← b′

4
+ b′

1
and seeded with 11011.

Ex. 2.2.3. Decrypt the message ?SY, which was encrypted using a stream
cipher with a keystream produced by the LFSR with formula b4← b′

3
+ b′

1
and

seed 0110.

Recall that in the example above where HELP was encrypted to KSQC, the
keystream produced by the LFSR being used eventually repeated. In fact this
will always happen eventually, no matter what LFSR is used and no matter the
seed. This is simply because there is a finite number of possible states for the
LFSR. For example, consider the 3-bit LFSR register given by b3 ← b′

2
+ b′

1
,

2.2.1.?R

64 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

seeded with the string 101. The table of states begins with:

b3 b2 b1

1 1 0 1
...

...
...

...

There are only finitely many possible states (in fact, only 8: 111, 110, 101, 100,
011, 010, 001, 000), thus, eventually, some state will have to be repeated as we
fill out the table2 Once that happens, the table will repeat that section over
and over again, since the next row of the table is completely determined by the
previous row. The same thing will happen for any LFSR, although for more
bits there are more possibilities.

Ex. 2.2.4. What is the longest possible period of repetition of a 4-bit LFSR
register? Of a 5-bit LFSR register? Of an n-bit LFSR register? (Be sure to
read footnote 2.)

It should be noted that, while LFSR streams ‘seem’ random, they are not
really random at all. For one thing, as already noticed, they eventually will just
repeat over and over again. For another, it turns out that given enough of an
LFSR stream, it is possible to figure out the rest of it. This is crucial for the
application of LFSR’s to cryptography, as we will see shortly.

Known-plaintext attack on LFSR stream ciphers

Suppose we have intercepted the message WIMSUJ, encrypted with an LFSR
stream cipher. As is often the case with LFSRs in cryptographic settings, we
assume the formula for the LFSR is public knowledge3 (in this case, b4 ←

b′
4

+ b′
1
), and that only the seed is kept secret as the key. To mount a known-

plaintext attack on the stream cipher, we need to have some known plaintext.
In this case, we know that the intercepted message is a name, and, in particular,
begins with the letters MR.

This allows us to discover the beginning of the keystream used for en-
cryption as follows: The message WIMSUJ corresponds to the binary stream
1011001000 . . . , while the letters MR correspond to 0110010001 in binary. By
subtracting the second string from the first modulo 2, we can get the beginning
of the keystream used for encryption. Since subtraction and addition are the
same modulo 2, we are just adding the two strings modulo 2:

1011001000
⊕0110010001

1101011001

2In fact, the all zero state 000 can never arise, unless the register eventually outputs all
0s and so has a period of repetition of 1. This means that, for a 3 bit register, the longest
possible period of repetition is 7.

3this is often the case because the LFSR formula is hardcoded (built-into) the hardware
used for encryption, and cannot be changed as part of the key.

2.2. LINEAR FEEDBACK SHIFT REGISTERS 65

The result must be the beginning of the keystream used for encryption, thus we
know that this string forms the beginning of the right-hand column of the table
of LFSR states:

b4 b3 b2 b1

1 1

2 1

3 0

4 1

5 0

6 1

7 1

8 0

9 0

10 1

11

12

To decrypt more of the ciphertext, we need to be able to fill in more of the b1

column; but to do this, we need to know the other missing bits in the table.
But we can figure out many of these bits from what we know about the right
and column! For example, the fact that the b1 = 1 in the second state means
that b2 = 1 in the first state (because of the transition rule b1 ← b2), as we have
indicated in table below on the left:

b4 b3 b2 b1

1 1 1

2 1

3 0

4 1

5 0

6 1

7 1

8 0

9 0

10 1

b4 b3 b2 b1

1 0 1 1

2 0 1

3 0

4 1

5 0

6 1

7 1

8 0

9 0

10 1

Similarly, the fact that b1 = 0 in the 3rd state means that b2 = 0 in the second
state, and, moreover, that b3 = 0 in the first state, as we have indicated in the
table above on the right. Continuing in this way, we can fill in much more of
the table:

b4 b3 b2 b1

1 1 0 1 1

2 0 1 0 1

3 1 0 1 0

4 1 1 0 1

5 0 1 1 0

6 0 0 1 1

7 1 0 0 1

8 1 0 0

9 1 0

10 1

66 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

At this point, we can start working down the table from the transition rules (in
this case, b1 ← b′

2
, b2 ← b′

3
, b3 ← b′

4
, and b4 ← b4 ⊕ b1). For example, the 8th

state of the bit b4 is given by 1 ⊕ 1, which is 0. This, in turn, is then the 9th
state of the bit b3, the 10th state of the bit b2, and the 11th state of the bit b1:

b4 b3 b2 b1

1 1 0 1 1

2 0 1 0 1

3 1 0 1 0

4 1 1 0 1

5 0 1 1 0

6 0 0 1 1

7 1 0 0 1

8 0 1 0 0

9 0 1 0

10 0 1

11 0

And now we can fill in the 9th state of the bit b4, and so on. Continuing in this
manner we produce:

b4 b3 b2 b1

1 1 0 1 1

2 0 1 0 1

3 1 0 1 0

4 1 1 0 1

5 0 1 1 0

6 0 0 1 1

7 1 0 0 1

8 0 1 0 0

9 0 0 1 0

10 0 0 0 1

11 1 0 0 0

12 1 1 0 0

13 1 1 1 0

14 1 1 1 1

15 0 1 1 1

16 1 0 1 1

17 1 0 1

18 1 0

19 1

Since the entire message we are trying to decrypt consists of 6 characters, and so
corresponds to a binary string of length 30, we need the first 30 bits of output to
decrypt the stream. We can stop filling in the table at this point since we have
encountered a repeated state: The 16th state in the above table is the same as
the first states. This means that the first 15 digits of the output stream from
this LFSR repeat over and over again, giving an output stream of

110101100100011 110101100100011 110101100100011 . . .

Subtracting (adding) this to the binary ciphertext string gives:

2.3. LFSRSUM 67

W I M S U J

101100100001100100101010001001
⊕110101100100011110101100100011

011001000101111010000110101010
M R P I N K

And we have found the plaintext, MRPINK. As we have seen, with even just a
tiny amount of known-plaintext, a stream cipher based on a single LFSR can be
completely broken by a known plaintext attack—the problem, roughly speaking,
was that it is to easy to work backwards from a given part of an output stream
and determine previously unknown states of the registers. Nevertheless, the
simplicity of LFSR’s make them very attractive for many forms of cryptography,
especially in cases where the encryption or decryption is to be carried out by a
dedicated hardware device, and thus there are sophisticated ways of designing
stream ciphers which make use of LFSR’s, but try to overcome their weakness
towards known-plaintext attacks. We cover one such type of cipher in the next
section.

Ex. 2.2.5. The message .ZYHM.! was encrypted with a LFSR stream cipher
which uses the formula b4 ← b′

4
+ b′

1
. Knowing that the message begins with

the letters ‘Mr’, determine the key and decrypt the message.

Ex. 2.2.6. The message /YWTCQ! was encrypted with a LFSR stream cipher
which uses the formula b4 ← b′

4
+ b′

2
+ b′

1
. Knowing that the message begins

with the letters ‘Mr’, determine the key and decrypt the message.

2.3 LFSRsum

We’ve already seen that encryption schemes based on a single LFSR are quite
insecure against known-plaintext attacks, and can be easily broken once we
know a little of the plaintext.

By combining multiple LFSR’s, however, we can attempt to create a system
which is more resilient to plaintext attacks. As a first example of this, we
will consider a scheme, which we call LFSRsum, which forms an encryption
keystream as the modulo-2 sum of two different LFSR output streams.

The LFSRsum system uses a 3-bit LFSR and a 5-bit LFSR in tandem to
create a single ‘pseudorandom’ stream. The 3-bit output stream is defined by
the formula b3 = b′

2
+ b′

1
, while the 5-bit LFSR is defined by b5 = b′

4
+ b′

2
+ b′

1
.

We will refer to these registers by LFSR-3 and LFSR-5, respectively.

For example, if we seed LFSR-3 and LFSR-5 with the strings 011 and 10101,

68 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

respectively, their output is:

b3 b2 b1

0 1 1
0 0 1
1 0 0
0 1 0
1 0 1
1 1 0
1 1 1

b5 b4 b3 b2 b1

1 0 1 0 1
1 1 0 1 0
0 1 1 0 1
0 0 1 1 0
1 0 0 1 1
0 1 0 0 1
0 0 1 0 0

The LFSRsum system works by simply adding these two streams together mod-
ulo 2 to form a keystream, which is then added (modulo 2) to the binary message
stream to encrypt it. For example, to encrypt the message Y using the seeds
given above, the encryption stream used would be

11001
⊕10101

01100

This is then added to the plaintext to encrypt:

Y

11000
⊕01100

10100
U

The key for the LFSRsum cipher consists of 6 binary digits. The first 2 digits
give the first two digits of the seed for the LFSR-3 register, and the last 4 digits
of the key give the first 4 digits of the LFSR-4 register seed. The last digit of
the seed for each register is always 1: this means that no matter what key we
choose, the registers will never get set to all-0’s. Notice that for the example
above, the key was 011010.

Ex. 2.3.1. Encrypt the message HELLO using the LFSRsum cipher, using
001100 as a key.

Just like with single LFSR streams, the decryption operation is exactly the

same as the encryption operation, since adding is the same as subtracting.

Ex. 2.3.2. Decrypt the message DTQRZ Y which was encrypted with the LF-
SRsum cipher using the key 001110.

At first glance, this new scheme might seem secure against a known plaintext
attack. Assume, for example, that using a known plaintext we have discovered
that the beginning of an encryption stream produced by the LFSRsum system
using some unknown key is 011110011. Can we figure out the key used, and
calculate more of the decryption stream? It seems like we can’t since, for exam-
ple, the fact that the first digit of this keytream is a 1 could reflect the fact that

2.3. LFSRSUM 69

the first digit of the LFSR-3 output stream is a 1, or it could reflect the fact
that the first digit of the LFSR-5 output stream is a 1, and it does not seem
that there is any way we can figure out which of these possibilities is correct.
In fact, however, we can completely figure out how each register contributed to
the encryption stream by solving a system of equations.

Since the 6-bit key used to produce the encryption stream 011110011 is
unknown to us, let’s represent it with the 6 variables k1k2k3k4k5k6, each either
a 0 or a 1. The LFSR registers used for the LFSRsum cipher are initialized with
these bits:

b3 b2 b1

k1 k2 1
...

...
...

b5 b4 b3 b2 b1

k3 k4 k5 k6 1
...

...
...

...
...

In spite of the fact that we don’t know the values of these seed bits, we can
nevertheless use the transition rules of the LFSR-3 and LFSR-5 registers to
fill in subsequent rows of the tables. Note that modulo 2, we have 1 + 1 ≡ 0
(mod 2), but also, for example, k2+k2 ≡ 2 ·k2 ≡ 0 (mod 2). Thus, for example,
in the LFSR-3 table below, the 5th state of the bit b3 is simplified to 1 + k1

from (1 + k2) + (k2 + k1):

b3 b2 b1

k1 k2 1
1 + k2 k1 k2

k2 + k1 1 + k2 k1

k1 + 1 + k2 k2 + k1 1 + k2

1 + k1 k1 + 1 + k2 k1 + k2

1 1 + k1 k1 + 1 + k2

k2 1 1 + k1

k1 k2 1
... k1 k2

...
... k1

b5 b4 b3 b2 b1

k3 k4 k5 k6 1
1 + k6 + k4 k3 k4 k5 k6

k6 + k5 + k3 1 + k6 + k4 k3 k4 k5

1 + k5 + k6 k6 + k5 + k3 1 + k6 + k4 k3 k4

k4 + k5 + k6 1 + k5 + k6 k6 + k5 + k3 1 + k6 + k4 k3

k3 + k4 + k5 k4 + k5 + k6 1 + k5 + k6 k6 + k5 + k3 1 + k6 + k4

... k3 + k4 + k5 k4 + k5 + k6 1 + k5 + k6 k6 + k5 + k3

...
... k3 + k4 + k5 k4 + k5 + k6 1 + k5 + k6

...
...

... k3 + k4 + k5 k4 + k5 + k6

...
...

...
... k3 + k4 + k5

70 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

Thus we know that, in terms of the key bits k1, k2, k3, k4, k5, k6, the keytream
generated by the LFSRsum cipher should be the (modulo 2) sum of the two
output streams found above; namely, (1 + 1), (k2 + k6), (k1 + k5), (1 + k2 + k4),
(k1 + k2 + k3), (k1 + 1 + k2 + 1 + k6 + k4), (1 + k1 + k6 + k5 + k4), On the
other hand, we know (from a known-plaintext attack) that the actual encryption
stream is 0111100. This allows us to set up a system of congruences. For
example, we know from the tables that the first digit of the encryption stream
should be congruent to 1 + 1 (mod 2), and from the known-plaintext attack
that it should be 0. This isn’t really helpful since it is true regardless of the
assignment of variables. For the second digit of the encryption stream, on the
other hand, the tables give that the value should be k2 + k6 (modulo 2), while
the known plaintext attack tells us the digit should be 1. This allows us to setup
the congruence

k2 + k6 ≡ 1 (mod 2).

In fact, we can setup such a congruence for each digit of the encryption stream
that we know: for the third digit, we get k1 + k5 ≡ 1 (mod 2); for the fourth,
we get 1 + k2 + k4 ≡ 1 (mod 2). Continuing in this fashion, we will obtain the
system

k2 + k6 ≡ 1 (mod 2)
k1 + k5 ≡ 1 (mod 2)

1 + k2 + k4 ≡ 1 (mod 2)
k1 + k2 + k3 ≡ 1 (mod 2)

k1 + k2 + k6 + k4 ≡ 0 (mod 2)
1 + k1 + k6 + k5 + k3 ≡ 0 (mod 2)

(2.2)

At this point, we have six unknowns and six congruences, so we can try solving
the system. This looks daunting at first, but it is really not that bad! Let’s
begin by reordering the variables in each congruence:

k2 + k6 ≡ 1 (mod 2)
k1 + k5 ≡ 1 (mod 2)

+ k2 + k4 ≡ 0 (mod 2)
k1 + k2 + k3 ≡ 1 (mod 2)
k1 + k2 + k4 k6 ≡ 0 (mod 2)
k1 + k3 + k5 + k6 ≡ 1 (mod 2)

(2.3)

(Note that in the third and sixth congruence, 1 has been added to both sides so
that only variables remain and the lefthand sides.) The system can be solved
very efficiently by adding congruences. For example, adding the 1st, 2nd, and
6th congruences modulo 2 gives:

k2 + k6 ≡ 1 (mod 2)
k2 + k6 ≡ 1 (mod 2)

+ k1 + k3 + k5 + k6 ≡ 1 (mod 2)
k5 ≡ 1 (mod 2)

(2.4)

And we have found that
k5 ≡ 1 (mod 2). (2.5)

2.3. LFSRSUM 71

Adding this congruence to the second congruence from line (2.3) gives

k1 ≡ 0 (mod 2). (2.6)

Adding the 1st, 2nd, 3rd, and 5th congruences from (2.3) gives

k2 + k6 ≡ 1 (mod 2)
k1 + k5 ≡ 1 (mod 2)

k2 + k4 ≡ 0 (mod 2)
+ k1 + k2 + k4 k6 ≡ 0 (mod 2)

k2 + k5 ≡ 0 (mod 2)

(2.7)

and adding the result to the congruence in (2.5) gives that

k2 ≡ 1 (mod 2). (2.8)

Adding (2.8) to the first congruence from (2.3) gives

k6 ≡ 0 (mod 2), (2.9)

and adding (2.8) to the third congruence from (2.3) gives

k4 ≡ 1 (mod 2), (2.10)

Finally, adding (2.6) and (2.8) to the fourth congruence from (2.3) gives

k3 ≡ 0 (mod 2), . (2.11)

We have thus been able to complete figure out the key, namely, 010110. With
this information, we could figure out the rest of the LFSR encryption stream
and decrypt the message.

Ex. 2.3.3. The message FCJUWRMX was encrypted with the LFSRsum cipher.

(a) The first two letters of the plaintext are ‘Mr’. Use this information to
determine the first 10 digits of the binary stream used for encryption.

(b) Using the binary digits found in part (a), mount a known plaintext attack on
the LFSRsum cipher to determine the key used for encryption, and decrypt
the rest of the message. Hint: The equations you need to solve to break the
cipher are exactly the same as those in in line (2.3), except for the 0s and 1s
on the righthand side of each. This means also that the same combinations
of congruences can be summed to solve for the separate variables!

Congruences (and equations) in which variables are never multiplied by each
other (only added or subtracted) are called linear. (For example, y − 3x = 0 is
a linear equation, since x is not multiplied by y). Note that the congruences we
needed to solve to break LFSRsum system were all linear. It turns out that this
can always be done efficiently. Even though it seemed like there was a bit of trial
and error involved in solving the congruences in the above example (for example,

72 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

in deciding which congruences to add together), the process can be carried out
by the method of Gaussian elimination, which we will not cover here, but which
is a systematic way of carrying out the appropriate additions/subtractions of
congruences to reach a solution. It turns out that linear systems can be solved
quickly even when there are lots and lots of congruences; a computer could solve
a linear system containing millions of congruences (and variables) in a matter
a seconds. This means that even if LFSRsum was modified to use gigantic
LFSRs, (and thus take a gigantic key), it would still not be secure against
known-plaintext attacks. For nonlinear systems of congruences, however, there
is no good general method of solving systems of equations, suggesting that to
make a secure cipher based on LFSRs, we need to introduce some ‘nonlinearity’
to prevent known-plaintext attacks like the one shown above.

2.4 BabyCSS

BabyCSS is in many ways similar to LFSRsum. It uses the same LFSR-3 and
LFSR-5 registers (given by the formulas b3 ← b′

2
+ b′

1
and b5 ← b′

4
+ b′

2
+ b′

1
,

respectively), and again uses a 6 bit key, whose first two bits give the first two
bits of the LFSR-3 seed, and whose final four bits give the first four bits of the
LFSR-5 seed (ss for the LFSRsum system, the last seed-bit of each register is
1).

Instead of adding the two LFSR output streams bitwise modulo-2, BabyCSS
combines the two streams in blocks of 5 bits through addition with carrying. To
see how this works, let’s see how to encrypt the message HI with the BabyCSS
cipher using the key 011010 (the same used in the first example in the LFSRsum
section.) Since the binary message stream for HI has 10 digits, we need to
compute 10 digits of the BabyCSS encryption stream. The output tables of the
LFSR-3 and LFSR-5 registers are:

b3 b2 b1

0 1 1
0 0 1
1 0 0
0 1 0
1 0 1
1 1 0
1 1 1
0 1 1
0 0 1
1 0 0

b5 b4 b3 b2 b1

1 0 1 0 1
1 1 0 1 0
0 1 1 0 1
0 0 1 1 0
1 0 0 1 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0

We add the streams in blocks of 5 with carrying (as opposed to bitwise modulo
2 as was done for LFSRsum). For example, adding the first 5 bits of each output
stream gives:

2.4. BABYCSS 73

1 1

1 1 0 0 1
+ 1 0 1 0 1

0 1 1 1 0

The resulting bits 01110 will form the first 5 output bits of the encryption
stream. Notice that there was an ‘extra’ carry digit (circled above). Instead of
becoming a sixth digit in the sum, we carry this digit over to the next addition
problem. Thus, adding the next 5 digits gives:

1 1 1 1 1

0 1 1 1 0
+ 1 0 0 1 0

0 0 0 0 1

There is again an extra carry digit. Since we do not need to compute any more
digits of the encryption stream, the extra carry digit from this addition is simply
discarded.

HI corresponds to the binary message stream 0011101000. The encryption
stream found through the additions above is 0111000001. Encryption works by
adding these streams modulo 2:

H I

0011101000
⊕0111000001

0100101001
J J

Note that in spite of the fact that BabyCSS uses addition with carrying in
blocks of 5 to produce its encryption stream, the resulting stream is still added
to the message modulo 2 for encryption, and thus, like other stream ciphers in
the same mold, encryption and decryption are still exactly the same operation.
Adding the encryption stream to the encrypted message recovers the plaintext,
since addition and subtraction are the same modulo 2:

J J

0100101001
⊕0111000001

0011101000
H I

Ex. 2.4.1. Encrypt the message BLUE with the BabyCSS cipher using the key
110011.

The value of carrying

Recall that the LFSRsum system can be completely broken by a known plaintext
attack by solving a system of linear equations. In this section, we will see why
BabyCSS does not suffer the same weakness. As for the LFSRsum cipher, the

74 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

output tables of the LFSR-3 and LFSR-5 registers under a key k1k2k3k4k5k6

are:

b3 b2 b1

k1 k2 1
1 + k2 k1 k2

k2 + k1 1 + k2 k1

k1 + 1 + k2 k2 + k1 1 + k2

1 + k1 k1 + 1 + k2 k1 + k2

1 1 + k1 k1 + 1 + k2

...
...

...

b5 b4 b3 b2 b1

k3 k4 k5 k6 1
1 + k6 + k4 k3 k4 k5 k6

k6 + k5 + k3 1 + k6 + k4 k3 k4 k5

1 + k5 + k6 k6 + k5 + k3 1 + k6 + k4 k3 k4

k4 + k5 + k6 1 + k5 + k6 k6 + k5 + k3 1 + k6 + k4 k3

k3 + k4 + k5 k4 + k5 + k6 1 + k5 + k6 k6 + k5 + k3 1 + k6 + k4

...
...

...
...

...

Suppose we know from a known-plaintext attack that the first 5 bits of a
BabyCSS encryption stream is 01000. Let’s form a system of what congru-
ences can we form from this information? We know that the 5th bit of the
stream is the sum of the 5th output bits from each of the registers: this gives
the congruence

k1 + k2 + k3 ≡ 0 (mod 2).

So far so good. But now it gets tricky: the fourth bit of the output stream
is the sum of the fourth output bit from each of the registers, plus any carry
bit from the 5th digit. There is a carry digit resulting from two single binary
digits exactly whenever they are both one. Similarly, the product of two single
binary digits is 1 exactly whenever they are both one. Thus, we can represent
the value of the carry digit (1 or 0) from the 5th bits as the product of those
bits: (k1 + k2) · k3. The fourth bit of the encryption stream is thus given as
the sum of this carry bit with the fourth output bits from each of the registers,
giving the congruence

(k1 + k2) · k3 + 1 + k1 + k4 ≡ 0.

Note that this congruence is not linear, since it involves multiplication of vari-
ables. Subsequent congruences will be even more complicated. The fact that
the congruences can not be represented with addition alone means that the
congruences can not be efficiently solved through Gaussian elimination, so that
BabyCSS does not suffer the same weakness as LFSRsum.

2.4. BABYCSS 75

Breaking BabyCSS

The LFSRsum cipher could be completely broken by a known-plaintext attack,
in the sense that an attacker that knows some corresponding plaintext and
ciphertext (and so can figure out some of the encryption stream) can quickly
deduce the key used quickly and without any guesswork, allowing her to decrypt
the rest of the message.

The BabyCSS cipher is not as susceptible to a known-plaintext attack: we
have seen that the congruences that would need to be solved to directly deduce
the key used to produce a given encryption stream are nonlinear, indicating that
there is not likely an efficient way to solve them.

Nevertheless, a known-plaintext attack is still quite effective against the
BabyCSS cipher. Note that the BabyCSS cipher has 26 = 64 possible keys,
thus a brute-force attack on the cipher would require at most 64 guesses to
break the cipher. It turns out that a known-plaintext attack can break the
cipher using at most 4 guesses!

To see how this works, suppose we have intercepted the message

FPSM/ U

which was encrypted with the BabyBlock cipher using an unknown key. We
know the message contains the name of a double agent, and believe it begins
with the letters MR. Since BabyCSS encrypts binary message streams by adding
them to the BabyCSS encryption stream modulo 2, we can find the beginning
of the BabyCSS encryption stream by computing

0010101111 (FP)
⊕0110010001 (MR)

0100111110

We have already seen that knowing part of the encryption stream is not enough
to work backwards to find the seeds of the registers by solving a system of linear
congruences.

Imagine, however, that someone tells us that the LFSR-3 register used for
this BabyCSS encryption was seeded with 001 (in other words, they have told us
that the first two bits of the BabyCSS key are 00). Never mind for the moment
how they might know this.

76 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

In that case, we know can compute the output table of the LFSR-3 register:

b3 b2 b1

0 0 1
1 0 0
0 1 0
1 0 1
1 1 0
1 1 1
0 1 1
0 0 1
1 0 0
0 1 0

So far, we know that the BabyCSS encryption stream begins with 0100111110,
while the LFSR-3 output begins with 1001011100. From these two pieces of
information, can we figure out the LFSR-5 output stream? It turns out we
can! Since the BabyCSS encryption stream is formed by adding the LFSR-3
and LFSR-5 output streams (in blocks of 5 with carrying), the LFSR-5 out-
put stream can be found by subtracting the LFSR-3 output stream from the
BabyCSS stream (in blocks of 5 with borrowing). We arrange the two streams
into blocks of 5:

01001 11110
10010 11100

and subtract the blocks, starting with the leftmost one:

0 1
10 1/ 0/10 1

− 1 0 0 1 0
1 0 1 1 1

Note that there was an ‘extra borrow’ from the leftmost digit of the problem;
this is borrowed from the rightmost digit of the next block of 5:

0 0 0 1
11 1/ 1/ 1/ 0/

− 1 0 0 1 0
0 0 0 0 1

Thus we have found that the LFSR-5 output stream begins with 1011100001.

2.5. BABYBLOCK 77

We can thus fill in the righthand column of the LFSR-5 output table:

b5b4b3b2 b1

1 1 1 0 1
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
1 0 0 0 0

1 0 0 0
1 0 0

1 0
1

And thus we have found that the seed for the LFSR-5 register was 11101! Thus
the BabyCSS key used was 001110.

Ex. 2.4.2. Decrypt the rest of the intercepted message.

As seen above, we can break the BabyCSS cipher with a known plaintext
attack if we know the seed of the LFSR-3 cipher. What if we don’t know
the seed? Guess at it! There are only 4 possible seeds for the LFSR-3 cipher
(001, 011, 101, 111). By trying each one, we can see which one gives a sensible
decryption. (In fact, improper guesses should usually be able to ruled out based
on whether or not the resulting LFSR-5 output table is consistent with the
transition rules.)

Ex. 2.4.3. You are trying to break a message which was encrypted with the
BabyCSS cipher. The ciphertext is DXMP, and you know that the plaintext
begins with MR.

(a) What does the encryption stream begin with (first 7 digits)?

(b) If you guess that the LFSR-3 register is seeded with 111, what does this
mean the LFSR-5 output stream was?

(c) What was the LFSR-5 output stream seeded with?

(d) What was the key?

(e) Decrypt the rest of the message.

Ex. 2.4.4. In the known-plaintext example carried out in this section, we had
10 bits of known plaintext (the 10 bits corresponding to the known characters
MR). Would the same attack work if we just knew 8 of the plaintext bits? What
about 4 of the plaintext bits? What is the minimum number of known bits
necessary for the known-plaintext attack described in this section to work?

78 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

Block

0 0 1 1

Muddled Block

0 1 1 1

key

1 1 1 0

S-Box

S-box
last bits of block
00 01 10 11

k
ey

0000 10 10 00 11
0001 00 11 10 00
0010 00 10 01 00
0011 01 00 11 11
0100 11 00 10 01
0101 10 11 01 10
0110 11 01 11 10
0111 10 01 00 01
1000 00 01 11 10
1001 01 00 01 11
1010 11 11 00 00
1011 11 10 01 01
1100 01 11 10 10
1101 00 01 11 00
1110 10 00 00 01
1111 01 10 10 11

Figure 2.2: The muddling of block 0011 when the key is 1110. the ⊕’s mean
addition modulo 2. The S-box is a table-based substitution.

2.5 BabyBlock

A block cipher is one in which the message is broken up into blocks before
encryption, and identical blocks all get sent to the same thing. For example,
the Hill cipher is a block cipher where the blocks have size 2.

Modern block ciphers are used in situations where the highest levels of se-
curity are required. The only publicly known cipher which is approved for
encryption of “Top Secret” information at the government level is a block ci-
pher. Block ciphers are also used for secure Internet transactions. We will study
a simplified example of a block-cipher to see how this type of cipher achieves
security.

The BabyBlock cipher operates on blocks of size 4, and has a key consisting
of 4 bits. Consider the situation where we are encrypting the message ‘Help’
with the key 1110. As with stream ciphers, the actual encryption/decryption is
done in 0’s and 1’s, so we begin by converting the message to a binary string
using our character table. H corresponds to 00111, E corresponds to 00100, L
corresponds to 01011, and P corresponds to 01111. Thus we are encrypting the
message:

00111001000101101111

Since the BabyBlock cipher operates on blocks of size 4, we begin by breaking
the message into blocks of this size, adding extra bits to the end of the message

2.5. BABYBLOCK 79

if we need to:

0011 1001 0001 0110 1111

The BabyBlock cipher encrypts the message one block at a time, so lets
begin with the first block Our key is 1110.

We use the key to muddle the blocks. This process is shown in Figure 2.2.
The last two bits of the block are not changed by the muddling operation, but
are used with the key to produce an bit pair using an S-box. An S-box is just a
substitution table. Given the last two bits of the block and the key, the S-box
table gives a pair of bits; these bits are added to the first 2 bits of the block
being encrypted to make the last two bits of the muddled block.

Ex. 2.5.1. The second 4-bit block from the plaintext HELP is 1001. Muddle
this block using the key 1110

Muddled Block

0 1 1 1

Unmuddled Block

0 0 1 1

key

1 1 1 0

Figure 2.3: Unmuddling is
the same as muddling!

Notice that the last two bits are never changed
by the muddling operation. We’ll get back to this
in a moment. For now, the obvious question is: how
do we unmuddle a block? By muddling it! Mud-
dling a muddled block, you’ll get back the original
block. Why is that? The S-Box will give the same
output as before (since the last two bits haven’t
changed and the key is the same), and adding mod
2 is the same as subtracting mod 2, so when we
add the S-Box output to the muddled bits, it will
change them to the original bits.

If we’re going to use the muddling operation
we’ve defined to encrypt things, we’re going to have
to do something about the fact that the last two
bits never change.

BabyBlock deals with this problem by muddling a block repeatedly, but
swapping the first and last pairs of digits between each time. For example:
we’ve already seen that the plaintext 0011 gets muddled to 1011. Now we
switch the first and last pair of digits in the string to get 1110. And now we
can muddle this string. But we don’t use the same key! After each muddling
operation, we shift the digits of the key to the left. BabyBlock does this 3 times.
The operation is shown in Figure 2.4. The ciphertext for the first block of our
plaintext turns out to be 1110.

We’ve already defined the encryption side of BabyBlock: muddle, swap first
and last pairs, muddle, swap first and last pairs, and muddle. Notice that each
of these operations reverses itself. Muddling reverses muddling, and swapping
pairs reverses swapping pairs. Because of this, encryption and decryption for
BabyBlock are exactly the same, except you have to use the keys in reverse
order: first use the key shifted to the left by 2, then use the key shifted to the
left by 1, then use the original key.

80 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

P
la

in
te

x
t

C
ip

h
er

te
x
t

0
0

1
1

0
1

1
1

1
1

0
1

1
0

0
1

0
1

1
0

0
0

1
0

k
ey

1
1

1
0

k
ey

1
1

0
1

k
ey

1
0

1
1

Figure 2.4: BabyBlock

Ex. 2.5.2. Decrypt the ciphertext 1110 with the key 1110 and check that you
can recover the plaintext 0011. (Remember you need to start your decryption
with the key rotated two positions to the left!)

Ex. 2.5.3. Encrypt the next block from the plaintext message help (1001) with
the key 1110.

Security of BabyBlock

So far, we know how encryption with BabyBlock works, but it is perhaps unclear
why its designed as it is. Keep in mind that modern ciphers are expected to
be resistant to known-plaintext attacks. Let’s see how this works in the case of
BabyBlock.

Imagine we are given a string 1110 and are told that, when muddled with a
certain key, it turns into 0110. Can we figure out what the key is?

We know that the input to the S-Box was the (unknown) key and the bits
10, since those are the last 2 bits of the original string. And since the output
of the S-box gives 01 (the first 2 bits of the muddled string) when added to 11
(the first 2 bits of the original string), we know that the output of the S-Box is
10. Is this enough information to figure out what the key is? Looking at the
S-Box table, we see that there are four possible keys which could give rise to
the output 10 when the last two bits of the block being muddled are 10: 0001,
0100, 1100, 1111, are all possibilities. Even though we knew a plaintext and a
ciphertext, we haven’t been able to figure out the key. This is because the S-box
is not invertible. This means that, even if we know the output and one of the
inputs, we still may not be able to figure out the other input. In spite of the fact
that the S-Box is not invertible, it is still possible to decrypt messages: this is
because messages are not encrypted directly with the S-Box; instead, the S-Box
is only used to choose a pair of bits which will be added to plaintext bits to
encrypt them. Since addition can be reversed, the encryption can be reversed,
and it is possible to decrypt messages so long as we know the key.

2.5. BABYBLOCK 81

We’ve seen that knowing a plaintext isn’t enough to figure out the key used
for the muddling operation, but it did narrow the choices down to just 4 keys.
This is a good reason not to encrypt messages just by muddling them! (Of
course, another good reason is that half the bits remain unencrypted!) When
the muddling operation is repeated, however, there’s not even an quick way of
narrowing down to four keys. The goal for a well-designed block cipher is that
there isn’t a way to break the cipher much faster than just trying all possible
keys. Note, however, that BabyBlock is not a well-designed block cipher, but is
just a simplified example showing the general structure of such schemes.

There are a number of advanced techniques developed to attack block ci-
phers. Some poorly designed block ciphers have turned out to be very insecure,
but those in most widespread use (i.e., AES) appear to be essentially as secure as
the size of their keyspace (guessing the key is basically your best option). Most
of the advanced techniques used to attack block ciphers are out of the scope of
this course, unfortunately, but we will examine one type of attack which has
had important ramifications for the use of block ciphers.

Meet-in-the-middle

As described in this section, the BabyBlock cipher has a 4-bit key, meaning that
there are a total of just 16 possible keys. If we wanted more security, we might
try to encrypt a message twice with the BabyBlock cipher, using a different key
for each step. We’ll call this procedure DoubleBabyBlock.

01001101...

(plaintext)

BabyBlock
with key1

BabyBlock
with key2

11010101...

(ciphertext)

DoubleBabyBlock encryption with key key1key2

Since two 4-bit keys are used for DoubleBabyBlock, we can view Double-
BabyBlock as a cipher with a single 8-bit key which is just the concatenation
of the two (if key1 is 1100 and key2 is 1010, the single 8-bit key is 11001010).
There are a total of 256 possible 8-bit keys, which means that a brute force
attack on DoubleBabyBlock would take up to 256 guess for the key (and 128
guesses on average).

It turns out, however, that DoubleBabyBlock does not provide much more
security than BabyBlock, as there is a clever way to avoid having to make 256
guesses.

The Meet-in-the-middle attack is a known-plaintext attack. Assume we
know that the plaintext HELP became the ciphertext REHN under encryption
by the DoubleBabyBlock cipher with unknown key (after conversion to and from
binary). The idea of the meet-in-the-middle attack is simple. If a plaintext is
encrypted with a key key1 and then a key key2 to produce a ciphertext, then de-

crypting that ciphertext with key2 must produce the same result as encrypting

the plaintext with key1 ; both of these operations ‘meet in the middle’, at the

82 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

halfway point between the original plaintext and the doubly-encrypted cipher-
text. It turns out that, by checking which pairs of keys meet up in the middle
like this, we can make break the cipher with far fewer guesses than would be
required for a brute force attack (which would require 256 guesses, since there
are 256 possible 8-bit keys).

To illustrate the Meet-in-the-middle attack, assume we know that the first
letter of the a 4-letter plaintext message is H, and the 4-letter ciphertext is CYU!.
Converting to binary gives that the first block of 4 of the plaintext is 0011, the
first block of the ciphertext is 0001. The brute force attack would now try all
256 possible key pairs to see which one encrypts 0011 to 0001. Instead, we will
try all 16 possible 4-bit keys to encrypt the plaintext 0011 using the regular
BabyBlock algorithm, and all 16 possible 4-bit keys to decrypt 0001 using the
regular algorithm, and see which pair of guesses give the same thing:

Encryption of 0011 Decryption of 0001

0000 0100 0001

0001 0111 1101

0010 0000 1101

0011 0001 0011
0100 1110 1011

0101 0011 0001
0110 1001 1100

0111 0111 0001

1000 0001 0011
1001 0000 0101

1010 1101 1111

1011 0110 0111

1100 0110 0100

1101 1000 0111
1110 0010 1010

1111 1000 0111

For example, encrypting 0011 with 0000 gives the same result as decrypting
0001 with the key 1100. This means that one possible key combination that
would encrypt 0011 to 0001 is 0000 followed by 1100, corresponding to the 8-
bit DoubleBabyBlock key 00001100. Altogether, there are 17 8-bit keys formed
by matched pairs in the above table; the 8-bit key which will decrypt the rest
of the message CYU! must be among them. Note that it took calculating 32
BabyBlock encryptions/decryptions to make the table, and it will take at most
17 more DoubleBabyBlock decryptions to find the true key and decrypt the
message. Since a BabyBlock encryption/decryption takes half as long as a Dou-
bleBabyBlock decryption, we will be able to break the cipher with the equivalent

2.5. BABYBLOCK 83

of at most 33 DoubleBabyBlock decryptions. Although this is quite tedious to
do by hand, it is much better than having to try all 256 possible decryptions!

84 CHAPTER 2. MODERN SYMMETRIC ENCRYPTION

