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Chapter 1

Braid Group Cryptography

David Garber

Department of Applied Mathematics, Faculty of Sciences,
Holon Institute of Technology,
52 Golomb Street, PO Box 305,

58102 Holon, Israel

E-mail: garber@hit.ac.il

In the last decade, a number of public key cryptosystems based on com-
binatorial group theoretic problems in braid groups have been proposed.
We survey these cryptosystems and some known attacks on them.

This survey includes: Basic facts on braid groups and on the Garside
normal form of its elements, some known algorithms for solving the word
problem in the braid group, the major public-key cryptosystems based on
the braid group, and some of the known attacks on these cryptosystems.
We conclude with a discussion of future directions (which includes also a
description of cryptosystems which are based on other non-commutative
groups).
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1.1. Introduction

In many situations, we need to transfer data in a secure way: credit cards

information, health data, security uses, etc. The idea of public-key cryptog-

raphy in general is to make it possible for two parties to agree on a shared

secret key, which they can use to transfer data in a secure way (see [73]).

There are several known public-key cryptosystems which are based on

the discrete logarithm problem, which is the problem of finding x in the

equation gx = h where g, h are given, and on the factorization problem,

which is the problem of factoring a number to its prime factors: Diffie-

Hellman [38] and RSA [106]. These schemes are used in most of the present-

day applications using public-key cryptography

There are several problems with this situation:

• Subexponential attacks on the current cryptosystems’ un-

derlying problems: Diffie-Hellman and RSA are breakable in

time that is subexponential (i.e. faster than an exponential) in the

size of the secret key [2]. The current length of secure keys is at

least 1000 bits. Thus, the length of the key should be increased

every few years. This makes the encryption and decryption algo-

rithms very heavy.

• Quantum computers: If quantum computers will be imple-

mented in a satisfactory way, RSA will not be secure anymore,

since there are polynomial (in log(n)) run-time algorithms of Peter

Shor [110] which solve the factorization problem and the discrete

logarithm problem. Hence, it solves the problems which RSA and

Diffie-Hellman are based on (for more information, see for example
[3]).

• Too much secure data is transferred in the same method:

It is not healthy that most of the secure data in the world will be

transferred in the same method, since in case this method will be
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broken, too much secure data will be revealed.

Hence, for solving these problems, one should look for a new public-key

cryptosystem which on one hand will be efficient for implementation and

use, and on the other hand will be based on a problem which is different

from the discrete logarithm problem and the factorization problem. More-

over, the problem should have no subexponential algorithm for solving it,

and it is preferable that it has no known attacks by quantum computers.

Combinatorial group theory is a fertile ground for finding hard prob-

lems which can serve as a base for a cryptosystem. The braid group defined

by Artin [7] is a very interesting group from many aspects: it has many

equivalent presentations in entirely different disciplines; its word problem

(to determine whether two elements are equal in the group) is relatively

easy to solve, but some other problems (as the conjugacy problem, decom-

position problem, and more) seem to be hard to solve.

Based on braid group and its problems, two cryptosystems were sug-

gested about a decade ago: by Anshel, Anshel and Goldfeld in 1999 [5] and

by Ko, Lee, Cheon, Han, Kang and Park in 2000 [72]. These cryptosystems

initiated a wide discussion about the possibilities of cryptography in the

braid group especially, and in groups in general.

An interesting point which should be mentioned here is that the conju-

gacy problem in the braid group attracted people even before the cryp-

tosystems on the braid groups were suggested (see, for example, [43;

51]). After the cryptosystems were suggested, some probabilistic solutions

were given [48; 49; 65], but it gave a great push for the efforts to solve the

conjugacy problem theoretically in polynomial time (see [14; 15; 16; 53; 54;

55; 56; 78; 79; 80] and many more).

The potential use of braid groups in cryptography led to additional

proposals of cryptosystems which are based on apparently hard problems in

braid groups (Decomposition problem [113], Triple Decomposition problem
[75], Shifted Conjugacy Search problem [30], and more) and in other groups,

like Thompson Groups [112], polycyclic groups [41] and more. For more

information, see the new book of Myasnikov, Shpilrain and Ushakov [98].

In these notes, we try to survey this fascinating subject. Section 1.2

deals with some different presentations of the braid group. In Section 1.3,

we describe two normal forms for elements in the braid groups. In Section

1.4, we give several solutions for the word problem in the braid group. Sec-

tion 1.5 introduces the notion of public-key cryptography. In Section 1.6,
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the first cryptosystems which are based on the braid group are presented.

Section 1.7 is devoted to the theoretical solution to the conjugacy search

problem, using the different variants of Summit Sets. In Section 1.8, we

describe some more attacks on the conjugacy search problem. In Section

1.9, we discuss some more suggestions for cryptosystems based on the braid

group and their cryptanalysis. Section 1.10 deals with the option of chang-

ing the distribution for choosing a key. In Section 1.11, we deal with some

suggestions for cryptosystems which are based on other non-commutative

groups.

1.2. The braid group

1.2.1. Basic definitions

The braid groups were introduced by Artin [7]. There are several definitions

for these groups (see [13; 107]), and we need two of them for our purposes.

1.2.1.1. Algebraic presentation

Definition 1.1. For n ≥ 2, the braid group Bn is defined by the presenta-

tion:

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσj = σjσi for |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1 for |i− j| = 1

〉

. (1.2.1)

This presentation is called the Artin presentation and the generators are

called Artin’s generators.

An element of Bn will be called an n-braid. For each n, the identity

mapping on {σ1, . . . , σn−1} induces an embedding of Bn into Bn+1, so that

we can consider an n-braid as a particular (n + 1)-braid. Using this, one

can define the limit group B∞.

Note that B2 is an infinite cyclic group, and hence it is isomorphic to

the group Z of integers. For n ≥ 3, the group Bn is not commutative and

its center is an infinite cyclic subgroup.

When a group is specified using a presentation, each element of the

group is an equivalence class of words with respect to the congruence gen-

erated by the relations of the presentation. Hence, every n-braid is an

equivalence class of n-braid words under the congruence generated by the

relations in Presentation (1.2.1).
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1.2.1.2. Geometric interpretation

The elements of Bn can be interpreted as geometric braids with n strands.

One can associate with every braid the planar diagram obtained by con-

catenating the elementary diagrams of Figure 1.1 corresponding to the suc-

cessive letters.

−1
i

1 i i+1 n 1 i i+1 n

σ iσ

Fig. 1.1. The geometric Artin generators

A braid diagram can be seen as induced by a three-dimensional figure

consisting on n disjoint curves connecting the points (1, 0, 0), . . . , (n, 0, 0)

to the points (1, 0, 1), . . . , (n, 0, 1) in R3 (see Figure 1.2).

5

1 2 3 4 5

1 2 3 4

Fig. 1.2. An example of a braid in B5

Then the relations in Presentation (1.2.1) correspond to ambient isotopy,

that is: to continuously move the curves without moving their ends and

without allowing them to intersect (see Figures 1.3 and 1.4); the converse

implication, i.e., the fact that the projections of isotopic 3-dimensional

figures can always be encoded in words connected by presentation (1.2.1)

was proved by Artin in [7]. Hence, the word problem in the braid group

for the Presentation (1.2.1) is also the braid isotopy problem, and thus it is

closely related to the much more difficult knot isotopy problem.
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41 2

σ 3σ 1

3 4

=

1 2

σ 1σ 3

3

Fig. 1.3. The commutative relation for geometric Artin generators

11σ 1σ 2

1 2 31 2 3

=

σ 2σ 2σσ

Fig. 1.4. The triple relation for geometric Artin generators

1.2.2. Birman-Ko-Lee presentation

Like Artin’s generators, the generators of Birman-Ko-Lee [17] are braids in

which exactly one pair of strands crosses. The difference is that Birman-Ko-

Lee’s generators includes arbitrary transpositions of strands (i, j) instead

of adjacent transpositions (i, i+ 1) in the Artin’s generators. For each t, s

with 1 ≤ s < t ≤ n, define the following element of Bn:

ats = (σt−1σt−2 · · ·σs+1)σs(σ
−1
s+1 · · ·σ

−1
t−2σ

−1
t−1)

See Figure 1.5 for an example (note that the braid ats is an elementary

interchange of the tth and sth strands, with all other strands held fixed,

and with the convention that the strands being interchanged pass in front

of all intervening strands). Such an element is called a band generator.

Note that the usual Artin generator σt is the band generator at+1,t.
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sr

1 r s n

a

Fig. 1.5. The band generator

This set of generators satisfies the following relations (see [17, Proposi-

tion 2.1] for a proof):

• atsarq = arqats if [s, t] ∩ [q, r] = ∅.

• atsasr = atrats = asratr for 1 ≤ r < s < t ≤ n.

For a geometric interpretation of the second relation, see Figure 1.6.

s

= =

1 ntr s 1 ntr s

a ts a sr a atr ts a sr a tr

1 ntr

Fig. 1.6. The second relation of the Birman-Ko-Lee presentation

1.2.2.1. A geometric viewpoint on the difference between presenta-

tions

A different viewpoint on the relation between the two presentations is as

follows: one can think on the braid group as the isotopy classes of boundary-

fixing homeomorphisms on the closed disk Dn ⊂ C2 centered at 0 with n

punctures [7].

In this viewpoint, for presenting the Artin generators, we locate the
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punctures on the real line, and the generator σi is the homeomorphism

which exchanges the points i and i+ 1 along the real line (see Figure 1.7).

61 2 3 4 5

Fig. 1.7. The Artin generator σ3

On the other hand, for illustrating the generators ats of the Birman-Ko-

Lee presentation, let us take the punctures organized as the vertices of a n-

gon contained in the diskDn. Now, the generator ats is the homeomorphism

which exchanges the points t and s along the chord connecting them (see

Figure 1.8).

6

4 1

23

5

Fig. 1.8. The Birman-Ko-Lee generator a63

For more information, see [9; 19].

1.3. Normal forms of elements in the braid group

A normal form of an element in a group is a unique presentation to each

element in the group.

Having a normal form for elements in the group is very useful, since it
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lets us compare two elements, so it gives a solution for the word problem:

Problem 1.1. Given a braid w, does w ≡ ε hold, i.e., does w represent the

unit braid ε (see Figure 1.9)?

Fig. 1.9. The unit braid ε ∈ B5

Since Bn is a group, the above problem is equivalent to the following

problem:

Problem 1.2. Given two braids w,w′, does w ≡ w′ hold, i.e., do w and

w′ represent the same braid?

Indeed, w ≡ w′ is equivalent to w−1w′ ≡ ε, where w−1 is the word obtained

from w by reversing the order of the letters and exchanging σi and σ−1
i

everywhere.

Also, the normal form gives a canonical representative of each equiva-

lence class.

We present here two known normal forms of elements in the braid group.

For more normal forms, see [20; 31; 40].

1.3.1. Garside normal form

The Garside normal form is initiated in the work of Garside [51], and several

variants have been described in several partly independent papers [1; 37;

43; 44; 121].

We start by defining a positive braid which is a braid which can be

written as a product of positive powers of Artin generators. We denote the

set of positive braids by B+
n . This set has a structure of a monoid under

the operation of braid concatenation.
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An important example of a positive braid, which has a central role in

the Garside normal form, is the fundamental braid ∆n ∈ Bn:

∆n = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · ·σ1

Geometrically, ∆n is the braid on n strands, where any two strands

cross positively exactly once (see Figure 1.10).

4

1

2

3

4

σ 1σ 1σ 2σ 3σ 1σ 2∆ =

Fig. 1.10. The fundamental braid ∆4

The fundamental braid has several important properties:

(1) For any generator σi, we can write ∆n = σiA = Bσi where A,B are

positive braids.

(2) For any generator σi, the following holds:

τ(σi) = ∆−1
n σi∆n = σn−i

(the inner automorphism τ on Bn is called the shift map).

(3) ∆2
n is the generator of the center of Bn.

Now, we introduce permutation braids. One can define a partial order

on the elements of Bn: for A,B ∈ Bn, we say that A is a prefix of B and

write A � B if B = AC for some C in B+
n . Its simple properties are:

(1) B ∈ B+
n ⇔ ε � B

(2) A � B ⇔ B−1 � A−1.

P ∈ Bn is a permutation braid (or a simple braid) if it satisfies: ε � P �

∆n. Its name comes from the fact that there is a bijection between the set

of permutation braids in Bn and the symmetric group Sn (there is a natural

surjective map from Bn to Sn defined by sending i to the ending place of the

strand which starts at position i, and if we restrict ourselves to permutation

braids, this map is a bijection). Hence, we have n! permutation braids.
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Geometrically, a permutation braid is a braid on n strands, where any

two strands cross positively at most once.

Given a permutation braid P , one can define a starting set S(P ) and a

finishing set F (P ) as follows:

S(P ) = {i|P = σiP
′ for some P ′ ∈ B+

n }

F (P ) = {i|P = P ′σi for some P ′ ∈ B+
n }

The starting set is the indices of the generators which can start a pre-

sentation of P . The finishing set is defined similarly. For example,

S(∆n) = F (∆n) = {1, . . . , n− 1}.

A left-weighted decomposition of a positive braid A ∈ B+
n into a sequence

of permutation braids is:

A = P1P2 · · ·Pk

where Pi are permutation braids, and S(Pi+1) ⊂ F (Pi), i.e. any addition

of a generator from Pi+1 to Pi, will convert Pi into a braid which is not a

permutation braid.

Example 1.1. The following braid is left-weighted:

2

1

3

2

σ
2

σ
1

σ
1

σ

The following braid is not left-weighted, due to the circled crossing which

can be moved to the first permutation braid:

1

1

3

2

σ
2

σ
1

σ
2

σ
2

σ
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Now, we show it algebraically:

σ1σ2 · σ2σ1σ2 = σ1σ2 · σ1σ2σ1 = σ1σ2σ1 · σ2σ1

The following theorem introduces the Garside normal form (or left nor-

mal form or greedy normal form) and states its uniqueness:

Theorem 1.2. For every braid w ∈ Bn, there is a unique presentation

given by:

w = ∆r
nP1P2 · · ·Pk

where r ∈ Z is maximal, Pi are permutation braids, Pk 6= ε and P1P2 · · ·Pk

is a left-weighted decomposition.

For converting a given braid w into its Garside normal form we have to

perform the following steps:

(1) For any negative power of a generator, replace σ−1
i by ∆−1

n Bi where

Bi is a permutation braid.

(2) Move any appearance of ∆n to the left using the relation:

∆−1
n σi∆n = τ(σi) = σn−i. So we get: w = ∆r′

n A where A is a positive

braid.

(3) Write A as a left-weighted decomposition of permutation braids. The

way to do this is as follows: Take A, and break it into permutation

braids (i.e. we take the longest possible sequences of generators which

are still permutation braids). Then we get: A = Q1Q2 · · ·Qj where

each Qi is a permutation braid. For each i, we compute the finishing

set F (Qi) and the starting set S(Qi+1). In case the starting set is not

contained in the finishing set, we take a generator σ ∈ S(Qi+1)\F (Qi),

and using the relations of the braid group we move it from Qi+1 to

Qi. Then, we get the decomposition A = Q1Q2 · · ·Q′
iQ

′
i+1 · · ·Qj . We

continue this process till we have S(Qi+1) ⊆ F (Qi) for every i, and then

we have a left-weighted decomposition as needed. For more details, see
[43] and [56, Proposition 4.2] (in the latter reference, it is done based

on their new idea of local slidings, see Section 1.7.5 below) .

Example 1.2. Let us present the braid w = σ1σ
−1
3 σ2 ∈ B4 in Garside

normal form. First, we should replace σ−1
3 by: ∆−1

4 σ3σ2σ1σ3σ2, so we get:

w = σ1 · ∆
−1
4 σ3σ2σ1σ3σ2 · σ2

Now, moving ∆4 to the left yields:

w = ∆−1
4 · σ3σ3σ2σ1σ3σ2σ2
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Decomposing the positive part into a left-weighted decomposition, we get:

w = ∆−1
4 · σ2σ1σ3σ2σ1 · σ1σ2

The complexity of transforming a word into a canonical form with re-

spect to the Artin presentation is O(|W |2n logn) where |W | is the length

of the word in Bn [44, Section 9.5].

In a similar way, one can define a right normal form. A right-weighted

decomposition of a positive braid A ∈ B+
n into a sequence of permutation

braids is:

A = Pk · · ·P2P1

where Pi are permutation braids, and F (Pi+1) ⊂ S(Pi), i.e. any addition

of a generator from Pi+1 to Pi, will convert Pi into a braid which is not a

permutation braid.

Now, one has the following theorem about the right normal form and

its uniqueness:

Theorem 1.3. For every braid w ∈ Bn, there is a unique presentation

given by:

w = Pk · · ·P2P1∆
r
n

where r ∈ Z, Pi are permutation braids, and Pk · · ·P2P1 is a right-weighted

decomposition.

For converting a given braid w into its right normal form we have to

follow three steps, similar to those of the Garside normal form: We first

replace σ−1
i by Bi∆

−1
n . Then, we move any appearance of ∆n to the right

side. Then, we get: w = A∆r′

n where A is a positive braid. The last step is

to write A as a right-weighted decomposition of permutation braids.

Now we define the infimum and the supremum of a braid w: For w ∈ Bn,

set inf(w) = max{r : ∆r
n � w} and sup(w) = min{s : w � ∆s

n}.

One can easily see that if w = ∆m
n P1P2 · · ·Pk is the Garside normal

form of w, then: inf(w) = m, sup(w) = m+ k.

The canonical length of w (or complexity of w), denoted by ℓ(w), is

given by len(w) = sup(w)− inf(w). Hence, if w is given in its normal form,

the canonical length is the number of permutation braids in the form.



April 16, 2009 22:45 World Scientific Review Volume - 9in x 6in BGC˙lecture˙notes˙final

Braid Group Cryptography 15

1.3.2. Birman-Ko-Lee canonical form

Based on the presentation of Birman, Ko and Lee [17], they give a new

canonical form for elements in the braid group.

They define a new fundamental word:

δn = an,n−1an−1,n−2 · · ·a2,1 = σn−1σn−2 · · ·σ1

See Figure 1.11 for an example for n = 4.

4

1σ 3σ 2δ =
4

1

2

3

σ

Fig. 1.11. The fundamental braid δ4

One can easily see the connection between the new fundamental word

and Garside’s fundamental word ∆n:

∆2
n = δn

n

The new fundamental word δn has important properties, similar to ∆n:

(1) For any generator asr, we can write δn = asrA = Basr where A,B are

positive braids (with respect to the Birman-Ko-Lee generators)

(2) For any generator asr, the following holds: asrδn = δnas+1,r+1.

Similar to Garside’s normal form of braids, each element of Bn has the

following unique form in terms of the band generators:

w = δj
nA1A2 · · ·Ak,

where A = A1A2 · · ·Ak is positive, j is maximal and k is minimal for all

such representations, also the Ai’s are positive braids which are determined

uniquely by their associated permutations (see [17, Lemma 3.1]). Note that

not every permutation corresponds to a canonical factor. We will refer to

Garside’s braids Pi as permutation braids, and to the Birman-Ko-Lee braids

Ai as canonical factors.
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Note that there are Cn = (2n)!
n!(n+1)! (the nth Catalan number) different

canonical factors for the band-generators presentation [17, Corollary 3.5],

whence there are n! different permutation braids for the Artin presentation.

Since Cn is much smaller than n!, it is sometimes computationally easier

to work with the band-generators presentation than the Artin presentation

(see also Section 1.8.3.2 below).

As in Garside’s normal form, there is an algorithmic way to convert

any braid to this canonical form: we first convert any negative power of a

generator to δ−1
n A where A is positive. Then, we move all the δn to the left,

and finally we organize the positive word in a left-weighted decomposition

of canonical factors.

The complexity of transforming a word into a canonical form with re-

spect to the Birman-Ko-Lee presentation is O(|W |2n), where |W | is the

length of the word in Bn [17].

As in Garside’s normal form, one can define infimum, supremum and

canonical length for the canonical form of the Birman-Ko-Lee presentation.

1.4. Algorithms for solving the word problem in braid group

Using ε for the unit word (see Figure 1.9), the word problem is the following

algorithmic problem:

Problem 1.3. Given one braid word w, does w ≡ ε hold, i.e., does w

represent the unit braid ε?

In this section, we will concentrate on some solutions for the word prob-

lem in the braid group.

1.4.1. Dehornoy’s handles reduction

The process of handle reduction has been introduced by Dehornoy [28], and

one can see it as an extension of the free reduction process for free groups.

Free reduction consists of iteratively deleting all patterns of the form xx−1

or x−1x: starting with an arbitrary word w of length m, and no matter on

how the reductions are performed, one finishes in at most m/2 steps with

a unique reduced word, i.e., a word that contains no xx−1 or x−1x.

Free reduction is possible for any group presentation, and in particular

for Bn, but it does not solve the word problem: there exist words that

represent ε ∈ Bn, but do not freely reduce to the unit word. For example,
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the word σ1σ2σ1σ
−1
2 σ−1

1 σ−1
2 represents the unit word, but free reductions

can not reduce it any more.

The handle reduction process generalizes free reduction and involves not

only patterns of the form xx−1 or x−1x, but also more general patterns of

the form σi · · ·σ
−1
i or σ−1

i · · ·σi:

Definition 1.4. A σi-handle is a braid word of the form

w = σe
iw0σ

d
i+1w1σ

d
i+1 · · ·σ

d
i+1wmσ

−e
i ,

with e, d = ±1,m ≥ 0, and w0, . . . , wm containing no σ±1
j with j ≤ i+ 1.

The reduction of w is defined as follows:

w′ = w0σ
−e
i+1σ

d
i σ

e
i+1w1σ

−e
i+1σ

d
i σ

e
i+1 · · ·σ

−e
i+1σ

d
i σ

e
i+1wm,

i.e., we delete the initial and final letters σ±1
i , and we replace each letter

σ±1
i+1 with σ−e

i+1σ
±1
i σe

i+1 (see Figure 1.12, taken from [29]).

−1

handle
reduction

wmw1w0wmw1w0

σ 1 σ 1

Fig. 1.12. An example for a handle reduction (for σ1). The two circled crossings in the
left side are the start and the end of the handle

Note that a braid of the form σiσ
−1
i or σ−1

i σi is a handle, and hence we

see that the handle reduction process generalizes the free reduction process.

Reducing a braid yields an equivalent braid: as illustrated in Figure

1.12, the (i + 1)th strand in a σi-handle forms a sort of handle, and the

reduction consists of pushing that strand so that it passes above the next

crossings instead of below. So, as in the case of a free reduction, if there

is a reduction sequence from a braid w to ε, i.e., a sequence w = w0 →

w1 → · · · → wN = ε such that, for each k, wk+1 is obtained from wk by

replacing some handle of wk by its reduction, then w is equivalent to ε, i.e.,

it represents the unit word ε.

The following result of Dehornoy [28] shows the converse implication

and the termination of the process of handle reductions:

Prop 1.1. Assume that w ∈ Bn has a length m. Then every reduction
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sequence starting from w leads in at most 2m4n steps to an irreducible

braid (with respect to Dehornoy’s reductions). Moreover, the unit word ε

is the only irreducible word in its equivalence class, hence w represents the

unit braid if and only if any reduction sequence starting from w finishes

with the unit word.

A braid may contain many handles, so building an actual algorithm

requires to fix a strategy prescribing in which order the handles will be

reduced. Several variants have been considered; as can be expected, the

most efficient ones use a “Divide and Conquer” trick.

For our current purpose, the important fact is that, although the proved

complexity upper bound of the above proposition is very high, handle re-

duction is extremely efficient in practice, even more than the reduction to

a normal form, see [29].

Remark 1.1. In [33], Dehornoy gives an alternative proof for the conver-

gence of the handle reduction algorithm of braids which is both more simple

and more precise than the one in his original paper on handle reductions
[28].

1.4.2. Action on the fundamental group

As we have pointed out at Section 1.2.2.1, the braid group can be thought

of as the isotopy classes of boundary-fixing homeomorphisms on the closed

disk Dn ⊂ C2 centered at 0 with n punctures p1, . . . , pn [7]. It means that

two elements are the same if their actions on π1(Dn \ {p1, . . . , pn}, u) are

equal.

In [47], we propose the following solution for the word problem: we start

with a geometric base for π1(Dn \ {p1, . . . , pn}, u) presented in Figure 1.13.

Now, we apply the two braids on this initial geometric base. If the

resulting bases are the same up to isotopy, it means that the braids are

equal, otherwise they are different.

In Figure 1.14, there is a simple example of two equal braids which

result the same base.

This algorithm is very quick and efficient for short words, but its worst

case is exponential. For more details on its implementation, see [47].

For more solutions for the word problem for the braid groups, see [39].
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Fig. 1.13. A geometric base

2 :

σ 1 σ 2 σ 1

σ 2σ 1σ 2

σ 1 :σ 2σ 1

σ 1σ 2σ

Fig. 1.14. An example of applications of two equal braids σ1σ2σ1 = σ2σ1σ2 on the
initial geometric base

1.5. What is Public-Key Cryptography?

The idea of Public-Key Cryptography (PKC) was invented by Diffie and

Hellman [38]. At the heart of this concept is the idea of using a one-way

function for encryption (see the survey paper of Koblitz and Menezes [73]).

The functions used for encryption belong to a special class of one-way

functions that remain one-way only if some information (the decryption

key) is kept secret. If we use informal terminology, we can define a public-

key encryption function as a map from plain text message units to cipher-
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text message units that can be feasibly computed by anyone having the

public key, but whose inverse function (which deciphers the ciphertext mes-

sage units) cannot be computed in a reasonable amount of time without

some additional information, called the private key.

This means that everyone can send a message to a given person using the

same enciphering key, which can simply be looked up in a public directory

whose contents can be authenticated by some means. There is no need for

the sender to have made any secret arrangement with the recipient; indeed,

the recipient need never have had any prior contact with the sender at all.

Some of the purposes for which public-key cryptography has been ap-

plied are:

• Confidential message transmission: Two people want to exchange

messages in the open airwaves, in such a way that an intruder observing

the communication cannot understand the messages.

• Key exchange or Key agreement: Two people using the open air-

waves want to agree upon a secret key for use in some symmetric-key

cryptosystem. The agreement should be in such a way that an intruder

observing the communication cannot deduce any useful information

about their shared secret.

• Authentication: The prover wishes to convince the verifier that he

knows the private key without enabling an intruder watching the com-

munication to deduce anything about his private key.

• Signature: The target in this part is: The sender of the message

has to send the receiver a (clear or ciphered) message together with

a signature proving the origin of the message. Each signature scheme

may lead to an authentication scheme: in order to authenticate the

sender, the receiver can send a message to the sender, and require that

the sender signs this message.

Now, we give some examples of the most famous and well-known public-

key cryptosystems.

1.5.1. Diffie-Hellman

In 1976, Diffie and Hellman [38] introduced a key-exchange protocol which

is based on the apparent difficulty of computing logarithms over a finite field

Fq with q elements and on some commutative property of the exponent.
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Their key-exchange protocol works as follows:

Protocol 1.5.

Public keys: q and a primitive element α.

Private keys: Alice: Xi; Bob: Xj .

Alice: Sends Bob Yi = αXi (mod q).

Bob: Sends Alice Yj = αXj (mod q)

Shared secret key: Kij = αXiXj (mod q)

Kij is indeed a shared key since Alice can compute Kij = Y Xi

j (mod q)

and Bob can compute Kij = Y
Xj

i (mod q).

This method is secured due to the hardness of the Discrete Logarithm

Problem.

1.5.2. RSA

Rivest, Shamir and Adleman [106] introduced one of the most famous and

common cryptosystem, which is called RSA. This method is widely used in

commerce.

Find two large prime numbers p and q, each about 100 decimal digits

long. Let n = pq and φ = φ(n) = (p−1)(q−1) (the Euler number). Choose

a random integer E between 3 and φ that has no common factors with φ.

It is easy to find an integer D that is the ”inverse” of E modulo φ, that is,

D · E differs from 1 by a multiple of φ.

Alice makes E and n public. All the other quantities here are kept

secret.

The encryption is done as follows: Bob, who wants to send a plain text

message P to Alice, that is an integer between 0 and n− 1, computes the

ciphertext integer C = PE (mod n). (In other words, raise P to the power

E, divide the result by n, and C is the remainder). Then, Bob sends C to

Alice.

For decrypting the message, Alice uses the secret decryption number D

for finding the plain text P by computing: P = CD (mod n).

This method is currently secure, since in order to determine the secret

decryption key D (for decrypting the message), the intruder should factor

the 200 or so digits number n, which is a very hard task.
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1.6. First cryptosystems which are based on the braid

groups

In this section, we describe first cryptosystems which are based on the braid

groups. We start with the definition of some apparently hard problems

which the cryptosystems are based on. After that, we describe first two

key-exchange protocols which are based on the braid group. We finish the

section with some more cryptosystems based on the braid group.

1.6.1. Underlying problems for cryptosystems in the braid

group

We list here several apparently hard problems in the braid group, which

are the base of many cryptosystems in the braid group:

• Conjugacy Decision Problem: Given u,w ∈ Bn, determine whether

they are conjugate, i.e., there exists v ∈ Bn such that

w = v−1uv

• Conjugacy Search Problem: Given conjugate elements

u,w ∈ Bn, find v ∈ Bn such that

w = v−1uv

• Multiple Simultaneous Conjugacy Search Problem:

Givenm pairs of conjugate elements (u1, w1), . . . , (um, wm) ∈ Bn which

are all conjugated by the same element. Find v ∈ Bn such that

wi = v−1uiv, ∀i ∈ {1, . . . ,m}

• Decomposition Problem: u 6∈ G ≤ Bn. Find x, y ∈ G such that

w = xuy.

1.6.2. Key-exchange protocols based on the braid group

In this section, we present two key-exchange protocols which are based on

apparently hard problems in the braid group. After the transmitter and

receiver agree on a shared secret key, they can use a symmetric cryptosystem

for transmitting messages in the insecure channel.
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1.6.2.1. Anshel-Anshel-Goldfeld key-exchange protocol

The following scheme was proposed theoretically by Anshel, Anshel and

Goldfeld [5], and implemented in the braid group by Anshel, Anshel, Fisher

and Goldfeld [4].

This scheme assumes that the Conjugacy Search Problem is difficult

enough (so this scheme, as well as the other schemes described below, would

keep its interest, even if it turned out that braid groups are not relevant,

since it might be implemented in other groups).

Let G be a subgroup of Bn:

G = 〈g1, . . . , gm〉, gi ∈ Bn

The secret keys of Alice and Bob are words a ∈ G and b ∈ G respectively.

The key-exchange protocol is as follows:

Protocol 1.6.

Public keys: {g1, . . . , gm} ⊂ Bn.

Private keys: Alice: a; Bob: b.

Alice: Sends Bob publicly the conjugates: ag1a
−1, . . . , agma

−1.

Bob: Sends Alice publicly the conjugates: bg1b
−1, . . . , bgmb

−1.

Shared secret key: K = aba−1b−1

K is indeed a shared key, since if a = x1 · · ·xk where xi = g±1
j for

some j, then Alice can compute ba−1b−1 = (bx−1
k b−1) · · · (bx−1

1 b−1) and

hence Alice knows K = a(ba−1b−1). Similarly, Bob can compute aba−1,

and hence he knows K = (aba−1)b−1 .

The security is based on the difficulty of a variant to the Conjugacy

Search Problem in Bn, namely the Multiple Conjugacy Search Problem, in

which one tries to find a conjugating braid starting not from one single

pair of conjugate braids (g, aga−1), but from a finite family of such pairs

(g1, ag1a
−1), . . . , (gm, agma

−1) obtained using the same conjugating braid.

It should be noted that the Multiple Conjugacy Search Problem may be

easier than the original Conjugacy Search Problem.

In [4], it is suggested to work in B80 with m = 20 and short initial

braids gi of length 5 or 10 Artin generators.

Remark 1.2. We simplified a bit the protocol given by Anshel-Anshel-

Goldfeld, but the principle remains the same. Moreover, in their protocol,
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they used not the braids themselves, but their images under the colored

Burau representation of the braid group defined by Morton [95] (see Section

1.8.4.1 below).

1.6.2.2. Diffie-Hellman-type key-exchange protocol

Following the commutative idea for achieving a shared secret key of Diffie-

Hellman, Ko et al. [72] propose a key-exchange protocol based on the braid

group and some commutative property of some of its elements. Although

braid groups are not commutative, we can find large subgroups such that

each element of the first subgroup commutes with each element of the sec-

ond. Indeed, braids involving disjoint sets of strands commute. Similar

approach appears also in the Algebraic Eraser Scheme (see [6] and Section

1.9.4 here).

Note that this scheme was proposed independently in [118] in the con-

text of a general, unspecified noncommutative semigroup with difficult con-

jugacy problem, but the braid groups were not mentioned there explicitly.

Denote by LBn (resp. UBn) the subgroup of Bn generated by

σ1, . . . , σm−1 (resp. σm+1, . . . , σn−1) with m = ⌊n
2 ⌋. Then, every braid

in LBn commutes with every braid in UBn.

Here is Ko et al. key-exchange protocol:

Protocol 1.7.

Public key: one braid p in Bn.

Private keys: Alice: s ∈ LBn; Bob: r ∈ UBn.

Alice: Sends Bob p′ = sps−1.

Bob: Sends Alice p′′ = rpr−1

Shared secret key: K = srpr−1s−1

K is a shared key since Alice can compute K = sp′′s−1 and Bob can

compute K = rp′r−1, and both are equal to K since s and r commute.

The security is based on the difficulty of the Conjugacy Search Problem

in Bn, or, more exactly, on the difficulty of the following variant, which can

be called the Diffie-Hellman-like Conjugacy Problem:

Problem 1.4. Given a braid p in Bn, and the braids p′ = sps−1 and

p′′ = rpr−1, where s ∈ LBn and r ∈ UBn, find the braid rp′r−1, which is

also sp′′s−1.
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The suggested parameters are n = 80, i.e. to work in B80, with braids

specified using (normal) sequences of length 12, i.e., sequences of 12 per-

mutation braids (see [23]).

1.6.3. Encryption and decryption

The following scheme is proposed by Ko et al. [72]. We continue with the

same notation of Ko et al. Assume that h is a public collision-free one-way

hash function of Bn to {0, 1}N, i.e., a computable function such that the

probability of having h(b2) = h(b1) for b2 6= b1 is negligible (collision-free),

and retrieving b from h(b) is infeasible (one-way) (for some examples see

Dehornoy [29, Section 4.4] and Myasnikov [99]).

We start with p ∈ Bn and s ∈ LBn. Alice’s public key is the pair (p, p′)

with p′ = sps−1, where s is Alice’s private key. For sending the message

mB, which we assume lies in {0, 1}N, Bob chooses a random braid r in UBn

and he sends the encrypted text m′′
B = mB ⊕ h(rp′r−1) (using ⊕ for the

Boolean operation ”exclusive-or”, i.e. the sum in Z/2Z), together with the

additional datum p′′ = rpr−1. Now, Alice computes mA = m′′⊕h(sp′′s−1),

and we have mA = mB, which means that Alice retrieves Bob’s original

message.

Indeed, because the braids r and s commute, we have (as before):

sp′′s−1 = srpr−1s−1 = rsps−1r−1 = rp′r−1,

and, therefore, mA = mB ⊕ h(rp′r−1) ⊕ h(rp′r−1) = mB.

The security is based on the difficulty of the Diffie-Hellmann-like Con-

jugacy Problem in Bn. The recommended parameters are as in Ko et al’s

exchange-key protocol (see Section 1.6.2.2).

1.6.4. Authentication schemes

Three authentication schemes were introduced by Sibert, Dehornoy and

Girault [117], which are based on the Conjugacy Search problem and Root

Extraction Problem. Concerning the cryptanalysis of the Root Extraction

Problem, see [63].

We present here their first scheme. This scheme is related to Diffie-

Hellman based exchange-key in its idea of verifying that the secret key

computed at the two ends is the same.

Note that any encryption scheme can be transformed into an authenti-

cation scheme, by sending to Alice both an encrypted version and a hashed
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image of the same message m, then requesting her to reply with the deci-

phered message m (she will do it only if the hashed image of the deciphered

message is the same as the one sent by Bob).

Their first scheme is based on the difficulty of Diffie-Hellman-like Con-

jugacy Problem. It uses the fact that braids involving disjoint families of

strands commute. The data consist of a public key, which is a pair of braids,

and of Alice’s private key, also a braid. We assume that n is even, and de-

note by LBn (resp. UBn) the subgroup of Bn generated by σ1, . . . , σn
2
−1,

i.e., braids where the n
2 lower strands only are braided (resp. in the sub-

group generated by σn
2
+1, . . . , σn−1). The point is that every element in

LBn commutes with every element in UBn, and alternative subgroups with

this property could be used instead. We assume that H is a fixed collision-

free hash function from braids to sequences of 0’s and 1’s or, possibly, to

braids.

• Phase 1. Key generation:

(1) Choose a public braid b in Bn such that the Diffie-Hellman-like

Conjugacy Problem for b is hard enough;

(2) Alice chooses a secret braid s in LBn, her private key; she pub-

lishes b′ = sbs−1; the pair (b, b′) is her public key.

• Phase 2. Authentication phase:

(1) Bob chooses a braid r in UBn, and sends the challenge x = rbr−1

to Alice;

(2) Alice sends the response y = H(sxs−1) to Bob, and Bob checks

y = H(rb′r−1).

For active attacks, the security is ensured by the hash function H: if H

is one-way, these attacks are ineffective.

Two more authentication schemes were suggested by Lal and Chaturvedi
[76]. Their cryptanalysis are discussed in [63; 122].

1.7. Attacks on the conjugacy search problem using Summit

Sets

In this section, we explain the algorithms for solving the Conjugacy Decision

Problem and the Conjugacy Search Problem (CDP/CSP) in braid groups

which are based on Summit sets. These algorithms are given in [51; 43; 44;
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46; 53; 55]. We start with the basic idea, and then we continue with its

implementations.

We follow here the excellent presentation of Birman, Gebhardt and

González-Meneses [14]. For more details, see their paper.

1.7.1. The basic idea

Given an element x ∈ Bn, the algorithm computes a finite subset Ix of the

conjugacy class of x which has the following properties:

(1) For every x ∈ Bn, the set Ix is finite, non-empty and only depends on

the conjugacy class of x. It means that two elements x, y ∈ Bn are

conjugate if and only if Ix = Iy .

(2) For each x ∈ Bn, one can compute efficiently a representative x̃ ∈ Ix
and an element a ∈ Bn such that a−1xa = x̃.

(3) There is a finite algorithm which can construct the whole set Ix from

any representative x̃ ∈ Ix.

Now, for solving the CDP/CSP for given x, y ∈ Bn we have to perform

the following steps.

(a) Find representatives x̃ ∈ Ix and ỹ ∈ Iy.

(b) Using the algorithm from property (3), compute further elements of Ix
(while keeping track of the conjugating elements), until either:

(i) ỹ is found as an element of Ix, proving x and y to be conjugate and

providing a conjugating element, or

(ii) the entire set Ix has been constructed without encountering ỹ, prov-

ing that x and y are not conjugate.

We now survey the different algorithms based on this approach.

In Garside’s original algorithm [51], the set Ix is the Summit Set of x,

denoted SS(x), which is the set of conjugates of x having maximal infimum.

Remark 1.3. All the algorithms presented below for the different types of

Summit Sets work also for Garside groups (defined by Dehornoy and Paris
[36]), which are a generalization of the braid groups. In our survey, for

simplification, we present them in the language of braid groups. For more

details on the Garside groups and the generalized algorithms, see [14].



April 16, 2009 22:45 World Scientific Review Volume - 9in x 6in BGC˙lecture˙notes˙final

28 David Garber

1.7.2. The Super Summit Sets

The Summit Set are improved by El-Rifai and Morton [43], who consider

Ix = SSS(x), the Super Summit Set of x, consisting of the conjugates of x

having minimal canonical length ℓ(x). They also show that SSS(x) is the

set of conjugates of x having maximal infimum and minimal supremum,

at the same time. El-Rifai and Morton [43] show that SSS(x) is finite. In

general, SSS(x) is much smaller than SS(x). For example, take the element

x = ∆4σ1σ1 ∈ B4, SSS(x) = {∆4 · σ1σ3} while

SS(x) = {∆4 · σ1σ3,∆4 · σ1 · σ1,∆4 · σ3 · σ3}

(the factors in each left normal form are separated by a dot) [14, page 8].

Starting by a given element x, one can find an element x̃ ∈ SSS(x) by

a sequence of special conjugations, called cyclings and decyclings:

Definition 1.8. Let x = ∆px1 · · ·xr ∈ Bn be given in Garside’s normal

form and assume r > 0.

The cycling of x, denoted by c(x) is:

c(x) = ∆px2 · · ·xrτ
−p(x1),

where τ is the involution which maps σi to σn−i, for all 1 ≤ i ≤ n.

The decycling of x, denoted by d(x) is:

d(x) = xr∆
px1x2 · · ·xr−1 = ∆pτp(xr)x1x2 · · ·xr−1.

If r = 0, we have c(x) = d(x) = x.

Note that c(x) = (τ−p(x1))
−1x(τ−p(x1)) and d(x) = x−1

r xxr . This

means that for an element of positive canonical length, the cycling of x is

computed by moving the first permutation braid of x to the end, while the

decycling of x is computed by moving the last permutation braid of x to

the front. Moreover, for every x ∈ Bn, inf(x) ≤ inf(c(x)) and sup(x) ≥

sup(d(x)).

Note that the above decompositions of c(x) and d(x) are not, in general,

Garside’s normal forms. Hence, if one wants to perform iterated cyclings

or decyclings, one needs to compute the left normal form of the resulting

element at each iteration.

Given x, one can use cyclings and decyclings to find an element in

SSS(x) in the following way: Suppose that we have an element x ∈ Bn

such that inf(x) is not equal to the maximal infimum in the conjugacy

class of x. Then, we can increase the infimum by repeated cycling (due to
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[18; 43]): there exists a positive integer k1 such that inf(ck1 (x)) > inf(x).

Therefore, by repeated cycling, we can conjugate x to another element x̂ of

maximal infimum. Once x̂ is obtained, if the supremum is not minimal in

the conjugacy class, we can decrease its supremum by repeated decycling.

Again, due to [18; 43], there exists an integer k2 such that sup(dk2(x̂)) <

sup(x̂). Hence, using repeated cycling and decycling a finite number of

times, one obtains an element in SSS(x).

If we denote by m the length of ∆ in Artin generators and r is the

canonical length of x, then we have (see [18; 43]):

Prop 1.2. A sequence of at most rm cyclings and decyclings applied to x

produces a representative x̃ ∈ SSS(x).

Now, we have to explore all the set SSS(x). We have the following result

(see [43]):

Prop 1.3. Let x ∈ Bn and V ⊂ SSS(x) be non-empty. If V 6= SSS(x), then

there exist y ∈ V and a permutation braid s such that s−1ys ∈ SSS(x) \V .

Since SSS(x) is a finite set, the above proposition allows us to compute

the whole SSS(x). More precisely, if one knows a subset V ⊂ SSS(x) (we

start with: V = {x̃}), one conjugates each element in V by all permutation

braids (n! elements). If one encounters a new element z with the same

canonical length as x̃ (which is a new element in SSS(x)), then add z to V

and start again. If no new element is found, this means that V = SSS(x),

and we are done.

One important remark is that this algorithm not only computes the set

SSS(x), but it also provides conjugating elements joining the elements in

SSS(x).

Now the checking if x and y are conjugate, is done as follows: Compute

representatives x̃ ∈ SSS(x) and ỹ ∈ SSS(y). If inf(x̃) 6= inf(ỹ) or sup(x̃) 6=

sup(ỹ), then x and y are not conjugate. Otherwise, start computing SSS(x)

as described above. The elements x and y are conjugate if and only if ỹ ∈

SSS(x). Note that if x and y are conjugate, an element conjugating x to y

can be found by keeping track of the conjugations during the computations

of x̃, ỹ and SSS(x). Hence, it solves the Conjugacy Decision Problem and

the Conjugacy Search Problem simultaneously.

From the algorithm, we see that the computational cost of computing

SSS(x) depends mainly in two ingredients: the size of SSS(x) and the num-

ber of permutation braids. In Bn, all known upper bounds for the size of
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SSS(x) are exponential in n, although it is conjectured that for fixed n, a

polynomial bound in the canonical length of x exists [44].

Franco and González-Meneses [46] reduce the size of the set we have to

conjugate with, by the following observation:

Prop 1.4. Let x ∈ Bn and y ∈ SSS(x). For every positive braid u

there is a unique �-minimal element cy(u) satisfying u � cy(u) and

(cy(u))−1y(cy(u)) ∈ SSS(x).

Definition 1.9. Given x ∈ Bn and y ∈ SSS(x), we say that a permutation

braid s 6= 1 is minimal for y with respect to SSS(x) if s−1ys ∈ SSS(x), and

no proper prefix of s satisfies this property.

It is easy to see that the number of minimal permutation braids for y

is bounded by the number of Artin’s generators.

Now, we have:

Prop 1.5. Let x ∈ Bn and V ⊆ SSS(x) be non-empty. If V 6= SSS(x),

then there exist y ∈ V and a generator σi such that cy(σi) is a minimal

permutation braid for y, and (cy(σi))
−1y(cy(σi)) ∈ SSS(X) \ V .

Using these proposition, the SSS(x) can be computed as in [43], but

instead of conjugating each element y ∈ SSS(x) by all permutation braids

(n! elements), it suffices to conjugate y by the minimal permutation braids

cy(σi) (1 ≤ i ≤ n− 1, n− 1 elements).

Figure 1.15 (taken from [29]) summarizes the solution of the conjugacy

problem using the Super Summit Set for an element b.

Note that the algorithm computes a directed graph whose vertices are

the elements in SSS(x), and whose arrows are defined as follows: for any

two elements y, z ∈ SSS(x), there is an arrow labeled by the minimal per-

mutation braid pi starting at y and ending at z if p−1
i ypi = z.

An example for such a graph can be seen in Figure 1.16, for the set

SSS(σ1) in B4 (taken from [14, pp. 10–11]). Note that there are exactly 3

arrows starting at every vertex (the number of Artin generators of B4). In

general, the number of arrows starting at a given vertex can be smaller or

equal, but never larger than the number of generators.

Hence, the size of the set of permutation braids is no longer a problem for

the complexity of the algorithm (since we can use the minimal permutation

braids instead), but there is still a big problem to handle: The size of SSS(x)

is, in general, very big. The next improvement tries to deal with this.
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Fig. 1.16. The graph of SSS(σ1) in B4

1.7.3. The Ultra Summit Sets

Gebhardt [53] defines a small subset of SSS(x) satisfying all the good prop-

erties described above, so that a similar algorithm can be used to compute

it. The definition of this new subset appears after observing that the cy-

cling function maps SSS(x) to itself. As SSS(x) is finite, iterated cycling of

any representative of SSS(x) must eventually become periodic. Hence it is

natural to define the following:

Definition 1.10. Given x ∈ Bn, the Ultra Summit Set of x, USS(x), is the

set of elements y ∈ SSS(x) such that cm(y) = y for some m > 0.

Hence, the Ultra Summit Set USS(x) consists of a finite set of disjoint

orbits, closed under cycling (see some schematic example in Figure 1.17).
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Fig. 1.17. Action of cycling inside the Super Summit Set; the elements of the Ultra
Summit Set are in black and perform some orbits under cycling (taken from [29, Figure
4])

Example 1.3. [14] One has

USS(σ1) = SSS(σ1) = SS(σ1) = {σ1, . . . , σn−1},

and each element corresponds to an orbit under cycling, since c(σi) = σi

for i = 1, . . . , n− 1.

A more interesting example is given by the element

x = σ1σ3σ2σ1 · σ1σ2 · σ2σ1σ3 ∈ B4.

In this example, USS(x) has 6 elements, while SSS(x) has 22 elements.

More precisely, USS(x) consists of 2 closed orbits under cycling: USS(x) =

O1 ∪O2, each one containing 3 elements:

O1 =







σ1σ3σ2σ1 · σ1σ2 · σ2σ1σ3,

σ1σ2 · σ2σ1σ3 · σ1σ3σ2σ1,

σ2σ1σ3 · σ1σ3σ2σ1 · σ1σ2







,

O2 =







σ3σ1σ2σ3 · σ3σ2 · σ2σ3σ1,

σ3σ2 · σ2σ3σ1 · σ3σ1σ2σ3,

σ2σ3σ1 · σ3σ1σ2σ3 · σ3σ2







.

Notice that O2 = τ(O1).

Note also that the cycling of every element in USS(x) gives another

element which is already in left normal form, hence iterated cyclings cor-

responds to cyclic permutations of the factors in the left normal form.

Elements which satisfies this property are called rigid (see [14]).

Remark 1.4. The size of the Ultra Summit Set of a generic braid of canon-

ical length ℓ is either ℓ or 2ℓ [53]. This means that, in the generic case,
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Ultra Summit Sets consist of one or two orbits (depending on whether

τ(O1) = O1 or not), containing rigid braids. But, there are exceptions: for

example, the following braid in B12:

E = (σ2σ1σ7σ6σ5σ4σ3σ8σ7σ11σ10) · (σ1σ2σ3σ2σ1σ4σ3σ10) ·

·(σ1σ3σ4σ10) · (σ1σ10) · (σ1σ10σ9σ8σ7σ11) · (σ1σ2σ7σ11)

has an Ultra Summit Set of size 264, instead of the expected size 12 (see
[15, Example 5.1]).

In the case of braid groups, the size and structure of the Ultra Summit

Sets happen to depend very much on the geometrical properties of the

braid, more precisely, on its Nielsen-Thurston type: periodic, reducible or

Pseudo-Anosov (see [14; 15]).

The algorithm given in [53] to solve the CDP/CSP in braid groups

(using Ultra Summit Sets) is analogous to the previous ones, but this time

one needs to compute USS(x) instead of SSS(x). In order to do this, we

first have to obtain an element x̂ ∈ USS(x). We do this as follows: take

an element x̃ ∈ SSS(x). Now, start cycling it. Due to the facts that

cycling an element in SSS(x) will result in another element in SSS(x) and

that the Super Summit Set of x is finite, we will have two integers m1,m2

(m1 < m2), which satisfy:

cm1(x̃) = cm2(x̃)

When having this, the element x̂ = cm1(x̃) is in USS(x), since:

cm2−m1(x̂) = x̂.

After finding a representative x̂ ∈ USS(x), we have to explore all the

set USS(x). This we do using the following results of Gebhardt [53] (which

are similar to the case of the Super Summit Set):

Prop 1.6. Let x ∈ Bn and y ∈ USS(x). For every positive braid

u there is a unique �-minimal element cy(u) satisfying u � cy(u) and

(cy(u))−1y(cy(u)) ∈ USS(x).

Definition 1.11. Given x ∈ Bn and y ∈ USS(x), we say that a per-

mutation braid s 6= 1 is a minimal for y with respect to USS(x) if

s−1ys ∈ USS(x), and no proper prefix of s satisfies this property.

It is easy to see that the number of minimal permutation braids for y

is bounded by the number of Artin’s generators.
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Now, we have:

Prop 1.7. Let x ∈ Bn and V ⊆ USS(x) be non-empty. If V 6= USS(x),

then there exist y ∈ V and a generator σi such that cy(σi) is a minimal

permutation braid for y, and (cy(σi))
−1y(cy(σi)) ∈ USS(X) \ V .

In [53], it is shown how to compute the minimal permutation braids

(they are called there minimal simple elements in the Garside group’s lan-

guage) corresponding to a given y ∈ USS(x) (a further discussion on the

minimal simple elements with some examples can be found in [15]). Hence,

one can compute the whole USS(x) starting by a single element x̂ ∈ USS(x),

and then we are done.

For a better characterization of the minimal permutation braids, let us

introduce some notions related to a braid given in a left normal form (see
[15]):

Definition 1.12. Given x ∈ Bn whose left normal form is

x = ∆px1 · · ·xr (r > 0), we define the initial factor of x as

ι(x) = τ−p(x1), and the final factor of x as ϕ(x) = xr. If r = 0 we

define ι(∆p) = 1 and ϕ(∆p) = ∆.

Definition 1.13. Let u, v be permutation braids such that uv = ∆. The

right complement of u, ∂(u), is defined by ∂(u) = u−1∆ = v.

Note that a cycling of x is actually a conjugation of x by the initial factor

ι(x): c(x) = ι(x)−1xι(x), and a decycling of x is actually a conjugation of

x by the inverse of final factor ϕ(x)−1: d(x) = ϕ(x)xϕ(x)−1 .

The notions of Definition 1.12 are closely related (see [14]):

Lemma 1.1. For every x ∈ Bn, one has ι(x−1) = ∂(ϕ(x)) and ϕ(x−1) =

∂−1(ι(x)).

The following proposition from [15] characterizes the minimal permuta-

tion braids for x as prefixes of x or of x−1:

Prop 1.8. Let x ∈ USS(x) with ℓ(x) > 0 and let cx(σi) be a minimal

permutation braid for x. Then cx(σi) is a prefix of either ι(x) or ι(x−1), or

both.

As in the case of the Super Summit Set, the algorithm of Gebhardt
[53] not only computes USS(x), but also a graph Γx, which determines the
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conjugating elements. This graph is defined as follows.

Definition 1.14. Given x ∈ Bn, the directed graph Γx is defined by the

following data:

(1) The set of vertices is USS(x).

(2) For every y ∈ USS(x) and every minimal permutation braid s for y

with respect to USS(x), there is an arrow labeled by s going from y to

s−1ys.

Example 1.4. Let us give some example for the graph Γx. We follow [15,

Example 2.10].

Let x = σ1σ2σ3σ2 · σ2σ1σ3 · σ1σ3 ∈ B4. This braid A is Pseudo-Anosov

and rigid. A computation shows that USS(x) has exactly two cycling orbits,

with 3 elements each, namely:

x1 =







x1,1 = σ1σ2σ3σ2 · σ2σ1σ3 · σ1σ3,

x1,2 = σ2σ1σ3 · σ1σ3 · σ1σ2σ3σ2,

x1,3 = σ1σ3 · σ1σ2σ3σ2 · σ2σ1σ3







,

x2 =







x2,1 = σ1σ3σ2σ1 · σ2σ1σ3 · σ1σ3,

x2,2 = σ2σ1σ3 · σ1σ3 · σ1σ3σ2σ1,

x2,3 = σ1σ3 · σ1σ3σ2σ1 · σ2σ1σ3







.

The graph Γx of USS(x) is illustrated in Figure 1.18. The solid ar-

rows are conjugations by minimal permutation braids which are prefixes

of the initial factors, while the dashed arrows are conjugations by minimal

permutation braids which are prefixes of the final factors. Note that the

definitions imply that the cycles x1 and x2 of USS(x) are connected by

solid arrows.

Concerning the complexity of this algorithm for solving the Conjugacy

Search Problem, the number m2 of times one needs to apply cycling for

finding an element in USS(x) is not known in general. Nevertheless, in

practice, the algorithm based on the Ultra Summit Set is substantially bet-

ter for braid groups (see [14]). For more information on the Ultra Summit

Set and its structure, see [15].

Remark 1.5. One might think that for a given element x ∈ Bn, it is

possible that its Ultra Summit Set with respect to the Garside normal

form will be different from its Ultra Summit Set with respect to the right
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Fig. 1.18. The graph of USS(σ1σ2σ3σ2σ2σ1σ3σ1σ3) ⊂ B4

normal form (see Section 1.3.1). If this happens, it is possible that even

though one of the Ultra Summit Sets is large, the other will be small.

Gebhardt and González-Meneses [54] show that at least for rigid braids,

the size of the above two Ultra Summit Sets is equal, and their associated

graphs are isomorphic (a braid w is called rigid, if the cycling of w, c(w),

is already given in Garside normal form, with no need for changing the

permutation braids; see also [14, Section 3] and Example 1.3 here). They

conjecture that this is the situation for any braid.

1.7.4. Some variants of the Ultra Summit Sets

In this section, we sketch some variants of the Super Summit Sets and the

Ultra Summit Sets suggested by several authors.

1.7.4.1. Reduced Super Summit Sets

Lee, in his thesis [81] (2000), suggests a variant of the Super Summit Set,

which is actually a subset of the Ultra Summit Set which was defined later
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(2005) by Gebhardt:

Definition 1.15. The Reduced Super Summit Set of x, denote by RSSS(x),

is:

RSSS(x) = {y ∈ C(x)|cm(y) = y and dn(y) = y for some m,n ≥ 1}.

where C(x) is the conjugacy class of x

Lee’s motivation to look on RSSS(x) comes from the facts that it is still

easy to find algorithmically an element in RSSS(x) for a given x, this set

is invariant under cyclings and decyclings, and this set is usually smaller

than SSS(x).

Indeed, it is easy to see (by [43] and [55]) that:

RSSS(x) ⊆ USS(x) ⊆ SSS(x)

Lee indicates that there is no known algorithm to generate RSSS(x)

without generating SSS(x) before. Despite this, he has succeeded to com-

pute RSSS(x) in polynomial time for the case of rigid braids in B4.

1.7.4.2. A general cycling operation and its induced set

Zheng [126] suggests to generalize the idea of cyclings. He defines:

Definition 1.16. The cycling operation of order q on x is the conjugation

cq(x) = s−1xs, where s is the maximal common prefix of x and ∆q. (this

will be denoted in the next section as: s = x ∧ ∆q).

The corresponding set is:

Gq = {x ∈ Bn | cN
q (x) = x for some N > 0}.

The new cycling operations are indeed natural generalizations of the

cycling and decycling operation:

c(x) = τ−inf(x)
(

cinf(x)+1(x)
)

, d(x) = csup(x)−1(x).

Recall that C(x) is the conjugacy class of x. For getting the Super

Summit Sets and the Ultra Summit Sets in the language of Gq, we define:

infs(x) = max{inf(y) | y ∈ C(x)}, sups(x) = min{sup(y) | y ∈ C(x)}.

Hence, we get that:

SSS(x) = C(x) ∩





⋂

q∈{infs(x),sups(x)}

Gq



 ,
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USS(x) = C(x) ∩





⋂

q∈{infs(x),infs(x)+1,sups(x)}

Gq



 .

Zheng [126] defines a new summit set:

C∗(x) = C(x) ∩





⋂

q∈Z

Gq



 = C(x) ∩





⋂

infs(x)≤q≤sups(x)

Gq



 .

It is straight-forward that:

C∗(x) ⊆ USS(x) ⊆ SSS(x).

Given an element x, computing an element x̂ ∈ C∗(x) is done by apply-

ing iterated general cyclings cq until getting repetitions, for inf(x) < q <

sup(x). A more complicated algorithm is presented for finding the whole

C∗(x) (see [126, Algorithm 3.8]). Having these ingredients for C∗(x), we

can solve the Conjugacy Search Problem based on C∗(x).

Zheng [126, Section 6] presents some computational results, and he em-

phasizes that the new set C∗(x) is important especially for the case of

reducible braids, where there are cases that USS(x) = SSS(x).

1.7.4.3. Stable Super Summit Sets and Stable Ultra Summit Sets

The stable Super Summit Sets and stable Ultra Summit Sets were defined

simultaneously by Birman, Gebhardt and González-Meneses [14] and Lee

and Lee [78]:

Definition 1.17. Given x ∈ Bn, The stable Super Summit Set of x is

defined as:

SSSS(x) = {y ∈ USS(x) | ym ∈ USS(xm), ∀m ∈ Z}.

The stable Ultra Summit Set of x is defined as:

SU(x) = {y ∈ USS(x) | ym ∈ USS(xm), ∀m ∈ Z}.

Birman, Gebhardt and González-Meneses [14, Proposition 2.23] and Lee

and Lee [78, Theorem 6.1(i)] have proved that for every x ∈ Bn the stable

sets SSSS(x) and SU(x) are non-empty.

We give here an example from [78], which shows that: (i) the stable

Super Summit Set is different from both the Super Summit Set and the
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Ultra Summit Set; (ii) one cannot obtain an element of the stable Super

Summit Set by applying only cyclings and decyclings.

Example 1.5. [78, page 11] Consider the positive 4-braid monoid B+
4 . Let

g1 = σ1σ2σ3, g2 = σ3σ2σ1, g3 = σ1σ3σ2, g4 = σ2σ1σ3.

Note that gi’s are permutation braids and conjugate to each other.

It is easy to see that

SSS(g1) = USS(g1) = {g1, g2, g3, g4}.

Now, we show that the stable Super Summit Set of g1 is different from the

Super/Ultra Summit Set of g1. The normal forms of g2
i are as follows:

g2
1 = (σ1σ2σ3σ1σ2)σ3; g2

2 = (σ3σ2σ1σ3σ2)σ1; g2
3 = ∆; g2

4 = ∆.

Therefore, inf(g2
1) = inf(g2

2) = 0 and inf(g2
3) = inf(g2

4) = 1. Hence,

SSSS(g1) = {g3, g4}.

Note that ck(gi) = dk(gi) = gi for i = 1, . . . , 4 and all k > 1. In particular,

we cannot obtain an element of the stable Super Summit Set by applying

only cyclings and decyclings to g1 or g2.

A finite-time algorithm for computing the stable Super Summit Sets

(i.e. when given x ∈ Bn, first compute an element x̂ ∈ SSSS(x) and then

compute the whole set SSSS(x)) is given by Lee and Lee in [80, Section 6].

Birman, Gebhardt and González-Meneses [14, page 27] remark that

their proof for the non-emptiness of the stable Ultra Summit Set (Proposi-

tion 2.23 there) actually yields an algorithm for computing this set.

Zheng [126], as a continuation of his idea of general cyclings, suggests

to generalize also the stable sets. He defines:

Definition 1.18. cp,q(x) = s−1xs, where s is the maximal common prefix

of xp and ∆q (i.e., s = xp ∧ ∆q).

The corresponding set is:

Gp,q = {x ∈ Bn | cN
p,q(x) = x for some N > 0}.

Note that cq(x
p) = (cp,q(x))

p, so applying a cq operation on xp is

equivalent to applying a cp,q operation on x. In particular, xp ∈ Gq if and

only if x ∈ Gp,q.
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Similarly, one can define:

C [m,n],∗(x) = C(x) ∩





⋂

m≤p≤n,q∈Z

Gp,q



 .

Zheng claims, that with a suitable modification, the algorithms for com-

puting C∗(x) can be used to compute the set C [m,n],∗(x).

An even more generalized set is:

C∗,∗(x) = C(x) ∩





⋂

p,q∈Z

Gp,q



 ,

but currently there is no algorithm for computing it, because he does not

know how to bound the order p. Nevertheless, Zheng [126, Theorem 7.3]

have proved that the set C∗,∗(x) is nonempty.

The set C∗,∗(x) is indeed a generalization of the stable sets, since:

SSSS(x) = C(x) ∩





⋂

p≥1,q∈{infs(xp),sups(xp)}

Gp,q



 ,

SU(x) = C(x) ∩





⋂

p≥1,q∈{infs(xp),infs(xp)+1,sups(xp)}

Gp,q



 .

By the non-emptiness result of Zheng, we have an alternative proof that

the stable sets are nonempty.

1.7.5. Cyclic sliding

The last step up-to-date for seeking a polynomial-time solution to the conju-

gacy search problem has been done by Gebhardt and González-Meneses [55;

56].

Their idea is introducing a new operation, called cyclic sliding, and

they suggest to replace the usual cycling and decycling operations by this

new one, as it is more natural from both the theoretical and computational

points of view. Then, the Ultra Summit Set USS(x) of x, will be replaced by

its analogue for cyclic sliding: the set of sliding circuits, SC(x). The sets of

sliding circuits and their elements naturally satisfy all the good properties

that were already shown for Ultra Summit Sets, and sometimes even better

properties: For example, for elements of canonical length 1, cycling and

decycling are trivial operations, but cyclic sliding is not.



April 16, 2009 22:45 World Scientific Review Volume - 9in x 6in BGC˙lecture˙notes˙final

Braid Group Cryptography 41

One more advantage of considering the set SC(x) is that it yields a

simpler algorithm to solve the Conjugacy Decision Problem and the Con-

jugacy Search Problem in the braid group. The worst case complexity of

the algorithm is not better than the previously known ones [53], but it is

conceptually simpler and easier to implement. The details of the imple-

mentation and the study of complexity are presented in [56].

For any two braids u, v, let us denote u ∧ v to be the largest common

prefix of u and v (the notation comes from the corresponding operation

on the lattice generated by the partial order � on the elements of Bn, see

Section 1.3.1).

The following is an interesting observation:

Observation 1.19. Given two permutation braids u and v, the decompo-

sition u · v is left-weighted if ∂(u) ∧ v = ε or, equivalently, if uv ∧ ∆ = u.

The condition ∂(u) ∧ v = ε actually means that if we move any crossing

from v to u, then u will not be anymore a permutation braid.

By this observation, it is easy to give a procedure to find the left-

weighted factorization of the product of two permutation braids u and v

as follows. If the decomposition uv is not left-weighted, this means that

there is a nontrivial prefix s � v such that us is still a permutation braid

(i.e. s � ∂(u)). The maximal element which satisfies this property is

s = ∂(u) ∧ v. Therefore, for transforming the decomposition uv into a

left-weighted one, we have to slide the prefix s = ∂(u) ∧ v from the second

factor to the first one. That is, write v = st and then consider the decom-

position uv = (us)t, with us as the first factor and t as the second one. The

decomposition us · t is left-weighted by the maximality of s. This action

will be called local sliding (see Figure 1.19).

Motivated by the idea of local sliding, one wants now to do a cycling

in the same manner. Given a braid in a left normal form x = ∆px1 · · ·xr,

we want now to slide a part of x1 to xr. This will be done by conjugating

a prefix of τ−p(x1). The appropriate prefix is: ∂(xr) ∧ τ−p(x1), which is

equal to: ι(x−1)∧ι(x). Hence, Gebhardt and González-Meneses [55] define:

Definition 1.20. Given x ∈ Bn, define the cyclic sliding s(x) of x as the

conjugate of x by p(x) = ι(x−1) ∧ ι(x), that is:

s(x) = p(x)−1xp(x).

By a series of results, Gebhardt and González-Meneses [55, Section 3,

Results 3.4-3.10] show that the cyclic sliding is indeed a generalization
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t

local sliding

u v

s tu

u s

Fig. 1.19. An illustration of a local sliding

of cycling and decycling, and the fact that for every x ∈ Bn, iterated

application of cyclic sliding eventually reaches a period, that is, there are

integers N ≥ 0 and M > 0 such that sM+N (x) = sN (x).

Now, one can define the set of sliding circuits of x:

Definition 1.21. An element y ∈ Bn belongs to a sliding circuit if sm(y) =

y for some m ≥ 1.

Given x ∈ Bn, the set of sliding circuits of x, denoted by SC(x), is the

set of all conjugates of x which belong to a sliding circuit.

Note that SC(x) does not depend on x but only on its conjugacy class.

Hence, two elements x, y ∈ Bn are conjugate if and only if SC(x) = SC(y).

Therefore, the computation of SC(x) and of one element of SC(y) will solve

the Conjugacy Decision Problem in Bn.

The set SC(x) is usually much smaller than USS(x). For example, for

B12 ∋ x = σ7σ8σ7σ6σ5σ4σ9σ8σ7σ6σ5σ4σ3σ2σ10σ9σ8σ7σ6σ5σ4σ3 ·

·σ2σ1σ11σ10σ9σ8σ7σ6σ5σ4σ3σ2σ1

we have that |SC(x)| = 6, but |SSS(x)| = |USS(x)| = 126498 (see [55,

Section 5], based on an example from [57]). On the other hand, the size of

the set SC(x) still might be exponential in the length of x (for example, if

δ = σn−1 · · ·σ1 ∈ Bn, one has |SC(δ)| = 2n−2 − 2 [55, Proposition 5.1]).

Gebhardt and González-Meneses have proved [55, Proposition 3.13]

that:

SC(x) = RSSS(x)

for x satisfying ℓs(x) > 1 (where ℓs(x) = sups(x)−infs(x), i.e. the canonical
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length of elements in the Super Summit Set of x), and

SC(x) ⊆ RSSS(x)

for x satisfying ℓs(x) = 1, and in general SC(x) is a proper subset of RSSS(x)

in this case.

They remark that the case ℓs(x) = 1 in which the sets differ is not

irrelevant, since, for example, a periodic braid x which is not conjugate to

a power of ∆ has ℓs(x) = 1, but the conjugacy problem for such braids is

far from being easy [16].

As in the previous Summit Sets, the algorithm to solve the CDP/CSP

in braid groups (using sliding circuits) starts by obtaining an element x̂ ∈

SC(x). We do this as follows: take an element x. Now, apply iterated cyclic

sliding on it. Due to the periodic property of the sliding operation, we will

have two integers m1,m2 (m1 < m2), which satisfy:

s
m1(x) = s

m2(x).

When having this, the element x̂ = sm1(x) is in SC(x), since:

s
m2−m1(x̂) = x̂.

After finding a representative x̂ ∈ SC(x), we have to explore all the set

SC(x). This we do in a similar way to the Ultra Summit Set case: There

are �-minimal elements which conjugate an element in SC(x) to another

element there. The number of such possible minimal conjugators for a given

element in SC(x) is bounded by the number of Artin generators). Hence,

one can compute the whole SC(x) starting by a single element x̂ ∈ SC(x),

and then we are done (for more information, see [55, Section 4.1] and [56])

Again, as in the previous Summit Sets, the algorithm of Gebhardt and

González-Meneses [55] not only computes SC(x), but also a graph SCG(x),

which determines the conjugating elements. This graph is defined as fol-

lows.

Definition 1.22. Given x ∈ Bn, the directed graph SCG(x) is defined by

the following data:

(1) The set of vertices is SC(x).

(2) For every y ∈ SC(x) and every minimal permutation braid s for y with

respect to SC(x), there is an arrow labeled by s going from y to s−1ys.

More information about these sorts of Summit sets can be found in the

series of papers [14; 15; 16] and [77; 78; 80].
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1.7.6. An updated summary of the theoretical solution for

the conjugacy search problem

In this section, we give an updated summary for the current status of the

complexity of the theoretical solution for the Conjugacy Search Problem.

We follow here the nice presentation of González-Meneses in his talk at

Singapore (2007) [59].

As already mentioned, according to Nielsen-Thurston geometric classi-

fication (based on [102] and [120]), there are three types of braids: periodic

braids, reducible braids and pseudo-Anosov braids.

A braid α is called periodic if there exist integers k,m such that αk =

∆2m. A braid α is called reducible if it preserves a family of curves, called

a reduction system. A braid is called pseudo-Anosov if it is neither periodic

nor reducible.

For the case of periodic braids, Birman, Gebhardt and González-

Meneses [16] present a polynomial-time algorithm for solving the conjugacy

search problem. Almost at the same time, Lee and Lee [79] suggest another

entirely different solution for this case.

For the case of reducible braids, there is a result of Gebhardt and

González-Meneses [59] that these braids fall into exactly two cases:

(1) The braid α is conjugate to a braid with a standard reducing curve,

which means that the reducing curves are round circles, and hence the

Conjugacy Search Problem can be decomposed into smaller problems

(inside the tubes).

There is only one problem here: the conjugate braid (with a standard

reducing curve) is in USS(α), and for reaching it, one has to make an

unknown number of cycling/decycling (or sliding) steps.

(2) The braid α is rigid (i.e. a cycling of the Garside normal form of α is

left-weighted as written, or alternatively, it is a fixed point with respect

to cyclic slidings).

For the case of pseudo-Anosov braids: Due to a result of Birman,

Gebhardt and González-Meneses [14, Corollary 3.24], there exists a small

power of a pseudo-Anosov braid which is conjugate to a rigid braid. Another

result [58] claims that in the case of pseudo-Anosov braids, the conjugating

elements of the pair (x, y) and the pair (xm, ym) coincide, and hence instead

of solving the Conjugacy Search Problem in the pair (x, y), one can solve

it in the pair (xm, ym). Therefore, one can restrict himself to the case of
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rigid braids.

If we summarize all cases, we get that the main challenges in this direc-

tion are:

(1) Solve the Conjugacy Search Problem for rigid braids in polynomial

time.

(2) Given a braid x, find a polynomial bound for the number of cy-

cling/decycling steps one has to perform for reaching an element in

USS(x).

1.8. More attacks on the conjugacy search problem

There are some more ways to attack the Conjugacy Search Problem, apart

of solving it completely. In this section, we present some techniques to

attack the Conjugacy Search Problem without actually solving it theoreti-

cally.

1.8.1. A heuristic algorithm using the Super Summit Sets

Hofheinz and Steinwandt [65] use a heuristic algorithm for attacking the

Conjugacy Search Problem which is the basis of the cryptosystems of

Anshel-Anshel-Goldfeld [4] and Ko et al. [72].

Their algorithm is based on the idea that it is probable that if we start

with two elements in the same conjugacy class, their representatives in the

Super Summit Set will not be too far away, i.e. one representative is a

conjugation of the other by a permutation braid.

So, given a pair (x, x′) of braids, where x′ = s−1xs, we do the following

steps:

(1) By a variant of cycling (adding a multiplication by ∆ to the first per-

mutation braid, based on [82, Proposition 1]) and decycling, we find

x̃ ∈ SSS(x) and x̃′ ∈ SSS(x′).

(2) Try to find a permutation braid P , such that x̃′ = P−1x̃P .

In case we find such a permutation braid P , since we can follow after the

conjugators in the cycling/decycling process, at the end of the algorithm

we will have at hand the needed conjugator for breaking the cryptosystem.

Note that we do not really need to find exactly s, since each s̃ which satisfies

x′ = s̃−1xs̃ will do the job as well and reveal the shared secret key.
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Their experiments show that they succeed to reveal the shared secret

key in almost 100% of the cases in the Anshel-Anshel-Goldfeld protocol

(where the cryptosystem is based on the Multiple Simultaneous Conjugacy

Problem) and in about 80% of the cases in the Diffie-Hellman-type protocol.

Note that their attack is special to cryptosystems which are based on

the conjugacy problem, since it depends very much on the fact that x and

x′ are conjugate.

1.8.2. Reduction of the Conjugacy Search Problem

Maffre [87; 88] presents a deterministic, polynomial algorithm that reduces

the Conjugacy Search Problem in braid group.

The algorithm is based on the decomposition of braids into products of

canonical factors and gives a partial factorization of the secret: a divisor

and a multiple. The tests which were performed on different keys of existing

protocols showed that many protocols in their current form are broken and

that the efficiency of the attack depends on the random generator used to

create the key.

1.8.3. Length-based attacks

A different probabilistic attack on the braid group cryptosystems is the

length-based attack. In this section, we will sketch its basic idea, and differ-

ent variants of this attack on the braid group cryptosystems. We finish this

section with a short discussion about the applicability of the length-based

attack to other groups.

1.8.3.1. The basic idea

The basic idea was introduced by Hughes and Tannenbaum [67].

Let ℓ be a length function on the braid group Bn. In the Conjugacy

Search Problem, we have an instance of (p, p′) where p′ = s−1ps, and we

look for s. The idea of a probabilistic length-based attack to this problem

is: if we can write s = s′σi for a given i, then the length ℓ(σis
−1psσ−1

i )

should be strictly smaller than the length ℓ(σjs
−1psσ−1

j ) for j 6= i.

Thus, for using such an attack, one should choose a good length function

on Bn and run it iteratively till we get the correct conjugator.
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1.8.3.2. Choosing a length function

In [49], we suggest some length functions for this purposes. The first option

is the Garside length, which is the length of the Garside normal form by

means of Artin generators (i.e. if w = ∆r
nP1P2 · · ·Pk, then ℓGar(w) = r|∆|+

|P1| + |P2| + · · · + |Pk|).

A better length function is the Reduced Garside length (which is called

Mixed Garside length in [44]). The motivation for this length function is

that a part of the negative powers of ∆n can be canceled with the positive

permutation braids. Hence, it is defined as follows: if w = ∆−r
n P1P2 · · ·Pk,

then:

ℓRedGar(w) = ℓGar(w) − 2

min{r,k}
∑

i=1

|Pi|.

This length function is much more well-behaved, and hence it gives better

performances. But even this length function did not give a break of the

cryptosystems (by the basic length-based attack).

In [64], Hock and Tsaban checked the corresponding length functions

for the Birman-Ko-Lee presentation, and they found out that the reduced

length function with respect to the Birman-Ko-Lee presentation behaves

even better than the reduced Garside length function.

1.8.3.3. The memory approach

The main contribution of [48] is new improvements to the length-based

attack.

First, it introduces a new approach which uses memory: In the basic

length-based attack, we hold each time only the best conjugator so far.

The problem with this is that sometimes a prefix of the correct conjugator

is not the best conjugator at some iteration and hence it is thrown out.

In such a situation, we just miss the correct conjugator in the way, and

hence the length-based algorithm fails. Moreover, even if we use a ’look

ahead’ approach, which means that instead of adding one generator in each

iteration we add several generators in each iteration, we still get total failure

for the suggested parameters, and some success for small parameters [49].

In the memory approach, we hold each time a given number (which is

the size of the memory) of possible conjugators which are the best among

all the other conjugators of this length. In the next step, we add one more

generator to all the conjugators in the memory, and we choose again only

the best ones among all the possibilities. In this approach, in a successful
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search, we will often have the correct conjugator in the first place of the

memory.

The results of [48] show that the length-based attack with memory is

applicable to the cryptosystems of Anshel-Anshel-Goldfeld and Ko et al,

and hence their cryptosystems are not secure. Moreover, the experiments

show that if we increase the size of the memory, the success rate of the

length-based attack with memory becomes higher.

1.8.3.4. A different variant of Length-based attack by Myasnikov

and Ushakov

Recently, Myasnikov and Ushakov [100] suggested a different variant of the

length-based approach.

They start by mentioning the fact that the geodesic length, i.e. the

length of the shortest path in the corresponding Cayley graph, seems to

be the best candidate for a length function in the braid group, but there

is no known efficient algorithm for computing it. Moreover, it was shown

by Paterson and Razborov [104] that the set of geodesic braids in Bn is

co-NP complete. On the other hand, many other length functions are bad

for the length-based attacks (like the canonical length, which is the number

of permutation braids in the Garside normal form).

As a length function, they choose some approximation function for the

geodesic length: they use Dehornoy’s handles reduction and conjugations

by ∆ (this length function appears in [96; 97]). This length function satisfies

|a−1ba| > |b| for almost all a and b.

Next, they identify a type of braid word, which they call peaks, which

causes problems to the Length-based attacks:

Definition 1.23. Let G be a group, and let ℓG be a length function on G,

and H = 〈w1, . . . , wk〉. A word w = wi1 · · ·win
is called an n-peak in H

relative to ℓG if there is no 1 ≤ j ≤ n− 1 such that

ℓG(wi1 · · ·win
) ≥ ℓG(wi1 · · ·wij

).

An example of a commutator-type peak is given in [100, Example 1]:

if a1 = σ−1
39 σ12σ7σ

−1
3 σ−1

1 σ70σ25σ
−1
24 and a2 = σ42σ

−1
56 σ8σ

−1
18 σ19σ73σ

−1
33 σ

−1
22

then their commutator is a peak: a−1
1 a−1

2 a1a2 = σ7σ
−1
8 .

The main idea behind their new variant of the Length-based attack is

to add elements from the corresponding subgroup to cut the peaks. By

an investigation of the types of peaks, one can see that this is done by

adding to the vector of elements all the conjugators and commutators of
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its elements. By this way, the Length-based attack will be more powerful.

For more information and for an exact implementation, see [100].

1.8.3.5. Applicability of the length-based approach

One interesting point about the length-based approach is that it is applica-

ble not only for the Conjugacy Search Problem, but also for solving equa-

tions in groups. Hence, it is a threat also to the Decomposition Problem

and for the Shifted Conjugacy Problem which was introduced by Dehornoy

(see [30] and Section 1.9.3 below).

Moreover, the length-based approach is applicable in any group which

has a reasonable length function, e.g. the Thompson group, as indeed has

been done by Ruinskiy, Shamir and Tsaban (see [108] and Section 1.11.1.2

below).

1.8.4. Attacks based on linear representations

A different way to attack these cryptographic schemes is by using linear

representations of the braid groups. The basic idea is to map the braid

groups into groups of matrices, in which the Conjugacy Search Problem is

easy. In this way, we might solve the Conjugacy Search Problem of Bn by

lifting the element from the group of matrices back to the braid group Bn.

For more information on the linear representations of the braid group,

we refer the reader to the surveys of Birman and Brendle [13] and Paris
[103].

1.8.4.1. The Burau representations

The best known linear representation of the braid group Bn is the Burau

representation [21]. We present it here (we partially follow [82]).

The Burau representation is defined as follows. Let Z[t±1] be the ring

of Laurent polynomials f(t) = akt
k + ak+1t

k+1 + · · · + amt
m with integer

coefficients (and possibly with negative degree terms). Let GLn(Z[t±1]) be

the group of n×n invertible matrices over Z[t±1]. The Burau representation

is a homomorphism Bn → GLn(Z[t±1]) which sends a generator σi ∈ Bn
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to the matrix:






















1
. . .

1 − t t

1 0
. . .

1























∈ GLn(Z[t±1]),

where 1 − t occurs in row and column i of the matrix.

This representation is reducible, since it can be decomposed into the

trivial representation of dimension 1 and an irreducible representation

Bn → GLn−1(Z[t±1]) of dimension n − 1, called the reduced Burau rep-

resentation, which sends a generator σi ∈ Bn to the matrix:

Ci(t) =



























1
. . .

1

t −t 1

1
. . .

1



























∈ GLn−1(Z[t±1]),

where t occurs in row i of the matrix. If i = 1 or i = n− 1, the matrix is

truncated accordingly (see [82]).

Note that these matrices satisfy the braid group’s relations:

Ci(t)Cj(t) = Cj(t)Ci(t) for |i− j| > 2

Ci(t)Ci+1(t)Ci(t) = Ci+1(t)Ci(t)Ci+1(t) for i = 1, . . . , n− 1

The Burau representation of Bn is faithful for n = 3 and it is known

to be unfaithful for n ≥ 5 (i.e. the map from Bn to the matrices is not

injective) [93; 94; 83; 10]. The case of n = 4 remains unknown. In the case

of n ≥ 5, the kernel is very small [123], and the probability that different

braids admit the same Burau image is negligible.

Here is a variant of the Burau representation introduced by Morton [95].

The colored Burau matrix is a refinement of the Burau matrix by assign-

ing σi to Ci(ti+1), so that the entries of the resulting matrix have several

variables. This naive construction does not give a group homomorphism.
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Thus the induced permutations are considered simultaneously. We label

the strands of an n-braid by t1, . . . , tn, putting the label tj on the strand

which starts from the jth point on the right.

Now we define:

Definition 1.24. Let a ∈ Bn be given by a word σe1

i1
· · ·σek

ik
, ej = ±1. Let

tjr
be the label of the under-crossing strand at the rth crossing. Then the

colored Burau matrix Ma(t1, . . . , tn) of a is defined by

Ma(t1, . . . , tn) =

k
∏

r=1

(Cir
(tjr

))er .

The permutation group Sn acts on Z[t±1
1 , . . . , t±1

n−1] from left by changing

variables: for α ∈ Sn, α(f(t1, . . . , tn)) = f(tα(1), . . . , tα(n)). Then Sn also

acts on the matrix group GLn−1(Z[t±1
1 , . . . , t±1

n ]) entry-wise: for α ∈ Sn

and M = (fij), then α(M) = (α(fij)). Then we have

Definition 1.25. The colored Burau group CBn is:

Sn ×GLn−1(Z[t±1
1 , . . . , t±1

n ])

with multiplication (α1,M1) · (α2,M2) = (α1α2, (α
−1
2 M1)M2). The col-

ored Burau representation C : Bn → CBn is defined by C(σi) = ((i, i +

1), Ci(ti+1)).

It is easy to see the following:

(1) CBn is a group, with identity element (e, In−1) and (α,M)−1 =

(α−1, αM−1),

(2) C(σi)’s satisfy the braid relations and so C : Bn → CBn is a group

homomorphism.

(3) for a ∈ Bn, C(a) = (πa,Ma), where πa is the induced permutation and

Ma is the colored Burau matrix.

Using the Burau representation, the idea of Hughes [66] to attack the

Anshel-Anshel-Goldfeld scheme [4; 5] is as follows: take one or several pairs

of conjugate braids (p, p′) associated with the same conjugating braids.

Now, it is easy to compute their classical Burau image and to solve the

Conjugate Search Problem in the linear group.

In general, this is not enough for solving the Conjugate Search Problem

in Bn, because there is no reason for the conjugating matrix that has been

found to belong to the image of the Burau representation, or that one can
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find a possible preimage. Since the kernel of the classical Burau represen-

tation is small [123], there is a non-negligible probability that we will find

the correct conjugator and hence we break the cryptosystem.

In a different direction, Lee and Lee [82] indicate a weakness in the

Anshel-Anshel-Goldfeld protocol in a different point. Their shared key is

the colored Burau representation of a commutator element.

The motivation for this attack is that despite the change of variables

in the colored Burau matrix by permutations, the matrix in the final out-

put, which is the shared key, is more manageable than braids. They show

that the security of the key-exchange protocol is based on the problems of

listing all solutions to some Multiple Simultaneous Conjugacy Problems in

a permutation group and in a matrix group over a finite field. So if both

of the two listing problems are feasible, then we can guess correctly the

shared key, without solving the Multiple Simultaneous Conjugacy Problem

in braid groups.

Note that Lee-Lee attack is special to this protocol, since it uses the

colored Burau representation of a commutator element, instead of using

the element itself. In case we change the representation in the protocol,

this attack is useless.

1.8.4.2. The Lawrence-Krammer representation

The Lawrence-Krammer representation is another linear representation of

Bn, which is faithful [11; 74]. It associates with every braid in Bn a matrix

of size
(

n
2

)

with entries in a 2-variable Laurent polynomial ring Z[t±1, q±1].

Cheon and Jun [24] develop an attack against the scheme of Diffie-

Hellman-type protocol based on the Lawrence-Krammer representation: as

in the case of the Burau representation, it is easy to compute the images of

the involved braids in the linear group and to solve the Conjugacy Problem

there, but in general, there is no way to lift the solution back to the braid

groups.

But, since we only have to find a solution to the derived Diffie-Hellman-

like Conjugacy Problem:

Problem 1.5. Given p, sps−1 and rpr−1, with r ∈ LBn and s ∈ UBn, find

(rs)p(rs)−1.

Taking advantage of the particular form of the Lawrence-Krammer ma-

trices, which contain many 0’s, Cheon and Jun obtain a solution with a

polynomial complexity and they show that, for the parameters suggested
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by Ko et al. [72], the procedure is doable, and so the cryptosystem is not

secure.

1.9. Newly suggested braid group cryptosystems, their

cryptanalysis and their future applications

In this section, we present recent updates on some problems in the braid

group, on which one can construct a cryptosystem. We also discuss some

newly suggested braid group cryptosystems.

1.9.1. Cycling problem as a potential hard problem

In their fundamental paper, Ko et al. [72] suggested some problems which

can be considered as hard problems, on which one can construct a cryp-

tosystem. One of the problems is the Cycling Problem:

Problem 1.6. Given a braid y and a positive integer t such that y is in

the image of the operator ct. Find a braid x such that ct(x) = y.

Maffre, in his thesis [86], shows that the Cycling Problem for t = 1 has

a very efficient solution. That is, if y is the cycling of some braid, then one

can find x such that c(x) = y very fast.

Following this result, Gebhardt and Gonzáles-Meneses [54] have shown

that the general Cycling Problem has a polynomial solution. The reason

for that is the following result: The cycling operation is surjective on the

braid group [54]. Hence, one can easily find the tth preimage of y under

this operation.

Note that the decycling operation and cyclic sliding operation are sur-

jective too (the decycling operation is a composition of surjective maps:

d(x) = (τ(c(x−1)))−1, and the cyclic sliding operation can be written as a

composition of a cycling and a decycling [55, Lemma 3.8]). Hence, these

problems cannot be considered as hard problems, on which one can con-

struct a cryptosystem [60].

It will be interesting to find new operations on the braid group which

their solution can be consider as an hard problem, on which one can con-

struct a cryptosystem.
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1.9.2. A cryptosystem based on the shortest braid problem

A different type of problem consists in finding the shortest words represent-

ing a given braid (see Dehornoy [29, Section 4.5.2]). This problem depends

on a given choice of a distinguished family of generators for Bn, e.g., the

σi’s or the band generators of Birman-Ko-Lee.

We consider this problem in B∞ which is the group generated by an

infinite sequences of generators {σ1, σ2, . . . } subject to the usual braid re-

lations.

The Minimal Length Problem (or Shortest Word Problem) is:

Problem 1.7. Starting with a word w in the σ±1
i ’s, find the shortest word

w′ which is equivalent to w, i.e., that satisfies w′ ≡ w.

This problem is considered to be hard due to the following result of

Paterson and Razborov [104]:

Prop 1.9. The Minimal Length Problem (in Artin’s presentation) is co-

NP-complete.

This suggests introducing new schemes in which the secret key is a short

braid word, and the public key is another longer equivalent braid word. It

must be noted that the NP-hardness result holds in B∞ only, but it is not

known in Bn for fixed n.

The advantage of using an NP-complete problem lies in the possibility

of proving that some instances are difficult; however, from the point of view

of cryptography, the problem is not to prove that some specific instances

are difficult (worst-case complexity), but rather to construct relatively large

families of provably difficult instances in which the keys may be randomly

chosen.

Based on some experiments, Dehornoy [29] suggests that braids of the

form w(σe1

1 , σ
e2

2 , . . . , σ
en
n ) with ei = ±1, i.e., braids in which, for each i, at

least one of σi or σ−1
i does not occur, could be relevant.

The possible problem of this approach is that the shortest word problem

inBn for a fixed n is not so hard. InB3, there is polynomial-time algorithms

for the shortest word problem (see [8] and [124] for the presentation by the

Artin generators and [125] for the presentation by band generators). Also,

this problem was solved in polynomial time inB4 for the presentation by the

band generators ([70] and [81, Chapter 5]). For small fixed n, Wiest [124]

conjectures for an efficient algorithm for finding shortest representatives in

Bn. Also, an unpublished work [50] indicates that a heuristic algorithm
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based on a random walk on the Cayley graph of the braid group might give

good results in solving the Shortest Word Problem.

In any case, a further research is needed here in several directions:

(1) Cryptosystem direction: Can one suggest a cryptosystem based

on the shortest word problem in B∞, for using its hardness due to

Paterson-Razborov?

(2) Cryptanalysis direction: What is the final status of the shortest

word problem in Bn for a fixed n?

(3) Cryptanalysis direction: What is the hardness of the Shortest Word

Problem in the Birman-Ko-Lee’s presentation?

1.9.3. A cryptosystem based on the Shifted Conjugacy

Search Problem

Dehornoy [30] has suggested an authentication scheme which is based on

the Shifted Conjugacy Search Problem.

Before we describe the scheme, let us define the Shifted Conjugacy

Search Problem. Let x, y ∈ B∞. We define:

x ∗ y = x · dy · σ1 · dx
−1

where dx is the shift of x in B∞, i.e. d is the injective function on B∞

which sends the generator σi to the generator σi+1 for each i ≥ 1. In this

context, the Shifted Conjugacy Search Problem is:

Problem 1.8. Let s, p ∈ B∞ and p′ = s ∗ p. Find a braid s̃ satisfying

p′ = s̃ ∗ p.

Now, the suggested scheme is based on the Fiat-Shamir authentication

scheme: We assume that S is a set and (Fs)s∈S is a family of functions of

S to itself that satisfies the following condition:

Fr(Fs(p)) = FFr(s)(Fr(p)), r, s, p ∈ S

Alice is the prover who wants to convince Bob that she knows the secret

key s. Then the scheme works as follows:

Protocol 1.26.

Public key: Two elements p, p′ ∈ S such that p′ = Fs(p).

Private keys: Alice: s ∈ S.

Alice: Chooses a random r ∈ S and sends Bob x = Fr(p) and x′ =

Fr(p
′).
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Bob: Chooses a random bit c and sends it to Alice.

Alice: If c = 0, sends y = r (then Bob checks: x = Fy(p) and x′ =

Fy(p′));

If c = 1, sends y = Fr(s) (then Bob checks: x′ = Fy(x)).

Dehornoy [30] suggests to implement this scheme on Left-

Distributive(LD)-systems. A LD-system is a set S with a binary operation

which satisfies:

r ∗ (s ∗ p) = (r ∗ s) ∗ (r ∗ p).

The Fiat-Shamir-type scheme on LD-systems works as follows:

Protocol 1.27.

Public key: Two elements p, p′ ∈ S such that p′ = s ∗ p.

Private keys: Alice: s ∈ S.

Alice: Chooses a random r ∈ S and sends Bob x = r ∗ p and x′ = r ∗ p′.

Bob: Chooses a random bit c and sends it to Alice.

Alice: If c = 0, sends y = r (then Bob checks: x = y ∗p and x′ = y ∗p′);

If c = 1, sends y = r ∗ s (then Bob checks: x′ = y ∗ x).

Now, one can use the shifted conjugacy operation as the ∗ operation

on B∞ in order to get a LD-system. So, in this way, one can achieve an

authentication scheme on the braid group with a non-trivial operation [30].

Remark 1.6. For attacking the Shifted Conjugacy Search Problem, one

cannot use the Summit Sets theory, since it is not a conjugation problem

anymore. Nevertheless, one still can apply on it the length-based attack,

since it is still an equation with x.

Longrigg and Ushakov [84] cryptanalyze the suggestion of Dehornoy, and

they show that they can break the scheme (e.g. 24% of success rate for keys

of length 100 in B40). Their idea is that in general cases they can reduce the

Shifted Conjugacy Search Problem into the well-studied Conjugacy Search

Problem. Based on some simple results, they construct an algorithm for

solving the Shifted Conjugacy Search Problem in two steps:

(1) Find a solution s′ ∈ Bn+1 for the equation p′δ−1
n+1 = s′d(p)σ1δ

−1
n+1 in

Bn+1. This part can be done using the relevant Ultra Summit Set.

(2) Correct the element s′ ∈ Bn+1 to obtain a solution s ∈ Bn. This can

be done by finding a suitable element c ∈ CBn+1
(d(p)σ1δ

−1
n+1) (the cen-

tralizer of d(p)σ1δ
−1
n+1 in Bn+1).
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The algorithm for computing centralizers presented in [45] is based on

computing the Super Summit Set, which is hard in general (note that

actually the Super Summit Set can be replaced by the Ultra Summit

Set and the Sliding Circuits set in Franco and González-Meneses’ al-

gorithm [60]). Hence, Longrigg and Ushakov use some subgroup of the

centralizer which is much easier to work with.

In the last part of their paper, they discuss possibilities for hard in-

stances for Dehornoy’s scheme, which will resist their attack. Their attack

is based on two ingredients:

(1) The Conjugacy Search Problem is easy for the pair

(p′δ−1
n+1, d(p)σ1δ

−1
n+1)

in Bn+1.

(2) The centralizer CBn+1
(d(p)σ1δ

−1
n+1) is ”small” (i.e. isomorphic to an

Abelian group of small rank).

Hence, if one can find keys for which one of the properties above is not

satisfied, then the attack probably fails.

With respect to this scheme, it is interesting to check (see also [30]):

(1) Cryptanalysis direction: What is the success rate of a length-based

attack on this scheme?

(2) Cryptanalysis direction: Can one develop a theory for the Shifted

Conjugacy Search Problem which will be parallel to the Summit Sets

theory?

(3) Cryptosystem direction: Can one suggest a LD-system on the braid

group, which will be secure for the length-based attack?

(4) Cryptosystem direction: Can one find keys for which the properties

above are not satisfied, and for which Longrigg-Ushakov’s attack fails?

(5) Cryptosystem direction: Can one suggest a LD-system on a differ-

ent group, which will be secure?

1.9.4. Algebraic Eraser

Recently, Anshel, Anshel, Goldfeld and

Lemieux [6] introduce a new scheme for a cryptosystem which is based

on combinatorial group theory. We will present here the main ideas of the

scheme and the potential attacks on it.
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1.9.4.1. The scheme and the implementation

We follow the presentation of [69]. Let G be a group acting on a monoid M

on the left, that is, to each g ∈ G and each a ∈ M , we associate a unique

element denoted ga ∈M , such that:

1a = a; gha =g (ha); g(ab) =g a ·g b

for all a, b ∈ M and g, h ∈ G. The set M × G, with the operation (a, g) ◦

(b, h) = (a ·g b, gh) is a monoid, which is denoted by M ⋊G.

Let N be a monoid, and ϕ : M → N a homomorphism. The algebraic

eraser operation is the function ⋆ : (N ×G)× (M ⋊G) → (N ×G) defined

by:

(a, g) ⋆ (b, h) = (aϕ(gb), gh)

The function ⋆ satisfies the following identity:

((a, g) ⋆ (b, h)) ⋆ (c, r) = (a, g) ⋆ ((b, h) ◦ (c, r))

for all (a, g) ∈ N ×G and (b, h), (c, r) ∈M ⋊G.

We say that two submonoids A,B of M ⋊G are ⋆-commuting if

(ϕ(a), g) ⋆ (b, h) = (ϕ(b), h) ⋆ (a, g)

for all (a, g) ∈ A and (b, h) ∈ B. In particular, if A,B ⋆-commute, then:

ϕ(a)ϕ(gb) = ϕ(b)ϕ(ha) for all (a, g) ∈ A and (b, h) ∈ B.

Based on these settings, Anshel, Anshel, Goldfeld and Lemieux suggest

the Algebraic Eraser Key Agreement Scheme. It consists on the following

public information:

(1) A positive integer m.

(2) ⋆-commuting submonoids A,B of M ⋊ G, each given in terms of a

generating set of size k.

(3) Elementwise commuting submonoids C,D of N .

Here is the protocol:

Protocol 1.28.

Alice: Chooses c ∈ C and (a1, g1), . . . , (am, gm) ∈ A, and sends (p, g) =

(c, 1)⋆(a1, g1)⋆ · · ·⋆(am, gm) ∈ N×G (where the ⋆-multiplication is carried

out from left to right) to Bob.

Bob: Chooses d ∈ D and (b1, h1), . . . , (bm, hm) ∈ B, and sends (q, h) =

(d, 1) ⋆ (b1, h1) ⋆ · · · ⋆ (bm, hm) ∈ N ×G to Alice.
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Alice and Bob can compute the shared key:

(cq, h) ⋆ (a1, g1) ⋆ · · · ⋆ (am, gm) = (dp, g) ⋆ (b1, h1) ⋆ · · · ⋆ (bm, hm)

For the reason why it is indeed a shared key, see [6] and [69].

Anshel, Anshel, Goldfeld and Lemieux apply their general scheme to

a particular case, which they call Colored Burau Key Agreement Protocol

(CBKAP):

Fix a positive integers n and r, and a prime number p. Let G = Sn, the

symmetric group on the n symbols {1, . . . , n}. The group G = Sn acts

on GLn(Fp(t1, . . . , tn)) by permuting the variables {t1, . . . , tn} (note that

in this case the monoid M is in fact a group, and hence, the semi-direct

product M ⋊G also forms a group, with inversion (a, g)−1 = (g−1

a−1, g−1)

for all (a, g) ∈M ⋊G).

Let N = GLn(Fp). The group M ⋊ Sn is the subgroup of

GLn(Fp(t1, . . . , tn)) ⋊ Sn, generated by (x1, s1), . . . , (xn−1, sn−1), where

si = (i, i + 1), and xi = Ci(ti) (see page 50 above), for i = 2, . . . , n − 1.

Recall that the colored Burau group M ⋊G is a representation of Artin’s

braid group Bn, determined by mapping each Artin generator σi to (xi, si),

i = 1, . . . , n− 1.

ϕ : M → GLn(Fp) is the evaluation map sending each variable ti to a

fixed element τ ∈ Fp. Let C = D = Fp(κ) is the group of matrices of the

form:

ℓ1κ
j1 + · · · + ℓrκ

jr ,

with κ ∈ GLn(Fp) of order pn − 1, ℓ1, . . . , ℓr ∈ Fp, and j1, . . . , jr ∈ Z.

Commuting subgroups of M ⋊ G are chosen in a similar way to LBn

and UBn in Section 1.6.2.2. This part is done by a Trusted Third Party

(TTP), before the key-exchange protocol starts.

Fix I1, I2 ⊆ {1, . . . , n−1} such that for all i ∈ I1 and j ∈ I2, |i− j| > 2,

and |I1| and |I2| are both ≤ n/2. Then, define L = 〈σi : i ∈ I1〉 and

U = 〈σj : j ∈ I2〉, subgroups of Bn generated by Artin generators. From

the construction of I1 and I2, L and U commute elementwise. Add to both

groups the central element ∆2 of Bn.

Now, they choose a secret random z ∈ Bn. Next, they choose

w1 = zw′
1z

−1, . . . , wk = zw′
kz

−1 ∈ zLz−1 and v1 = zv′1z
−1, . . . , vk =

zv′kz
−1 ∈ zUz−1, each a product of t-many generators. Transform them

into Garside’s normal form, and remove all even powers of ∆. Reuse the

names w1, . . . , wk; v1, . . . , vk for the resulting braids. These braids are made

public.
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Anshel, Anshel, Goldfeld and Lemieux have cryptanalyzed their scheme

and the TTP protocol, and conclude that if the conjugating element z is

known, there is a successful linear algebraic attack on CBKAP (see [6,

Section 6]). On the other hand, if z is not known, this attack cannot

be implemented. Moreover, they claim that the length-based attack is

ineffective against CBKAP because wi and vi are not known and for some

more reasons.

1.9.4.2. The attacks

There are several attacks on this cryptosystem. Kalka, Teicher and Tsaban
[69] attack the general scheme and then show that the attack can be applied

to CBKAP, the specific implementation of the scheme.

For the general scheme, they show that the secret part of the shared

key can be computed (under some assumptions, which also include the

assumption that the keys are chosen with standard distributions). They do

it in two steps: First they compute d and ϕ(b) up to a scalar, and using

that they can compute the secret part of the shared key. They remark that

if the keys are chosen by a distribution different from the standard, it is

possible that this attack is useless (see [69, Section 8] for a discussion on

this point).

In the next part, they show that the assumptions are indeed satisfied

for the specific implementation of the scheme. The first two assumptions

(that it is possible to generate an element (α, 1) ∈ A with α 6= 1, and that

N is a subgroup of GLn(F) for some field F and some n) can be easily

checked. The third assumption (that given an element g ∈ 〈s1, . . . , sk〉,

where (a1, s1), . . . , (ak, sk) ∈ M ⋊G are the given generators of A, then g

can be explicitly expressed as a product of elements of {s±1 , . . . , s
±
k }), can

be reformulated as the Membership Search Problem in generic permutation

groups :

Problem 1.9. Given random s1, . . . , sk ∈ Sn and s ∈ 〈s1, . . . , sk〉, ex-

press s as a short (i.e. of polynomial length) product of elements from

{s±1 , . . . , s
±
k }.

They provide a simple and very efficient heuristic algorithm for solving

this problem in generic permutation groups. The algorithm gives expres-

sions of length O(n2 log(n)), in time O(n4 log(n)) and space O(n2 log(n)),

and is the first practical one for n ≥ 256. Hence, the third assumption is

satisfied too. So the attack can be applied to the CBKAP implementation.
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Myasnikov and Ushakov [101] attack the scheme of Anshel, Anshel,

Goldfeld and Lemieux from a different direction. Anshel, Anshel, Goldfeld

and Lemieux [6] discuss the security of their scheme and indicate that if

the conjugator z generated randomly by the TTP algorithm is known, then

one can attack their scheme by an efficient linear attack, which can reveal

the shared key of the parties. The problem of recovering the exact z seems

like a very difficult mathematical problem since it reduces to solving the

system of equations:


















































w1 = ∆2p1zw′
1z

−1

...

wk = ∆2pkzw′
kz

−1

v1 = ∆2r1zv′1z
−1

...

vk = ∆2rkzv′kz
−1

,

which has too many unknowns, since only the left hand sides are known.

Hence, it might be difficult to find the original z.

The attack of Myasnikov and Ushakov is a variant of the length-based

attack. It is based on the observation that actually any solution z′ for the

system of equations above can be used in a linear attack on the scheme.

Hence, they start by recovering the powers of ∆ which were added, so one

can peel the ∆2p part. In the next step, they succeed in revealing the

conjugator z (or any equivalent solution z′).

Experimental results with instances of the TTP protocol generated us-

ing |z| = 50 (which is almost three times greater than the suggested value)

showed 100% success rate. They indicate that the attack may fail when the

length of z is large relative to the length of ∆2 (for more details, see [101,

Section 3.4]).

Chowdhury [27] shows that the suggested implementation of the Alge-

braic Eraser scheme to the braid group (the TTP protocol) is actually based

on the Multiple Simultaneous Conjugacy Search Problem, and then it can

be cracked. He gives some algorithms for attacking the implementation.

It will be interesting to continue the research on the Algebraic Eraser

key-agreement scheme in several directions:

(1) Cryptosystem direction: Can one suggest a different distribution

for the choice of keys, so the cryptosystem can resist the attack of
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Kalka-Teicher-Tsaban?

(2) Cryptosystem direction: Can one suggest a different implementa-

tion (different groups, etc.) for the Algebraic Eraser scheme which can

resist the attack of Kalka-Teicher-Tsaban?

(3) Cryptanalysis direction: Can the usual length-based approach [48]

be applied to attack the TTP protocol?

(4) General: One should perform a rigorous analysis of the algorithm of

Kalka-Teicher-Tsaban for the Membership Search Problem in generic

permutation groups (see [69, Section 8]).

1.9.5. Cryptosystems based on the decomposition problem

and the triple decomposition problem

This section deals with two cryptosystems which are based on different

variants of the decomposition problem: Given a, b = xay ∈ G, find x, y.

Shpilrain and Ushakov [113] suggest the following protocol, which is

based on the decomposition problem:

Protocol 1.29.

Public key: w ∈ G.

Alice: chooses an element a1 ∈ G of length ℓ, chooses a subgroup of the

centralizer CG(a1), and publishes its generators A = {α1, . . . , αk}.

Bob: chooses an element b2 ∈ G of length ℓ, chooses a subgroup of

CG(b2), and publishes its generators B = {β1, . . . , βm}.

Alice: chooses a random element a2 ∈ 〈B〉 and sends publicly the normal

form PA = N(a1wa2) to Bob.

Bob: chooses a random element b1 ∈ 〈A〉 and sends publicly the normal

form PB = N(b1wb2) to Alice.

Shared secret key: KA = a1PBa2 = b1PAb2 = KB.

Since a1b1 = b1a1 and a2b2 = b2a2, we indeed have K = KA = KB, the

shared secret key. Alice can compute KA and Bob can compute KB.

They suggest the following values of parameters for the protocol: G =

B64, ℓ = 1024. For computing the centralizers, Alice and Bob should

use the algorithm from [45], but actually they have to compute only some

elements from them and not the whole sets.

Two key-exchange protocols which are based on a variant of the de-

composition problem have been suggested by Kurt [75]. We describe here
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the second protocol which is an extension of the protocol of Shpilrain and

Ushakov to the triple decomposition problem:

Problem 1.10. Given v = x−1
1 a2x2, find x1 ∈ H, a2 ∈ A and x2 ∈ H ′

where H = CG(g1, . . . , gk1
), H ′ = CG(g′1, . . . , g

′
k2

), and A is a subgroup of

G given by its generators.

Here is Kurt’s second protocol (his first protocol is similar): Let G be

a non-commutative monoid with a large number of invertible elements.

Protocol 1.30.

Alice: picks two invertible elements x1, x2 ∈ G, chooses subsets Sx1
⊆

CG(x1) and Sx2
⊆ CG(x2), and publishes Sx1

and Sx2
.

Bob: picks two invertible elements y1, y2 ∈ G, chooses subsets Sy1
⊆

CG(y1) and Sy2
⊆ CG(y2), and publishes Sy1

and Sy2
.

Alice: chooses random elements a1 ∈ G, a2 ∈ Sy1
and a3 ∈ Sy2

as

her private keys. She sends Bob publicly (u, v, w) where u = a1x1, v =

x−1
1 a2x2, w = x−1

2 a3.

Bob: chooses random elements b1 ∈ Sx1
, b2 ∈ Sx2

and b3 ∈ G as

his private keys. He sends Alice publicly (p, q, r) where p = b1y1, q =

y−1
1 b2y2, r = y−1

2 b3.

Shared secret key: K = a1b1a2b2a3b3.

Indeed, K is a shared key, since Alice can compute a1pa2qa3r =

a1b1a2b2a3b3 and Bob can compute ub1vb2wb3 = a1b1a2b2a3b3.

As parameters, Kurt suggests to use G = B100 and each secret key

should be of length 300 Artin generators.

Chowdhury [26] attacks the two protocols of Kurt, by observing that by

some manipulations one can gather the secret information by solving only

the Multiple Simultaneous Conjugacy Search Problem. Hence, the security

of Kurt’s protocols is based on the solution of the Multiple Simultaneous

Conjugacy Search Problem. Since the Multiple Simultaneous Conjugacy

Search Problem can be attacked by several methods, Chowdhury has actu-

ally shown that Kurt’s protocols are not secure.

Although Shpilrain and Ushakov indicate that their key-exchange

scheme resists length-based attack, it will be interesting to check if this

indeed is the situation. Also, it is interesting to check if one can change

the secrets of Kurt’s protocols in such a way that it cannot be revealed by

just solving the Simultaneous Conjugacy Search Problem. If such a change

exists, one should check if the new scheme resists length-based attacks.
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1.10. Future directions I: Alternate distributions

In this section and in the next section, we discuss some more future direc-

tions of research in this area and related areas. This section deals the in-

teresting option of changing the distribution of the generators. In this way,

one can increase the security of cryptosystems which are vulnerable when

assuming a standard distribution. In the next section, we deal with some

suggestions of cryptosystems which are based on different non-commutative

groups, apart from the braid group.

For overcoming some of the attacks, one can try to change the distribu-

tion of the generators. For example, one can require that if the generator

σi appears, then in the next place we give more probability for the appear-

ance of σi±1. In general, such a situation is called a Markov walk, i.e. the

distribution of the choice of the next generator depends on the choice of

the current chosen generator.

A work in this direction is the paper of Maffre [88]. After suggesting

a deterministic polynomial algorithm that reduces the Conjugacy Search

Problem in braid group (by a partial factorization of the secret), he proposes

a new random generator of keys which is secure against his attack and the

one of Hofheinz and Steinwandt [65].

This situation appears also in the Algebraic Eraser scheme (Section

1.9.4). The attack of Kalka, Teicher and Tsaban [69] assumes that the

distribution of the generators is standard. They indicate that if the distri-

bution is not standard, it is possible that the attack fails.

1.11. Future directions II: Cryptosystems based on different

non-commutative groups

The protocols presented here for the braid groups can be applied to other

non-commutative groups, so the natural question here is:

Problem 1.11. Can one suggest a different non-commutative group where

the existing protocols on the braid group can be applied, and the cryptosys-

tem will be secure?

We survey here some suggestions.
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1.11.1. Thompson group

When some of the cryptosystems on the braid groups were attacked, it was

natural to look for different groups, with a hope that a similar cryptosys-

tem on a different group will be more secure and more successful. The

Thompson group is a natural candidate for such a group: there is a normal

form which can computed efficiently, but the decomposition problem seems

difficult. On this base, Shpilrain and Ushakov [112] suggest a cryptosystem.

In this section, we will define the Thompson group, the Shpilrain-

Ushakov cryptosystem, and we discuss its cryptanalysis.

1.11.1.1. Definitions and the Shpilrain-Ushakov cryptosystem

Thompson’s group F is the infinite non-commutative group defined by the

following generators and relations:

F = 〈 x0, x1, x2, . . . | x−1
i xkxi = xk+1 (k > i) 〉

Each w ∈ F admits a unique normal form [22]:

w = xi1 · · ·xir
x−1

jt
· · ·x−1

j1
,

where i1 ≤ · · · ≤ ir, j1 ≤ · · · ≤ jt, and if xi and x−1
i both occur in this

form, then either xi+1 or x−1
i+1 occurs as well. The transformation of an

element of F into its normal form is very efficient [112].

We define here a natural length function on the Thompson group:

Definition 1.31. The normal form length of an element w ∈ F , LNF(w),

is the number of generators in its normal form: If w = xi1 · · ·xir
x−1

jt
· · ·x−1

j1

is in normal form, then LNF(w) = r + t.

Shpilrain and Ushakov [112] suggest the following key-exchange protocol

based on the Thompson group:

Protocol 1.32.

Public subgroups: A,B,W of F , where ab = ba for all a ∈ A, b ∈ B

Public key: a braid w ∈ W .

Private keys: Alice: a1 ∈ A, b1 ∈ B; Bob: a2 ∈ A, b2 ∈ B.

Alice: Sends Bob u1 = a1wb1.

Bob: Sends Alice u2 = b2wa2

Shared secret key: K = a1b2wa2b1



April 16, 2009 22:45 World Scientific Review Volume - 9in x 6in BGC˙lecture˙notes˙final

66 David Garber

K is a shared key since Alice can compute K = a1u2b1 and Bob can

compute K = b2u1a2, and both are equal to K since a1, a2 commute with

b1, b2.

Here is a suggestion for implementing the cryptosystem [112]: Fix a nat-

ural number s ≥ 2. Let SA = {x0x
−1
1 , . . . , x0x

−1
s }, SB = {xs+1, . . . , x2s}

and SW = {x0, . . . , xs+2}. Denote by A, B and W the subgroups of F gen-

erated by SA, SB, and SW , respectively. A and B commute elementwise,

as required.

The keys a1, a2 ∈ A, b1, b2 ∈ B and w ∈ W are all chosen of normal

form length L, where L is a fixed integer, as follows: Let X be A, B or

W . Start with the unit word, and multiply it on the right by a (uniformly)

randomly selected generator, inverted with probability 1
2 , from the set SX .

Continue this procedure until the normal form of the word has length L.

For practical implementation of the protocol, it is suggested in [112] to

use s ∈ {3, 4, . . . , 8} and L ∈ {256, 258, . . . , 320}.

1.11.1.2. Length-based attack

We present some attacks on the Ushakov-Shpilrain cryptosystem.

As mentioned before, the length-based attack is applicable for any group

with a reasonable length function. Ruinskiy, Shamir and Tsaban [108]

applied this attack to the Thompson group.

As before, the basic length-based attack without memory always fails for

the suggested parameters. If we add the memory approach, there is some

improvement: for a memory of size 1024, there is 11% success. But if the

memory is small (up to 64), even the memory approach always fails. They

suggest that the reason for this phenomenon (in contrast to a significant

success for the length-based attack with memory on the braid group) is

that the braid group is much closer to the free group than the Thompson

group, which is relatively close to an abelian group.

Their improvement is trying to avoid repetitions. The problem is that

many elements return over and over again, and hence the algorithm goes

into loops which make its way to the solution much difficult. The solution

of this is holding a list of the already-checked conjugators, and when we

generate a new conjugator, we check in the list if it has already appeared

(this part is implemented by a hash table). In case of appearance, we just

ignore it. This improvement increases significantly the success rate of the

algorithm: instead of 11% for a memory of size 1024, we now have 49.8%,

and instead of 0% for a memory of size 64, we now have 24%.
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In the same paper [108], they suggest some more improvements for

the length-based algorithm. One of their reasons for continuing with the

improvements is the following interesting fact which was pointed out by

Shpilrain [111]: there is a very simple fix for key-agreement protocols that

are broken in probability less than p: Agree on k independent keys in

parallel, and XOR them all to obtain the shared key. The probability of

breaking the shared key is at most pk, which is much smaller.

In a different paper, Ruinskiy, Shamir and Tsaban [116] attack the key

agreement protocols based on non-commutative groups from a different

direction: by using functions that estimate the distance of a group element

to a given subgroup. It is known that in general the Membership Problem

is hard, but one can use some heuristic approaches for determining the

distance of an element to a given subgroup, e.g., to count the number of

generators which are not in the subgroup.

They test it against the Shpilrain-Ushakov protocol, which is based on

Thompson’s group F , and show that it can break about half the keys within

a few seconds.

1.11.1.3. Special attack by Matucci

Some interesting special attack for the Ushakov-Shpilrain cryptosystem can

be found in Kassabov and Matucci [91] and Mattuci [90].

1.11.2. Polycyclic groups

Eick and Kahrobaei [41] suggest to use polycyclic groups as the basis of a

cryptosystem. These groups are a natural generalization of cyclic groups,

but they are much more complex in their structure than cyclic groups.

Hence, their algorithmic theory is more difficult and thus it seems promising

to investigate classes of polycyclic groups as candidates to have a more

substantial platform perhaps more secure.

Here is one presentation for polycyclic groups:

〈a1, . . . , an | a
−1
i

ajai = wij, aiaja
−1
i

= vij, a
rk
k

= ukk, for 1 ≤ i < j ≤ n, k ∈ I〉

where I ⊆ {1, . . . , n} and ri ∈ N if i ∈ I and the right hand sides

wij , vij , ujj of the relations are words in the generators aj+1, . . . , an. Using

induction, it is straightforward to show that every element in the group de-

fined by this presentation can be written in the form ae1

1 · · · aen
n with ei ∈ Z

and 0 ≤ ei < ri if i ∈ I (see [119] for more information).
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Eick and Kahrobaei introduce a Diffie-Hellman-type key-exchange which

is based on the polycyclic group. As in the braid groups’ case, the cryp-

tosystem is based on the fact that the word problem can be solved effectively

in polycyclic groups, while the known solutions to the conjugacy problem

are far less efficient. For more information, see [41].

In a different direction, Kahrobaei and Khan [68] introduce a non-

commutative key-exchange scheme which generalizes the classical El-Gamal

Cipher [42] to polycyclic groups.

1.11.3. Miller groups

Mahalanobis [89] suggested some Diffie-Hellman-type exchange key on

Miller Groups [92], which are groups with an abelian automorphism group.

1.11.4. Grigorchuk group

Garzon and Zalcstein [52] suggest a cryptosystem which is based on the

word problem of the Grigorchuk group [62]. Both Petrides [105] and

González-Vasco, Hofheinz, Martinez and Steinwandt [61] cryptanalyze this

cryptosystem.

The Conjugacy Decision Problem in this group is also polynomial [85],

so this problem cannot be served as a base for a cryptosystem.

1.11.5. Twisted conjugacy problem in the semigroup of 2×2

matrices over polynomials

Shpilrain and Ushakov [114] suggest an authentication scheme which is

based on the twisted conjugacy search problem:

Problem 1.12. Given a pair of endomorphisms (i.e., homomorphisms into

itself) ϕ, ψ of a group G and a pair of elements w, t ∈ G, find an element

s ∈ G such that t = ψ(s−1)wϕ(s) provided at least one such s exists.

Their suggested platform semigroup G is the semigroup of all 2 × 2

matrices over truncated one-variable polynomials over F2, the field of two

elements. For more details, see their paper.
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