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Abstract

We present a construction of expander graphs obtained from Cay-
ley graphs of narrow ray class groups, whose eigenvalue bounds follow
from the Generalized Riemann Hypothesis. Our result implies that
the Cayley graph of (Z/qZ)∗ with respect to small prime generators
is an expander. As another application, we show that the graph of
small prime degree isogenies between ordinary elliptic curves achieves
non-negligible eigenvalue separation, and explain the relationship be-
tween the expansion properties of these graphs and the security of the
elliptic curve discrete logarithm problem.

1 Introduction

Expander graphs are widely studied in many areas of mathematics and the-
oretical computer science, and such graphs are useful primarily because ran-
dom walks along their edges quickly become uniformly distributed over their
vertices. Several beautiful constructions of expanders have been based on
deep tools from representation theory and arithmetic, for example Kazhdan’s
Property (T) [38] and the Ramanujan conjectures [35, 39].

The main contribution of this paper is a new, conditional construction
of expanders based on the Generalized Riemann Hypothesis (GRH), which
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arises naturally in the study of the elliptic curve discrete logarithm problem.
This cryptographic connection is investigated in our parallel paper [25], where
it is used to establish that the discrete logarithm problem has roughly uniform
difficulty for equal sized curves. The present paper contains a generalization
of the main theorem in that paper, along with explanations and applications
of a more mathematical nature.

We briefly review some notions from graph theory, including that of ex-
pander graph from above. By an undirected graph Γ = (V, E) we mean a set
of vertices V and (unoriented) edges E connecting specified pairs of vertices.
Suppose that the graph is finite and is furthermore k-regular, meaning that
there are exactly k edges incident to each vertex. The adjacency operator A
acts on functions on V by averaging them over neighbors:

(Af)(x) =
∑

x and y connected by an edge

f(y) . (1.1)

Since the graph is regular, the constant function 1(x) = 1 is an eigenfunction
of A with eigenvalue k, which is accordingly termed the trivial eigenvalue λtriv

of A. It is straightforward to see that the multiplicity of λtriv is equal to the
number of connected components of the graph, and that λtriv is the largest
eigenvalue of A in absolute value. An expander graph is a graph for which
the nontrivial eigenvalues satisfy the bound

λ ≤ λtriv (1 − δ) for some fixed constant δ > 0 . (1.2)

If the nontrivial eigenvalues further satisfy the stronger bound

|λ| ≤ λtriv (1 − δ) , (1.3)

then a standard lemma (e.g. Lemma 2.1) shows that random walks of length
1
δ
log 2|V| are equidistributed in the sense that they land in arbitrary subsets

of V with probability at least proportional to their size. This rapid mixing
of the random walk is at the heart of most, if not nearly all, applications of
expanders.

A group G generated by a subset S = S−1 can be made into the vertices
of a Cayley graph Cay(G, S) by defining edges from g to sg, for each s ∈ S
and g ∈ G.1 For finite abelian groups, the eigenfunctions of A are precisely

1Note that all graphs in this paper are undirected. We also allow for multiple edges by
letting S be a multiset when necessary, such as in the statement of Theorem 1.1.
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the characters χ : G→ C∗; indeed, the formula

(Aχ)(x) =
∑

s∈S

χ(sx) = λχ χ(x) , where λχ =
∑

s∈S

χ(s) , (1.4)

shows that the spectrum consists of character sums ranging over the gener-
ating set. The trivial eigenvalue λtriv = |S| of course comes from the trivial
character χ = 1, and inequality (1.3) is satisfied if the character sums for
λχ, χ 6≡ 1, have enough cancellation. Abelian Cayley graphs are a restricted
yet important type of graph, and their expansion properties have been well
studied (e.g. [2,36]). To be expanders, they cannot have bounded degree but
must have at least Ω(log |G|) generators.

The expander graphs produced by our construction are abelian Cayley
graphs, and we give eigenvalue bounds for their character sums λχ using
GRH. Before stating the construction, we briefly recall some terminology.
For any integral ideal m in a number field K, let Im denote the group of
fractional ideals relatively prime to m (i.e. those whose factorization into
prime ideals contains no divisor of m). Let Pm denote the principal ideals
generated by an element k ∈ K∗ such that k ≡ 1(mod m), and let P+

m ⊂ Pm

denote those generated by such an element k which is furthermore totally
positive (i.e. positive in all embeddings K →֒ R). The quotients Im/Pm and
Im/P

+
m are called, respectively, the ray and narrow ray class groups of K

relative to m.

Theorem 1.1. (“GRH Graphs”). Let K be a number field of degree n, m

an integral ideal, and G the narrow ray class group of K relative to m. Let
q = D · Nm, where D is the discriminant of K and Nm denotes the norm
of m. Consider the set {prime ideals p coprime to m |Np ≤ x is prime},
and let Sx denote the multiset consisting of its image and inverse in G (i.e.,
including multiplicities). Then assuming GRH for the characters of G, the
graph Γx = Cay(G, Sx) has

λtriv = 2 li(x) + O(nx1/2 log(xq)) , li(x) =

∫ x

2

dt

log t
, (1.5)

while the nontrivial eigenvalues λ obey the bound

|λ| = O(nx1/2 log(xq)) . (1.6)

In particular, if B > 2 and x ≥ (log q)B,

|λ| = O
(

(λtriv log λtriv)
1/2+1/B

)

. (1.7)
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The implied constants in (1.5) and (1.6) are absolute, while the one in (1.7)
depends only on B and n.

Remark 1.2. a) The Theorem immediately applies to quotients of narrow
ray class groups, such as ray class groups themselves. This is because the
spectrum of the quotient Cayley graph consists of eigenvalues for those char-
acters which factor through the quotient.

b) The parameter q should be thought of as large, in light of Minkowski’s
theorem that there are only a finite number of number fields with a given
discriminant [32, p. 121].

c) The above bound on the spectral gap is worse than that for Ramanujan
graphs [35], and thus abelian graphs are not optimal in this sense (see also
[2,36]). However, one gains explicit constructions that are simpler computa-
tionally; additionally, there are situations where these graphs occur naturally
and the expansion bounds are helpful, as our following examples show.

From the abovementioned relationship between expander graphs and rapid
mixing of random walks, we obtain the following application.

Corollary 1.3. Fix B > 2 and n ≥ 1, and assume the same hypotheses of
the previous theorem, including the choice of x ≥ (log q)B. Then there exists
a positive constant C with the following property: for q sufficiently large, a
random walk of length

t ≥ C
log |G|
log log q

from any starting vertex lands in any fixed subset S ⊂ G with probability at
least 1

2
|S|
|G| .

Let us now illustrate the theorem with a few examples. The first ex-
ample is the field K = Q, whose narrow ray class groups are of the form
(Z/qZ)∗, for q > 1. In this case the edges of the Cayley graph connect
each vertex v ∈ (Z/qZ)∗ to pv and p−1v (mod q), for all primes p such that
p ≤ (log q)2+δ and p ∤ q. Starting from any v and taking random steps of
this form results in a uniformly distributed random element of (Z/qZ)∗ in
O((log q)/ log log q) steps. The character sum (1.4) for λχ here amounts to
the sum 2 Re

∑

p≤(log q)2+δ χ(p), so bounds on λχ yield statements about the
distribution of small primes in residue classes modulo q. GRH, which is used
in (1.7), is a natural tool for such problems. It seems difficult to obtain
an unconditional result along these lines, because the special case when χ
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is a quadratic character modulo q is related to the problem of estimating
the smallest prime quadratic nonresidue modulo q. Finding such a prime is
equivalent to obtaining any cancellation at all in the sum

∑

p≤x(
p
q
), and even

this problem seems to require a strong hypothesis such as GRH. However,
it is possible to use the Large Sieve to prove unconditional results for typi-
cal values of q, such as [17, Theorem 3], which shows that λχ

λtriv
goes to zero

outside of a sparse subset of moduli q.
The next example, when K is an imaginary quadratic number field, is

related to elliptic curves over finite fields. Using the correspondence between
ordinary elliptic curves and ideal classes in orders of imaginary quadratic
number fields, we prove the following theorem.

Definition 1.4. We say that two ordinary elliptic curves E1, E2 defined
over Fq have the same level if their rings of endomorphisms End(Ei) are
isomorphic. (In this paper, we follow the standard convention that End(E)
refers to F̄q-endomorphisms.)

Theorem 1.5. Consider the set SN,q of F̄q-isomorphism classes of ordinary
elliptic curves defined over Fq having N points. Fix2 an E ∈ SN,q and let V
be the set of all curves in SN,q having the same level as E. Form a graph on
the set of vertices V by connecting curves E1 and E2 with an edge if there
exists an isogeny of prime degree less than (log 4q)B between them, for some
fixed B > 2. Then, assuming GRH, this graph is an expander graph in the
sense that its nontrivial eigenvalues satisfy the bound (1.7).

Theorem 1.5 has implications for the security of the elliptic curve discrete
logarithm problem. Recall that the discrete logarithm problem (dlog) asks
to recover the exponent a of a power ga of a known element g. Its presumed
difficulty serves as the basis of several cryptosystems, for example the Diffie-
Hellman key exchange. Though many difficult problems in computer science
are only hard in rare instances, good cryptosystems typically must be based
on problems which are almost always hard. We recall that the dlog problem
on a given group has random self-reducibility : that means given an algorithm
A(ga) = a which solves dlog on, say, half of all input values y, we may easily
find a random value of r such that A works on y′ = gry, and deduce that
A(y) = A(y′) − r. Therefore, if dlog is hard for some values of y, it must

2We will frequently treat the elements of SN,q as curves, though strictly speaking they
are isomorphism classes of curves. This distinction does not affect Theorem 1.6 because
isomorphisms between curves in SN,q can be computed in time polynomial in log q.
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be hard for almost all values. Though this result says nothing about the
absolute difficulty of the problem, it is a comforting assurance regarding the
relative difficulty of multiple instances of the problem.

Elliptic curve cryptography [7,28,41] is based on the conjectured difficulty
of dlog problems within the group of points of an elliptic curve over a
finite field. At present, cryptographers typically select elliptic curves in the
following way: a large finite field Fq is selected, and an elliptic curve E/Fq is
generated at random. Its order #E(Fq) is quickly computed [13,45], and the
curve is discarded unless the order has a large prime factor (because otherwise
dlog is much easier). It is also checked from the point count whether or
not E is supersingular or has other weaknesses, and if it is then the curve
is discarded.3 The above practice efficiently yields elliptic curves thought to
be suitable for cryptographic purposes. An obvious question is whether or
not other considerations are important, i.e. whether the point count is the
only factor influencing the difficulty of dlog on an elliptic curve over a fixed
finite field.

In studying this question, the random self-reducibility fact from above
does not apply, because it pertains only to a single curve, and says noth-
ing about the comparative difficulty of dlog between two different curves.
However, we can instead use the fact that an efficiently computable isogeny
provides a reduction of the dlog problems between two curves. Further-
more, a theorem of Tate [49] states that all curves of cardinality N defined
over Fq are isogenous, but unfortunately not all isogenies are efficiently com-
putable, so the theorem does not immediately imply that all curves in SN,q

have equivalent dlog problems. On the other hand, isogenies of low degree
are efficiently computable, and the rapid mixing in Theorem 1.5 says that
their random compositions become uniformly distributed over curves within
each level in SN,q. This property allows us to establish that the difficulty of
the elliptic curve dlog problem is in a sense uniform over any given level.
More precisely:

Theorem 1.6. With the hypotheses of Theorem 1.5, assume there is an
algorithm A which solves the discrete logarithm problem on a positive fraction

3Supersingular curves are thought to be cryptographically weaker, because of the ex-
istence of subexponential attacks on their dlog problems [40]. This is not to say that no
subexponential attacks exist for ordinary curves; in fact, some are known to succeed on
a very modest proportion of them [16,47], and of course other unknown ones may yet be
discovered. The supersingular analog of Theorems 1.5 and 1.6 are given in [25, Appendix].
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µ of the elliptic curves in a given level. There exists an absolute polynomial
p(x) such that one can probabilistically solve the discrete logarithm problem
on any curve in the same level with expected runtime 1

µ
p(log q) times the

maximal runtime of A.

In practice, the level restriction in Theorem 1.6 is actually irrelevant.
Indeed, if two curves in SN,q are not of the same level, then their levels must
differ at either a small prime or a large prime.4 In the small prime case, we
can still obtain dlog reductions using low degree isogenies (cf. Section 5),
and in the large prime case, no constructible examples of such pairs of curves
are known. Several interesting theoretical questions remain concerning the
large prime case and the true value of the isogeny degrees needed to achieve
expansion. We describe some open problems in Section 7.

2 Expander Graphs

In this section we recall a standard bound for the mixing time of a random
walk on an expander graph, discuss the lack of nontrivial short cycles on
the GRH graphs, and prove Theorem 1.1 and Corollary 1.3. We keep the
notation and definitions of the introduction.

Lemma 2.1. Let Γ be a finite k-regular graph for which the nontrivial eigen-
values λ of the adjacency matrix A are bounded by |λ| ≤ c, for some c < k.
Let S be any subset of the vertices of Γ, and v be any vertex in Γ. Then a

random walk of any length at least log 2|Γ|/|S|1/2

log k/c
starting from v will end in S

with probability between 1
2
|S|
|Γ| and 3

2
|S|
|Γ| .

Of course the probability range can be significantly narrowed by lengthening
the walk, as it turns out even by a slight amount.

Proof. Letting χS and χ{v} denote the characteristic functions of the sets
S and {v}, respectively, the number of paths of length t which start at v
and end in S is given by the L2-inner product 〈χS, A

tχ{v}〉. Let P denote
the projection from L2(Γ) onto the orthogonal complement of the constant

4There is possibly an intermediate range, though its existence is somewhat fluid de-
pending on hardware and software developments (see Section 7.1).
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functions; the operator A preserves this space and its operator norm on it is
bounded by c because of our eigenvalue assumption. Then

〈χS, A
tχ{v}〉 =

|S|
|Γ|k

t + 〈PχS, A
tPχ{v}〉 . (2.1)

The latter term is bounded by

∣

∣〈PχS, A
tPχ{v}〉

∣

∣ ≤ ‖PχS‖ ‖AtPχ{v}‖ ≤ ct‖PχS‖ ‖Pχ{v}‖
≤ ct‖χS‖ ‖χ{v}‖ = ct |S|1/2 .

(2.2)

For t ≥ log 2|Γ|/|S|1/2

log k/c
this is at most half the size of the main term kt|S|/|Γ|

from (2.1), as was to be shown.

Next we come to the topic of girth, the length of the shortest closed cycle
on the graph. Graphs with large girth are important in many applications, for
example to the design of collision resistant hash functions and stream ciphers
(see, for example, [18,22,27]). The girth of a k-regular graph cannot be larger
than 2 logk−1 |Γ|. This inequality comes from counting the number of points
b(r) in a ball of radius r in a k-regular tree; a graph with girth γ satisfies
the inequality b(γ) ≤ |Γ|, which gives an upper bound on γ. Random graphs
tend to have small girth, but one can use probabilistic methods to show the
existence of graphs having girth at least (1+o(1)) logk−1 |Γ|, i.e. roughly half
the optimal size. The LPS Ramanujan graphs have the largest known girths:
(4/3+ o(1)) logk−1 |Γ| [5,35]. It is an open question as to how large the girth
can be.

Abelian Cayley graphs cannot have large girth because they have many
short cycles of the form xyx−1y−1. To rule out these, one can speak of the
nonabelian girth, which is the shortest cycle not having steps both of the
form xa and x−b for a, b > 0 and x ∈ S. We remark that the graphs on
(Z/qZ)∗ described just after Theorem 1.1 have

nonabelian girth of Γ ≥ (1 + o(1)) logk−1 |Γ| . (2.3)

Indeed, a cycle amounts to two products of small primes which are equal
modulo q; by unique factorization, at least one of these products must be
larger than q, which gives a lower bound on the number of factors. This
argument also gives the same lower bound for the odd girth of Γ (i.e. the
shortest closed cycle of odd length), which again is relatively large. It should
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be noted, however, that this is not optimal; in fact there are code-based
constructions [1,2] which have nonabelian girth at least (2 + o(1)) logk−1 |Γ|.
The reason for mentioning this, though, is that explicit examples of graphs
with large nonabelian girth are important for cryptographic applications.

We conclude this section with the proofs of Theorem 1.1 and Corollary 1.3.

Proof of Theorem 1.1. We explained in (1.4) and in the remarks following it
that (1.5) and (1.6) follow from the following estimates for sums of characters
χ of G:

∑

Np≤ x prime

(

χ(p) + χ(p)−1
)

= 2 Re
∑

Np≤x prime

χ(p)

= 2 r li(x) + O
(

nx1/2 log(xq)
)

,

(2.4)

with an absolute implied constant. Here r = 1 if χ is the trivial character,
and 0 otherwise. Of course, χ may be viewed as a Hecke Grossencharacter
on Im which is trivial on P+

m . Hecke proved that its L-function

L(s, χ) =
∑

a integral ideal

χ(a) (Na)−s =
∏

p prime ideal

(1 − χ(p) (Np)−s)−1

(2.5)
analytically continues to a holomorphic function on C−{1} of order 1, with
at most a simple pole at s = 1 which occurs only when χ is the trivial
character. Furthermore, he also established a standard functional equation
for its completed L-function, which is a product of L(s, χ), Γ-factors of the
form Γ( s

2
), Γ( s+1

2
), and Γ(s), and a power Qs/2 of some integer Q > 0 [23,

p. 211]. The value ofQ varies with different characters, but is always bounded
above by q = D ·Nm. The Dirichlet series coefficients of L(s, χ), like those
of any Artin L-function, satisfy the Ramanujan-Petersson conjecture.

Using these analytic properties, along with the assumption of GRH, one
can derive the following standard estimate (which is found in [24, p. 114]):

∑

Np≤ x prime

χ(p) log(Np) = r x + O
(

nx1/2 log(x) log(xQ)
)

(2.6)

for primitive characters χ, again with an absolute implied constant. If χ is
imprimitive, one must also include terms for prime ideals p dividing m. There
are at most O(logNm) = O(log q) of these, so both their contribution and
the existing error term in (2.6) can be safely absorbed into the enlargened
error term O(nx1/2 log(x) log(xq)). This variant of (2.6) in turn implies (2.4)
by a simple application of partial summation.
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Proof of Corollary 1.3. The proof follows from Lemma 2.1 once we have ver-
ified that log k

c
is bounded below by a constant (depending on B and n)

times log log q once q is sufficiently large. Indeed, in our setting the degree is
k = λtriv, and cmay be taken to be the bound in (1.7). For q sufficiently large,
log k

c
is indeed bounded below by a constant times log λtriv ≫ B log log q.

Remark 2.2. The main point of the Corollary is to give examples of rapid
mixing over large graphs. However, for a finite number of cases when q is
small, the graph Γx may actually be disconnected. In addition, the equidis-
tribution is not as interesting in situations when the graph Γx has relatively
few vertices, i.e. when the narrow ray class number of m is small. This can
be computed explicitly as

|G| = |Γx| = 2r1
h(K) |(OK/m)∗|
[U(K) : Um(K)]

, (2.7)

where r1 is the number of real embeddings of K, h(K) its class number, OK

its ring of integers, U(K) its unit group, and Um(K) ⊂ U(K) its subgroup
of totally positive units which are congruent to 1 (mod m) [8, Prop. 3.2.4].
For a fixed degree n, the class number h(K) is Oε(|D|1/2+ε) for any ε > 0,
and so |G| above is bounded by O(q).

3 Elliptic curves

In this section we explain the connection between the GRH graphs and el-
liptic curves, and prove Theorem 1.5. For ease of presentation, we begin
first with the case of elliptic curves defined over complex numbers, and then
later explain how our results over complex numbers imply the corresponding
results over finite fields.

Let OD be an imaginary quadratic order of discriminant D < 0. Denote
by Ell(OD) the set of all isomorphism classes of elliptic curves E over C
having OD as their full ring of complex multiplication (i.e. having End(E) ∼=
OD). It is well known that isomorphism classes of elliptic curves over C
correspond bijectively with homothety classes of complex lattices [46, I.1];
accordingly, we will write EΛ throughout for the elliptic curve corresponding
to a complex lattice Λ ⊂ C. Moreover, fixing an embedding OD ⊂ C,
one can show that ideal classes a ⊂ OD give rise to precisely those lattices
representing elliptic curves in Ell(OD) [9, 10.20], and that the map a 7→ Ea

induces a bijection between the ideal class group Cl(OD) of OD and Ell(OD).

10



The above paragraph thus explains the correspondence between ideal
class groups and elliptic curves over C. The following proposition describes
how this correspondence behaves with respect to isogenies:

Proposition 3.1.

1. There is a well defined simply transitive action of Cl(OD) on Ell(OD),
given by the formula

a ∗ EΛ := Ea−1Λ,

valid for any nonzero fractional ideal a ⊂ OD.

2. If a is an invertible ideal of OD, one has Λ ⊂ a−1Λ, and this inclusion
induces an isogeny EΛ → a ∗ EΛ of degree equal to the norm N(a) of
the ideal a.

3. Up to isomorphism, every isogeny between two elliptic curves E1, E2 ∈
Ell(OD) arises in the above manner.

Proof. Items 1 and 2 are proved in [46, II.1] (for the case of OD maximal)
and [31] (for the general case).

To prove item 3, let φ : E1 → E2 be an isogeny and choose fractional
ideals a ⊂ b of OD such that Ea

∼= E1 and Eb
∼= E1/ ker(φ) ∼= E2. Since

a ⊂ b, there exists an integral ideal c ⊂ OD such that bc = a, whereupon the
morphism ψ : Ea → c ∗Ea yields an isogeny which has the same kernel as φ,
and hence must be isomorphic to φ.

We now state and prove an analogue of Theorem 1.5 over the complex
numbers.

Theorem 3.2. Let Γ be the graph whose vertices are elements of Ell(OD)
and whose edges are isogenies of prime degree less than some fixed bound
M ≥ (log |D|)B, for some absolute constant B > 2. Then, assuming GRH,
the graph Γ is an expander graph satisfying the bound (1.7).

Proof. We have already seen that the elements of Ell(OD) are in bijection
with the elements of the group Cl(OD) [9, 10.20], and that the action of
Cl(OD) on Ell(OD) defined in Proposition 3.1 coincides exactly with the
translation action of Cl(OD) on itself under this bijection. Moreover, iso-
genies of prime degree less than M correspond to integral ideals of prime
norm less than M , and the inverses (i.e. complex conjugates) of these ideals
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have the same prime norm and thus also yield such isogenies. Hence, the
graph Γ is isomorphic to the Cayley graph of Cl(OD) under the generating
set consisting of ideals of prime norm less than M ≥ (log |D|)B.

Next we relate this graph to one covered by Theorem 1.1. Let K =
Q(

√
D) and m the principal ideal generated by the conductor c of the dis-

criminant D (i.e. the largest integer whose square divides D). Then the class
group Cl(OD) is a quotient of the narrow ray class group of K relative to
m [9, Prop. 7.22], and Theorem 1.1 applies directly to Γ and equation (1.7)
with x = M gives the desired bound.

In order to prove Theorem 1.5 from Theorem 3.2, we require the following
classical result, known as Deuring’s lifting theorem [10]:

Theorem 3.3.

1. Let E be an elliptic curve defined over Fq, and let φ be a nontrivial
endomorphism of E. There exists an elliptic curve Ẽ defined over a
number field L, a prime ideal p of L, and an endomorphism φ̃ of Ẽ
such that Ẽ and φ̃ reduce to E and φ modulo p.

2. When E is ordinary, the mod p reduction map induces an isomorphism
End(Ẽ) ∼= End(E).

Proof of Theorem 1.5: Since the curves in Theorem 1.5 are ordinary, there
exists an imaginary quadratic order OD such that End(E) = OD. Observe
that (log 4q)B ≥ (log |D|)B, since D = t2 − 4q where the trace t satisfies
the Hasse bound |t| < 2

√
q. Hence (log 4q)B satisfies the condition for M in

Theorem 3.2.
We will now show that the graph Γ in Theorem 3.2 is isomorphic to

the graph defined in Theorem 1.5. The elliptic curves in Ell(OD) are all
defined over the ring class field H of OD. Identification of the vertices is
accomplished by choosing a prime p ⊂ H lying over the characteristic p of Fq,
and reducing curves in Ell(OD) to obtain curves in SN,q. Theorem 3.3 shows
that this identification is surjective. To show that it is injective, consider two
non-isomorphic curves Ea and Eb in Ell(OD), meaning that a and b lie in
different ideal classes in Cl(OD). By the Chebotarev density theorem, there
exists an unramified prime ideal c belonging to the same ideal class as ab−1;
note in particular that c is not principal. By Proposition 3.1, the ideal c

induces an isogeny φ between Ea and Eb having degree equal to N(c). If the
reductions Ēa and Ēb of Ea and Eb modulo p were to be somehow isomorphic,
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then φ would represent an endomorphism of Ēa, of degree N(c). However, we
know the endomorphism ring of Ēa is equal to OD, and no element of OD has
norm equal toN(c) (this is because Q(

√
D) is an imaginary quadratic number

field). Thus the endomorphism ring OD cannot contain any endomorphism
of degree equal to N(c).

Likewise, for each prime ℓ < (log 4q)B, the reduction map modulo p

sends every isogeny of degree ℓ in characteristic 0 to an isogeny of degree ℓ
in characteristic p. All isogenies in characteristic p are obtained in this way,
since isogenies of degree ℓ are given by the roots of the modular polynomial
Φℓ(x, y), and this polynomial does not have more roots over the algebraic
closure in characteristic p than in characteristic 0.

4 Relationship with discrete logarithms

Given a generator g of a cyclic group G of order n, the discrete logarithm of
an element h of G is defined to be the residue class x of integers mod n such
that gx = h. The elliptic curve discrete logarithm problem is the problem of
computing discrete logarithms when G is the group of points on an elliptic
curve defined over a finite field Fq. Determining the difficulty of this problem
is important because much of elliptic curve cryptography is based, at least
conjecturally, on the infeasibility of computing discrete logarithms on elliptic
curves defined over a finite field.

Galbraith [15] has observed that given an efficiently computable isogeny
φ : E → E ′, one can compute discrete logarithms on E by computing discrete
logarithms on E ′. The procedure is as follows: given P,Q ∈ E, compute φ(P )
and φ(Q), and determine the discrete logarithm x of φ(Q) on E ′ with respect
to the generator φ(P ). The equation x ·φ(P ) = φ(Q) determines the solution
for x modulo the kernel of φ. When φ is furthermore a low-degree isogeny,
it is both efficiently computable and has small kernel (which itself can be
efficiently enumerated). Such an isogeny provides a reduction between the
discrete logarithm problems on E and E ′, in time polynomial in log q and
the degree. Moreover, a theorem of Tate [49] states that two elliptic curves
E and E ′ defined over Fq have the same number of points if and only if they
are isogenous. Tate’s theorem guarantees the existence of an isogeny defined
over Fq between curves in their equivalence classes, which computationally
amounts to one between the curves themselves (see footnote 2). However,
this isogeny usually is difficult to compute and has enormous degree.
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We now use the above observation to give a proof of Theorem 1.6. Our
proof consists of showing that, for curves of the same level, a composition of
low-degree isogenies between them exists. Indeed, though the degree of such
a composition may be very large, it can be computed efficiently; furthermore,
it gives efficient reductions between all curves it connects.

Proof of Theorem 1.6: Returning to the isogeny graph of Theorem 1.5, let
S denote the subset consisting of the µ-fraction of elliptic curves to which
the algorithm A applies. Let E be any curve of the same level as the curves
in S. Because of the effective upper bounds on class numbers, one has that
log |SN,q| ≤ c′ log q, for some c′ > 0. Construct a random walk of length
Cc′(log q)/ log log q starting at E, where C is the constant in Corollary 1.3.
Let φ denote the isogeny equal to the composition of the isogenies represented
by the edges comprising the random walk. Then φ can be evaluated in
polynomial time, and hence the discrete logarithm problem on E can be
solved efficiently by querying A, as long as the random walk above lands in
S. By Corollary 1.3, the probability that the random walk lands in S is at
least µ

2
, so by repeating this process until the walk lands in S, we can solve

discrete logarithms on E in probabilistic polynomial time using an expected
number of queries to A bounded by 2

µ
.

5 Reductions between different levels

It is natural to ask whether the equivalence of discrete logarithms holds for
elliptic curves in different levels. We begin by observing that the CM field
End(E)⊗Q is the same for all curves E ∈ SN,q regardless of level. Moreover,
two curves E,E ′ have the same level if and only if the conductors of their
endomorphism rings in End(E)⊗Q are equal. It is thus natural to define the
conductor gap to be the value of the largest prime factor at which the prime
factorizations of the conductors of End(E) and End(E ′) differ; in addition, for
a single curve E we define the conductor gap of E to be the maximal possible
conductor gap over all possible pairs of isogenous E,E ′. The conductor gap
provides a rough measurement of how much the levels of E and E ′ differ.

Given any curve E whose endomorphism ring has conductor c, it is possi-
ble to compute a curve E ′ with conductor cℓ together with an isogeny E → E ′

of degree ℓ in time O(ℓ3); the reverse, starting from E ′ of conductor cℓ and
ending up with E of conductor c, is also possible in the same amount of time
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([11, 15, 30]). Consider a union of any number of levels which collectively
have conductor gap bounded polynomially in log q. Though the individual
sizes of each level may be difficult to compute, formula (2.7) or [9, Cor. 7.28]
allows one to compute their relative sizes efficiently. By weighing these sizes
it is possible to select a level at random with probability proportional to
its total size amongst this union. This level can be reached by appropriate
low degree isogenies. Thus it is possible to reach a random curve through
walks of low degree isogenies, and it follows that Theorem 1.6 holds for the
union of any number of levels which collectively have conductor gap bounded
polynomially in log q.

Large conductor gaps do pose an obstacle in the statement of Theo-
rem 1.6, but they rarely arise in practice. Indeed, every curve E ∈ SN,q

has at least the endomorphisms Z ⊂ End(E) and πq ∈ End(E), with πq

denoting the Frobenius endomorphism. The discriminant of the quadratic
order Z[πq] is equal to t2 − 4q where t = q+1−N , and the conductor of any
curve in SN,q must be an integer c satisfying c2 | (t2 − 4q). Thus, if t2 − 4q is
square free, then all curves in SN,q are of the same level, and in this case the
level restriction in Theorem 1.6 is vacuous. More generally, as long as t2−4q
has no large repeated prime factors, the statement of Theorem 1.6 holds for
all of SN,q, by the previous paragraph.

We can analyze the expected frequency of large conductor gaps as fol-
lows. The Hasse-Weil bound on t implies −4q ≤ t2 − 4q ≤ 0. A random

integer within this interval has probability 1 − ∏2
√

q

p>β(1 − p−2) of admitting
a repeated prime factor p > β. Since this probability is bounded above by
O(1/β), we expect as a heuristic that, for any positive β < p, random choices
of (N, q) will admit repeated prime factors exceeding β with probability 1/β.

In fact, [37, Theorem 1] rigorously proves the probability estimate (log p)2

β
for

β ≪ p1/6, where q = p is odd. Therefore, in most cases, conductor gaps be-
tween elliptic curves are quite small and we can ignore the effects of differing
endomorphism rings in our discrete logarithm comparisons. For example, an
investigation of nine randomly generated curves listed in international stan-
dards documents reveals that all of them satisfy cN,q ≤ 3 (cf. Section 6).
In fact, a somewhat surprising observation is that there is currently no effi-
cient algorithm to construct pairs of elliptic curves with conductor gaps that
are not small, even though such pairs are known to exist in abundance (cf.
Section 7).
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6 Government standards for curves

In the previous section we showed that all curves in an isogeny class have
identical security on average whenever the conductor gap is small. However,
determining the conductor gap of a curve requires factoring a large integer
and hence is a nontrivial computation. In this section we provide the com-
putation of the conductor gap for a family of randomly selected curves which
appear as part of a US government standard.

In 2000 the National Institute of Standards and Technology (NIST), a
branch of the United States Department of Commerce, introduced a fam-
ily of elliptic curves as standards for cryptographic applications [43]. The
selection of these curves was the outcome of several years of testing. The
NIST curves are generated by the values of secure hash functions applied to
publicly-revealed seeds, making it plausible that they were not excessively
manipulated before their public release. However, the user cannot be totally
confident that there is not a backdoor or weakness in the published curve.

Though it is hard to imagine arguing directly that discrete logarithms on a
specific elliptic curve do not have good attacks, our results can be used to give
some assurance that the NIST curves are not weaker than comparable elliptic
curves. Namely, Theorem 1.6 and the comment immediately following it show
that the discrete logarithm problem has roughly equivalent difficulty as one
ranges over curves defined over the same field, and whose endomorphism
rings have small conductor gap.

Some of the NIST curves are Koblitz curves [29], which are not expected
to have small conductor gaps. However, for the remaining NIST curves, some
lengthy computations showed that the conductor gap is very small: all but
one curve had a conductor gap of 1, and the only exception had a conductor
gap of 3. That means that in the former cases, the isogeny class consists
of only one level, and Theorem 1.6 provides a full equivalence of discrete
logarithms. Only in the exceptional case with conductor gap 3 must one
navigate between levels (the topic of Section 5); this can easily be done by
constructing a degree 3 isogeny between them. Therefore we may conclude
that these curves have typical difficulty among all elliptic curves defined over
the same field and having the same number of points.

As an example, consider the NIST curve B-571, which is given by the
Weierstrass equation y2 + xy = x3 + x2 + b over the field F2571 . Here b is an
element of F2571 which is cumbersome to describe but can be found on p. 47
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of [43]. It has discriminant

d = −210092063841005638410400838462812964562253124135523060955333\
767330638498791801056156659734237518468659692798673383993911\
78057790576859207002963481895511008772786625592941143

(6.1)
and prime factorization

= − 137 ∗ 1502689 ∗ 5608493523058319 ∗ 3563521804312876303

∗ 46393104672338327566438581332776443577

∗ 1100628851017477373738489717699925956411395060089467152067605\
28637300688225399301632484625559

(we have written out the decimal expansion of d over several lines owing to its
length). One can determine the conductor gap knowing this factorization: it
is the largest square factor, which in this example is 1.

We wish to mention that finding the above factorization was far from
trivial, taking about 5 days on a dedicated cluster in the Netherlands which
utilized specialized factoring software. Although determining the conductor
gap is useful in assuring that a given elliptic curve is not cryptographically
weak, clearly this is not a test which the average user can perform. It may
be good practice for standards bodies to publish the factorization of the
discriminants along with their recommended curves so that users have this
information.

7 Open problems

In this section we address two shortcomings of Theorem 1.6. The first is
that the Theorem, as stated, applies only to individual levels of curves. As
noted just after its statement and further in Sections 5 and 6, curves whose
levels differ by a ratio composed of small primes can be bridged by random
isogenies; the issue is when the conductor gap has a large prime factor.
The second is the strong analytic assumption of the Generalized Riemann
Hypothesis. We conclude by discussing some related cryptographic problems.
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7.1 Large conductor gaps

The equivalence result of Theorem 1.6 is incomplete in the sense that it
does not apply to curves having a large conductor gap. Pairs of such curves
certainly exist, but no efficient method is known for finding them, and indeed
no explicit example is known at the present time. A curve chosen at random
will have conductor greater than ℓ with probability heuristically equal to
1/ℓ (see Section 5). As we mentioned in Section 5, it is possible to produce
an explicit isogeny between two curves with conductor gap ℓ in time O(ℓ3),
which for large ℓ is far slower than solving discrete logarithms themselves.
Additionally, it was recently shown in [12] how to create special pairs of
curves with conductor gap ℓ in time O(ℓ2), without finding an explicit isogeny
between them. All of these methods are too slow for large values of ℓ, but
leave an intermediate range of conductor gaps which presently cannot bridged
by computable isogenies.

The conductor gap question is especially pertinent for certain special
classes of curves in cryptography such as pairing friendly curves (see [14]).
All constructible examples of such curves are presently restricted to small
discriminants, with the exception of certain families of curves having con-
ductor gaps which fall within the abovementioned intermediate range [6];
note, however, that these conductor gaps are still small enough that im-
provements such as Moore’s law affect the boundaries of this range. There is
some concern (although no proof) that discrete logarithms on such curves are
weaker than on general pairing friendly curves. Achieving large conductor
gaps for pairing friendly curves would help alleviate this concern, since our
work then implies that pairing friendly curves with large discriminant are
provably as secure as random pairing friendly curves.

7.2 The assumption of GRH

The theorems in this paper all assume the Generalized Riemann Hypothesis,
which is used to obtain the error estimate in (2.6). Lighter analytic as-
sumptions still imply nontrivial error estimates; for example the Generalized
Lindelöf Hypothesis instead implies a bound of Oε,K(x1/2+εQε) for any ε > 0
[24]. This corresponds to a subexponential time algorithm in Theorem 1.6,
as opposed to a polynomial time one.

An unconditional proof of expansion seems out of reach at present. In
the introduction it was explained why expansion bounds for λχ imply bounds
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on the least quadratic nonresidue, and thus at present require an analytic
assumption. The recent preprint [33] considers cancellation in the sums λχ

defined in (1.4) for other characters.
Intriguingly, it has been widely speculated that the GRH implication of

B > 2 in Theorem 1.1 is not sharp, and that B > 1 is in fact expected. This
feature dates back to the suggestion of Littlewood that the Euler product
for L(1, χ) could be approximated by the partial Euler product over primes
smaller than (logQ)B, for any B > 1. This approximation is consistent
with the best known constructions of lower bounds for the error terms in the
sums (2.6), and for related problems such as the least nonresidue problem
[19, 20, 34]. Recent work of [21, 42, 50] supports the validity of the wider
range B > 1. This bound is also sharp from the point of view of the Alon-
Roichman Theorem [2], which asserts that expanders must have at least
logarithmic degree in the size of the graph.

Finally, the constants in (2.6) are effective and numerical values for them
have been obtained in [3, 4].

7.3 Generalizations to other cryptographic problems

The elliptic curve discrete logarithm problem can be generalized to Jacobians
of hyperelliptic curves or other curves of higher genus, and recently there has
been some progress in obtaining efficiently computable isogenies between
such abelian varieties [48]. At present, not enough such isogenies are known
to enable any statement about reducibility of discrete logarithms between
such Jacobians, but further developments could likely yield new results in
this area.

In a different vein, one can consider alternative cryptographic problems
such as the Diffie-Hellman problem instead of the discrete logarithm problem.
For example, the recent paper [26] shows that, for curves over a prime field,
computing the least significant bit of a Diffie-Hellman secret with greater
than 50% probability over a non-negligible fraction of curves is almost always
equivalent to solving the full Diffie-Hellman problem itself (assuming GRH).
The proof relies heavily on the rapid mixing properties of isogeny graphs for
ordinary elliptic curves.
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