GREEN CHICKEN EXAM - NOVEMBER 2012

GREEN CHICKEN AND STEVEN J. MILLER

Question 1. The Green Chicken is planning a surprise party for his gtheéf and grandmother. The sum of
the ages of the grandmother and grandfather is 154. The mathér is twice as old as the grandfather was
when the grandmother was as old as the grandfather is now.is\éider, the grandmother or the grandfather,
and by how many years?

Question 2: A row in a classroom has seats. Lek,, be the number of ways non-empty sets of students can sit
in the row so that no student is sitting next to another stud€&or example, a row of three seats could contain
a single student in any of the seats, or a pair of studentsitwh outer seats. Thug = 4.) Find sy5.

Question 3: A theorem of Relue states that there are constants,, a», a3 anda, such that
cos(4x) = aycos(z) + ascos®(x) + ay cos®(x) + a; cos(z) + ag.

Whatisag + a1 + as + az + a4?

Question 4. Consider the soon to be popular new game of random M&Ms. Thethegame works is some
number,k, of M&Ms is chosen. Middlebury and Williams each start offtivk M&Ms. Each team indepen-
dently tosses a fair coin at the same time; any team thatd@skead eats one of their M&Ms, while any team
that tosses a tail does not eat. The first team to eat all th@lviswins, unless both eat their last M&M at the
same time, in which case the game is a tiek ¥ 3 what is the probability of a tie? Express your answer as a
fraction in lowest terms.

Question 5: Life is full of disappointments, of partial results to wha¢ want. For example, Chebyshev proved
that there exist constantsandB, .8 < A < 1 < B < 1.2, such that

Az () < Bx

log x < logx’

wherer(z) is the number of primes at most He wanted to prove that(z) wasz/ log x (this is true, and

is the celebrated Prime Number Theorem), but had to settlthi®. Speaking of settling, using Chebyshev’s
Theorem prove for any integér there exists an even integ&k such that there are at leakt primesp with

p + 2k also prime.Unfortunately my proof ha®k depending onV/. If you can solve this witB% independent
of M, you'll have just proved the Twin Prime Conjecture, namilgre are infinitely many primgssuch that

p + 2 is also prime! You'll also automatically bring back the Gne€hicken for your school.

Question 6: A graphG is a collection of vertice$” and edged” connecting pairs of vertices. Consider the
following graph. The vertices are the integégs 3,4, ...,2012}. Two vertices are connected by an edge if
they share a divisor greater than 1; thus 30 and 1593 are ctathiey an edge as 3 divides each, but 30 and 49
are not.

The coloring number of a graph is the smallest number of saleeded so that each vertex is coloaad if
two vertices are connected by an edge, then those two \@#reenot colored the same.

The Brown Chicken says the coloring number of this graph is@dt 9. Prove she is wrong. Find the correct
coloring number (if you can't find the exact answer, find upgaal / or lower bounds). Prove your answers.

Hint: A complete graph om vertices is a graph with vertices such that any pair of two vertices are con-
nected by an edge. It might be useful to note that the colanimgber of the complete graph arvertices isn.
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Here arethe problems and solutions.

Question 1: The Green Chicken is planning a surprise party for his gathéf and grandmother. The sum of
the ages of the grandmother and grandfather is 154. The m@her is twice as old as the grandfather was
when the grandmother was as old as the grandfather is now.is\éider, the grandmother or the grandfather,
and by how many years?

Solution 1: The difficulty in this problem is translating the text to etjaas and solving. There are several
ways to solve it. Letr be the grandfather’s current age, anthe grandmother’s current age. Since the sum of
their ages is 154, we get

r+y = 154

The second condition is harder to translate, but becomes
y = 2[z—(y—a)].
Now it's easy. The second equation becomes2(2z — y). Asx = 154 — y (S02x = 308 — 2y) we find
y = 2(308 =2y —y),
or
Ty = 616
which impliesy = 88 and thust = 66, so the grandmother is 22 years older.

Here is a longer solution.

Let’s say the grandmother was born in yeaiand the grandfather in yedr and currently it is yeay. The
grandmother’s age ig— m and the grandfather’s is— f. We have three unknowns, f, y. We need to solve
for these. Note, of course, that there is a certain indefiege that helps us. We can add any amouatltof
the unknowns without changing anything, as all that realitters are the ages. Thus, we can take any of the
variables to be zero. This will give us our third equation;liehoose f = 0 (though we could have chosen
y = 2012 if we wished).

The first condition becomdy — m) + (y — f) = 154, which we rewrite as

2y—m— f = 154.
The second conditionig—m = 2 ((y — f) + (m — f)), which is the same as
y+3m—4f = 0.
As promised, we now take
f=20
to get our three equations. Collecting, we see we have t@ $shé/system
2u—m—f = 154
y+3m—4f = 0
f = 0.
Using f = 0 our system reduces to
2y —m = 154
y+3Im = 0.
There are lots of ways to solve this. A simple one is to muyjtthe second equation by 2 and then subtract:
2y—m = 154
2u+6m = 0
implies
—Tm = 154,
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which impliesm = —22.

Now that we known = —22 we can use + 3m = 0 to gety = 66.

Thus the grandmother’s current agg ism = 66— (—22) = 88, while the grandfather ig— f = 66—0 = 66.
Thus the grandmother is older by 22 years.

Question 2: A row in a classroom has seats. Let,, be the number of ways non-empty sets of students can sit
in the row so that no student is sitting next to another stud€or example, a row of three seats could contain
a single student in any of the seats, or a pair of studentsitwh outer seats. Thug = 4.) Find s15.

Solution 2: We find a recurrence relation for the’s. We solve fors,, ., in terms of the earlier terms. There
are two possibilities for the position+ 2: we don’t have anyone there, or we do.

If we don’t have anyone, then we have to seat people in theingémga: + 1 spots, with the provision that at
least one spot is chosen and no two chosen spots are adjabenis the definition ok, ;.

If however we have someone sitting in seat2 then no one can sitin seat- 1. We now choose the number
of ways to seat people in the firstspots subject to the provision that no two people are seatgdher. This is
s, + 1. Thereason we must add 1 isthat it isokay to have no seats chosen, asin this case there's already
a non-empty subset aswe have someonein seat n + 2.

We thus find the recurrence relation

Sp+2 = Spi1 T+ Sp + 1.

We need some initial conditions to solve it. A little inspeatgivess; = 1 ands, = 2 (note this does give
s3 = 4 as claimed). We then find, = 3 + 1 + 1 = 5. We march down, with each term one more than the sum
of the previous two:

1,2,4,7,12,20, 33, 54, 88, 143, 232, 376, 609, 986, 1596.

Thus our answer is 1596.

This is sequence A001595 from Sloane’s On-line Encyclapetlinteger Sequences;
seehttp://oels.org/ AOOOO71I.

Here is some Mathematica code to quickly generate the sequen

a = 1;

b = 1;

For[n = 3, n <= 15, n++,
{
X =a+ b+ 1;
Print[Xx];
a = b;
b = x;
i

The sequence is quite interesting. Note each terexastlyone less than a Fibonacci numberfif is the
n'" Fibonacci number (with the sequence going 0, 1, 1, 2, 3, 538,.1, with F, = 0), thens,, = F, ., — 1.
We can prove this. Consider

Sny2 = Spy1+ Sn + 1.
If we add 1 to both sides we get
Spro+1 = s +1+5, + 1.
Lettingt,, = s, + 1 we find
tnyz = tny1 + 1ty

note this is the relation the Fibonaccis satisfylaking into account the initial conditions, we see that#lie
are shifted Fibonacci numbers, and thus4fye are the shifted Fibonaccis minus one.


http://oeis.org/A000071
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Noticing that our series is one less than the Fibonaccisesig@nother proof. Let, = s, + 1; we may
interpret this as counting the number of valid configurationt now allowing the empty configuratioAs we
allow the empty configuration, our new series is one more thainitial. Nowq¢, = 2, ¢o = 3 andgz = 5. We
find ¢, > = ¢..1 + ¢.- We get this by considering+ 2 seats. If the last is taken then the second to last cannot,
and there areg,, valid configurations from this point onward. If we do not take last seat, then there agg ;
valid configurations from this point onward. We see we havbiftexl Fibonacci sequence, and the rest of the
analysis is similar to before. We fingl; = 1597, s0s5 = 1596.

Question 3: A theorem of Relue states that there are constants,, a», a3 anda, such that
cos(4x) = aycos(z) + ascos®(x) + ay cos®(x) + a; cos(z) + ag.
Whatisay + a1 + as + az + a,?
Solution 3: Since the two sides are equal, we may take any value ®he simplest iz = 0. As the cosine of

zero is 1, we get the sum of the unknown coefficients is 1.
For completeness, we prove the formula. We start with thdldoangle identity:

cos(2x) = cos(x) cos(x) — sin(z) sin(x).

Usingsin®(z) = 1 — cos?(x) we see thatos(2z) = 2cos?(r) — 1. Replacingr with 2z givescos(4z) =
2 cos?(2x) — 1. We now substitute foros(2z) and findcos(4x) = 2(2 cos?(z) — 1)? — 1, or cos(4x) equals

2(4cos4(x) —4cos?(z) +1) — 1 = 8cos(z) — 8cos?(x) + 1.

ThUSCL4 =8=—a9,a3=0=qy andCLO = 1.

Question 4: Consider the soon to be popular new game of random M&Ms. Thethegame works is some
number,k, of M&Ms is chosen. Middlebury and Williams each start offthvik M&Ms. Each team indepen-
dently tosses a fair coin at the same time; any team thatd@skead eats one of their M&Ms, while any team
that tosses a tail does not eat. The first team to eat all th@lviswins, unless both eat their last M&M at the
same time, in which case the game is a tiek ¥ 3 what is the probability of a tie? Express your answer as a
fraction in lowest terms.

Solution 4: Let’s letz,, ., denote the probability of a tie when Middlebury hasM&M'’s and Williams hasw.

On each turn, there are four possibilities, each occurriitly probability 1/4: only Middlebury eats an M&M,
both eat, just Williams eats, or neither eats. Note, andisttise important observation, that if neither eats it’s
as if the turn didn’t happen. Thus, we may define a turn as tegbatossing pairs of coins until one of the
first three possibilities happen, and we see that one-tliitldlectime only Middlebury eats an M&M on a turn,
one-third of the time both eat, and one-third of the timehezieats.

We are thus considering a related game where on each tuemn bidth schools lose one M&M, or exactly one
school loses an M&M. As we start with both having 3 M&Ms, thexgaends either after 3, 4, 5, or 6 moves.
Why? Fastest it can be is 3 moves, with at least one schoold@si M&M each turn. It can’t take 7 turns or
more, because by the Pigeon-Hole Principle each turn dtdeasschool loses an M&M, and thus after 7 turns
one would lose at least 4 M&Ms.

Let M denote a turn where only Middlebury loses an M&M, W a twhere only Williams does, and B a
turn when both do. The probability of a tie is the sum of theyatalities of a tie with exactly 3, 4, 5 or 6 turns.
It's convenient to break things up into the number of B's weeh@, 1, 2 or 3); note it can’'t be zero as the last
term must be a B. The possible sequences (and their peronggére:

e 3 B's: BBB: this is the only permutation, happens with prabigb(1/3)3.

e 2 B's: BWMB: there are 6 permutations: we have to end with authere arg! = 6 ways to permute
B, W and M: the sum of the six probabilities heresis(1/3)%.

e 1 B: WWMMB: There are% = 6 ways to permute WWMM (if the four letters were distinct there
would be 4!, but as the two W'’s are the same we divide by 2!, amdegly divide by 2! for the two

M's): the sum of the six probabilities hereds (1/3)°.
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Adding the three cases gives
3+6+2 11

(1/3)* +6(1/3)* +6(1/3)° = s " &

It turns out this is the same as the following formula:

; (6 - 2: + k;) (63—_ 2:) (1/3)-++1

which suggests a generalization to both starting witM&M’s (6 is 2m, 3 is m except in 1/3, which is always
1/3).

Here is a more ‘visual’ solution, fdr = 4 (to really highlight the method).
Consider the following chart (see Figlde 1).
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FIGURE 1. The M&M game wherk = 4.

We start at (4,4) and have a tie if we end at (0,0). The game asd®on as we reach any vertex in the
last row. Each vertex has three arrows denoting the threslpliges; we have a 1/3 probability of taking any
arrow. Thus, to find the probability of ending in a tie, we né@dount how many paths there are from (4,4) to
(0,0) and weight each path By 3", wherer is the number of arrows.

There is one path of length 4, which thus contributés'. There are 10 paths of length 5, contributiiyg®.

It starts getting harder to count all the paths of length 8igye’s a real danger of missing a few. Also, with
long paths (such as those of length 7) we can start going doditcethe left, then cross over into the right part,
then cross back to the middle!

We can simplify things a bit. To get a tie, we have to reach)(latd from that point onward there’s a 1/3
chance of a tie. Thus, we just have to find the probability atheng (1,1) starting from (4,4).

We start with probability 1 of being at (4,4). We then see hbis probability ‘falls’ down the tree. After
one move, we're in each vertex of the second level with priihat/3. See Figurél2.

We now continue. We take the two outer vertices with proligbdnd have the probability ‘fall’ down. Each
sends one-third of its probability to three vertices. Weehgigure 3.

We now take the vertex with probability 5/9 and send its philits to its three children, getting Figute 4.
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FIGURE 2. The M&M game wherk = 4, going down one level.
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FIGURE 3. The M&M game wherk = 4, removing probability from two outer.
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FIGURE 4. The M&M game wherk = 4, removing probability from central vertex.
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FIGURE5. The M&M game wherk = 4, removing probability from the (4,2) and (2,4) vertices.

We continue, and move the probability from the (4,2) and)(2ettices in Figuréls.

We now move the probability down from the (3,2) and (2,3) izex; see Figure 6.
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FIGURE 6. The M&M game wherk = 4, removing probability from the (3,2) and (2,3) vertices.

We now move the probability down from the (2,2) vertex; seguFe 7.

/27 12/81 60/243  33/243 60/243 12/81 1/27

FIGURE 7. The M&M game wherk = 4, removing probability from the (2,2) vertex.

All we have to do is deal with the final row. All that matters etprobability that makes it to the center;
anything that falls lower doesn’t contribute. Thus, the pwobabilities of 1/27 at the end each send probabilities
of 1/81 to three vertices, but the only one that matters iotieeto the left (or right). Figurlel 8 shows what we

now have.

Q—--O—-—C)«-—O-—O

13/81 60/243  33/243 60/243 13/81

FIGURE 8. The M&M game wherk = 4, removing probability from (4,1) and (1,4) vertices.

Continuing, we move the probability in again; Figlre 9 shomesresult.

O e O i O
73/243 337243 73/243

FIGURE 9. The M&M game wherk = 4, removing probability from (3,1) and (1,3) vertices.

We then continue and move the probabilities from the endoe=rion the end, giving a probability éﬁ +

25+ 555 or 22 for the remaining vertex, the (1,1) vertex. We had alreadly sar answer is just 1/3 of this,

as that'’s the probability we get to (0,0). Thus the answed& 2187, or about 11%.

There are other ways to solve the problem. One way is to takedhution below and proceed via differenti-
ating identities, but the algebra is not pleasant.

Here’s another nice solution to the problem, though it uaesrfore math than you are expected to know!

We have
(-1’1
x’“"”_z k—1) 4
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Why is this the case? Imagine we have a tie. We have a stringiofflips. For each team, they either eat
an M&M on their turn, or don't, with each event happening wittobability 1/2. If there is a tie, we must
have some number of coin tosses, saglearly: > k. We know the last toss must be heads for both, which
happens with probability /2 - 1/2 = 1/4. For each team, what must happen in the otherl tosses? We
must have exactly — 1 heads for each team. For Middlebury, that probability;[%) 1/2i=1, and similarly for
Williams. By independence we multiply and then sum avekmazingly, there turns out to be a simple closed
form expression for this! Typing

Sun{Binomal[i - 1, k - 1172/ 4~i, {i, k, Infinity}]
into Mathematica yields

4"-k Hypergeonetric2F1[k, k, 1, 1/4]
(so, depending on your point of view, thesea closed form solution). The hypergeometric functionseaitis
all sorts of areas in mathematical physics; courses argel@t them as so many of our ‘special’ functions are
hypergeometric functions at particular arguments. Foreayege

http://en.w Ki pedi a. org/ w Ki / Hypergeonetri c_tunction.

There are advanced techniques to prove such facts. Fagtyrtais case isn’'t too bad and can be done without
too much trouble. Again, this isot something to be able to get on an exam; a competition is yehwwre
opportunity to teach. I'm spending the time writing the $@ln to this up in great detail so that, at your leisure
over the nextV years, you can read a bit about the hypergeometric seridsatdaast be aware that theaee

methods to solve problems such as these!

We first need some notation. We start with the Pochhammeralyrids n > 0, let
r
(@n:-%%%@::ux+nu«x+n—n.

Next, we define the hypergeometric functighy:
. . - (CL)n(b)n 2"
b = 2 T

This can be shown to converge for &l < 1 so long as: is not a negative integer. We now turn to our sum;
we'll needl’(m + 1) = m! andI’(1) = 1. We have

i i—1\"1 i k—1+n\> 1
—\k—1) 4 — &\ k-1 ) 4kin
S k=1+n)(k—14+n)1
B _kz:: E—Dinl (k—1)nl 47

B k+MF%+m I(1) (1/4)
EEZ ) (k) T(n+1) nl

14 2F1]{3,]{3,1§14
=4kZ (A _ R k1518

It may seem silly, but if Middlebury and Williams each staittwk = 1/2 of an M&M, the probability of a
tie is about 53.6591%. If we have 2012 M&Ms, we get a tie appnaxely 0.444788746532% of the time.
Approximately.

Question 5: Life is full of disappointments, of partial results to wha¢ want. For example, Chebyshev proved
that there exist constantsandB, .8 < A < 1 < B < 1.2, such that

Ax (z) < Bz

log x logx’
wherer(x) is the number of primes at most He wanted to prove that(x) waszx/logz (this is true, and

is the celebrated Prime Number Theorem), but had to settlthi®. Speaking of settling, using Chebyshev’s


http://en.wikipedia.org/wiki/Hypergeometric_function
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Theorem prove for any integér there exists an even integek such that there are at least primesp with
p + 2k also prime.Unfortunately my proof ha®k depending onV/. If you can solve this witB% independent
of M, you'll have just proved the Twin Prime Conjecture, namilgre are infinitely many primgssuch that
p + 2 is also prime! You'll also automatically win the Green Chaokfor your school.

Solution 5: This is a pigeon-hole problem. Consider the primes$dn. .., z} with x even for convenience.
The number of distinct pairs of primés, ¢) with 2 < p < g is

(71‘(1’) - 1) (m(z) — 1)(mw(x) — 2) m(z)? A%?
= > > 5
2 2 3 3log”x
for = large; note each pair gives rise to an even differenee (with 0 < ¢—p < z/2). The number of possible

even differences between primes at mos at mostz /2, which means the average number of occurrences of
each difference is

(W(xz)_l) S A22? /310’ 2A%x
x/2 T x/2 ~ 3log’z’
which tends to infinity withz. By the Pigeon-hole Principle (aka, Dirichlet's Box Priplei), at least one
of these differences must have at least the average numbeis, GivenM we simply take an evem with
2A%/31og? x > M and we are ensured of having at least one difference ocguttria many times. So close
and yet so far from the Twin Prime Conjecture!

Question 6: A graphG is a collection of vertice$” and edged” connecting pairs of vertices. Consider the
following graph. The vertices are the integégs 3,4, ...,2012}. Two vertices are connected by an edge if
they share a divisor greater than 1; thus 30 and 1593 are ctathiey an edge as 3 divides each, but 30 and 49
are not.

The coloring number of a graph is the smallest number of saleeded so that each vertex is coloaad if
two vertices are connected by an edge, then those two \@#reenot colored the same.

The Brown Chicken says the coloring number of this graph is@dt 9. Prove she is wrong. Find the correct
coloring number (if you can't find the exact answer, find upgoed / or lower bounds). Prove your answers.

Hint: A complete graph om vertices is a graph with vertices such that any pair of two vertices are con-
nected by an edge. It might be useful to note that the colanimgber of the complete graph arnvertices isn.

Solution 6: The coloring number is at least 10, as the vertices 2, 4, 8326..,1024 = 2'° are all connected
to each other, and thus we need at least 10 colors. Why? Thisasnplete graph with 10 vertices, and its
coloring number is 10. As this subgraph of our graph has salanumber 10, the entire graph has coloring
number at least 10.

We can get a very good lower bound easily. Instead of lookingoavers of 2, we can look at the even
numbers. There are 1006 even numbers, and each even nuncbeniected to every other. Thus we have a
complete graph with 1006 vertices, implying the coloringntoer is at least 1006.

It's easy to see the coloring number is at m2st2 — 7(2012) + 1, wherer(2012) is the number of primes
at most 2012. Why? We can color all the primes the same caomae are connected to any other. That’s our
plus 1; the2012 — 7(2012) comes from a trivial bounding, using a different color foclke@aemaining vertex.

Interestingly, our lower bound is the answer: the coloringnber is 1006. To see this, choose 1006 colors
and color each even number with one of these colors, neveg tise same color twice. Note weve to do
this, as no two even numbers can share a color. We are lefiooithing the odd numbers 3, 5, 7, 9, ..., 2011.
We color the verteRk + 1 with the color of vertexk. Note2k + 1 and2k can't share a factaf greater than 1
and are thus not connected. (If they shared a factor, it woale to divide their difference, which is 1). Since
vertex2k is the only vertex that has the color we want to use for vetiex 1, we see that we have a valid
coloring. We showed the coloring number must be at least 1€i66e we've found a coloring that works with
1006 colors, we know this must be the answer.



