
GREEN CHICKEN EXAM - NOVEMBER 2012

GREEN CHICKEN AND STEVEN J. MILLER

Question 1: The Green Chicken is planning a surprise party for his grandfather and grandmother. The sum of
the ages of the grandmother and grandfather is 154. The grandmother is twice as old as the grandfather was
when the grandmother was as old as the grandfather is now. Whois older, the grandmother or the grandfather,
and by how many years?

Question 2: A row in a classroom hasn seats. Letsn be the number of ways non-empty sets of students can sit
in the row so that no student is sitting next to another student. (For example, a row of three seats could contain
a single student in any of the seats, or a pair of students in the two outer seats. Thuss3 = 4.) Finds15.

Question 3: A theorem of Relue states that there are constantsa0, a1, a2, a3 anda4 such that

cos(4x) = a4 cos
4(x) + a3 cos

3(x) + a2 cos
2(x) + a1 cos(x) + a0.

What isa0 + a1 + a2 + a3 + a4?

Question 4: Consider the soon to be popular new game of random M&Ms. The way the game works is some
number,k, of M&Ms is chosen. Middlebury and Williams each start off with k M&Ms. Each team indepen-
dently tosses a fair coin at the same time; any team that tosses a head eats one of their M&Ms, while any team
that tosses a tail does not eat. The first team to eat all their M&Ms wins, unless both eat their last M&M at the
same time, in which case the game is a tie. Ifk = 3 what is the probability of a tie? Express your answer as a
fraction in lowest terms.

Question 5: Life is full of disappointments, of partial results to what we want. For example, Chebyshev proved
that there exist constantsA andB, .8 < A < 1 < B < 1.2, such that

Ax

log x
< π(x) <

Bx

log x
,

whereπ(x) is the number of primes at mostx. He wanted to prove thatπ(x) wasx/ log x (this is true, and
is the celebrated Prime Number Theorem), but had to settle for this. Speaking of settling, using Chebyshev’s
Theorem prove for any integerM there exists an even integer2k such that there are at leastM primesp with
p + 2k also prime.Unfortunately my proof has2k depending onM . If you can solve this with2k independent
of M , you’ll have just proved the Twin Prime Conjecture, namely,there are infinitely many primesp such that
p+ 2 is also prime! You’ll also automatically bring back the Green Chicken for your school.

Question 6: A graphG is a collection of verticesV and edgesE connecting pairs of vertices. Consider the
following graph. The vertices are the integers{2, 3, 4, . . . , 2012}. Two vertices are connected by an edge if
they share a divisor greater than 1; thus 30 and 1593 are connected by an edge as 3 divides each, but 30 and 49
are not.

The coloring number of a graph is the smallest number of colors needed so that each vertex is coloredand if
two vertices are connected by an edge, then those two vertices are not colored the same.

The Brown Chicken says the coloring number of this graph is atmost 9. Prove she is wrong. Find the correct
coloring number (if you can’t find the exact answer, find upperand / or lower bounds). Prove your answers.

Hint: A complete graph onn vertices is a graph withn vertices such that any pair of two vertices are con-
nected by an edge. It might be useful to note that the coloringnumber of the complete graph onn vertices isn.
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Here are the problems and solutions.

Question 1: The Green Chicken is planning a surprise party for his grandfather and grandmother. The sum of
the ages of the grandmother and grandfather is 154. The grandmother is twice as old as the grandfather was
when the grandmother was as old as the grandfather is now. Whois older, the grandmother or the grandfather,
and by how many years?

Solution 1: The difficulty in this problem is translating the text to equations and solving. There are several
ways to solve it. Letx be the grandfather’s current age, andy the grandmother’s current age. Since the sum of
their ages is 154, we get

x+ y = 154.

The second condition is harder to translate, but becomes

y = 2 [x− (y − x)] .

Now it’s easy. The second equation becomesy = 2(2x− y). As x = 154− y (so2x = 308− 2y) we find

y = 2(308− 2y − y),

or
7y = 616

which impliesy = 88 and thusx = 66, so the grandmother is 22 years older.

Here is a longer solution.

Let’s say the grandmother was born in yearm and the grandfather in yearf , and currently it is yeary. The
grandmother’s age isy−m and the grandfather’s isy− f . We have three unknowns:m, f, y. We need to solve
for these. Note, of course, that there is a certain indefiniteness that helps us. We can add any amount toall of
the unknowns without changing anything, as all that really matters are the ages. Thus, we can take any of the
variables to be zero. This will give us our third equation; we’ll choosef = 0 (though we could have chosen
y = 2012 if we wished).

The first condition becomes(y −m) + (y − f) = 154, which we rewrite as

2y −m− f = 154.

The second condition isy −m = 2 ((y − f) + (m− f)) , which is the same as

y + 3m− 4f = 0.

As promised, we now take
f = 0

to get our three equations. Collecting, we see we have to solve the system

2y −m− f = 154

y + 3m− 4f = 0

f = 0.

Usingf = 0 our system reduces to

2y −m = 154

y + 3m = 0.

There are lots of ways to solve this. A simple one is to multiply the second equation by 2 and then subtract:

2y −m = 154

2y + 6m = 0

implies
−7m = 154,
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which impliesm = −22.
Now that we knowm = −22 we can usey + 3m = 0 to gety = 66.
Thus the grandmother’s current age isy−m = 66−(−22) = 88, while the grandfather isy−f = 66−0 = 66.

Thus the grandmother is older by 22 years.

Question 2: A row in a classroom hasn seats. Letsn be the number of ways non-empty sets of students can sit
in the row so that no student is sitting next to another student. (For example, a row of three seats could contain
a single student in any of the seats, or a pair of students in the two outer seats. Thuss3 = 4.) Finds15.

Solution 2: We find a recurrence relation for thesn’s. We solve forsn+2 in terms of the earlier terms. There
are two possibilities for the positionn+ 2: we don’t have anyone there, or we do.

If we don’t have anyone, then we have to seat people in the remaining n+ 1 spots, with the provision that at
least one spot is chosen and no two chosen spots are adjacent.This is the definition ofsn+1.

If however we have someone sitting in seatn+2 then no one can sit in seatn+1. We now choose the number
of ways to seat people in the firstn spots subject to the provision that no two people are seated together. This is
sn + 1. The reason we must add 1 is that it is okay to have no seats chosen, as in this case there’s already
a non-empty subset as we have someone in seat n+ 2.

We thus find the recurrence relation
sn+2 = sn+1 + sn + 1.

We need some initial conditions to solve it. A little inspection givess1 = 1 ands2 = 2 (note this does give
s3 = 4 as claimed). We then finds4 = 3 + 1 + 1 = 5. We march down, with each term one more than the sum
of the previous two:

1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596.

Thus our answer is 1596.
This is sequence A001595 from Sloane’s On-line Encyclopedia of Integer Sequences;

seehttp://oeis.org/A000071.
Here is some Mathematica code to quickly generate the sequence.

a = 1;
b = 1;
For[n = 3, n <= 15, n++,
{
x = a + b + 1;
Print[x];
a = b;
b = x;
}];

The sequence is quite interesting. Note each term isexactlyone less than a Fibonacci number; ifFn is the
nth Fibonacci number (with the sequence going 0, 1, 1, 2, 3, 5, 8, 13, . . . , with F0 = 0), thensn = Fn+2 − 1.
We can prove this. Consider

sn+2 = sn+1 + sn + 1.

If we add 1 to both sides we get
sn+2 + 1 = sn+1 + 1 + sn + 1.

Letting tn = sn + 1 we find
tn+2 = tn+1 + tn;

note this is the relation the Fibonaccis satisfy!. Taking into account the initial conditions, we see that thetn’s
are shifted Fibonacci numbers, and thus thesn’s are the shifted Fibonaccis minus one.

http://oeis.org/A000071
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Noticing that our series is one less than the Fibonaccis suggests another proof. Letqn = sn + 1; we may
interpret this as counting the number of valid configurations but now allowing the empty configuration. As we
allow the empty configuration, our new series is one more thanthe initial. Nowq1 = 2, q2 = 3 andq3 = 5. We
find qn+2 = qn+1+ qn. We get this by consideringn+2 seats. If the last is taken then the second to last cannot,
and there areqn valid configurations from this point onward. If we do not takethe last seat, then there areqn+1

valid configurations from this point onward. We see we have a shifted Fibonacci sequence, and the rest of the
analysis is similar to before. We findq15 = 1597, sos15 = 1596.

Question 3: A theorem of Relue states that there are constantsa0, a1, a2, a3 anda4 such that

cos(4x) = a4 cos
4(x) + a3 cos

3(x) + a2 cos
2(x) + a1 cos(x) + a0.

What isa0 + a1 + a2 + a3 + a4?

Solution 3: Since the two sides are equal, we may take any value ofx. The simplest isx = 0. As the cosine of
zero is 1, we get the sum of the unknown coefficients is 1.

For completeness, we prove the formula. We start with the double angle identity:

cos(2x) = cos(x) cos(x)− sin(x) sin(x).

Using sin2(x) = 1 − cos2(x) we see thatcos(2x) = 2 cos2(x) − 1. Replacingx with 2x givescos(4x) =
2 cos2(2x)− 1. We now substitute forcos(2x) and findcos(4x) = 2(2 cos2(x)− 1)2 − 1, or cos(4x) equals

2(4 cos 4(x)− 4 cos2(x) + 1)− 1 = 8 cos4(x)− 8 cos2(x) + 1.

Thusa4 = 8 = −a2, a3 = 0 = a1 anda0 = 1.

Question 4: Consider the soon to be popular new game of random M&Ms. The way the game works is some
number,k, of M&Ms is chosen. Middlebury and Williams each start off with k M&Ms. Each team indepen-
dently tosses a fair coin at the same time; any team that tosses a head eats one of their M&Ms, while any team
that tosses a tail does not eat. The first team to eat all their M&Ms wins, unless both eat their last M&M at the
same time, in which case the game is a tie. Ifk = 3 what is the probability of a tie? Express your answer as a
fraction in lowest terms.

Solution 4: Let’s letxm,w denote the probability of a tie when Middlebury hasm M&M’s and Williams hasw.
On each turn, there are four possibilities, each occurring with probability 1/4: only Middlebury eats an M&M,
both eat, just Williams eats, or neither eats. Note, and thisis the important observation, that if neither eats it’s
as if the turn didn’t happen. Thus, we may define a turn as repeatedly tossing pairs of coins until one of the
first three possibilities happen, and we see that one-third of the time only Middlebury eats an M&M on a turn,
one-third of the time both eat, and one-third of the time neither eats.

We are thus considering a related game where on each turn either both schools lose one M&M, or exactly one
school loses an M&M. As we start with both having 3 M&Ms, the game ends either after 3, 4, 5, or 6 moves.
Why? Fastest it can be is 3 moves, with at least one school losing an M&M each turn. It can’t take 7 turns or
more, because by the Pigeon-Hole Principle each turn at least one school loses an M&M, and thus after 7 turns
one would lose at least 4 M&Ms.

Let M denote a turn where only Middlebury loses an M&M, W a turnwhere only Williams does, and B a
turn when both do. The probability of a tie is the sum of the probabilities of a tie with exactly 3, 4, 5 or 6 turns.
It’s convenient to break things up into the number of B’s we have (0, 1, 2 or 3); note it can’t be zero as the last
term must be a B. The possible sequences (and their permutations) are:

• 3 B’s: BBB: this is the only permutation, happens with probability (1/3)3.
• 2 B’s: BWMB: there are 6 permutations: we have to end with a B, but there are3! = 6 ways to permute

B, W and M: the sum of the six probabilities here is6 · (1/3)4.
• 1 B: WWMMB: There are 4!

2!2!
= 6 ways to permute WWMM (if the four letters were distinct there

would be 4!, but as the two W’s are the same we divide by 2!, and similarly divide by 2! for the two
M’s): the sum of the six probabilities here is6 · (1/3)5.
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Adding the three cases gives

(1/3)3 + 6(1/3)4 + 6(1/3)5 =
3 + 6 + 2

81
=

11

81
.

It turns out this is the same as the following formula:
3

∑

k=0

(

6− 2k + k

k

)(

6− 2k

3− k

)

(1/3)6−k+1,

which suggests a generalization to both starting withm M&M’s (6 is 2m, 3 ism except in 1/3, which is always
1/3).

Here is a more ‘visual’ solution, fork = 4 (to really highlight the method).
Consider the following chart (see Figure 1).

FIGURE 1. The M&M game whenk = 4.

We start at (4,4) and have a tie if we end at (0,0). The game endsas soon as we reach any vertex in the
last row. Each vertex has three arrows denoting the three possibilities; we have a 1/3 probability of taking any
arrow. Thus, to find the probability of ending in a tie, we needto count how many paths there are from (4,4) to
(0,0) and weight each path by1/3r, wherer is the number of arrows.

There is one path of length 4, which thus contributes1/34. There are 10 paths of length 5, contributing5/35.
It starts getting harder to count all the paths of length six;there’s a real danger of missing a few. Also, with
long paths (such as those of length 7) we can start going down and to the left, then cross over into the right part,
then cross back to the middle!

We can simplify things a bit. To get a tie, we have to reach (1,1), and from that point onward there’s a 1/3
chance of a tie. Thus, we just have to find the probability of reaching (1,1) starting from (4,4).

We start with probability 1 of being at (4,4). We then see how this probability ‘falls’ down the tree. After
one move, we’re in each vertex of the second level with probability 1/3. See Figure 2.

We now continue. We take the two outer vertices with probability, and have the probability ‘fall’ down. Each
sends one-third of its probability to three vertices. We have Figure 3.

We now take the vertex with probability 5/9 and send its probability to its three children, getting Figure 4.
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FIGURE 2. The M&M game whenk = 4, going down one level.

FIGURE 3. The M&M game whenk = 4, removing probability from two outer.

FIGURE 4. The M&M game whenk = 4, removing probability from central vertex.

FIGURE 5. The M&M game whenk = 4, removing probability from the (4,2) and (2,4) vertices.

We continue, and move the probability from the (4,2) and (2,4) vertices in Figure 5.

We now move the probability down from the (3,2) and (2,3) vertices; see Figure 6.
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FIGURE 6. The M&M game whenk = 4, removing probability from the (3,2) and (2,3) vertices.

We now move the probability down from the (2,2) vertex; see Figure 7.

FIGURE 7. The M&M game whenk = 4, removing probability from the (2,2) vertex.

All we have to do is deal with the final row. All that matters is the probability that makes it to the center;
anything that falls lower doesn’t contribute. Thus, the twoprobabilities of 1/27 at the end each send probabilities
of 1/81 to three vertices, but the only one that matters is theone to the left (or right). Figure 8 shows what we
now have.

FIGURE 8. The M&M game whenk = 4, removing probability from (4,1) and (1,4) vertices.

Continuing, we move the probability in again; Figure 9 showsthe result.

FIGURE 9. The M&M game whenk = 4, removing probability from (3,1) and (1,3) vertices.

We then continue and move the probabilities from the end vertices on the end, giving a probability of1
3
73
24

+
33
243

+ 1
3

73
243

or 245
729

for the remaining vertex, the (1,1) vertex. We had already said our answer is just 1/3 of this,
as that’s the probability we get to (0,0). Thus the answer is 245/2187, or about 11%.

There are other ways to solve the problem. One way is to take the solution below and proceed via differenti-
ating identities, but the algebra is not pleasant.

Here’s another nice solution to the problem, though it uses far more math than you are expected to know!
We have

xk,k =

∞
∑

i=k

(

i− 1

k − 1

)2
1

4i
.
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Why is this the case? Imagine we have a tie. We have a string of coin flips. For each team, they either eat
an M&M on their turn, or don’t, with each event happening withprobability 1/2. If there is a tie, we must
have some number of coin tosses, sayi. Clearlyi ≥ k. We know the last toss must be heads for both, which
happens with probability1/2 · 1/2 = 1/4. For each team, what must happen in the otheri − 1 tosses? We
must have exactlyk− 1 heads for each team. For Middlebury, that probability is

(

i−1
k−1

)

1/2i−1, and similarly for
Williams. By independence we multiply and then sum overi. Amazingly, there turns out to be a simple closed
form expression for this! Typing
Sum[Binomial[i - 1, k - 1]^2 / 4^i, {i, k, Infinity}]

into Mathematica yields
4^-k Hypergeometric2F1[k, k, 1, 1/4]

(so, depending on your point of view, thereis a closed form solution). The hypergeometric functions arise in
all sorts of areas in mathematical physics; courses are devoted to them as so many of our ‘special’ functions are
hypergeometric functions at particular arguments. For more, see

http://en.wikipedia.org/wiki/Hypergeometric_function.
There are advanced techniques to prove such facts. Fortunately, this case isn’t too bad and can be done without
too much trouble. Again, this isnot something to be able to get on an exam; a competition is yet onemore
opportunity to teach. I’m spending the time writing the solution to this up in great detail so that, at your leisure
over the nextN years, you can read a bit about the hypergeometric series, and at least be aware that thereare
methods to solve problems such as these!

We first need some notation. We start with the Pochhammer symbol: for n ≥ 0, let

(x)n =
Γ(x+ n)

Γ(x)
= x(x+ 1) · · · (x+ n− 1).

Next, we define the hypergeometric function2F1:

2F1(a, b, c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
.

This can be shown to converge for all|z| < 1 so long asc is not a negative integer. We now turn to our sum;
we’ll needΓ(m+ 1) = m! andΓ(1) = 1. We have

∞
∑

i=k

(

i− 1

k − 1

)2
1

4i
=

∞
∑

n=0

(

k − 1 + n

k − 1

)2
1

4k+n

=
1

4k

∞
∑

n=0

(k − 1 + n)!

(k − 1)!n!

(k − 1 + n)!

(k − 1)!n!

1

4n

=
1

4k

∞
∑

n=0

Γ(k + n)

Γ(k)

Γ(k + n)

Γ(k)

Γ(1)

Γ(n+ 1)

(1/4)n

n!

=
1

4k

∞
∑

n=0

(k)n(k)n
(1)n

(1/4)n

n!
=

2F1(k, k, 1; 1/4)

4k
.

It may seem silly, but if Middlebury and Williams each start with k = 1/2 of an M&M, the probability of a
tie is about 53.6591%. If we have 2012 M&Ms, we get a tie approximately 0.444788746532% of the time.
Approximately.

Question 5: Life is full of disappointments, of partial results to what we want. For example, Chebyshev proved
that there exist constantsA andB, .8 < A < 1 < B < 1.2, such that

Ax

log x
< π(x) <

Bx

log x
,

whereπ(x) is the number of primes at mostx. He wanted to prove thatπ(x) wasx/ log x (this is true, and
is the celebrated Prime Number Theorem), but had to settle for this. Speaking of settling, using Chebyshev’s

http://en.wikipedia.org/wiki/Hypergeometric_function
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Theorem prove for any integerM there exists an even integer2k such that there are at leastM primesp with
p + 2k also prime.Unfortunately my proof has2k depending onM . If you can solve this with2k independent
of M , you’ll have just proved the Twin Prime Conjecture, namely,there are infinitely many primesp such that
p+ 2 is also prime! You’ll also automatically win the Green Chicken for your school.

Solution 5: This is a pigeon-hole problem. Consider the primes in{3, . . . , x} with x even for convenience.
The number of distinct pairs of primes(p, q) with 2 < p < q is

(

π(x)− 1

2

)

=
(π(x)− 1)(π(x)− 2)

2
>

π(x)2

3
>

A2x2

3 log2 x

for x large; note each pair gives rise to an even differenceq−p (with 0 < q−p ≤ x/2). The number of possible
even differences between primes at mostx is at mostx/2, which means the average number of occurrences of
each difference is

(

π(x)−1
2

)

x/2
≥

A2x2/3 log2 x

x/2
=

2A2x

3 log2 x
,

which tends to infinity withx. By the Pigeon-hole Principle (aka, Dirichlet’s Box Principle), at least one
of these differences must have at least the average number. Thus, givenM we simply take an evenx with
2A2x/3 log2 x > M and we are ensured of having at least one difference occurring this many times. So close
and yet so far from the Twin Prime Conjecture!

Question 6: A graphG is a collection of verticesV and edgesE connecting pairs of vertices. Consider the
following graph. The vertices are the integers{2, 3, 4, . . . , 2012}. Two vertices are connected by an edge if
they share a divisor greater than 1; thus 30 and 1593 are connected by an edge as 3 divides each, but 30 and 49
are not.

The coloring number of a graph is the smallest number of colors needed so that each vertex is coloredand if
two vertices are connected by an edge, then those two vertices are not colored the same.

The Brown Chicken says the coloring number of this graph is atmost 9. Prove she is wrong. Find the correct
coloring number (if you can’t find the exact answer, find upperand / or lower bounds). Prove your answers.

Hint: A complete graph onn vertices is a graph withn vertices such that any pair of two vertices are con-
nected by an edge. It might be useful to note that the coloringnumber of the complete graph onn vertices isn.

Solution 6: The coloring number is at least 10, as the vertices 2, 4, 8, 16,32, ...,1024 = 210 are all connected
to each other, and thus we need at least 10 colors. Why? This isa complete graph with 10 vertices, and its
coloring number is 10. As this subgraph of our graph has coloring number 10, the entire graph has coloring
number at least 10.

We can get a very good lower bound easily. Instead of looking at powers of 2, we can look at the even
numbers. There are 1006 even numbers, and each even number isconnected to every other. Thus we have a
complete graph with 1006 vertices, implying the coloring number is at least 1006.

It’s easy to see the coloring number is at most2012 − π(2012) + 1, whereπ(2012) is the number of primes
at most 2012. Why? We can color all the primes the same color, as none are connected to any other. That’s our
plus 1; the2012− π(2012) comes from a trivial bounding, using a different color for each remaining vertex.

Interestingly, our lower bound is the answer: the coloring number is 1006. To see this, choose 1006 colors
and color each even number with one of these colors, never using the same color twice. Note wehave to do
this, as no two even numbers can share a color. We are left withcoloring the odd numbers 3, 5, 7, 9, ..., 2011.
We color the vertex2k + 1 with the color of vertex2k. Note2k+ 1 and2k can’t share a factord greater than 1
and are thus not connected. (If they shared a factor, it wouldhave to divide their difference, which is 1). Since
vertex2k is the only vertex that has the color we want to use for vertex2k + 1, we see that we have a valid
coloring. We showed the coloring number must be at least 1006; since we’ve found a coloring that works with
1006 colors, we know this must be the answer.


