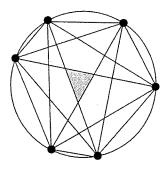

THE 25th ANNUAL GREEN CHICKEN CONTEST


OCTOBER 19, 2002

- 1. Prove that for $n \geq 6$, an equilateral triangle can be dissected into n equilateral triangles.
- 2. Three $12' \times 12'$ squares are each cut into two pieces, A and B, by joining midpoints of two adjacent sides. These six pieces are then attached to a regular hexagon, as shown below, so as to fold into a polyhedron. Find the volume of this polyhedron.

- 3. A special 25×25 chessboard is made for the twenty-fifth anniversary of the Green Chicken. Is it possible to start with a knight at some corner of the board and return to its original position after visiting each square of the board exactly once?
- 4. There are n points given on the circumference of a circle, and the chords determined by them are drawn. If no three chords have a common point, how many triangles are there all of whose vertices lie *inside* the circle. The figure below shows an example with six points on the circle and one such (shaded) triangle.

- 5. Given 69 distinct positive integers not exceeding 100, prove one can choose four of them, say a, b, c, d, such that a < b < c and a + b + c = d.
- 6. Given 2n + 2 points in the plane such that no three lie on the same line, show that there are two points that determine a line which separates n of the points from the other n.

"Life is pain. Anyone that says different is selling something." — Fezzik's Mother