Counting number of edges, thickness, and chromatic number of k-visibility graphs

Matthew Babbitt

Albany Area Math Circle

April 6, 2013
Bar Visibility Graphs

Counting number of edges, thickness, and chromatic number of k-visibility graphs
Bar Visibility Graphs

Bar Visibility Graph

Bar 1-Visibility Graph

Bar Visibility Representation

Bar 1-Visibility Representation

Counting number of edges, thickness, and chromatic number of k-visibility graphs
Thickness and Chromatic Number

Definition

The *thickness* $\Theta(G)$ of a graph G is the least number of colors needed to color the edges of G so that no two edges with the same color intersect.

Definition

The *chromatic number* $\chi(G)$ of a graph G is the least number of colors needed to color the vertices of G so that no two vertices with the same color are adjacent.
Upper Bound on Thickness of Bar k-Visibility Graphs

Theorem

$\Theta(G_k) \leq 6k$ for all bar k-visibility graphs G_k.

- Great improvement over old quadratic bound of $18k^2 - 2k$ found by Dean et al. (2005).
- Found with method used to bound thickness of semi bar 1-visibility graphs, found by Felsner and Massow (2008).
- Not tight: $\Theta(G_1) \leq 4$ proven by Dean et al. (2005).
- There exist G_k with $\Theta(G_k) \geq k + 1$.
- Maximal thickness grows at $O(k)$.
Proof of Upper Bound

- Based on bound of $\chi(G_k) = 6k + 6$ by Dean et al. (2005).
- Method: construct graph based on representation. Thicken bars to rectangles. Assume no two vertices have same x-coordinate.
- Use one-bend edges.
Proof of Upper Bound

- No two horizontal or two vertical segments intersect.
- Color edges based on vertex-coloring of G_{k-1}.
- Intersecting edges intersect in rectangle of horizontal segment, thus left endpoints of the edges must have different colors when considering $(k - 1)$-visibility.
Semi Bar Visibility Graphs

Semi Bar Visibility Graph

Semi Bar Visibility Representation

Counting number of edges, thickness, and chromatic number of k-visibility graphs
Semi Bar Visibility Graphs

Semi Bar Visibility Graph Semi Bar Visibility Representation

Semi Bar 1-Visibility Graph Semi Bar 1-Visibility Representation

Counting number of edges, thickness, and chromatic number of \(k \)-visibility graphs
Upper Bound on Thickness of Semi Bar k-Visibility Graphs

Theorem

$\Theta(G_k) \leq 2k$ for all semi bar k-visibility graphs G_k.

- Better than bound found using $\chi(G_k) \leq 2k + 3$, found by Felsner and Massow (2008)
- Proof based on how many one-edges cross any given bar.
- There exist G_k with $\Theta(G_k) \geq \left\lceil \frac{2}{3}(k + 1) \right\rceil$
- Maximal thickness grows at $O(k)$.

Counting number of edges, thickness, and chromatic number of k-visibility graphs
Arc Visibility Graphs

Arc Visibility Graph

Arc Visibility Representation

Counting number of edges, thickness, and chromatic number of k-visibility graphs
Arc Visibility Graphs

Arc Visibility Graph

Arc 1-Visibility Graph

Counting number of edges, thickness, and chromatic number of k-visibility graphs
Theorem

Arc k-visibility graphs with n vertices have at most $(k + 1)(3n - k - 2)$ edges.

- Found by considering endpoints of arcs
Theorem

Arc k-visibility graphs with n vertices have at most $(k + 1)(3n - k - 2)$ edges.
- Found by considering endpoints of arcs

Theorem

$\chi(G_k) \leq 6k + 6$ for all arc k-visibility graphs G_k.
- Bounded by maximum number of edges
Upper Bound on Thickness of Rectangle k-Visibility Graphs

Theorem

$\Theta(G_k) \leq 12k$ for all rectangle k-visibility graphs G_k.

- Double the upper bound for bar k-visibility graphs.
Conclusion

What Did We Do?

- Improved bounds on thickness of bar k-visibility graphs, created bound on thickness of semi bar k-visibility graphs
- Placed bounds on number of edges and chromatic number of arc k-visibility graphs
- Found bound on thickness of rectangle k-visibility graphs
Conclusion

Future work:

- Tighten bounds for bar, semi bar, arc, rectangle k-visibility graphs

Counting number of edges, thickness, and chromatic number of k-visibility graphs
Acknowledgements

- Jesse Geneson
- Dr. Tanya Khovanova, MIT Math Dept.
- Dr. John Rickert
- CEE, RSI, MIT
- Mr. Regan, Mr. Beebee, Mr. Cheng, Department of Defense
- Williams College

Counting number of edges, thickness, and chromatic number of k-visibility graphs
Bar 1-Visibility Representation of K_8

Counting number of edges, thickness, and chromatic number of k-visibility graphs