An Introduction to Self-Similar and Combinatorial Tiling Part II

Moisés Rivera
Vassar College
Self-Similar vs. Combinatorial Tiling

- Substitution/Inflate and Subdivide Rule
Self-Similar vs. Combinatorial Tiling

- Substitution/Inflate and Subdivide Rule
- No geometric resemblance to itself
- Substitution of non-constant length
One-Dimensional Symbolic Substitution

- \mathcal{A} is a finite set called an *alphabet* whose elements are *letters*.
- \mathcal{A}^* is the set of all *words* with elements from \mathcal{A}.
- A *symbolic substitution* is any map $\sigma : \mathcal{A} \rightarrow \mathcal{A}^*$.
One-Dimensional Symbolic Substitution

- \mathcal{A} is a finite set called an *alphabet* whose elements are *letters*.
- \mathcal{A}^* is the set of all *words* with elements from \mathcal{A}.
- A *symbolic substitution* is any map $\sigma : \mathcal{A} \to \mathcal{A}^*$.

Let $\mathcal{A} = \{a, b\}$ and let $\sigma(a) = ab$ and $\sigma(b) = a$.
One-Dimensional Symbolic Substitution

- \mathcal{A} is a finite set called an alphabet whose elements are letters.

- \mathcal{A}^* is the set of all words with elements from \mathcal{A}.

- A symbolic substitution is any map $\sigma : \mathcal{A} \rightarrow \mathcal{A}^*$.

Let $\mathcal{A} = \{a,b\}$ and let $\sigma(a) = ab$ and $\sigma(b) = a$.

If we begin with a we get:

$$a \rightarrow ab \rightarrow aba \rightarrow aba \rightarrow aba \rightarrow aba \rightarrow aba \rightarrow \cdots$$
One-Dimensional Symbolic Substitution

- \mathcal{A} is a finite set called an *alphabet* whose elements are *letters*.

- \mathcal{A}^* is the set of all *words* with elements from \mathcal{A}.

- A **symbolic substitution** is any map $\sigma : \mathcal{A} \rightarrow \mathcal{A}^*$.

Let $\mathcal{A} = \{a,b\}$ and let $\sigma(a) = ab$ and $\sigma(b) = a$.

If we begin with a we get:

$$a \rightarrow ab \rightarrow ab a \rightarrow ab a ab \rightarrow ab a ab ab a \rightarrow ab a ab ab a ab a ab a ab a ab \rightarrow \cdots$$

- The block lengths are Fibonacci numbers $1, 2, 3, 5, 8, 13, \ldots$

- substitution of non-constant length or combinatorial substitution
Substitution Matrix

- The substitution matrix M is the $n \times n$ matrix with entries given by

$$m_{ij} = \text{the number of tiles of type } i \text{ in the substitution of the tile of type } j$$
Substitution Matrix

- The substitution matrix M is the $n \times n$ matrix with entries given by

$$m_{ij} = \text{the number of tiles of type } i \text{ in the substitution of the tile of type } j$$

$$\sigma(a) = ab$$

$$\sigma(b) = a$$
Substitution Matrix

- The substitution matrix M is the $n \times n$ matrix with entries given by

 \[m_{ij} = \text{the number of tiles of type } i \text{ in the substitution of the tile of type } j \]

 \[\sigma(a) = ab \]
 \[\sigma(b) = a \]

- substitution matrix for one-dimensional Fibonacci substitution:

 \[
 M = \begin{pmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
 \end{pmatrix} = \begin{pmatrix}
 1 & 1 \\
 1 & 0
 \end{pmatrix}
 \]
Eigenvectors and Eigenvalues

- **Eigenvector** - a non-zero vector v that, when multiplied by square matrix A yields the original vector multiplied by a single number λ.
Eigenvectors and Eigenvalues

- **Eigenvector** - a non-zero vector v that, when multiplied by square matrix A yields the original vector multiplied by a single number λ

 $$A\vec{v} = \lambda \vec{v}$$

- λ is the **eigenvalue** of A corresponding to v.
Eigenvectors and Eigenvalues

- **Eigenvector** - a non-zero vector \mathbf{v} that, when multiplied by square matrix A yields the original vector multiplied by a single number λ

$$A\mathbf{v} = \lambda\mathbf{v}$$

- λ is the **eigenvalue** of A corresponding to \mathbf{v}.

- This equation has non-trivial solutions if and only if

$$\det(A - \lambda I) = 0$$

- Solve for λ to find eigenvalues.
Expansion Constant

- Eigenvalues are the roots of the characteristic polynomial

$$\lambda^2 - \lambda - 1 = 0$$
Expansion Constant

- Eigenvalues are the roots of the characteristic polynomial

\[\lambda^2 - \lambda - 1 = 0 \]

- Perron Eigenvalue - largest positive real valued eigenvalue that is larger in modulus than the other eigenvalues of the matrix
Expansion Constant

- Eigenvalues are the roots of the characteristic polynomial

\[\lambda^2 - \lambda - 1 = 0 \]

- **Perron Eigenvalue** - largest positive real valued eigenvalue that is larger in modulus than the other eigenvalues of the matrix

- Perron Eigenvalue of Fibonacci substitution matrix:

\[\frac{1 + \sqrt{5}}{2} = \gamma \]

the golden mean
The Fibonacci Direct Product Substitution

The direct product of the one-dimensional Fibonacci substitution with itself.

\[\{a,b\}_x\{a,b\} \]

where \((a,a) = 1\), \((a,b) = 2\), \((b,a) = 3\), \((b,b) = 4\).
The Fibonacci Direct Product Substitution

The direct product of the one-dimensional Fibonacci substitution with itself.

\[\{a,b\} \times \{a,b\} \]

where \((a,a) = 1\), \((a,b) = 2\), \((b,a) = 3\), \((b,b) = 4\).
The Fibonacci Direct Product Substitution

The direct product of the one-dimensional Fibonacci substitution with itself.

\[\{a,b\} \times \{a,b\} \]

where \((a,a) = 1, (a,b) = 2, (b,a) = 3, (b,b) = 4.\]

- Not self-similar
- Not an inflate and subdivide rule
Several Iterations of Tile Types
Several Iterations of Tile Types
Substitution Matrix

1 → 2 4
 1 3
2 → 1 3
3 → 2 1
4 → 1
Substitution Matrix

The substitution matrix for the Fibonacci Direct Product is

$$M = \begin{pmatrix}
 m_{11} & m_{12} & m_{13} & m_{14} \\
 m_{21} & m_{22} & m_{23} & m_{24} \\
 m_{31} & m_{32} & m_{33} & m_{34} \\
 m_{41} & m_{42} & m_{43} & m_{44}
\end{pmatrix} = \begin{pmatrix}
 1 & 1 & 1 & 1 \\
 1 & 0 & 1 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0
\end{pmatrix}$$
Expansion Constant

- Eigenvalues are the roots of the characteristic polynomial

\[\det (M - \lambda I) = 0 \]

\[\lambda^4 - \lambda^3 - 4\lambda^2 - \lambda + 1 = 0 \]
Expansion Constant

- Eigenvalues are the roots of the characteristic polynomial

\[\det (M - \lambda I) = 0 \]

\[\lambda^4 - \lambda^3 - 4\lambda^2 - \lambda + 1 = 0 \]

- Perron Eigenvalue of Fibonacci Direct Product substitution matrix:

\[\left(\frac{1 + \sqrt{5}}{2} \right)^2 = \gamma^2 \]

the golden mean squared
Replace and Rescale Method
Replace and Rescale Method

Rescale volumes by the Perron Eigenvalue raised to the n^{th} power: $1/\gamma^{2n}$ where n corresponds to the n^{th}-level of our block.
Replace-and-rescale Method

Rescale volumes by the Perron Eigenvalue raised to the n^{th} power:
$1/\gamma^{2n}$ where n corresponds to the n^{th}-level of our block.

This results in a level-0 tile with different lengths that the original. Repeat for other tile types. The substitution rule is now self-similar.
Self-Similar Fibonacci Direct Product

Combinatorial Substitution Rule
Self-Similar Fibonacci Direct Product

Combinatorial Substitution Rule

Self-Similar Inflate and Subdivide Rule
Replace-and-rescale Method

Compare level-5 tiles of the Fibonacci Direct Product (left)

Combinatorial Tiling
Replace-and-rescale Method

Compare level-5 tiles of the Fibonacci Direct Product (left) and the self-similar tiling (right).

Combinatorial Tiling

Self-Similar Tiling
Replace-and-rescale Method

- Not known whether replace-and-rescale method always works
- Replace-and-rescale method works in all known examples

Self-Similar Fibonacci DPV

Self-Similar non-Pisot DPV
References

• N.P. Frank, A primer of substitution tilings of the Euclidean plane, Expositiones Mathematicae, 26 (2008) 4, 295-386

Further Readings