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Definition The element 𝑝 ∈ 𝑅 is prime provided that ∀𝑎, 𝑏 ∈ 𝑅, 𝑝|𝑎𝑏 implies that 𝑝|𝑎 or 

 𝑝|𝑏. 

Definition The element 𝑝 ∈ 𝑅 is irreducible provided that 𝑝 = 𝑢𝑣 implies that 𝑢 is a unit or 

 𝑣 is a unit. 

Suppose that 𝑝 ∈ 𝑅 is neither 0 nor a unit in 𝑅. 

Let 𝑅 be an integral domain equipped with a multiplicative identity element 1. 

Definition An element 𝑢 ∈ 𝑅 is a unit in 𝑅 provided that ∃𝑣 ∈ 𝑅 such that 𝑢𝑣 = 1. 



The Gaussian Integers: 

ℤ 𝑖 = 𝑥 + 𝑦𝑖 ∈ ℂ 𝑥, 𝑦 ∈ ℤ  

Norm: 

𝑁 𝑥 + 𝑦𝑖 = 𝑥 + 𝑦𝑖 𝑥 − 𝑦𝑖 = 𝑥2 + 𝑦2 ≥ 0 

One can show that the norm serves as an appropriate Euclidean norm; the Gaussian 

integers are a Euclidean Domain. 

One can show that 𝑁 𝛼 = 1 if  and only if  𝛼 is a unit in the Gaussian integers. 

One can show that ∀𝛽, 𝛾 ∈ ℤ 𝑖 , 𝑁 𝛽𝛾 = 𝑁 𝛽 𝑁(𝛾). 



Theorem (Fermat) Let 𝑝 ∈ ℤ be an odd prime number. Then 𝑝 ≡ 1(𝑚𝑜𝑑 4) if  and only if  

𝑝 = 𝑎2 + 𝑏2 for some 𝑎, 𝑏 ∈ ℤ. 

Proof: ⇐  Assume that 𝑝 = 𝑎2 + 𝑏2 for some 𝑎, 𝑏 ∈ ℤ. 

We know that 𝑝 ≡ 1(𝑚𝑜𝑑 4) or 𝑝 ≡ 3 𝑚𝑜𝑑 4 , since 𝑝 is an odd prime. 

For contradiction, let 𝑝 ≡ 3 𝑚𝑜𝑑 4 . 

Then 𝑎2 + 𝑏2 ≡ 3 𝑚𝑜𝑑 4  for some 𝑎, 𝑏 ∈ ℤ. 

Thus, either (working modulo 4): 

 Case 1: One of  𝑎2and 𝑏2is congruent to 0; the other is congruent to 3. 

 Case 2: One of  𝑎2and 𝑏2is congruent to 1; the other is congruent to 2. 

Thus, Cases 1 and 2 are both impossible; by contradiction, 𝑝 ≡ 1 𝑚𝑜𝑑 4 . 

However, for any 𝑘 ∈ ℤ, if  𝑘 is odd, then 𝑘2 ≡ 1(𝑚𝑜𝑑 4), and if  𝑘 is even, then 

𝑘2 ≡ 0(𝑚𝑜𝑑 4). 



Lemma 1 If  an odd prime number 𝑝 ∈ ℤ is such that 𝑝 ≡ 1 𝑚𝑜𝑑 4 , then 𝑝 divides 𝑛2 + 1 

for some 𝑛 ∈ ℤ. 

Proof: Let 𝑝 ≡ 1 𝑚𝑜𝑑 4 . 

Then the order of  the group of  units of  the quotient ring, ℤ
𝑝ℤ 

×
 is divisible by 4.  

But ℤ
𝑝ℤ 

×
 is cyclic, since 𝑝 is a prime. 

In that case, 𝑛 4 = 1 , so 𝑛4 ≡ 1(𝑚𝑜𝑑 𝑝), hence 𝑝|𝑛4 − 1. 

This implies that 𝑝 divides 𝑛2 − 1. 

Then 𝑝 − 1 is divisible by 4. 

Then ℤ
𝑝ℤ 

×
 contains some cyclic subgroup of  order 4. 

Thus, ∃[𝑛] ∈ ℤ
𝑝ℤ 

×
 such that 𝑜 [𝑛] = 4. 

Therefore, 𝑝|(𝑛2 + 1)(𝑛2 − 1) 

Since 𝑝 is prime, 𝑝|𝑛2 + 1, meaning 𝑛2 ≡ −1 𝑚𝑜𝑑 𝑝 , or 𝑝|𝑛2 − 1, meaning 

 𝑛2 ≡ 1(𝑚𝑜𝑑 𝑝). 



Lemma 2 If  a prime number 𝑝 ∈ ℤ is reducible in ℤ[𝑖], then 𝑝 = 𝑎2 + 𝑏2 for some 𝑎, 𝑏 ∈ ℤ.  

Proof: Let 𝑝 be reducible in ℤ 𝑖 . Then ∃𝛼, 𝛽 ∈ ℤ[𝑖], neither being units, with 𝑝 = 𝛼𝛽. 

In that case, 𝑁 𝛼 𝑁 𝛽 = 𝑁(𝛼𝛽) = 𝑁 𝑝 = 𝑝2. 

Since ℤ is a Euclidean Domain, it is a Unique Factorization domain, so this 

 representation 𝑁 𝛼 𝑁 𝛽 = 𝑝2 is unique. 

Therefore, either one of  𝑁 𝛼  and 𝑁 𝛽  is equal to 1 and the other is equal to 

 𝑝2, or else both are equal to 𝑝. 

Thus, 𝑁 𝛼 = 𝑝. 

However, 𝛼 = 𝑎 + 𝑏𝑖 for some 𝑎, 𝑏 ∈ ℤ, so 𝑁 𝛼 = 𝑎2 + 𝑏2. 

This indicates that 𝑝 = 𝑎2 + 𝑏2. 



Theorem (Fermat) Let 𝑝 ∈ ℤ be an odd prime number. Then 𝑝 ≡ 1(𝑚𝑜𝑑 4) if  and only if  

𝑝 = 𝑎2 + 𝑏2 for some 𝑎, 𝑏 ∈ ℤ. 

(⇒) Assume 𝑝 ≡ 1 𝑚𝑜𝑑 4 . 

Lemma 2: If  a prime number 𝑝 ∈ ℤ is reducible in ℤ[𝑖], then 

𝑝 = 𝑎2 + 𝑏2 for some 𝑎, 𝑏 ∈ ℤ.  

Lemma 1: If  an odd prime number 𝑝 ∈ ℤ is such that 𝑝 ≡ 1 𝑚𝑜𝑑 4 , 

then 𝑝 divides the integer 𝑛2 + 1 for some 𝑛 ∈ ℤ. 

Then by Lemma 1, 𝑝|𝑛2 + 1 for some 𝑛 ∈ ℤ. 

Therefore 𝑝|(𝑛 + 𝑖)(𝑛 − 𝑖) in ℤ 𝑖 . 

However, ℤ[𝑖] is a Unique Factorization Domain, and so all irreducibles in ℤ[𝑖] are also 

 primes in ℤ 𝑖 , and so 𝑝 is a prime in ℤ[𝑖]. 

Assume for contradiction that 𝑝 is irreducible in ℤ[𝑖].  

Thus, 𝑝|𝑛 + 𝑖 or 𝑝|𝑛 − 𝑖 in ℤ 𝑖 . 

But then, for some 𝑥 + 𝑦𝑖 ∈ ℤ[𝑖], 𝑛 ± 𝑖 = 𝑥 + 𝑦𝑖 𝑝 = 𝑥𝑝 + 𝑦𝑝𝑖 

Therefore 𝑦𝑝 = ±1. 

The contradiction implies that 𝑝 is reducible in in ℤ 𝑖 . 

Therefore, by Lemma 2, 𝑝 = 𝑎2 + 𝑏2 for some 𝑎, 𝑏 ∈ ℤ.  
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