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Abstract

In order to study moments of the Riemann Zeta Function, this paper looks at
lower order terms of a polynomial involved with the calculation of moments for
Random Unitary Matrices. Specifically, we will look at the coefficients of these
polynomials. First, an algorithm will be developed to work out formulas for these
coefficients, then we will find ways to approximate them.
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Chapter 1

Introduction

The moments for the Riemann Zeta Function have been a mystery for years. It is
a long standing conjecture that the leading term has the form
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(1.1)

but only the first few were known until recently. Here,gk is number which we
knew little about until recently, anda(k) is a product over primes. Keating and
Snaith [KS] suggested that the characteristic polynomial for a Random Unitary
Matrix as a model for the Riemann Zeta Function. The characteristic polynomial
for a Random Unitary Matrix is defined as

E{|Zu|2k} = g′kfk(N)

Here,g′k is known andfk(z) is a polynomial with degreek2. It turns out that for
k = 0, 1, 2, 3, 4, gk = g′k. It is conjectured thatgk = g′k for all k for which the
moment is defined. If this is true then we can gain insight into the lower terms
of the moments of Zeta by studying the lower terms of the expression in (1.2).
This paper is primarily interested in the lower terms of the polynomialfk(z). Our
polynomialfk(z) is defined as

fk(z) :=
k∏

i,j≥1

(z + i + j − 1). (1.2)
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Expanding this product, we see

fk(z) = (z + 1)(z + 2)2(z + 3)3.....(z + k)k(z + k + 1)k−1....(z + 2k − 1)

=
k2∑

r=0

cr(k)zk2−r.

The coefficients of this polynomial,cr(k) are polynomials that depend onk.
This paper will concentrate on finding formulas forcr(k) and also on the behavior
of these coefficients as k gets large. I’d like to acknowledge Michael Rubinstein,
David Farmer, Brian Conrey, Steven Miller, and Chris Hughes for all their help
on this research project.
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Chapter 2

Finding Formulas for cr(k)

2.1 cr(k) as Symmetric Polynomials

For a setα = {a1, a2, a3. . . . , an} we can define the elementary symmetric poly-
nomials onα for all r ≥ 1 as,

σ1 =
∑

i

ai

σ2 =
∑

i 6=j

aiaj

σ3 =
∑

i6=j 6=k

aiajak

...

σn =
∏

i

ai.

By (1.2), cr(k) can be represented as therth elementary symmetric polyno-
mial,σr defined on the setA = {1, 2, 2, 3, 3, 3, . . . , 2k−2, 2k−2, 2k−1}. where
each1 ≤ j ≤ 2k − 1, occursmin{j, 2k − j} times.
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So forxi ∈ A,

c0(k) = 1 (2.1)

c1(k) = σ1 =
∑

i

xi

c2(k) = σ2 =
∑

i6=j

xixj

...

ck2(k) =
∏

1≤i≤j≤k

(i + j − 1). (2.2)

Therefore, by (2.1),

c1(k) = (1 + 2 + 2 + 3 + 3 + 3 + · · ·+ 2k − 1)

= (12 + 22 + 32 + · · ·+ k2 + (k − 1)(k + 1) + · · ·+ 2k − 1)

=
k∑

n=1

n2 +
k−1∑
n=1

n(2k − n)

= k3.

Define the generating functionE(t) for eachcr(k) as

E(t) =
∑
r≥0

cr(k)tr =
∏
i≥0

(1 + xit). (2.3)

This form of the generating function will be useful later on.

2.2 Power Sums

For eachr ≥ 1, therth power sum,pr on a setβ = {x1, x2, . . . , xn} is defined

pr =
n∑

i=1

xr
i (2.4)
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and the generating function forpr is

P (t) =
∑
r≥1

prt
r−1 =

∑
i≥1

∑
r≥1

xr
i t

r−1

=
∑
i≥1

xi

1− xit

=
∑
i≥1

d

dt
log

1

1− xit
.

We’ve made this simplification by noting that
∑

i≥1

∑
r≥1 xr

i t
r−1 is a geometric

series. Looking back to (2.3) we see that:

P (−t) =
d

dt
logE(t) = E ′(t)/E(t) (2.5)

and from (2.5) it follows that:

rcr(k) =
r∑

n=1

(−1)n−1pncr−n(k) (2.6)

Before I describe how to find general formulas for each coefficient I will prove
a basic fact about eachcr(k)

Theorem 2.2.1.cr(k) is a degree 3r polynomial in k.

Proof. We’ll use a proof by induction. We see thatc0(k) = 1 andc1(k) = k3

satisfy this claim. Now assume that for allr ≥ 1, cr−1(k) is of degree 3r-3.
For our particular set A, we are able to write the power sum as

pn = 1n + 2 ∗ 2n + 3 ∗ 3n + · · ·+ k ∗ kn + (k − 1) ∗ (k + 1)n +

· · ·+ (2k − 1)n

=
k∑

j=1

jjn +
k−1∑
j=1

(k − j)(k + j)n

Here,pn is a degreen + 2 polynomial ink. Using the recursion relation from
(2.6), we see by the induction hypothesis,cr−n(k) has degree3r − 3n so taking
then = 1 term, the highest degree incr is 3r.
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2.3 Finding cr(k) through Interpolation

The recursion derived in the previous section is slow computationally. Since the
complexity of the power sums grows so fast, findingcr(k) for r = 300 would
take an extremely long time. To speed up their calculation, we shall construct the
polynomials through interpolation.

Definition 2.3.1. The Lagrange Interpolating Polynomial

Given the pairs(x1, y1) . . . (xn+1, yn+1), TheLagrange Interpolating Polyno-
mial is thenth degree polynomial that passes through these given points. Given
these points, one can constructP (x) by

P (x) =
n+1∑
j=1

Pj(x) (2.7)

where

Pj(x) =
n+1∏

i≥1,i 6=j

x− xj

xi − xj

yj. (2.8)

Knowing that eachcr(k) is a polynomial with degree3r, we need to collect
3r + 1 data points to construct each polynomial. These data points are obtained
by expanding out our original polynomial in 1.2. As a simple example, lets find
c1(k) using this formula. By the previous theorem, we know thatc1(k) will be of
degree 3, which means we will need 4 data points. The points will be of the form
(k, c1(k)). We obtain the data points by pulling the coefficient off thexk2−1 term
in fk(x). We see:

f1(x) = x + 1

f2(x) = x4 + 8x3 + 23x2 + 28x + 12

f3(x) = x9 + 27x8 + 318x7 + 2142x6 + . . .

f4(x) = x16 + 64x15 + 1900x14 + +34720x13 + . . .

Our data points here are(1, 1), (2, 8), (3, 27), (4, 64). Using the Lagrange In-

7



terpolating formula:

c1(k) =
4∑

j=1

Pj(k)

=
(k − 2)(k − 3)(k − 4)

(1− 2)(1− 3)(1− 4)
(1)

+
(k − 1)(k − 3)(k − 4)

(2− 1)(2− 3)(2− 4)
(8)

+
(k − 1)(k − 2)(k − 4)

(3− 1)(3− 2)(3− 4)
(27)

+
(k − 1)(k − 2)(k − 3)

(4− 1)(4− 2)(4− 3)
(64)

= k3.

Since the coefficients infk(z) grow extremely fast, computing them is diffi-
cult. To simplify the interpolation we can take advantage of the fact that whenr
is even,cr(k) is an even function and when r is odd,cr(k) is an odd function.
So,

cr(−k) = (−1)rcr(k). (2.9)

Also, whenk = 0, f0(z) = 1, socr(0) = 0 for all r ≥ 0. These facts allow you to
double your collection of data points.

2.4 Truncating fk(z)

Expandingfk(z) becomes very difficult for largerk due to the number of terms
involved. This makes collecting data points for interpolation time consuming. To
solve this problem, we need to truncatefk(z) so it only includes the terms we need
to interpolate the polynomial. Namely, if we are seekingcR(k), then we need only
the firstR terms offk(z). Using the symmetry offk(z), we can writefk(z) as

fk+1(z) = (z + 1)(z + 2)2 . . . (z + k)k(z + k + 1)k+1 . . . (2.10)

+(z + 2k − 1)3(z + 2k)2(z + 2k + 1)

= fk(z)(z + k + 1)2(z + k + 2)2 . . . (z + 2k)2(z + 2k + 1).(2.11)

Now define

gk(z) = (z + k + 1)2(z + k + 2)2 . . . (z + 2k)2(z + 2k + 1). (2.12)
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We now have the recursion:

fk+1(z) = fk(z)gk(z). (2.13)

When collecting data points forcR(k), one only needs the firstR terms of each
fk(z). We can write

fk(z) =
R∑

r=0

cr(k)zk2−r + J(z) (2.14)

Where

J(z) =
k2∑

r=R+1

cr(k)zk2−r. (2.15)

We see all terms in (2.15) have degree less than or equal tok2−R−1, so they
are of no use to us in the interpolation process. Looking at the recursion defined
in (2.13), we can write

fk+1(z) = (
R∑

r=0

cr(k)zk2−r + J(z))gk(z)

=
R∑

r=0

cr(k)zk2−rgk(z) + J(z)gk(z).

Here,gk(z) has degree2k + 1 andJ(z)gk(z) has highest degree
(k2 − R − 1) + (2k + 1) = (k + 1)2 − R − 1, so all terms inJ(z)gk(z) have no
useful data infk+1(z). This leaves us with the truncated polynomial

Qk+1(z) =
R∑

r=0

cr(k)zk2−rgk(z) (2.16)

DefineCn(Q) to be the coefficient ofzk2−n in the polynomialQ. Starting with
Q1(z) = z + 1, we can define a recursion of truncated polynomials as

Qk+1(z) =
R∑

r=0

Cr(Qk(z)gk(z))zk2−r (2.17)

So now we have a truncated version offk(z) where all terms with degree lower
thank2−R−1 are removed. Using the recursion we just developed, 600 terms of
fk(z) were obtained for each k up to 1000. Using these points, the first 300cr(k)
were interpolated.
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Chapter 3

Determinant Equation for cr(k)

While the interpolation algorithm is successful for producing polynomials for the
coefficients, it starts to slow down whenr > 300. The purpose in this section is to
develop a non-recursive formula forcr(k) involving a determinant of power sums.
We will this new formula will give us the ability of approximatingcr(k) for large
k.
Looking back to (2.6) we are able to use properties of symmetric functions [Mc]
to write cr(k) as a determinant.

Lemma 3.0.1.

r!cr(k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 0 . . . 0
p2 p1 2 0 . . . 0
p3 p2 p1 3 . . . 0
...

...
...

...
.. .

pr−1 pr−2 pr−3 . . .
.. . r − 1

pr pr−1 pr−2 . . . p2 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.1)

Proof. This can be shown by induction. We see that

c1(k) = k3 = |p1|.
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Let

Pr =




p1 1 0 0 . . . 0
p2 p1 2 0 . . . 0
p3 p2 p1 3 . . . 0
...

...
...

...
.. .

pr−1 pr−2 pr−3 . . .
.. . r − 1

pr pr−1 pr−2 . . . p2 p1




.

For simplicity, letP0 = (1). Assume(r− j)!cr−j(k) = det(Pr−j) for all 1 ≤ j ≤
r − 1. We must show that this implies(r)!cr(k) = det(Pr). Considerdet(Pr).
Expanding by minors on the rightmost column, we see that

det(Pr) = p1 det(Pr−1)− (r − 1)(p2 det(Pr−2)− (r − 2)(p3 det(Pr−3)− . . .

−2(pr−2 det(P2)− (pr−1 det(P1)− pr)) . . . )

= p1 det(Pr−1)− (r − 1)p2 det(Pr−2) + (r − 1)(r − 2)p3 det(Pr−3)

· · ·+ (−1)r−1(r − 1)!pr

=
r∑

j=1

(−1)j−1pj
(r − 1)!

(r − j)!
det(Pr−j) (3.2)

By induction,det(r − j) = (r − j)!cr−j(k). So,

r∑
j=1

(−1)j−1pj
(r − 1)!

(r − j)!
det(r − j) = (r − 1)!

r∑
j=1

(−1)j−1pjcr−j(k). (3.3)

Finally, by (2.6),

(r − 1)!
r∑

j=1

(−1)j−1pjcr−j(k) = (r − 1)! · rcr(k) = r!cr(k). (3.4)

Now we have an expression forcr(k) involving only power sums, which are
easy to express in terms of Bernoulli Polynomials. This form will enable us to
approximatecr(k).
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3.0.1 Eigenvalues forPr

For larger, computing the determinant in (3.1) is very difficult. Since the deter-
minant of a matrix is also the product of its eigenvalues, studying the behavior of
the eigenvalues ofPr would give us insight intocr(k).

Lemma 3.0.2.The characteristic equation forPr can be written as:

det(Pr − λI) =
r∑

m=0

(−1)r−m

(
r

m

)
λr−m det(Pm). (3.5)

Proof. Again, we shall prove this by induction. We see that

det(P1 − λI) = |p1 − λ| = −λ + p1 (3.6)

satisfies this claim. Now assume for all1 ≤ j ≤ r − 1, (3.5) holds. We’ll show
this implies that it holds forj = r. Considerdet(Pr − λI):

∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 − λ 1 0 0 . . . 0
p2 p1 − λ 2 0 . . . 0
p3 p2 p1 − λ 3 . . . 0
...

...
...

...
.. .

pr−1 pr−2 pr−3 . . .
.. . r − 1

pr pr−1 pr−2 . . . p2 p1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.7)

Expanding by minors on the right most column, we get an expression similar to
what we’ve seen fordet(Pr). So,

det(Pr − λI) = (p1 − λ) det(Pr−1 − λI)− (r − 1)(p2 det(Pr−2 − λI)

−(r − 2)(p3 det(Pr−3 − λI) · · · − 2(pr−2 det(P2 − λI

−(pr−1 det(P1 − λI)− pr)) . . . )

= p1 det(Pr−1 − λI)− (r − 1)p2 det(Pr−2 − λI)

+(r − 1)(r − 2)p3 det(Pr−3 − λI) · · ·+ (−1)r−1(r − 1)!pr

= (−λ) det(Pr−1 − λI) +
r∑

j=1

(−1)j−1pj
(r − 1)!

(r − j)!
det(Pr−j − λI).
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By the induction hypothesis,det(Pr−j − λI) =
∑r−j

i=0(−1)r−i
(

r
i

)
λr−i det(Pi). So

we now have,

det(Pr − λI) =
r−1∑
i=0

(−1)r−i+1

(
r − 1

i

)
λr−i det(P − i)

+
r∑

j=1

r−j∑
i=0

(−1)r+i−1pj
(r − 1)!

(r − j)!

(
r − j

i

)
λr−j−i det(Pi)

=
r∑

m=0

λr−m((−1)r−m

(
r − 1

m

)
det(Pm)

+
m∑

j=1

(−1)r−m−j−1pj
(r − 1)!

(r − j)!

(
r − j

m− j

)
det(Pm−j)).

Note that

(r − 1)!

(r − j)!

(
r − j

m− j

)
=

(r − 1)!

(m− j)!(r −m)!
=

(
r − 1

m− 1

)
(m− 1)!

(m− j)!
.

Now, det(Pr − λI) becomes

r∑
m=0

λr−m((−1)r−m

(
r − 1

m

)
det(Pm)

+(−1)r−m

(
r − 1

m− 1

) m∑
j=1

(−1)j−1pj
(m− 1)!

(m− j)!
det(Pm−j).

Finally, by (3.2), this becomes

r∑
m=0

λr−m(−1)r−m det(Pm)(

(
r − 1

m

)
+

(
r − 1

m− 1

)
)

=
r∑

m=0

(−1)r−m

(
r

m

)
λr−m det(Pm).

Note that by using (3.1), we can write the characteristic polynomial in terms
of cr(k):

det(Pr − λI) = r!
r∑

m=0

(−1)r−m λr−m

(r −m)!
cm(k). (3.8)
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With the characteristic polynomial forPr, we can now solve for the eigenval-
ues of the matrix in terms ofk. Solving for the case whenr = 2, we get the 2
eigenvalues to be:

λ = k3 ± k
√

7k2 − 1√
6

3.0.2 Approximating Eigenvalues ofPr using Polynomials

Whenr > 5, we can no longer solve explicitly for the roots of 3.5. Because of
this we are going to have to develop approximations for the eigenvalues forPr.

Lemma 3.0.3.Each eigenvalue ofPr approachk3 ask →∞.

Proof. By dividing Pr through byk3, the upper half of the matrix approaches zero
ask grows. This tells us that for largek,

det(Pr − λI) → (k3 − λ)r = 0

⇒ λ = k3

and sincecr(k) is the product of the eigenvalues, we see

cr(k) ≈ k3r

r!
. (3.9)

It would be useful to come up with a better approximation forcr(k) than just its
leading term. Consider the case whenr = 9. Since we know that each eigenvalues
approachesk3, we should considerλi − k3 to study how this difference behaves
as a function ofk. This graph shows the 9 eigenvalues ofP9 with k3 subtracted
off:
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1000 2000 3000 4000 5000

-1·108

-5·107

5·107

1·108

Figure 3.1:λi−k3 for P9. We see that 8 of these eigenvalues are symmetric about
k3.

There are eight eigenvalues symmetric aboutk3. If we close in on thek axis
then we see there is also a linear term:

1000 2000 3000 4000 5000

-17500

-15000

-12500

-10000

-7500

-5000

-2500

Figure 3.2: Oneλi − k3 is a linear function ofk. It turns out that ifr is odd, one
eigenvalue will always bek3 plus a linear term.

If r is odd, then we see this one linear term when we subtract offk3. The
others are symmetric aboutk3. If you let r be even, then each eigenvalue is sym-
metric aboutk3.

A conjecture is that each eigenvalue ofPr can be approximated byk3+ak2+bk+c,
for some constantsa, b, c. This would mean that we can write eachcr(k) as the
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product ofr eigenvalues, each of which are cubic functions. The values of these
constants are different for each eigenvalue and also for each value ofr. For even
r, each eigenvalue is symmetric aboutk3, meaning that ifλi = k3 + (ai(r)k

2 +
bi(r)k + ci(r)) is an eigenvalue thenλj = k3 − (ai(r)k

2 + bi(r)k + ci(r)) is also
an eigenvalue. For oddr, we see similar behavior with the exception that one of
the eigenvalues isk3 plus a linear term, like we saw in 3.0.2. Here we have a plot
of the eigenvalue evaluated at various k up to 5000.

1000 2000 3000 4000 5000

-2.5·107

-2·107

-1.5·107

-1·107

-5·106

Figure 3.3: Fitting a degree 2 polynomial toλi− k3 gives a very accurate approx-
imation.

Numerically, it seems feasible to fit a cubic polynomial to each eigenvalue. As
a start, consider the following:

cr(k) =
r∏

i=1

λi

=
r∏

i=1

k3 + ai(r)k
2 + bi(r)k + ci(r)

= k3r

r∏
i=1

(
1 +

ai(r)

k
+

bi(r)

k2
+

ci(r)

k3

)

(3.10)
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As k gets large,bi(r)
k2 + ci(r)

k3 approaches zero quickly, so we can writecr(k) in
the approximate form

k3r

r∏
i=0

(1 +
ai(r)

k
). (3.11)

This means finding values ofai(r) would be a good start to approximatingcr(k)
for larger values of k. The hope is that using this formula will not only model the
behavior ofcr(k) for fixed r, but also if we letr be a function ofk. For example,
we would be able to study the behavior ofck2−µk(k), whereµ is a number between
0 and1.
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Chapter 4

Lower Terms of cr(k)

Using the eigenvalues ofPr we shown that the leading term ofCr(k) is

k3r

r!
. (4.1)

In this section we will use our determinant formula to produce more terms of
cr(k). It seems that we can express (3.1) as

det(Pr) = pr
1 +

r−1∑
j=2

(j − 1) ·
(

r

j

)
pr−i

1 )Ri (4.2)

where

Rr =




0 1 0 0 . . . 0
p2 0 2 0 . . . 0
p3 p2 0 3 . . . 0
...

...
...

...
. ..

pr−1 pr−2 pr−3 . . .
. .. r − 1

pr pr−1 pr−2 . . . p2 0




.

Using (2.6), we can deduce that if r is even,cr(k) will have the form

cr(k) =

3r
2
−1∑

i=0

γik
3r−2i. (4.3)
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and if r is odd,

cr(k) =

3r−1
2∑

i=0

γik
3r−2i. (4.4)

Here, eachγi is a constant that depends onr. We see that the second highest
degree ofcr(k) will be k3r−2. We would like to write

cr(k) =
k3r

r!
+ γ1k

3r−2 + O(k3r−4). (4.5)

In order to do this we need to findγ1. To start, consider a truncated version ofPr:

Ti,r =
1

r!




p1 1 0 0 . . . 0
p2 p1 2 0 . . . 0
p3 p2 p1 3 . . . 0
...

...
...

...
. ..

pi pi−1 pi−2 . . .
. .. i

0 pi pi−1 . . .
. .. i− 1

...
...

...
. . . . ..

0 . . . pi . . . p2 p1




. (4.6)

So for eachi < j ≤ r, pj is replaced with0 in Pr. It turns out that the
determinant of this matrix will match the firsti terms ofcr(k) exactly. So, if
n < 3r

2
,

det(Tn,r) =
n∑

i=0

γik
3r−2i + O(k3r−2(n+1)). (4.7)

This implies thatdet(Ti) is a good approximation forcr(k) for largerk.
To findγ1, we can use (4.2) to expand outT2,r and then collect terms ofk3r−2.

Note thatRi in this case will beTi with a zero replacing each diagonal entry. In
det(T2,n), we are only interested in terms with degreek3r−2. So using (4.2),

det(T2,r) = pr
1 −

(
r

2

)
pr−2

1 p2 + O(pr−4
1 p2

2)

= k3r −
(

r

2

)
7

6
k3r−2 + O(k3r−4)
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So,

γ1 =
7

12(r − 2)!
(4.8)

and

cr(k) ≈ 1

r!
det(T2,r)

=
k3r

r!
− 7

12(r − 2)!
k3r−2 + O(k3r−4).

Using this same method withT3,r, we deduce that

γ3 =

(
1

12(r − 2)!
+

1

2(r − 3)!
+

49

288(r − 4)!

)
(4.9)

So, we get this better approximation forcr(k):

cr(k) ≈ k3r

r!
+

7

12(r − 2)!
k3r−2 (4.10)

+

(
1

12(r − 2)!
+

1

2(r − 3)!
+

49

288(r − 4)!

)
k3r−4 (4.11)

+O(k3r−6) (4.12)

Until now, onlyγ1 andγ2 are known, but more can be found by examining (4.2).
Perhaps a conjecture can be made once more of these terms are worked out. It
would be interesting to considerγj for higherj since they will provide asymptotics
of cr(k). This is another open problem that is worth pursuing.
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