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Abstract

The purpose of this working group was to introduce participants to various areas
of fractal research. Meetings were held twice a week, Wednesday and Friday. The
format of the meetings was usually an informal lecture by one of the participants.
After a brief introduction to a variety of topics by the organizers, the other partici-
pants were encouraged to investigate specific areas of research and report back to
the group. The following report records the lectures that were presented. Topics
included definitions of dimension, iterated function systems, Julia sets, L-systems,
fractal curves, and applications. Originally, the notes were taken in real-time dur-
ing the lecture, and at the end of the quarter participants were allowed to edit the
notes for errors and to enhance clarity.
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Chapter 1

Introductory Lecture

Lecturer: Larry Lindsay (Wednesday, October 8, 2003)

The following is the last of three informal lectures on various topics in fractals.
The purpose of this lecture (as well as the previous lectures, not included in this
report) is to give participants in the Fractal Working Group an introduction to
fractals. The wide assortment of topics is intended to demonstrate the diversity
of research in the study of fractals. In the previous lectures we briefly touched
on the history of fractal research, different ways to make a fractal, the intuitive
idea of dimension, dynamical systems and chaos, analysis on fractals, the chaos
game, and applications of fractals. In this lecture we will discuss probabilities
on fractals, box-counting and Hausdorff dimension, cellular automata as fractal
generators, graph-directed fractals, and quantization dimension.

1.1 Probabilities on Fractals

Much attention has been given to studying probabilities on fractals. One reason
for this is that it leads to research on “multifractals,” which requires that a prob-
ability be defined on the fractal. (We will talk about multifractals in the next
lecture.) One way of assigning probabilities is similar to a chaos game. I will
briefly present a visual example here. Start with a big circle, and consider four
non-overlapping circles inscribed inside. Think of these as similarity maps which
shrink the larger circle by1

2
for two (the right and left), and1

3
for the other two (top

and bottom). From a seed point, say the center, pick these maps at random and
apply the sequence of maps for several iterations. Plot the resulting point at each
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iteration. If we give each map probability1
4
, then this is like symbolic dynamics

where we generate a sequence of four symbols (1, 2, 3, 4), with each symbol hav-
ing the same probability of being chosen. We are interested in what shapes we
get after a large number of iterations – in this example, after 40 iterations, it looks
like four “speckled” diamonds.

But the two smaller diamonds look a little darker, and this gives us an intuitive
picture of a probability supported on a fractal. In this example, a more “natural”
measure would give each equal darkness, with the smaller diamonds having less
than 1

4
probability and the larger diamonds having more than1

4
probability.

What exactly are the probabilities which make the diamonds equally dark? In
our example the map scalings are1

2
, 1

2
, 1

3
, 1

3
, so we would need to solve ford such

that

(
1

2

)d

+

(
1

2

)d

+

(
1

3

)d

+

(
1

3

)d

= 1. (1.1)

Then the four numbers on the left of the equation are the probabilities, say
p1, p2, p3, p4, needed to make the diamonds equally dark.

The idea of assigning arbitrary probabilities to the basic maps of an iterated
function system is a generalization of the above example, and the above procedure
would lead to an intuitive physical picture of the probability.

1.2 Box-counting Dimension

Upper and lower box-counting dimension. Given a setE, let N(r) be the mini-
mum number of balls of diameterr needed to coverE. Obviously,E needs to be
bounded. The upper box-counting dimension is defined as

dimB(E) = limr↘0
log N(r)

log 1
r

. (1.2)

We also define the lower box-counting dimension using liminf, and if the two
agree then we get the box-counting dimension ofE. The idea is thatN(r) ∼ (

1
r

)d
.

As an example, letE = [0, 1]. Clearly we get approximately1 each time in
the calculation, using various values ofr, and in the limit asr → 0 we definitely
get1. So the box-counting dimension of[0, 1] is 1, which is a good thing because
an interval is normally thought of as a 1-dimensional object!

As our next example, take the rationalsQ in [0, 1]. This is a countable set.
What should the box-counting dimension be? We get a dimension of 1 again, since
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we always need the same number of boxes to cover the rationals as we needed to
cover all of[0, 1]. From a mathematician’s standpoint this actually makes us a bit
uneasy, because we have here a countable set (something relatively insignificant)
with positive dimension. Other definitions of dimension give any countable set a
dimension of 0. Despite this drawback box-counting dimension remains popular
because it is relatively easy to calculate and understand. Here is a theorem which
applies to the above example:

Theorem 1.2.1.dimB(E) = dimB(E), whereE is the closure ofE.

Let me reiterate that we need a bounded set to do box counting. If we tried
to do the calculation on an unbounded set, sayE = R, then we would get
dimB(E) = ∞. This is not good, sinceR should intuitively have dimension
1.

1.3 Hausdorff dimension

Hausdorff dimension doesn’t have this problem. We get

dimH(R) = 1. (1.3)

The reals are a countable union of intervals of length1, and there is a theorem
which states the following: a countable union of sets has Hausdorff dimension
equal to the supremum of the Hausdorff dimensions of the individual sets.

Without using the theorem, though, suppose we want to calculate the Hausdoff
dimension of the entire real line. We begin with the following quantity, where
{Ai} represents a certain covering ofE:

Hδ
ε (R) = inf{

∑
|Ai|δ : R ⊂ ∪Ai : |Ai| ≤ ε}. (1.4)

Given n, we could use2n intervals of length1
n

to cover[−1, 1]. We could
cover[−2,−1] and[1, 2] by intervals of length1

2n
, and we would need4n such in-

tervals. We could use8n intervals of size1
4n

to cover[−3,−2] and[2, 3]. Continue
in this way until we cover all ofR.

For this cover, we get
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∑
|Ai|δ = 2n

(
1

n

)δ

+ 4n

(
1

2n

)δ

+ · · ·+ 2kn

(
1

2k−1n

)δ

+ · · ·

=
∞∑

k=1

2kn
1

(2k−1n)δ

=
n

nδ
2δ

∞∑

k=1

2(1−δ)k. (1.5)

Now, to define Hausdorff dimension we first define theδ-dimensional Haus-
dorff measure

Hδ(R) = lim
ε↘0

Hδ
ε (R), (1.6)

and the Hausdorff dimensiondimH(R) is the value ofδ where theδ-dimensional
Hausdorff measure jumps from infinity to zero. In this particular example ifδ > 1,
no matter whatε we use, the infimum definingHδ

ε (R) is 0 (just take larger and
larger values ofn in the above equation). Ifδ < 1, it is infinity. If δ = 1,
it is infinity. We conclude that the Hausdorff dimension ofR is 1, and the 1-
dimensional Hausdorff measure ofR is infinity.

1.4 Fun Exercise

Let E = {1, 1
2
, 1

3
, 1

4
, . . . }. We get the Box Counting dimension is1

2
! (But, of

course, the Hausdorff dimension is 0, becauseE is a countable union of points,
and a single point clearly has Hausdorff dimension 0.)

1.5 Example

Here is an example in which

dimB(E) < dimB(E). (1.7)

For this example we will construct a special Cantor set. Let0 < a < b ≤ 1/3.
In the construction of the traditional middle-third Cantor set we start with[0, 1]
and take out the middle third, and then take out the middle third of the remaining
intervals, and continue in this manner. In this example we have two choices:
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Either take out1− 2a from the middle of the remaining intervals in one scenario,
or take out1−2b from the middle of the remaining intervals in the second scenario
(do it symmetrically so the sets on left/right are both of lengtha or b).

At Level n in the construction of the Cantor set there will be2n intervals, and
in this example they each have lengthasnbtn , wheresn + tn = n. (sn is the total
number of times we useda, andtn is the total number of times we usedb.)

At each level we have a choice betweena andb. To make these choices we
consider the calculation involved for upper box-counting dimension:

dimB(E) = limr↘0
log N(r)

log 1
r

≥ limn→∞
log 2n

log 1
asnbtn

= limn→∞
n log 2

sn log 1
a

+ tn log 1
b

. (1.8)

By consistently following a string ofa’s with an appropriately long sequence
of b’s we can get this quantity close tolog 2/ log 1

b
. Similarly, for lower box-

counting dimension, by consistently following a string ofb’s with an appropriately
long sequence ofa’s we can getdimB(E) close tolog 2/ log 1

a
. In this way we

can makedimB(E) < dimB(E).
Question: What if we “randomly” choosea andb? (Many people study ran-

domly generated fractals.) In this case, with probability one, the box-counting
dimension would exist, and the “expected” dimension would be the same as the
dimension we would get by simply alternating betweena andb.

1.6 Cellular Automata

A classic example in the study of cellular automata is the Game of life (invented
by John H. Conway). Here is a brief description. Start with a 2-dimensional grid
in which some boxes are shaded and some are not, indicating if a box is “alive”
or “dead.” We start with some configuration at timet = 0. At time t = 1, 2, 3, . . .
we update the configuration of shaded boxes by a certain rule, which determines
whether or not a given box is alive or dead based on the condition of its neighbors
at the previous stage. The general idea is this: You die from having too few living
neighbors (die from loneliness), or you die from having too many living neighbors
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(die from overcrowding). When conditions are just right, you live (or you are born
if you weren’t previously alive).

Now consider a1-dimensional example. The boxes are in a single line. Again
suppose there is some rule, which determines whether you are alive or dead at each
point in timet = 0, 1, 2, . . .. For visual purposes we align the evolution of our
configurations, with configuration 0 above configuration 1 above configuration 2,
etc.

Here is a simple rule: You remain alive (or come alive) if your neighbors on
your left and right are different, and you die if they are the same.

Starting with a single live cell, we can think of this system as the evolution
of polynomials(1 + x)n mod 2. (Or Pascal’s triangle mod 2.) A shaded box
corresponds to a coefficient of 1 for the appropriate power ofx. We get

1

1 + x

1 + x2

1 + x + x2 + x3 (1.9)

If we do this for a very long time and look at the resulting figure, we see that
it’s a Sierpinski triangle, oriented differently of course (right triangle).

More generally, we can take a primep, and for our polynomial coefficients use
the finite fieldZ/pZ. We then take a given polynomial and raise it to higher and
higher powers modp (or actuallypk should work, too). A surprising fact is that
the resulting fractal turns out to be a graph-directed fractal, which is a generalized
version of an iterated function system.

Question 1.6.1.What about using Gaussian integers instead of primes?

1.7 Graph-directed Fractal

In an iterated function system we start with a seed set and two or more maps of
the set into itself. We then iterate these maps in all possible ways, ad infinitum.
This can be generalized to several seed sets, and various maps between these sets,
in which case we get several limit sets and call the resulting collection of sets a
graph-directed fractal. In the particular example above, with cellular automata,
to see the graph-directed fractal we have to keep zooming back and rescaling
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appropriately (as we take higher powers of our polynomial), and in this context it
is called the evolution set.

1.8 Quantization Dimension

My research has been in quantization dimension, and I will talk more about this
later. For now I will give a brief introduction. In order to talk about quantization
dimension we need a probability, and in the interesting case it will be a measure
on a fractal. Therefore, one might suspect it is related to multifractals (it is, but
we won’t get into that here). The idea of quantization is useful for a variety of
applications, and in fact it comes from electrical engineering.

For an intuitive example, say you have a signal coming to you, with data that
you want to store. This signal might be for the colors of the pixels for some
picture. But you can only store a finite number of colors, not the entire spectrum.
Say the spectrum runs through Red - Yellow - Green - Blue.

It might work well to “uniformly” choose colors in the spectrum. If we are
allowed three bits, we can assign colors using numbers ranging from 000 to 111.
This is overly simplified, but of course, on a computer you can only work with
finitely many things.

Now suppose that the colors in our picture are not uniformly distributed. Per-
haps there are several shades of green, but in our original choice of quantization
levels there may only be 2 possible shades of green (not good enough). If we
really need to distinguish greens better, then we might want several greens. We
would have to give up something somewhere else, so maybe we don’t care about
red as much. Skew the color distribution (of our quantizing levels), so that we can
distinguish greens well, but reds not as well. (Example: a military analyst may
need to distinguish between subtle shades of green in a satellite photo.)

Given a random picture from a random space of pictures (where there are some
biases perhaps in the space it’s drawn from), the engineer would want to figure out
the best way of coding data so as to minimize distortion in the reproduced image.

Suppose we have a spectrum of colors (with a continuum of possible colors).
Givenn we are only allowed to quantize withn levels, so we need to pick then
most representative colors. If this choice has been made, then a given color in the
signal gets assigned to one our representatives according to a Voronoi diagram.
That is, it is assigned to the closest representative color. Effectively, we have
replaced our spectrum of colors with a finite number of regions of constant color.

How should we choose points? This is done so as to minimize expected dis-
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tortion. Without getting into specific definitions, leten be the minimum expected
distortion (there are several ways of doing this). The quantization dimension is (if
it exists)

d = lim
n→∞

log n

− log en

. (1.10)

The idea is that the quantization dimension gives us some idea as to how fast

the distortion goes to zero as we quantize with more and more points:en ≈
(

1
n

) 1
d .

As an example take the middle-third Cantor set. We need a measure, so con-
sider the uniform distribution (probability take left or right is1

2
). The following

argument will be non-rigorous but will suggest what should happen. We will run
through a sub-sequence ofn’s in order to calculate the limit in the definition of
quantization dimension. Whenn = 1, we can use only1 point, so we pick it
intuitively in the middle, and we get some errore1.

Whenn = 2, we can use two points, so we put each in the middle of the left
and right halves of the Cantor set:

[−−] ∗ [−−] [−−] ∗ [−−] (1.11)

We intuitively know what to do forn = 1, 2, 4, 8, 16, . . ., and by self-similarity
we get

n = 1 e1

n = 2 e2 =
1

3
e1

n = 4 e4 =
1

9
e1 (1.12)

In the calculation of quantization dimension we get

d = lim
n→∞

log n

− log en

= lim
k→∞

log 2k

− log( 1
3k e1)

=
log 2

log 3
. (1.13)
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This should be reassuring, because this number agrees with other definitions
of dimension.

The above reasoning is certainly not rigorous, but the result is true. In fact, re-
search into optimal configurations forn 6= 2k has led to some interesting questions
which researchers are still trying to answer.
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Chapter 2

Multifractals

Lecturer: Larry Lindsay (Friday, October 10, 2003)

The following lecture is motivated by the David Harte book,Multifractals:
Theory and Applications. I will discuss the basics of multifractal analysis and then
talk about how the spatial distribution of earthquake locations can be modelled as
a multifractal. A chapter of Harte’s book is devoted to earthquake analysis. Since
much of the earthquake discussion in this lecture involves looking at figures from
the book and the figures are not shown here, the following will mainly address the
basic ideas of multifractal analysis with an occasional mention of the application
to earthquakes.

2.1 Multifractal Measures

The term multifractal actually refers to a measure on a space. The set having “full
measure,” of course, tends to be a fractal, but in a natural way we are able to
obtain fractals within fractals, and hence we use the term multifractal. Therefore,
we start with a measurem, usually a probability measure, so thatm(A) is the
probability of a randomly chosen point belonging toA.

We have seen examples of how we can visualize a measure on a fractal (chaos
game). Recall that we got a static picture, which may have thousands of points,
showing roughly, say, the Sierpinski triangle. By looking at the relative density of
points in an area we get a picture of the bias of a randomly chosen point being in
one part over another.

We will be looking at pictures of earthquake events, and seeing where they
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clump. This gives an indication of those areas where there is a higher probability
of having an earthquake. Because of the intuitive nature of fault zones, which have
an apparent self-similarity in their crack systems, it seems appropriate to assume
that a multifractal structure exists. With this in mind one collects data on earth-
quake locations and then tries to analyze that data using ideas from multifractal
analysis.

Here are some of the ideas involved. We begin with the set of points having
local dimensionα:

Eα = {x : lim
r↘0

log m(Br(x))

log r
= α}. (2.1)

This is how we are able to obtain, as mentioned above, fractals within fractals.
Typically we have

amin ≤ α ≤ amax. (2.2)

Definition 2.1.1 (Multifractal spectrum). f(α) = dimH(Eα).

2.2 Generalized Rényi Dimensions

See also the paper by Hentschel and Procaccia,The infinite number of generalized
dimensions of fractals and strange attractors.

Define

Θ(q) = lim
r↘0

log
∫

Xr
m(Br(x))q−1dm(x)

log r
, (2.3)

where
Xr = {x : m(Br(x)) > 0}. (2.4)

Dq =

{
Θ(q)
q−1

if q 6= 1

limr↘0

∫
log m(Br(x))dm(x)

log r
if q = 1

(2.5)

where in the caseq = 1, log 0 = 0.
Keep in mind that

∫
f(x)dm(x) is the expected value off with respect to the

measurem. Also,
(∫

f q−1(x)dm(x)
) 1

q−1 is theq − 1 norm off with respect to
the measurem. We have

Dq = lim
r↘0

log
(∫

m(Br(x))q−1dm(x)
) 1

q−1

log r
. (2.6)
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Why theq − 1 norm? Notice that the integral
∫

m(Br(x))q−1dm(x) (2.7)

can be estimated with the sum
∑

i

m(Bi)
q−1m(Bi), (2.8)

where we have divided a region into a grid of small sub-boxesBi.
Alternatively, Hentschel-Procaccia define

Dq =
1

q − 1
lim
r↘0

log
∑

i m(Bi)
q

log r
, (2.9)

wherer is the length of a side of a boxBi.

2.3 Relations

We have defined the Multifractal spectrumf(α) and the generalized Renyi dimen-
sionsΘ(q). So how are they related? Typically,f(α) andΘ(q) form a Legendre
transform pair. See the book by Kenneth Falconer,Techniques in Fractal Geome-
try, pages 194 - 195.

Consider again the Hentschel-Procaccia definition:

Dq =
1

q − 1
lim
r↘0

log
∑

i m(Bi)
q

log r
. (2.10)

What if q = 0? (Assume00 = 0.) Then we getD0 is the box-counting dimen-
sion. The caseq = 1 is called the information dimension, which is related to∑

i pi log pi. The caseq = 2 is called the correlation dimension.
In general, forq = 2, 3, . . . , we get the so-calledqth order interpoint dis-

tance. For these integer values ofq, there exists an algorithm which is helpful
for computations, as suggested by the following. Given a probability distribution,
pick a sequence of points from this distribution:X1, X2, X3, . . . , Xq. Suppose
the choices are independent, in that the choice of one doesn’t affect another. We
call this a sequence of i.i.d. random variables (i.i.d. = independent, identically
distributed).
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Let

Y = max{||X1 −Xq||, ||X2 −Xq||, . . . , ||Xq−1 −Xq||}. (2.11)

Take the cumulative distribution function of the above:

FY (ε) = Prob(Y ≤ ε) =

∫
m(Bε(x))q−1dm(x). (2.12)

Note this is the same integral as we’ve seen in the definition ofΘ(q). Therefore,
we can rewrite the definition as

Dq =
1

q − 1
lim
ε↘0

log FY (ε)

log ε
. (2.13)

2.4 Bootstrapped Hill Estimate

The actual calculations for earthquake analysis in Harte’s book were done using
the bootstrapped Hill estimate, which is described as follows. Consider a data set
{x1, x2, . . . , xN}. Let i be the current bootstrap number,1 ≤ i ≤ k.

Let {ys : ys = 1, 2, . . . , n} be the bootstrap sample. For alls, choose
xs1 , . . . , xsq . Let

ys = max{||xs1 − xsq ||, . . . , ||xsq−1 − xsq ||}. (2.14)

Sort:
y(1) ≤ y(2) ≤ · · · ≤ y(n). (2.15)

Next calculate

zi,n =
−1

m− 1

m−1∑
j=1

log
y(j)

y(m)

. (2.16)

We ultimately get an estimate forΘ(q) (which shouldn’t depend onm):

Θ̂m =
k∑k

i=1 zi,m

. (2.17)

Let y(m) be the average of themth order statistic over allk bootstrap samples.
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Chapter 3

Iterated Function Systems

Lecturer: Gerald Edgar (Wednesday, October 15, 2003)

3.1 Iterated Function Systems

When Mandelbroit started writing about fractals, came up with the notion that they
should be self-similar – what does this mean? Lots of examples from previous
mathematics wi’ this property. One way to formalize is thru iterated function
systems (due to Barnsley), analogous to dynamical systems. Have lots of similar
properties, where the name iterated function system comes from, reminds us of
dynamical systems.

Cantor Set (1880); Henry Smith is sometimes said to have written about this
before Cantor, but unclear if he had it. Before Cantor, notion of countable / un-
countable wasn’t clear, and what Smith talked about wasn’t clear. Smith was
interested in Riemann Integral. If you want to tell if a function is integrable, we
nowadays say it must be continuous except on a set of measure 0. Back then,
didn’t have measure (which dates from around 1900). They came up with exam-
ples of sets that were really small such that you could still be integrable. Some of
his examples looked like Cantor sets.

3.2 Cantor Set

3.2.1 Construction

The Cantor set is a subset of the real line. We’ll consider subsets of[0, 1]:
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[0]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[1]

Will look at a sequence of approximations to the Cantor set.
Let C0 = [0, 1].
Remove the middle third, and getC1 = [0, 1

3
]∪ [2

3
, 1]. Is a closed interval, keep

endpoints.

[0]−−−−−−−−[1/3] [2/3]−−−−−−−−[1]

Continue the process. Next is

C2 =

[
0,

1

9

]
∪

[
2

9
,
1

3

]
∪

[
2

3
,
7

9

]
∪

[
8

9
, 1

]
. (3.1)

In general,Cn is the union of2n closed intervals, each of size3−n. Note

C0 ⊃ C1 ⊃ C2 ⊃ · · · (3.2)

Definition 3.2.1 (Cantor Set).The Cantor setC is define by

C =
∞⋂

n=1

Cn = {x ∈ R : ∀n, x ∈ Cn}. (3.3)

Note that0, 1 ∈ C. In fact, once we find and endpoint, we never remove
the endpoint, thus all the endpoints are inC. One might first think that only the
endpoints are left, but not the case. In fact, we’ll seeC is uncountable later.

3.2.2 Non-Trivial Point in Cantor Set

Example 3.2.2. 1
4
∈ C, but 1

4
is not an endpoint.

The endpoints are always of the formm
3n , m ∈ N. By unique factorization of

integers, cannot write1
4

as an integer divided by a power of 3.
Must show1

4
∈ Cn for all n; infinitely many things to check, checking one at

a time won’t be useful. Need to do a more clever job of checking. Will proceed
by induction onn.

Will proceed by Induction, showing that1
4

and 3
4

are inCn for all n.
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Clearly, both points are inC0, and the base case holds. We now assume that
1
4
, 3

4
∈ Cn, and show they are inCn+1.

How do we go fromCn to Cn+1? We remove the middle third of sets. We take
an interval, remove the middle third, and what is left for each sub-interval looks
like the union of two pieces, each one-third the length of the previous.

Thus, we have shrinking maps fixing the left and right partsL,R : R → R
given by

L(x) =
x

3

R(x) =
x + 2

3
. (3.4)

Exercise 3.2.3.Prove that

Cn+1 = L(Cn) + R(Cn). (3.5)

Thus, each step is related to the previous step. The mapsL andR are nice in
that the two images of[0, 1] are disjoint, so all future subintervals will be disjoint
and it will be easy to count.

What happens to1
4

and 3
4
?

Note

L

(
3

4

)
=

1

4

R

(
1

4

)
=

3

4
. (3.6)

We now have the inductive step: If1
4
, 3

4
∈ Cn, then1

4
, 3

4
∈ Cn+1.

Proof. Clearly,

1

4
= L

(
3

4

)
∈ L(Cn) ⊂ Cn+1 (3.7)

and

3

4
= R

(
1

4

)
∈ R(Cn) ⊂ Cn+1, (3.8)

which completes the proof of the inductive claim.
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Remark 3.2.4. Note that the Induction was easier by working withboth 3
4

and 1
4

and not just1
4
.

3.2.3 Alternate Formulation of C

Note we have proved that

C = R(C) ∪ L(C). (3.9)

Thus,

C =
∞⋂

n=0

Cn =
∞⋂

n=0

Cn+1 =
∞⋂

n=0

(R(Cn) ∪ L(Cn)) . (3.10)

Therefore, we find

C =
∞⋂

n=0

R(Cn) ∪
∞⋂

n=0

L(Cn)

= R(
∞⋂

n=0

Cn) ∪ L(
∞⋂

n=0

Cn)

= R(C) ∪ L(C). (3.11)

This is what we mean byC being self-similar. See is self-similar under shrink-
ing by 1

3
.

3.2.4 Another Formulation of the Cantor Set

Let x ∈ [0, 1], we may writex in base3. In other words, we can write

x =
3∑

i=1

ai

3i
, ai ∈ {0, 1, 2}. (3.12)

Note we are not claiming each number has a unique representation. Consider
the string.122222222222 · · · and.2.

Note thatC1 = {x ∈ [0, 1] : a1 6= 1}.
Continuing, we findC2 = {x ∈ [0, 1] : a1 6= 1, a2 6= 1}, and in general
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Cn = {x ∈ [0, 1] : a1, . . . , an ∈ {0, 2}}
C = {x ∈ [0, 1] : a1, a2, · · · ∈ {0, 2}} . (3.13)

There are problems, however, As remarked, numbers need not have a unique
base 3 expansion. The example given shows that we may replace a number with
repeating block with a terminating set, and thus these numbers are rationals. If a
number can be written in two ways, one way using 1s and one way not, then it is
in the Cantor set (as it can be written in base 3 without using any 1s).

Remark 3.2.5. The Cantor Set is uncountable.

This follows from the fact thatC is equivalent to numbers in base 3 without 1
as a digit. Formally, one could map any suchx =

∑
ai

3i , ai ∈ {0, 2}, to y =
∑

bi

2i ,
wherebi = 0 if ai is 0 andbi = 1 if ai is 2. Thus,C has as many points as all of
[0, 1] (consider base 2 expansions of real numbers).

3.2.5 non-Cantor Sets

Let

A0 = {0}
A1 = A0 ∪

(
A0 +

2

3

)

A2 = A1 ∪
(

A1 +
2

9

)

A3 = A2 ∪
(

A2 +
2

27

)

...

An+1 = An ∪
(

An +
2

3n+1

)

A =
∞⋃

n=0

An. (3.14)

This is an increasing sequence of sets, its union is not the complete Cantor Set,
but on the computer, cannot tell the difference between this and the Cantor set.
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Similarly, we have

An+1 = L(An) ∪R(An). (3.15)

Therefore, the union of these sets,A, just like the Cantor Set, satisfies

A = L(A) ∪R(A). (3.16)

Remark 3.2.6. NoteA is not the Cantor Set!A is a countable set, the Cantor Set
is uncountable. We do have, however, that

C = A, (3.17)

namely,C is the closure ofA, andA approximatesC as well as we want.

3.3 Uniqueness of sets under such constructions

Question 3.3.1.Consider the mapsL andR. Are there any other setsX such that

X = R(X) ∪ L(X), (3.18)

maybe if we want the sets to be disjoint, and not the empty set?

Take1
4

and3
4

and keep applying these operators. This will generate a countable
example. There are lots of examples of sets satisfying this relation.

Theorem 3.3.2 (Characterization of the Cantor Set).LetX be a closed, bounded,
non-empty set such thatX = L(X) ∪R(X). ThenX is the Cantor set.

3.4 Sierpinski Gasket (or Triangle)

Two-dimensional example. Start with an equilateral triangleS0 in the plane. Sub-
divide into smaller triangles by taking the midpoints of the three sides, and joining
them to form an equilateral triangle. There are now four equilateral triangles, re-
move the middle one (the one that doesn’t touch any of the original vertices). Call
thisS1.

Continue by removing the middle equilateral triangle from each of the remain-
ing triangles, and call the resultantS2.

We obtain a sequence
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S0 ⊃ S1 ⊃ S2 ⊃ S3 ⊃ · · · , (3.19)

and let

S =
∞⋂

n=0

Sn. (3.20)

Exercise 3.4.1.Analogous to the expansion using just 0s and 2s from the Cantor
set, how can we characterize this?
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Chapter 4

Sierpinski Gaskets, Metric Spaces
and IFS

Lecturer: Gerald Edgar (Friday, October 17, 2003)

4.1 Sierpinski Gasket

We saw last time that the Sierpinski Gasket is a generalization to the plane of the
Cantor Set. How can we generalize the base-three expansion of the Cantor Set?

We will look at an expansion in base1
2
. The digits are the vectors

−→
0 ,−→a ,

−→
b ,

where
−→
0 is the 0-vector,−→a is the vector from the origin along thex-axis, going

half-way the first side, and
−→
b is the vector along the positively sloped line going

up from the origin, going half-way up.
We can write a general point−→p in the gasket by

−→p =
∞∑
i=1

(
1

2

)i−→
d i,

−→
di ∈ D, (4.1)

where

D = {−→0 ,−→a ,
−→
b }. (4.2)
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4.2 Metric Space

Have a set of "points"S and a distance functionp(x, y) ≥ 0 defined on pairs of
points inS satisfying:

For allx, y ∈ S,

1. p(x, y) = 0 if and only if x = y;

2. p(x, y) = p(y, x);

3. p(x, z) ≤ p(x, z) + p(y, z).

We say the space is a Complete Metric Space if every Cauchy sequence con-
verges. This is true for Euclidean spaces.

Definition 4.2.1 (Fixed Point). Let f : S → S. A pointx ∈ S is a fixed point of
f if f(x) = x.

Definition 4.2.2 (Contraction Map). A continuous functionf : S → S is a
contraction map if∃α ∈ (0, 1) such that∀x, y ∈ S,

p (f(x), f(y)) ≤ αp(x, y). (4.3)

Remark 4.2.3. We do not need to assume a contraction map is continuous; this
follows from the definition.

Example 4.2.4.For the Sierpinski Gasket, we can define maps by

f−→
0
(−→x ) =

1

2
−→x

f−→a (−→x ) =
1

2
−→x +−→a

f−→
b
(−→x ) =

1

2
−→x +

−→
b . (4.4)

Theorem 4.2.5 (Contraction Mappings).LetS be a non-empty complete metric
space, withf : S → S a contraction map. Then there exists auniquefixed point.

Remark 4.2.6. If x1 andx2 were both fixed points, then

p(x1, x2) = p (f(x1), f(x2)) ≤ αp(x1, x2) < p(x1, x2). (4.5)

Thus,p(x1, x2) = 0, and the two points are the same.
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Proof. Choosex0 ∈ S (possible asS is non-empty). Then letx1 = f(x0), x2 =
f(x1), and in general,xn = f(xn−1).

Then{xn} is a Cauchy sequence, and by the completeness ofS (every Cauchy
sequence converges), we knowxn → y, say.

As f is a continuous function,f(xn) → f(y). But asf(xn) = xn+1, the left
hand side is just the original sequence shifted by one term. Thus,xn+1 → f(y),
or, recalling the definition ofy, we havey = f(y), andy is a fixed point.

4.3 Iterated Function Systems

Let S be a complete metric space, and letfi : S → S be contraction maps for
i ∈ {1, . . . , n} with constantsα1, . . . , αn. Let α = maxn

i=1 αi; note allfi are
contraction maps with parameterα.

Explicitly,

∀x, y ∈ S, p (fi(x), fi(y)) ≤ αp(x, y). (4.6)

We call the above anIterated Function Systemwith parameterα.

Definition 4.3.1 (Attractor). An attractor for the Iterated Function System{fi}
s a non-empty compact setE such that

E = f1(E) ∪ f2(E) ∪ · · · ∪ fn(E). (4.7)

Theorem 4.3.2 (Hutchinson).A complete metric space with a finite number of
contraction maps has a unique attractorE.

Proof. Consider the set

K(S) = all non-empty compact subsets ofS. (4.8)

K(S) is non-empty asS is non-empty (consider the compact sets consisting
of just single points inS).

We introduce theHausdorff distanceon K(S) by: for K1, K2 ∈ K(S),
D(K1, K2) < r if every element ofK1 has distance less thanr from some el-
ement ofK2 and vice versa.

ThenK(S) is a compact metric space. DefineF : K(S) → K(S) by

F (K) = f1(K) ∪ f2(K) ∪ · · · ∪ fn(K). (4.9)
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Also, one has

D (F (K1), F (K2)) ≤ αD(K1, K2). (4.10)

This follows from the fact that eachx1 ∈ K1 is close to some pointx2 ∈ K2.
Thus,

p (f(x1), f(x2)) ≤ αp(x1, s2). (4.11)

Book-keeping yields the claim.
Therefore, the Contraction Map Theorem applied here implies thatF has a

unique fixed point.

Moreover, we have an explicitconstruction! Let K0 be any non-empty com-
pact set inS. Let

K1 = F (K0) = f1(K0) ∪ · · · ∪ fn(K0)

K2 = F (K1) = f1(K1) ∪ · · · ∪ fn(K1)
... (4.12)

and so on. ThenKn → E in D, whereE is the unique attractor set.
One can use this to draw images on the computer. Break the plane into small

rectangles (introduce a grid), and color the grid if any point ofKn is in that grid.
As n grows, this becomes a good approximation.

Since on the computer you are using floating points and do not have exact
numbers, one can get a cluster of points representing the fixed point; however, if
you stand far enough back you see a fixed point.
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Chapter 5

Interpolation and Fractals

Lecturer: Bruce Adcock (Wednesday, October 22, 2003)

5.1 Interpolating Functions and IFS

Say one has a set of data, and wants to interpolate and find a function that fits it.
We will arrive at an IFS that interpolates the data, as opposed to more traditional
functions. From the bookFractals Everywhereby Michael Barnsley.

Assume we have a collection of data
{

(xi, yi) ∈ R2 : i ∈ {0, . . . , N}
}

, N ∈ Z+, x0 < · · · < xN . (5.1)

Definition 5.1.1 (Interpolating Function). An interpolating function(for the
data set above) is a continuous functionf :[x0, xN ]→R, f(xi) = yi for i ∈
{0, . . . , N}. The points(xi, yi) are the interpolation points, and f interpolates
the points.

Example 5.1.2.Consider the data set consisting of(0, 1) and(1, 2). Let

w1

(
x

y

)
=

(
1
2

0
0 1

2

)(
x

y

)
+

(
0
1
2

)
(5.2)

and

w2

(
x

y

)
=

(
1
2

0
0 1

2

)(
x

y

)
+

(
1
2

1

)
. (5.3)

28



Lettingy = x + 1, we find

w1

(
x

x + 1

)
=

( 1
2
x

1
2
x + 1

)
and w2

(
x

x + 1

)
=

( 1
2
x + 1

2
1
2
x + 3

2

)
. (5.4)

meaning the graph ofy = x + 1 is the attractor.

We want an IFS:{R2; wn, n ∈ {1, . . . , N}}. Will limit ourselves to simple
affine functions such as

wn

(
x

y

)
=

(
an 0
cn n

)(
x

y

)
+

(
en

fn

)
. (5.5)

Also, we want

wn

(
x0

y0

)
=

(
xn−1

yn−1

)
and wn

(
xN

yN

)
=

(
xn

yn

)
. (5.6)

We get

anx0 + en = xn−1

anxN + en = xn

cnx0 +n y0 + fn = yn−1

cnxN + dnyN + fn = yn.

We have five unknowns, four equations – and so one free variable. Will pick
and choosedn. Looking atdn, that acts vertically – stretches or compresses verti-
cal line segments, acts like a sheer.

We will study0 ≤ dn < 1, and show that we have contraction maps.

5.2 Contraction Maps

Theorem 5.2.1.Let N > 1, {R2, wn, n ∈ {1, . . . , N}} be as earlier, with data
set{(xi, yi) ∈ R2, i ∈ {0, . . . , N}}. Let dn ∈ [0, 1). Then there exists a metric
d onR2 equivalent to the Euclidean metric, such that the IFS is hyperbolic (ie,
contracts) with respect tod. Therefore, there is a unique nonempty compact set
G ⊂ R2 such thatG = ∪N

n=1wn(G).
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Proof. Let

d ((p1, q1), (p2, q2)) = |p1 − p2|+ θ|q1 − q2|, (5.7)

whereθ is defined at the end. This is equivalent to the Euclidean metric for
θ > 0. Note this is equivalent to the taxicab metric (your distance is how much
you go north/south, then how much east/west; ifθ 6= 1, one direction is more
expensive to travel than the other).

Then, noting thatan > 0 (which comes from the fact that we’ve arranged
the points in increasing order;cn might also be positive), so if we setD =
d (wn(x1, y1), wn(x2, y2)) then

D = d ((anx1+en, cnx1+dny1+fn), (anx2+en, cnx2+dny2+fn))

= |an| · |x1 − x2|+ θ|cn(x1 − x2) + dn(y1 − y2)|
≤ (|an|+ θ|cn|)|x1 − x2|+ θ|dn| · |y1 − y2|
≤ a|x1 − x2|+ θδ|y1 − y2|
≤ max{a, δ} · d((x1, y1), (x2, y2)).

In the above, asN ≥ 2, we have

|an| =
|xn − xn+1|
|xN − x0| < 1.

If ∃ci 6= 0 then

θ =
min1≤i≤N{1− |cn|}
max1≤i≤N{2|xn|} ; (5.8)

otherwise takeθ = 1. Further, we took

a =
1

2

(
1 + max

1≤n≤N
{|an|}

)
< 1

δ = max
1≤n≤N

{|dn|} < 1.

As a andδ are less than1, we obtain a contraction map.
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5.3 Fractal Interpolation Function

Theorem 5.3.1.With the same conditions as above, ifG is the attractor of the IFS,
thenG is the graph of a continuous functionf : [x0, xN ] → R that interpolates
the interpolation points.

Proof. The proof is several pages. The basic idea is that we have created a system
of interpolating points. Doesn’t look normal by any means, but it does work.

We call the above afractal interpolation function.
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Chapter 6

Self-Similar Curves

Lecturer: Gerald Edgar (Wednesday, October 29, 2003)

6.1 Snowflake Curve

Start with an equilateral triangle. On each edge, put an equilateral triangle in the
middle, one-third of the size of the original. Iterate. Koch snowflake.

In the limit, what is the perimeter, what is the area? One can see the area
is finite (contained in a large disk), but what about the perimeter? What is the
curve’s length (in the limit).

One can obtain this by using an Iterated Function System. Isn’t so successful
if you start with the initial set – better to start with theboundaryof the initial set,
the three sides of the initial equilateral triangle.

In this case, we obtain the boundary of the Koch snowflake. If we look at just
one edge, obtain something which is self-similar. Whatever the dimension of this
piece is, that is also the dimension of the boundary.

If we divide a line-segment into 5 equal parts, each part is equal to the other,
and we are looking for an exponentd such that

5 ·
(

1

5

)d

= 1. (6.1)

We end up withd = 1. If we have a solid square, and divide into 5 equal
pieces, we get 25 equal pieces, and now we have
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25 ·
(

1

5

)d

= 1. (6.2)

In this case, we end up withd = 2.
So, forsimilarity dimension, we obtain a line is dimension 1, and a square is

dimension 2.
For the Koch boundary, when we shrink by a third, what happens? When we

so divide we see there are four equal parts, each shrunk by a factor of1
3
. We now

have

4 ·
(

1

3

)d

= 1. (6.3)

Therefore,d = log3 4; this is the self-similarity dimension of the snowflake –
it is higher than 1, but lower than 2.

6.2 Other Examples

Eisenstein Fractions:
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4 ·
(

1

2

)d

= 1. (6.4)

So the Eisenstein fractions are dimension 2. They tile the plane. For the
McWorter pentigree, we have

6 ·
(

3−√5

2

)d

= 1. (6.5)

Hence,d is about1.86.
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Another example: Heighway’s dragon:
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2 ·
(

1√
2

)d

= 1. (6.6)

Start with a line segment. Split and replace with two line segments of half the
length at right angles. Continue this process. As you continue, you get choices as
to which side to do things – alternate.

One can show the sides never cross; the limit is Heighway’s dragon. This will
have non-empty interior, tiles the plane.

Can also look at as an attractor for an IFS. Can also think of the approxima-
tions as not just polygons in the plane, but ranges of function defined on[0, 1].
First is just a linear function. For the second, divide interval in half. Map each
half linearly into the two segments (respectively).

For next stage, map in quarters, and so on. Once we have a quarter, keep the
corner vertex. Stays fixed in all future steps. The distances go down geometri-
cally (and the geometric series converge), so the images of any point converges.
This sequence of functions with values in the plane converges uniformly to a new
function in the plane. The range of that limit function is Heighway’s dragon. This
is a space-filling curve: the domain is a line segment, but the range has nonempty
interior in the plane! Other examples include Polya’s and Hilbert’s space-filling
curves.

What about the boundary of Heighway’s dragon? What is its dimension? The
boundary looks like a nice curve, with necks where sides meet.

6.3 Graph Self-Similar

We can analyze this in a way like self-similar. Think of the boundary as being
made up of a left (A) and a right (B) part. The boundary is a closed curve, but not
simple closed curve (necks). We can find the dimensions ofA andB.
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ForB, it turns out that it is made up of two shrunkenAs, rotated, shrunk by a
half. Looked at in another way, can get thatB is made up of aB and anA, each
shrunk by 1√

2
.

Can look as a multi-graph: Have nodes atA andB, have an arrow fromA to
itself of weight 1√

2
; an arrow fromA to B of weight 1√

2
, and then arrows fromB
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to A of weight 1
2
.

Not self-similar in the usual sense; often calledgraph self-similar.
Our matrix has two rows and two columns:

A(d) =




(
1√
2

)d (
1√
2

)d

2
(

1
2

)d
0


 (6.7)

hereA(d) is the adjacency matrix, dimensiond; do not confuseA(d) with
nodeA. In the above,0 < d.

In some sense, we want the above matrix to equal1. This is a non-negative
matrix. To such matrices, there is a nice theory due to Perron-Frobenius, which
describes how the eigenvalues of such a matrix can behave. We have a posi-
tive eigenvalue large that the absolute value of everything else. Often the largest
eigenvalue is called thespectral radius; all the eigenvalues are often called the
spectrum.

We want to findd so that the spectral radius is 1; thus, the other eigenvalues
will be less than 1.

The similarity dimension is always greater than or equal to the Hausdorff di-
mension For the Barnsley Wreath, the self-similar dimension is 1.9227 (approx),
and the Hausdorff is 1.8459 (approx).
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Chapter 7

Logistics Curve, Julia Sets, and
Efficient Algorithms

Lecturer: Dean Eiger (Friday, October 31, 2003)

7.1 Notation

By fn(x) we meanf(f(· · · f(x)) · · · ), ie, then-fold composition. By the orbit of
a pointx underf we mean

O(x) = {n ∈ Z ∩ [1,∞) : fn(x)}. (7.1)

It is possible for a variety of behaviors: the points in the orbit could escape to
infinity, or cycle.

For example, in the complex plane considerf(z) = z2. If z = a + ib, we find
f(a+ib) = (a2−b2)+(2ab)i. We can create a graph using the real and imaginary
parts.

7.2 Logistics Curve

Let L be the limiting population of a system, letxn be the population at thenth

generation.

L(xn+1) = cxn(1− xn) (7.2)
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govern the population: thexn means that the population growth is proportional
to the size of the population, while the1 − xn encodes information on how the
population competes with itself for resources. Oftenc ∈ [0, 4].

7.3 Julia Set

Consider an arbitrary point in the domain of the Logistics curve, and use that as
an input (starting point) for iteration. The Logistics Curve looks like a parabola,
going through(0, 0) and (1, 0). Look at the intersection with the liney = x.
Starting at anyx on the real axis, go up till you hit the Logistics curve, then over
till you hit the line, and repeat. In this case, we obtain a cycle. If we started at a
different point, we would have obtained different behavior.

We define the Julia set as follows: leti refer to theith element of the set.

J(Oi) = {∀Oi 3 f(Oi) = Oi ∩ f(Oi±1) 6= Oi±1} (7.3)

Takef(z) = z2. If |z| < 1, |f(z)|2 = |z|2. Note that|fn+1(z)| < |fn(z)| in
this case; in fact, ratios will also tend to zero if|z| is strictly less than1.

If the modulus is greater than1, the point will go off to infinity.
If the modulus equals1, then all these points will be points in the Julia set.

1. If |z| < 1, thenfn(z0) = z0 (this is notation for there exists a fixed point).

2. If |z| > 1, thenfn(z0) 6= z0 (this is notation for there is no fixed point).

3. If |z| = 1, thenfn(z0) ∈ J , whereJ is the Julia set.

7.4 Efficient Algorithms

Lecturer: Steven Miller (Friday, October 31, 2003)
For computational purposes, often having an algorithm to compute a quantity

is not enough; we need an algorithm which will computequickly. Below we study
three standard problems, and show how to either rearrange the operations more
efficiently, or give a more efficient algorithm than the obvious candidate.
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7.4.1 Polynomial Evaluation

Let f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0. The obvious way to evaluate is to

calculatexn and multiply byan (n multiplications), calculatexn−1 and multiply
by an−1 (n − 1 multiplications) and add, et cetera. There aren additions and∑n

k=0 k multiplications, for a total ofn + n(n+1)
2

operations. Thus, the standard
method leads toO(n2) computations.

Instead, consider the following:
((

(anx + an−1)x + an−2

)
x + · · ·+ a1

)
x + a0. (7.4)

For example,

7x4 + 4x3 − 3x2 − 11x + 2 =

((
(7x + 4)x− 3

)
x− 11

)
x + 2. (7.5)

Evaluating the long way takes14 steps; cleverly rearranging takes8 steps.

Exercise 7.4.1.Prove that the second method takes at most2n steps to evaluate
anx

n + · · · a0.

7.4.2 Exponentiation

Considerxn. The obvious way to evaluate involvesn − 1 multiplications. By
writing n in base two, we can evaluatexn in at most2 log2 n steps.

Let k be the largest integer such that2k ≤ n. Then∃ai ∈ {0, 1} such that

n = ak2
k + ak−12

k−1 + · · ·+ a12 + a0. (7.6)

It costsk multiplications to evaluatex2i
, i ≤ k. How? Considery0 = x20

,
y1 = y0 · y0 = x20 · x20

= x21
, y2 = y1 · y1 = x22

, . . . , yk = yk−1 · yk−1 = x2k
.

Then

xn = xak2k+ak−12k−1+···+a12+a0

= xak2k · xak−12k−1 · · · xa12 · xa0

=
(
x2k

)ak ·
(
x2k−1

)ak−1 · · ·
(
x2

)a1 ·
(
x1

)a0

= yak
k · yak−1

k−1 · · · ya1
1 · ya0

0 . (7.7)

41



As eachai ∈ {0, 1}, we have at mostk + 1 multiplications above (ifai = 1
we have the termyi in the product, ifai = 0 we don’t).

Thus, it costsk multiplications to evaluate thex2i
(i ≤ k), and at most another

k multiplications to finish calculatingxn. As k ≤ log2 n, we see thatxn can be
determined in at most2 log2 n steps.

Note, however, that we do need more storage space for this method, as we
need to store the valuesyi = x2i

, i ≤ log2 n.

Exercise 7.4.2.Instead of expandingn in base two, expandn in base three. How
many calculations are needed to evaluatexn this way? Why is it preferable to
expand in base two rather than any other base?

7.4.3 Euclidean Algorithm

The Euclidean Algorithm is an efficient way to determine the greatest common
divisor ofx andy, denotedgcd(x, y) or (x, y). Without loss of generality, assume
1 < x < y.

The obvious way to determinegcd(x, y) is to dividex andy by all positive
integers up tox. This takes at most2x steps.

Let [z] denote the greatest integer less than or equal toz. We write

y =

[
y

x

]
· x + r1, 0 ≤ r1 < x. (7.8)

Exercise 7.4.3.Prove thatr1 ∈ {0, 1, . . . , x− 1}.

Exercise 7.4.4.Provegcd(x, y) = gcd(r1, x). Hint: r1 = y −
[

y
x

]
· x.

We proceed in this manner untilrk equals zero or one. As each execution
results inri < ri−1, we proceed at mostx times (although later we prove we need
to apply these steps at most2 log2 x times).
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x =

[
x

r1

]
· r1 + r2, 0 ≤ r2 < r1

r1 =

[
r1

r2

]
· r2 + r3, 0 ≤ r3 < r2

r2 =

[
r2

r3

]
· r3 + r4, 0 ≤ r4 < r3

...

rk−2 =

[
rk−2

rk−1

]
· rk−1 + rk, 0 ≤ rk < rk−1. (7.9)

Exercise 7.4.5.Prove that ifrk = 0, thengcd(x, y) = rk−1, while if rk = 1, then
gcd(x, y) = 1.

We now analyze how largek can be. The key observation is the following:

Lemma 7.4.6.Consider three adjacent remainders in the expansion:ri−1, ri and
ri+1 (wherey = r−1 andx = r0). Thengcd(ri, ri−1) = gcd(ri+1, ri), andri+1 <
ri−1

2
.

Proof. We have the following relation:

ri−1 =

[
ri−1

ri

]
· ri + ri+1, 0 ≤ ri+1 < ri. (7.10)

If ri ≤ ri−1

2
, then asri+1 < ri, we immediately conclude thatri+1 < ri−1

2
. If

ri > ri−1

2
, then we note that

ri+1 = ri−1 −
[

ri−1

ri

]
· ri. (7.11)

But
[

ri−1

ri

]
= 1 (easy exercise). Thusri+1 < ri−1

2
.

We count how often we apply Euclid’s Algorithm. Going from(x, y) =
(r0, r−1) to (r1, r0) costs one application. Every two applications leads to the
first entry in the last pair being at most half of the second entry of the first pair.
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Thus, if k is the largest integer such that2k ≤ x, we see we apply Euclid’s
Algorithm at most1 + 2k ≤ 1 + 2 log2 x times. Each application requires one
integer division, where the remainder is the input for the next step.

We have proven

Lemma 7.4.7.Euclid’s Algorithm requires at most1 + 2 log2 x divisions to find
the greatest common divisor ofx andy.

Let us assume thatri = gcd(x, y). Thus, the last equation before Euclid’s
Algorithm terminated was

ri−2 =

[
ri−2

ri−1

]
· ri−1 + ri, 0 ≤ ri < ri−1. (7.12)

Therefore, we can find integersai−1 andbi−2 such that

ri = ai−1ri−1 + bi−2ri−2. (7.13)

Looking at the second to last application of Euclid’s algorithm, we find that
there are integersa′i−2 andb′i−3 such that

ri−1 = a′i−2ri−2 + b′i−3ri−3. (7.14)

Substituting forri−1 = ri−1(ri−2, ri−3) in the expansion ofri yields that there
are integersai−2 andbi−3 such that

ri = ai−2ri−2 + bi−3ri−3. (7.15)

Continuing by induction, and recallingri = gcd(x, y) yields

Lemma 7.4.8.There exist integersa andb such thatgcd(x, y) = ax + by. More-
over, Euclid’s Algorithm gives a constructive procedure to finda andb.

Exercise 7.4.9.Find a andb such thata · 244 + b · 313 = gcd(244, 313).

Exercise 7.4.10.Add details to complete an alternate proof of the existence ofa
andb with ax + by = gcd(x, y):

1. Letd be the smallest positive value attained byax+ by as we varya, b ∈ Z.
Such ad exists. Thus,d = ax + by. We now showd = gcd(x, y).

2. gcd(x, y)|d.
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3. Let e = Ax + By > 0. Thend|e. Therefore, for any choice ofA,B ∈ Z,
d|(Ax + By).

4. Consider(a, b) = (1, 0) or (0, 1), yielding d|x and d|y. Therefored ≤
gcd(x, y). As we’ve showngcd(x, y)|d, this completes the proof.

Note this is a non-constructive proof. By minimizingax + by, we obtain
gcd(x, y), but we have no idea how many steps is required. Prove that a so-
lution will be found either among pairs(a, b) with a ∈ {1, . . . , y − 1} and
−b ∈ {1, . . . , x− 1}, or−a ∈ {1, . . . , y − 1} andb ∈ {1, . . . , x− 1}.
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Chapter 8

L-Systems

Lecturer: Charles Estill (Wednesday, November 5, 2003)

8.1 L-System

An L-System is a method of starting with a seed object, say a triangle, and replac-
ing certain portions with more complicated themes.

We start with what Mandelbroit called an initiator and a generator. Each time,
we replace a pre-defined object with the generator.

For example, take an equilateral triangle. Have the generator be the first part
of a Koch snowflake (take the unit line segment, replace the middle third with two
segments at angles of 60 degrees). We then go through the object, replacing sides
with shrinked versions of the generator.

Usually we represent this by using an alphabet and a set of rules. For example,
let us have charactersF ,− and+. We can form words, sayF → F −F + +F −
F . HereF is the initiator. The word above tells us how to replace parts of the
generator to form the next stage.

Considerab, with a → ab andb → ba (a set of rules). Here, we apply these
rules in parallel. So, the next generation ofab is abba.

This gives us strings of characters. We now give rules on how to make figures
from this. For example, letF be go forward by a certain distanced (will determine
this distance later) and draw a line. Let− be a right rotation by a certain angle
(sayδ), and+ a left rotation by a certain angle (sayδ). Further, letf be go forward
without drawing a line.

At the end of the 19th century, Peano found an odd phenomenon. There are
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continuous functions from the closed interval[0, 1] onto the unit square[0, 1] ×
[0, 1].

Can have stochastic systems, where say one-third of the time we havea →
abc, one-third of the time tobac and one-third of the time tocba.

Another example is Conway’s game of life, where the fate of a cell depends
on the population of its neighbors and some fixed rules.

8.2 Peano Spacefilling Curve

Space-filling, Self-Avoiding Simple and Self-Similar curve; abbreviated by FASS.
Doesn’t intersect itself, a bijection from[0, 1] to [0, 1]× [0, 1].

8.3 Motivation

The reason for creating this formulation was to model plants / leaves. We add
additional characters, the brackets[ and]. ConsiderFF + [+F − F − F ]. The
FF in the beginning is clear: go forward, go forward, dropping lines. The plus
rotates us. The left bracket does the following: push the state into a push-down
stack: the direction we’re facing and the direction we’re at; we basically drop a
marker at this point and record the direction we were going. The we do what the
other symbols tell us until we hit the right bracket, at which point we return to the
marked position and restore the original orientation.

Obviously, need the same number of left and right brackets.

8.4 IFS andL-Systems

ConsiderF → F [+F ]F [−F ]F . Here, let the angle be2π
14

. This will generate a
nice leaf.
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Chapter 9

Hausdorff Dimension

Lecturer: Gerald Edgar (Friday, November 7, 2003)

9.1 Hausdorff Dimension

Let A be a set in a Euclidean Space (although more generally one may take a
metric space). LetA ⊂ ∪∞i=1Ci be a cover ofA, where|Ci| = diam(Ci) < ε. We
call the above anε-cover ofA.

For s > 0, consider

Hs
ε (A) = inf

ε−covers

∞∑
i=1

|Ci|s. (9.1)

We are often interested in

lim
ε→0

Hs
ε (A) = Hs(A). (9.2)

The limit is a supremum - asε decreases, fewer covers are available. Typically
it is infinite up to a certain point, then a jump, and past the jump point it is often
zero; the value at the jump point can be anything between0 and∞.

Lemma 9.1.1. If s < t andH t(A) > 0 thenHs(A) = ∞.

Proof. Consider anε-coverCi, and compare
∑

i |Ci|t and
∑

i |Ci|s. We may as-
sumeε < 1 asε → 0. We find
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∑
i

|Ci|t ≤ εt−s
∑

i

|Ci|s. (9.3)

This is true for allε-covers, so we find

H t
ε(A) ≤ εt−sHs

ε (A). (9.4)

Sendingε → 0, if the LHS is positive, asε → 0, we must haveHs
ε (A) →

∞.

Lemma 9.1.2. If s < t andHs(A) < ∞, thenH t(A) = 0.

Proof. Same as before.

Let s0 = sup{s : Hs(A) > 0}.
Caratheodory: 1905: defined arc length using method like this (n-dimensional

space). Worked for sets not given parametrically. Then Caratheodory showed that
for exponent 2, up to constant, get surface area. Hausdorff read the paper, said
the exponent didn’t need to be an integer, could be arbitrary. In his paper, he then
examined sets like the Cantor Set to show non-integral limits are possible.

9.2 Sierpinski Gasket

Equilateral triangle with sides of length 1 in the plane. Divide into four smaller
triangles, remove the central one and keep the other three. Continue (repeat with
the remaining three triangles).

Can do in terms of expansions. Consider two vectors−→e1 along one side and
−→e2 along the other side, both sides emanating from the lower left vertex (at

−→
0 ).

Then we have all points in the plane that can be written in the form

∞∑
i=1

1

2i
−→ai ,

−→ai ∈ {−→0 ,−→e1 ,
−→e2}. (9.5)

Note the vectors−→e1 and−→e2 have length1
2

if the initial triangle has sides of
length1.

We can consider it also as a sequence

S0 ⊃ S1 ⊃ S2 ⊃ S3 ⊃ · · · (9.6)
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whereSn consists of3n triangles of sides of length2−n. Note the unit equilat-
eral triangle has diameter1.

If we find oneε-cover, we get a bound. Givenε > 0, choosen so that2−n < ε.
ThenS is covered by3n triangles of side length2−n < ε. Thus,

Hs
ε (A) ≤ 3n · (2−n)s. (9.7)

For whats is the above bounded? Clearly,s0 = log 3
log 2

= log2 3. Anything
smaller thans0 will give infinity, so we know thatHs0

ε (S) ≤ 1. Therefore,
Hs0(S) ≤ 1, sodim(S) ≤ s0.

If A is a set of diameterD, let k be such that2−k < D ≤ 2−k+1. Without loss
of generality, we may assumeD < 1.

Claim 9.2.1. Let

Sk =
3k⋃
i=1

Tk,i. (9.8)

Then

m = #{i : Tk,i ∩ A 6= φ} ≤ 100. (9.9)

Proof. Except at singleton points,tk,i ∩ Tk,i′ = φ and all are in a ball of radius
≤ D + 2−k. Therefore

m · 4−k ·
√

3

4
≤ π(D + 2−k)2. (9.10)

Thus,

m ≤ 4√
3
· 4k · π(D + 2−k)2 ≤ 4 · 4kπ(2−k+2)2

√
3

=
4π√

3
< 100. (9.11)

Of course, we can take a smaller number than 100!

If A is a set of diameterD, it intersects with at mostm ≤ 100 triangles of size
3−k. Therefore,

µ(A) ≤ 100 · 3−k = 100(2−k)s0 ≤ 100µ(A)s0 . (9.12)

Therefore, anyε-coverA of S gives
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∑
i

|Ai|s0 ≥ 1

100

∑
i

µ(Ai) ≥ 1

100
µ(S). (9.13)

This gives the desired answer – hereµ is not Lebesgue measure, it is the
measure on the Sierpinski gasket. We use|A| to denote the diameter.
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Chapter 10

Koch Fractal and
Non-Differentiable Curves

Lecturer Youri (Wednesday, November 12, 2003)

10.1 Koch Fractal

>From the paper by Koch (turn of the last century): it is a curve which is nowhere
differentiable. He wanted to construct such a curve usingelementarygeometry,
and not the Fourier Series techniques of Weierstrass and Hardy.

Start with a segment[A,B]. Divide into three equal parts. Remove the middle
third, say at pointsC < E. Form an equilateral triangle with baseCE going up
to third vertex atD, and add the linesCD andDE.

Continue this process on the four segments; in the limit we get the Koch Frac-
tal (also the Koch snowflake).

Let Pn be the curve aftern steps (after the first step, there are four sides). In
general, at thenth step, there are4n segments of length3−n.

Let kn : [0, 1] → R2, a function to thenth curve. If x ∈ Pn ∩ Pn−1, then
kn(x) = kn−1(x). Notek1(x) = (x, 0) if x is in the first or last third, else go up
from x till you hit the point. Note the Cantor set are onPn for all n; in fact, there
are lots of Cantor Sets!

These functions converge uniformly, as the heights of the triangles decrease:

||kn(x)− kn−1(x)|| ≤
√

3

2 · 3n
. (10.1)
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We seekn → k, wherek is a continuous fraction describing the fractal.

10.2 Properties ofk

10.2.1 k is Bounded

Notek is bounded: forkn, the height is bounded by the sum of the heights ofn
equilateral triangles, where each triangle is one-third the previous. Thus,

||k(x)|| ≤
∑

hn =
∑ √

3

2 · 3n
=

√
3

4
. (10.2)

10.2.2 k is not Rectifiable

Pn has4n segments, each of length3n. Thus, the length ofPn is 4n

3n . The length
of k is the limit asn →∞, which is infinite.

However, the area between the curve and thex-axis is finite; one may show
the area is bounded by3

20
. In thenth step, there are4n equilateral triangles of side

length3−n, for a total of4n ·
√

3
4·32n . Summing overn gives the claimed answer;

note we are using the area of an equilateral triangle of side lengths is s2
√

3
4

.

10.2.3 k doesn’t intersect itself

In the original picture withACDEB, look at the line fromB to D. Draw a line
L with angle60 degrees fromB, parallel toDE. We want to show the curve is to
the left of this.

The distance fromD to the lineL is d(DE, L) ≥
√

3
6

. Similarly,d(CE, L) ≥√
3

6
.
If a point x is built on the segmentDE, thenk1(x) ∈ ED with say heighty

onDE, then

d (k1(x), k(x)) ≤ 1

3

√
3

4
=

√
3

12
. (10.3)

Thus, this point is to the left of the line.
Now considerx ∈ EB. Then if k(x) = (x, 0), it is on the left side. If

k(x) 6= (x, 0), we have a similar situation as before, with everything smaller (self-
similarity).
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Basically, draw equilateral triangles with sides atAC, CD, DE andEB. We
see all points on the curve built onAC are constrained to lie in the equilateral
triangle built onAC; all the points built onCD are constrained to lie in the equi-
lateral triangle built onCD; and so on.

Assumex 6= y, and choosen so that 1
3n < y − x. Thenk(x) andk(y) belong

to parts of the curve built on different lines. As they are built on two different
segments, the curves cannot intersect.

As the curve doesn’t intersect itself, we can order the points on the curve. If
x < y, we say the pointk(x) is before(or preceeds) the pointk(y).

10.3 k is not Differentiable

For a curve to be differentiable at some pointA, if we take anyB also on the
curve, we can consider the secant lineAB. This secant line must approach the
tangent lineTA asB → A.

10.3.1 Vertex Points

One type of points on the curve are the vertices of the polygonal lines. Let us
assumek(x) is a vertex ofPn; thus, it is a vertex of allPm for m ≥ n. Clearly not
differentiable there, as the two sides (before and after) meet at 120 degrees. Thus,
look at secant lines from one side gives a different slope than secant lines from the
other. We need that there are infinitely many vertices on each side approaching
k(x) – this follows from the presence of Cantor sets on each side.

10.3.2 Cantor Set but not Vertex Point

AssumeK = k(x) = km(x) for all m ≥ n. Then it is a point in some Cantor set.
We can find two vertices for everyn that are close toK, one on each side. Say
the points areA < K < B. Then we can find a vertexC going up fromB. The
angle fromK to C is between 30 and 60 degrees, or between 60 and 90 degrees.
This comes from eitherC to the right and aboveB, or from C being to the left
and belowB.

The above argument also works for the pointsk(0) = (0, 0) andk(1) = (1, 0).
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10.3.3 Limit Point

If K = k(x) is a limit point, then we have a sequence of distinctkn(x)s converging
to K (else we’re in a previous case). LetKn = kn(x). Choose a sub-sequence
{ni} such thatKni

(x) 6= kni
(x). Let Kn ⊂ [An−1, Bn−1]. ThenKn is built on a

triangle that is removed. Then take[An, Bn]. Note the angle betweenAn−1Bn−1

and AnBn is 60 degrees. ButAn, Bn → K, but the tangent line will have a
different slope.

10.4 More Non-Differentiable Curves

Start with an interval[A,B]. Divide in thirds withC < E. LetM be the midpoint
of [C,E], and letD be at some angle fromM , with DM length

√
3CE
2

. We perform
a similar process as before, and obtain another non-differentiable curve.
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Chapter 11

Quantization Dimension

Lecturer: Larry Lindsay (Friday, November 14, 2003)

11.1 Quantization Dimension — Background

Quantization is the process of estimating a given probabilityP onRd by a dis-
crete probability supported on a finite setA.

This came from electrical engineering, for efficiently encoding information in
a signal and minimizing distortion. Specifically, the original motivation was pulse
code modulation (Reeves 1938).

We will need the following definitions:

Vn,r(P ) = nth quantization of orderr

= inf
|A|≤n

∫
d(x, A)rdP (x)

en,r(P ) = Vn,r(P )1/r. (11.1)

To estimate a given probability with a discrete probability supported on a finite
set, we could form a Voronoi diagram. Then the mass of a cell is the probability
of that cell, and we assign that mass to the centroid of the cell.

As an example consider the uniform distribution in some finite portion of the
planeR2. What does the optimal Voronoi partition look like? Could be squares,
hexagons, and so on. It turns out that hexagons are the best way to pack. This was
discovered in economics in the context of service centers for customers. The goal
is to minimize the average distance people need to travel to service centers.
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But this is kind of a trick question. It depends in some sense on how we
define distance in the plane. If we use the sup norm, we would use squares (which
would correspond to balls). The taxi-cab metric would lead to diamonds (again,
corresponding to balls).

There is a famous algorithm used to get the optimal set, called Lloyd’s Algo-
rithm I (also discovered by Steinhaus): Start withn points (randomly placed) and
form a Voronoi partition. Within each area, move the point to the centroid of the
area. Then start over, forming a new Voronoi partition. Continue — number of
points stays fixed. Hopefully this converges to an optimal set, but it sometimes
converges to a locally optimal set (not globally optimal) or to a saddle-point.

Open question: What are necessary conditions for the algorithm to con-
verge to an optimal set?

11.2 Generalization to therth Power Distortion

Bucklew and Wise (1982): LetPa be the absolutely continuous part of a proba-
bility P onRd. SupposeE[‖X‖r+δ] < ∞ for someδ. Then

lim
n→∞

nr/dVn,r(P ) = Q(r, d)

∥∥∥∥
dPa

dλd

∥∥∥∥
d/(d+r)

(11.2)

whereQ(r, d) > 0 depends only onr andd, and above we are taking ap-norm,
p = d

d+r
. In this caseλd is d-dimensional Lebesgue Measure.

The formula forQ(r, d) is

Q(r, d) = inf
n≥1

nr/dVn,r(U([0, 1]d)). (11.3)

Open question: What specific values doesQ(r, d) take on for different
values ofr and d?

This leads us into quantization dimension. What ifP is singular with respect
to Lebesgue measure? Maybe there is a formula similar to above, but using a
smallerd. What exactly happens? Some definitions and results are known, but
there are still many open problems.

11.3 Definition of Quantization Dimension

Zador (1982):

57



Dr(P ) = quantization dimension of orderr

= lim
n→∞

log n

− log en,r(P )
. (11.4)

Note that the limit may not exist. In that case we define upper quantization di-
mensionDr(P ) = lim sup and lower quantization dimensionDr(P ) = lim inf.

Idea:en,r(P ) behaves like( 1
n
)1/d.

As an example consider the symmetric probability on the middle-third Cantor
set. As we saw in a previous lecture we can intuitively put quantization points in
the middle of the intervals at different levels in the construction of the Cantor set.
We gete2k,r = 1

3k e1,r.

Dr = lim
n→ ∞

log n

− log en,r

=? lim
k→∞

2k

− log e2k,r

= log3 2. (11.5)

If instead of using the symmetric probability, what if our probability is skewed
to the left or right? The above intuitive argument may not help us much.

11.4 Self-Similar Example

Graf and Luschgy (1999): LetP be a self-similar probability generated by a sys-
tem of contracting similaritiesφ1, φ2, . . . , φN (satisfying the Open Set Condition)
and a probability vector(p1, . . . , pN), thenDr(P ) is the solutionDr to the equa-
tion

N∑
i=1

(pis
r
i )

Dr
r+Dr = 1, (11.6)

wheresi is the contraction ratio ofφi.
Comparison to Thermodynamic Formalism: Letβ(q) be the inverse tempera-

ture

N∑
i=1

pq
i s

β(q)
i = 1. (11.7)

Then we get
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Dr =
β(q)

1− q
(11.8)

precisely whenβ(q) = rq.
Therefore,

D(r) =
β(q(r))

1− q(r)

(11.9)

implies

D′(r) =
β′(q(r))q′(r)(1− q(r)) + β(q(r))q′(r)

(1− q(r))2

= q′(r)
β′(q(r))(1− q(r)) + β(q(r))

(1− q(r))2
. (11.10)

The first derivative is non-negative. We are assumingq(r) is differentiable. As
r increases,q(r) decreases. Thus,q′(r) < 0. Therefore,D′(r) ≥ 0 if and only if

β′(q(r)) ≤ −β(q(r))

1− q(r)
, (11.11)

which is easily seen to be true.
Open Question: In numerical examples, the second derivative appears to

be negative (or non-positive). How can we prove this?
Lindsay and Mauldin (2000): The above can be extended to conformal iter-

ated function systems. Given appropriate conditions on a finite conformal iterated
function system (in particular, satisfying the Open Set Condition), one gets

Dr(m) =
β(q)

1− q
(11.12)

precisely whenβ(q) = rq.

11.5 History of Results

The self-similar case (Graf and Luschgy) was first done for the Strong Separation
case: for the IFS, there was a positive distance between the different parts of the
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fractal (no touching boundaries). Allowing for boundaries to touch, we have the
Open Set Condition, which states: there exists an open setU such thatφi(U) ⊂ U
andφi(U) ∩ φj(U) = φ when i 6= j. Note for the Cantor Set we could take
U = (0, 1); but we could also use[0, 1]\C, C the Cantor Set. This example is
bad, as the open setU misses the actual fractal. This leads to the Strong Open
Set Condition, which is the Open Set ConditionplusU can be chosen such that
U ∩ J 6= φ, i.e., there is an intersection of the open set and the fractal set. For
the systems considered above the Open Set Condition and the Strong Open Set
Condition are equivalent.

Open question: How do we prove the previous result for infinite iterated
function systems?
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Chapter 12

Iterated Function Systems

Lecturer: Bruce Adcock (Wednesday, November 17, 2003)

12.1 IFS with Escape Time Algorithms

Looking at IFS with escape time algorithms. From there, one can go on to looking
at Julia sets.

Say we have an IFS{R2; w1, . . . , wn}; eachwi is a contraction. LetS be the
attractor for the IFS. Further, let

A1 = w1(S)
...

An = wn(S) \
n−1⋃
i=1

Ai. (12.1)

We can define a dynamical system{R2; f}, wheref is defined so that when
we restrictf : R2 → R2 to S, it satisfies

f(x, y) =

{ w−1
1 (x, y) if (x, y) ∈ A1

...
w−1

n (x, y) if (x, y) ∈ An.

(12.2)

We havef(S) ⊂ S.
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12.2 Example

A right-angle version of the Sierpinski Triangle:{R2; w1, w2, w3}, where

w1(x, y) = (.5x, .5y + .5)

w2(x, y) = (.5x + .5, .5y)

w3(x, y) = (.5x, .5y) (12.3)

Consider

f(x, y) =

{ (2x, 2y − 1) if y ≥ .5
(2x− 1, 2y) if x ≥ .5, y < .5
(2x, 2y) otherwise.

(12.4)

Assume−→v ,−→z are in the same case of definition off(x, y). Then

d(f(−→v ), f(−→z )) = 2d(−→v ,−→z ). (12.5)

If we mix cases, the above formula is not true.

Exercise 12.2.1.Assume−→v ∈ R2\S, then

lim
n→∞

d(
−→
0 , f ◦n(−→v )) = ∞, (12.6)

where in the above, we meanf composed with itselfn times. Thus, anything
outside of the attractor escapes to infinity.

Consider again the right Sierpinski Triangle. LetW be a rectangle containing
the Sierpinski Triangle (thewindow). LetV = {(x, y) ∈ R2 :

√
x2 + y2 > R}.

Let n be a cut-off parameter (callednumits). Consider(x, y) ∈ W. We assign
a color based on how quickly its iterates tend to infinity. Explicitly,

Color(x, y) = min (n, leastn such thatf ◦n((x, y)) ∈ V) . (12.7)

In other words, we iterate a point at mostn times. If it hasn’t escaped (made it
into V), we color inn. The smaller the color, the faster it escapes. Asf(S) = S,
the points inS are always coloredn.

With the Sierpinski Triangle example, we can get the following:
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12.3 Julia Sets

Let f : Ĉ → Ĉ be a polynomial of degree greater than one. LetFf denote the
points ofC whose orbits don’t converge to the Point at Infinity (note we are using
Ĉ, notC). Explicitly,

Ff =
{

z ∈ C : {|f ◦n(z)|}∞n=0 is bounded
}

. (12.8)

The above is the filled in Julia Set. The boundary ofFf is called the Julia Set
of f , and is written asJf .

Typically, when we talk about Julia sets, we meanfλ(z) = z2 + λ. This is
tied in with the Mandelbrot set, which is{λ∈C:{zn}∞n=0 does not diverge} (where
z0 = 0 andzn = f(zn−1).)
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Chapter 13

Fractals and Biology

Lecturer: Larry Lindsay (Friday, November 19, 2003)

In this lecture we will discuss the paperFractal Graphical Representation and
analysis of DNA and protein sequences, by Victor V. Solovyev (BioSystems, 30,
1993, pages 137 to 160). The discussion below, unfortunately, doesn’t make much
sense without the accompanying figures from the paper, but it does give an idea
of how the study of fractals has been applied to research on DNA and protein
sequences.

13.1 Introduction

13.1.1 DNA

There are two types ofpurines: Adenine (A)andGuanine (G); there are two types
of pyrimidines: Cytosine (C)andThymine (T). These code over 100,000 proteins
by sequences of these four letters.

There is a place on a DNA where we start and end. Not everything codes – we
have a coding region where proteins are coded (that’s what start and stop refers
to). We haveexons(these are the coding) and theintrons (these don’t code, we
may not know what they do; spliced out during some processes). There are also
intergenic sequences(outside of the coding of a gene). For some strange reason,
we call the starting point5′ and the stopping point3′.
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13.1.2 Chaos Game

Take a Sierpinski triangle, play the Chaos game and see what is filled in. If instead
of starting with three vertices we start with 4 vertices, we instead uniformly fill
in the square. Now, give each vertex a probabilitypi. Now if the pi’s are not all
the same we won’t fill in the square uniformly, but will get self-similar sets;pi

tells us how often we are in the quadrant near vertexi, thenp1p4 would be the
square up near vertex1, and then divide that quadrant in fourths, and take the one
corresponding to vertex 4.

We can use this for proteins / DNA: label the corners of the square by A at
(0, 0), C at (1, 0), G at (1, 1) and T at(0, 1). Given a sequence, go to the center
of the quadrant with label the same as our first letter. Then, each letter tells us
how we move. There is more self-similarity on the intron coding than on the exon
coding (observation of figure).

We can talk about standard deviations. Going down to a certain level (sayn2

squares in our grid), then for a given sequence of lengthL, we expect each cell to
have L

n2 percent. Let

pij = #{points in the(i, j)-cell}. (13.1)

Let δ be the standard deviation. Then

δ =

√
1

n2 − 1

∑
i

∑
j

(pij − p)2. (13.2)

A maskMm
n (m = 0, 1, 2, . . . ) is the collection of cells wherepij is at least

p + mδ. In other words, these are the cells where we are much abovep. This gets
rid of cells where not much is going on.

13.1.3 Graphic Representation

Take a large grid, say 128 by 128. Take a sequence of length 50,000. Play our
chaos game, and see how many points are in each cell. This is ourpij. For a given
sequence, say we are interested in GATATACC – this will correspond to a certain
set of boxes that correspond to this. The number of boxes divided by the number
of cells is the weight we give this sequence.

Define

F (subsequence) =
∑

i

∑
j

pij, (13.3)
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where above the right sums are only over the boxes that have the sub-sequence;
i.e., the number of cells containing this. Then we only look at strings of length 8
– there are28 such strings.

In a histogram, thex-coordinate is theFs, and they is the number that have
thatF value.

13.2 Use of Fractal Representation for Analysis

13.2.1 Functional Regions / Gene Structure

Sliding window going along, say of length 50. Then move over 1, repeat, calcu-
lating F values. Then plot theF value. We’ve filtered first, so if it is relevant, it
should have a spike there.

Idea: family of sequences that do same thing, not sure which genes do it. Make
a family mask, test against another sequence that is known to do the same thing.

13.2.2 Proteins and Amino Acids

There are 20 amino acids. Look at a4 × 5 grid. Label each cell with one of the
20 amino acids. Now map proteins in terms of amino acid sequences. This works
well for non-primes; in fact, works best when a number factors as two comparable
numbers.

Now let the amino acids be sectors on a circle. This works also for primes
now. Say we haven sectors. Then in the subsequent stages, we divide each sector
into n − 1 subsectors with a smaller radius, and then the remaining sector in the
wedge is thenth.
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Chapter 14

Fractals and Random Walks

Lecturer: Dean Eiger (Wednesday, December 3, 2003)

14.1 Random Walks

A random walk is a chance process in which an initial point is selected, and ad-
vancements are made along the coordinate system with equal probability of move-
ment in each possible direction.

We define coordinate systems as follows: inR1 = R, let î be the unit vector in
the positive direction. Let−→r 0 be a starting point. We often choose at each stage
either+îor−î. Thus, aftern steps, we are at

−→rn = −→r0 +
n∑

j=1

(±î). (14.1)

Let p(x) = x
n
. This is the probability that we reach the right end point (n)

before we reach the left endpoint (0); let x = −→r0 for simplicity. Now p(0) = 0,
p(n) = 1, andp(x) = p(x−1)+p(x+1)

2
.

14.2 Example: Circuit Analysis

Consider an electrical circuit. Let it have a voltage source of unit voltage, and an
arbitrary number of resistors connected in series. We can define current by

ix,x′ =
V (x)− V (x′)

R
, (14.2)
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whereV (0) = 0, V (n) = 1. By Kirchoff’s Law, we have

V (x− 1)− V (x)

R
+

V (x + 1)− V (x)

R
= 0. (14.3)

Therefore,

V (x) =
V (x + 1)− V (x− 1)

2
. (14.4)

14.3 Harmonic Functions

Let B = {[0, n]}, and letI = {[1, n − 1]}. We say a function is harmonic if, on
the interior pointsI, we havef(x) = f(x+1)+f(x−1)

2
; we sayB is the boundary.

Dirichlet Problem: given the values of a harmonic function on the boundary,
find the function in the interior.

Lemma 14.3.1 (Maximum Principle). The largest value of a harmonic function
occurs on the boundary.

Proof. Assume not; thus, letf take its maximum value in the interior. For interior
pointsx ∈ I, if f(x) = M thenf(x± 1) = M , implying the function is constant
(and in this case, the maximum will also occur on the boundary).

Lemma 14.3.2 (Uniqueness Principle).If f andg are harmonic functions and
f(x) = g(x) for all x ∈ I, thenf(x) = g(x) for all x ∈ B.

Proof. Let h(x) = f(x)− g(x). For allx ∈ I,

h(x− 1) + h(x + 1)

2
=

f(x− 1) + f(x + 1)

2
− g(x− 1) + g(x + 1)

2
. (14.5)

Therefore, iff(x) − g(x) = h(x), thenh(x) is harmonic (becausef andg
are). By the maximum principle, the maximum ofh occurs on the boundary. As
f(x) = g(x) on the boundary, this implies the maximum ofh is zero, which then
givesh(x) = 0 for x ∈ I.
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14.4 Random Walks in Infinite Spaces

Whereas the central problem of random walks in finite spaces is calculating the
probability of reaching one terminal point before the other, the probability of a
random walk escaping to infinity is the central problem in an infinite space. A
random walk returning to the initial point is said to be recurrent, and one that does
not is transient.

14.4.1 Escape Probability

The probability of a random walk on an infinite lattice escaping to infinity is de-
termined by consideration of finite subsets of the lattice.

Let G(r) be any finite subset ofL, whereL is a lattice. Herer <
√∑d

i=1 x2
i is

the integer-valued radius of the subsetG(r). Let S(r) be the initial point.
Again, consider the probability of a system being transient (the probability

of escape). Thus,p(r)
esc is the probability of leavingG(r) before returning toS(r)

(where we start). Therefore

pesc = lim
r→∞

p(r)
esc. (14.6)
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A Simple Example of a Function, which is Everywhere 

Continuous and Nowhere Differentiable 
 

Karl Kiesswetter 
 

Let  be the function defined as follows Rf →]1,0[:
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Now we show that  is a continuous nondifferentiable function f
 
     Theorem1: 

The function is Lipschitz  continuous and f 2
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Since  and , the function   can be extended continuously to Ñ with 

. The fractal properties of  follow from the following lemma: 
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   Let's denote by K  the graph of    i.e. f ]}1,0[|))(,{( ∈= xxfxK . The set K  is 
compact because  is continuous on [ . f ]1,0
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From Lemma1  follows that   )()()()( 4321 KfKfkfKfK ∪∪∪=  
Then the set K  is the attractor set of  because F K  is compact. Kiesswetter's fractal is 

self-affine and has Hausdorff dimension 
2
3 . 

 
Theorem2: 
f  is nondifferentiable at each point in the interval[ . ]1,0

 
In the proof of Theorem2 we need the following two lemmas 
 
Lemma 1:  

Suppose that nn
pV

4
0 =≤  and 1

4
1

≤+= nnn VW . Then nnn VfWf
2
1|)()( =−| . 

Proof:    Let ∑
∞

+=
+=

1 4
3

n
nnn V

ν
W . Then 

∑
∞

+=

+−
+=

1 2
)1()()(

1

n

M

nn
n

VfWf
ν

ν  

 3



n
n

nn VfWf
2
1

2
1|)()(|

1
==− ∑

∞

+=ν
ν                                                                   É 

 
Lemma 2: 
If with BxA ≤≤ BA < , then at least one of the following inequalities hold 
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Proof of Theorem 2: 
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Therefore  is not differentiable at f x  because xKn
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