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Previous Results
Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written in a
unique way as a sum of non-consecutive Fi-
bonacci numbers.

Lekkerkerker’s Theorem
The average number of summands in the
Zeckendorf decomposition for integers in
[Fn, Fn+1) tends to n

ϕ2+1 ≈ 0.276n, where

ϕ = 1+
√

5
2 is the golden mean.

New Results

Central Limit Type Theorem
As n → ∞, the distribution of the number
of summands in the Zeckendorf decompo-
sition for integers in [Fn, Fn+1) is Gaussian.
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Generalizations
Generalizing from Fibonacci numbers to lin-
early recursive sequences with arbitrary non-
negative coefficients:

• Recurrence relation:
Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1

for n ≥ L.

• Initial conditions: H1 = 1 and
Hn+1 = c1Hn + c2Hn−1 + · · · + cnH1 + 1
for n < L.

Generalized Zeckendorf’s THM
Every positive integer can be written as
a unique sum

∑

aiHi with natural con-
straints on the ai’s (e.g., cannot use the
recurrence relation to remove any sum-
mands).

Generalized Lekerkerker’s THM
The average number of summands in the
generalized Zeckendorf decomposition for
integers in [Hn, Hn+1) tends to Cn + d,
where C and d are computable constants de-
termined by the ci’s. The value of C is
∑L−1

m=0(sm + sm+1 − 1)(sm+1 − sm)ym(1)

2
∑L−1

m=0(m + 1)(sm+1 − sm)ym(1)

where s0 = 0 and sm = c1 + c2 + · · · + cm.

Central Limit Type THM
As n → ∞, the distribution of the number
of summands in the generalized Zeckendorf
decomposition for integers in [Hn, Hn+1) is
Gaussian.

Approach
Previous investigations were number the-
oretic, involving continued fractions, and
were limited to results on existence and, in
some cases, the mean.

By recasting as a combinatorial problem
and using generating functions and differ-
entiating identities, we surmount the limi-
tations inherent in the previous approaches.

We take the case of Fibonacci numbers
as an example to show how our approach
works.
Let p(n, k) = # {N ∈ [Fn, Fn+1) : N has a k-

summand Zeckendorf decomposition} and
K be the random variable associated with k
with probability density p(n, k).

• Recurrence relation:
p(n + 1, k + 1) = p(n, k + 1) + p(n, k).

• Generating function:
∑

n,k>0 p(n, k)xkyn = y
1−y−xy2 .

• Partial fraction expansion:
y

1−y−xy2 = y
y2(x)−y1(x)

[

1
y−y1(x) − 1

y−y2(x)

]

where y1(x) and y2(x) are the roots of
1 − y − xy2 = 0.

Coefficient of yn:
g(x) =

∑

n,k>0 p(n, k)xk .

• Differentiating identities:
g(1) = Fn+1 − Fn, g′(1) = g(1)E[K],

(xg′(x))
′ |x=1 = g(1)E[K2],

(

x (xg′(x))
′)′ |x=1 = g(1)E[K3], ...

Similar results hold for the random vari-
able K −E[K], namely the centralized K .

• Method of moments:
E[(K ′)2m]/E[K ′2] → (2m − 1)!!,

E[(K ′)2m−1]/E[K ′2] → 0.

Hannah’s Problem
Our method generalizes to a multitude of
other problems. For example, given the
following analogue to Zeckendorf, we can
prove similar results as above.

Theorem (Hannah Alpert, 2009)
Every integer can be written uniquely as
a sum of the ±Fn’s, such that every two
terms of the same (opposite) sign differ in
index by at least 4 (3).

Let K and L be the corresponding random
variable denoting the number of posi-
tive terms and the number of negative
terms for integers in (Sn−1, Sn] where Sn

= Fn + Fn−4 + · · · . We prove the following
theorems.

Generalized Lekkerkerker’s THM
As n → ∞, E[K] and E[L] tend to n/10
and E[K] = E[L] + 1. Further, the variance
of both K and L is of size (15+21

√
5)n/1000.

Central Limit Type THM
As n → ∞, K and L are bivariate Gaussian.

• corr(K, L) = −(21 − 2ϕ)/(29 + 2ϕ) ≈
−0.551.

• K + L and K − L are independent.
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