
This essentially builds upon the previous work but looks at from a different
perspective that more easily generalizes for greater palindromicity (or whatever
we’ll call it). It also might be a cleaner approach for the doubly palindromic case.
I was having trouble with this giving the right answer when I converted it into a
formula, but I managed to figure out the problem (see below) while I was TeXing
it up. Also, I realized the N

2 isn’t the best specific example as N
2 and N − N

2 are
the same.

The big idea here is to look at where we can have a specific C value and calcu-
lating that “area,” then the number of values ` can take on given the C value, and
then multiplying the two together to get the contribution for that specific C, and
then summing over all possible C’s. There will be O(1) terms all over the place
here, but I’ll suppress them as they’re understood to be insignificant in the limit.

In order to demonstrate the method, I will use it for the N
2 and the N

2 − 1 terms
for the 4th moment of the doubly palindromic, then how it generalizes.

Specific Case. We begin by considering when k = i+ N
2 (note that the case where

k = i − N
2 turns out the exact same). Clearly, this restricts i to {1, 2, . . . , N

2 }, so
we are looking at the top half of the matrix. Moreover, we need akj to be on the
same side of the diagonal as aij for it to be a good matching in this case, so we
either need aij to be below the diagonal, or aij more than N

2 above the diagonal.
For the first case, we have an N

2 by N
2 triangle defined by the diagonal and the

“horizontal bisector” of the matrix, and for the second we also have an N
2 by N

2
triangle defined by the shifted diagonal boundary and the borders of the matrix.
Conveniently, this gives a square overall.

Finally, we have to figure out how many values of ` can work. As they are on
the same side of the main diagonal, column i and row k start out aligned, become
unaligned when one has hit the diagonal but the other hasn’t, then become realigned
once both have hit the diagonal. As they will be unaligned for N

2 values of `, they
will be aligned for N

2 values of `. Thus, we get
(

N
2

)3
= N3

8 overall, so it contributes
1
8 to the moment.

Now, we consider when k = i + N
2 − 1. Unsurprisingly, this happens everywhere

in the top half of the matrix where k = i+ N
2 didn’t work. One can calculate this by

simply doing N2

2 −
N2

4 , or by noting that the this area is a parallelogram of base N
2

and height N
2 . Furthermore, we see that column i and row k will be aligned when

only one has reached the main diagonal, so we again have N
2 values of `. Thus, we

get
(

N
2

)3
= N3

8 , so it contributes 1
8 to the moment.

We then multiply these by two to account for the minus terms, then add them
together to get 1

2 . We multiply by another factor of two to account for both
moments, yielding a contribution of 1 to the fourth moment, agreeing with our
previous calculations.

General Case for 2n Palindromes. Consider when k = i + mN
2n , where m ∈

{0, 1, 2, . . . , 2n}. This restricts i to {1, 2, . . . , 2n−m
2n ·N}. In calculating the area these

cases occupy, we get
(

2n−m
2n

)2
N . Column i and row k are then aligned except for

the mN
2n values of ` where only one has reached the main diagonal. Therefore, we

get
(

2n−m
2n

)3
N , for a contribution of

(
2n−m

2n

)3
to the moment.

Similarly, when k = i+ mN
2n −1, we again have a parallelogram of height 2n−m

2n ·N
and width m

2n . In this case, the alignment occurs when one has reached the main
diagonal but the other hasn’t, so we have m

2n ·N choices for that as well.

1



2

Thus, we have a contribution of (2n−m)3+(2n−m)m2

2n overall for this pair of con-
stants. We then multiply by 4 to account for the minus signs and the two adjacent
matching cases.

The Adjacent Contribution to the Fourth Moment. We now want to sum
over all possible m values here. The one catch is that when m = 0 we only multiply
by 2, as there is no negative case (that’s what the mistake was). Thus, we want to
evaluate

2 +
4

23n

2n∑
m=1

[
(2n −m)3 + (2n −m)m2

]
.

We begin by expanding out the second term in the sum:

2 +
4

23n

2n∑
m=1

[
(2n −m)3 + 2nm2 −m3

]
.

Here, we note that the sums over (2n − m)3 and −m3 almost cancel out exactly
(they would cancel out exactly if we summed over 0 as well. Since we know the
value inside the sum will be 1 for m = 0, we can rewrite this as

−2 +
4

23n

2n∑
m=0

[
(2n −m)3 + 2nm2 −m3

]
= −2 +

4
23n

2n∑
m=0

2nm2.

Now, we can pull the 2n out and cancel, and get

−2 +
4

22n

2n∑
m=0

m2.

We can evaluate this out directly, and cancel a resulting 2n to get

−2 +
4
2n
· (2n + 1)(2 · 2n + 1)

6
= −2 +

2
3

(1 +
1
2n

)(2 · 2n + 1)

= −2 +
2
3

(3 + 2n+1 +
1
2n

).

Just as some numerics, the first few values are (moving from single palindrome
and onwards): 2, 3, 5.5, 10.75, and 21.375. I tested out the quadruple and octuple
cases using the trace method in Mathematica, and in each case I got something
very nearly 3

2 the value reported here.


