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Abstract. Consider the ensemble of real symmetric Toeplitz matrices whose
entries are i.i.d random variables chosen from a fixed probability distribution p
of mean 0, variance 1 and finite higher moments. Previous works showed that
the limiting spectral measures (the density of normalized eigenvalues) converge
weakly and almost surely to a universal distribution almost that of the Gaussian,
independent of p. The deficit from the Gaussian distribution is due to obstruc-
tions to solutions of Diophantine equations and can be removed by making the
first row palindromic. In this paper, we study the case where there is more than
one palindrome in the first row of a real symmetric Toeplitz matrix. Using the
method of moments and an analysis of the resulting Diophantine equations, we
show that the moments of this ensemble converge to an universal distribution
with very fat tails.
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1. Introduction

1.1. Background. Since its inception, Random Matrix Theory has been a pow-
erful tool in modeling highly complicated systems, with applications in statis-
tics [Wis], nuclear physics [Wig1, Wig2, Wig3, Wig4, Wig5] and number theory
[KS1, KS2, KeSn]; see [FM] for a history of the development of some of these
connections. An interesting problem in Random Matrix Theory is to study sub-
ensembles of real symmetric matrices by introducing additional structure. One
of those sub-ensembles is the family of real symmetric Toeplitz matrices; these
matrices are constant along the diagonals:

AN =


b0 b1 b2 · · · bN−1

b−1 b0 b1 · · · bN−2

b−2 b−1 b0 · · · bN−3
...

...
...

. . .
...

b1−N b2−N b3−N · · · b0

 , aij = bj−i. (1.1)

Initially numerical investigations suggested that the density of the normalized
eigenvalues was given by the standard normal; however, Bose, Chatterjee, Gan-
gopadhyay [BCG], Bryc, Dembo and Jiang [BDJ] and Hammond and Miller [HM]
showed that this is not the case (in particular, the fourth moment is 2 2/3 and not
3). The analysis in [HM] shows that although the moments grow more slowly than
the Gaussian’s, they grow sufficiently fast to determine a universal distribution
with unbounded support. The deficit from the standard Gaussian’s moments is
due to obstructions to Diophantine equations.

In [MMS], Massey, Miller and Sinsheimer found that, by imposing additional
structure on the Toeplitz matrices by making the first row a palindrome, the Dio-
phantine obstructions vanish and the limiting spectral measure converges weakly
and almost surely to the standard Gaussian. A fascinating question to ask here
is how the behavior of the normalized eigenvalues changes if we impose other
constraints. Basak and Bose [BB], Kargin [Kar] and Liu and Wang [LW] obtain
results for ensembles of Toeplitz (and other) matrices that are also band matrices,
with the results depending on the relative size of the band length to the dimension
of the matrices. In this paper we explore the effect of increasing the palindromicity
on the distribution of the eigenvalues. Before stating our results, we first list our
notation.

1.2. Notation.

Definition 1.1. For fixed n, we consider N ×N real symmetric Toeplitz matrices
in which the first row is 2n copies of a palindrome. We always assume N to be a
multiple of 2n so that each element occurs exactly 2n+1 times in the first row. For
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instance, a doubly palindromic Toeplitz matrix (henceforth referred to as a DPT
matrix) is of the form:

AN =



b0 b1 · · · b1 b0 b0 b1 · · · b1 b0
b1 b0 · · · b2 b1 b0 b0 · · · b2 b1
b2 b1 · · · b3 b2 b1 b0 · · · b3 b2
...

...
. . .

...
...

...
...

. . .
...

...
b2 b3 · · · b0 b1 b2 b3 · · · b1 b2
b1 b2 · · · b0 b0 b1 b2 · · · b0 b1
b0 b1 · · · b1 b0 b0 b1 · · · b1 b0


(1.2)

We always assume the entries of our matrices are i.i.d.r.v. chosen from some
distribution p with mean 0, variance 1 and finite higher moments. The entries of
the matrices are constant along diagonals. Furthermore, entries on two diagonals
that are N/2n diagonals apart from each other are also equal. Finally, entries on
two diagonals symmetric within a palindrome are also equal.

To succinctly keep track of which elements are equal, we may introduce a link
function ψ : {1, . . . , N}2 → {1, . . . , N} and new parameters b` such that aij =
bψ(i,j), where

ψ(i, j) =

{
|i− j| mod 2n if |i− j| mod 2n < N/2n+1

−|i− j| mod 2n if |i− j| mod 2n > N/2n+1.
(1.3)

Each N × N matrix AN in this ensemble can be identified with a vector in
RN/2n

by AN ↔ (b0(AN), b1(AN), . . . , bN/2n(AN)). We denote the set of N × N
real symmetric Toeplitz matrices with 2n palindromes by ΩN,n and subsequently
construct a probability space (ΩN,n,FN ,PN) by

PN({AN ∈ ΩN,n : bi(AN) ∈ [αi, βi] for i ∈ {0, 1, . . . , N/2n − 1})

=

N
2n−1∏
i=0

∫ βi

αi

p(xi)dxi, (1.4)

where each dxi is Lebesgue measure. For each matrix AN ∈ ΩN,n we associate a
probability measure by placing a point mass of size 1/N at each of its normalized
eigenvalues λi(AN):

µAN
(x)dx :=

1

N

N∑
i=1

δ

(
x− λi(AN)√

N

)
dx, (1.5)

where δ(x) is the Dirac delta function.

1.3. Results. Our main result concerns the limiting behavior (as a function of
the palindromicity n) of the µAN

for generic AN as N → ∞. We analyze these
limits using the method of moments. Specifically, for each AN we calculate the
moments of µAN

by using the Eigenvalue Trace Lemma to relate the kth moment
to the trace of AkN . We show the average kth moment tends to the kth moment of
a distribution with unbounded support. By analyzing the rate of convergence, we
obtain results on weak convergence and almost sure convergence.
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Specifically, our main result is the following.

Theorem 1.2. (Weak and Strong Convergence) Let n be a fixed positive
integer, and for each N a multiple of 2n consider the ensemble of real symmet-
ric N × N palindromic Toeplitz matrices whose first row is 2n copies of a fixed
palindrome (see Definition 1.1), where the independent entries are independent,
identically distributed random variables arising from a probability distribution p
with mean 0, variance 1 and finite higher moments. Then as N → ∞ the mea-
sures µAN

(see Definition 1.5) converge weakly to a limiting spectral measure with
unbounded support. If additionally p is even, then the measures converge strongly
to the limiting spectral measure.

As in other related ensembles, it is very difficult to obtain closed form expres-
sions for the general moments of the limiting spectral measure MAYBE ADD
SOMETHING ABOUT THE DOUBLY PALINDROMIC CASE?. We
can, however, analyze the moments well enough to determine the limiting dis-
tribution has unbounded support; in fact, as the following theorem shows it has
fatter tails than previously studied ensembles.

Theorem 1.3. (Fat Tails) Consider the ensemble from Theorem 1.2. For any
fixed n ≥ 1, the moments grow faster than the corresponding moments of the
standard normal; specifically, if M2m,n denotes the 2mth moment of the limiting
spectral measure of our ensemble for a given n, then

M2m,n �
2mn

m
· (2m− 1)!!. (1.6)

The limiting spectral measure thus has unbounded support, and fatter tails than the
standard normal (or in fact any of the known limiting spectral measures arising
from an ensemble where the independent entries are chosen from a density whose
moment generating function converges in a neighborhood of the origin).

The rest of the paper is organized as follows. We first establish some basic
results about our ensembles and the associated measures in §2. We then analyze
the even moments in detail in §3. We give the proof on the vanishing Diophantine
obstructions for highly palindromic Toeplitz matrices and show that all the config-
urations of highly palindromic Toeplitz matrices contribute equally at any general
even moment. While it is difficult to isolate the exact value of these moments, we
are able to analyze these moments well enough to prove our convergence claims
and to have some understanding of the limiting spectral measure. The situation is
different for both the fourth moment for any palindromicity and all even moments
for the doubly palindromic Toeplitz matrices, and we determine the exact values
in §4. We conclude in §5 by proving the convergence claims.

2. Diophantine Formulation

In this section we begin our analysis of the moments. We prove some combina-
torial results which restrict the number of configurations which can contribute a
main term; we then analyze the potential main terms in the following section.
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Recall that for each matrix AN ∈ ΩN,n we associate a probability measure by
placing a point mass of size 1/N at each of its normalized eigenvalues λi(AN):

µAN
(x)dx :=

1

N

N∑
i=1

δ

(
x− λi(AN)√

N

)
dx, (2.7)

where δ(x) is the Dirac delta function. Thus the kth moment of µAN
(x) is

Mk,n;N(AN) :=

∫ ∞
−∞

xkµAN
(x)dx =

1

Nk/2+1

N∑
i=1

λki (AN). (2.8)

The expected value of the kth moment of the N × N matrices in our ensemble,
found by averaging over the ensemble with each AN weighted by (1.4) and using
the Eigenvalue Trace Lemma, is

Mk,n;N := E[Mk,n;N(AN)] =
1

Nk/2+1

∑
1≤i1,...,ik≤N

E[ai1i2ai2i3 · · · aiki1 ]

=
1

Nk/2+1

∑
1≤i1,...,ik≤N

E[bψ(i1,i2)bψ(i2,i3) · · · bψ(ik,i1)],

(2.9)

where from (1.4) the expectation equals

E[bψ(i1,i2)bψ(i2,i3) · · · bψ(ik,i1)] :=

∫
· · ·
∫
bψ(i1,i2)bψ(i2,i3) · · · bψ(ik,i1)

N
2n−1∏
i=0

p(bi)dbi.

(2.10)
We let Mk,n be the limit of the average moments; thus

Mk,n := lim
N→∞

Mk,n;N ; (2.11)

we will prove later that these limits exist.
Our goal is to understand the Mk,n, i.e., the limiting behavior of the moments

in these ensembles. We use Markov’s method of moments, which we summarize
below. This is a standard method for proving results in the subject; a nice explicit
summary of this method begins Section 3 of [BB].

• We first show Mm,n = limN→∞Mm,n;N = limN→∞ E[Mm,n;N(AN)] exists
for m a positive integer, with the Mm,n’s satisfying Carleman’s condi-

tion:
∑∞

m=1M
−1/2m
2m = ∞. As these are the moments of the empirical

distribution measures, this implies that the Mm,n’s are the moments of a
distribution.
• Weak convergence follows from analyzing the second moment, namely

showing Var(Mm,n;N(AN)−Mm,n) tends to zero as N →∞.
• Almost sure convergence follows from showing the fourth moment tends to

zero and then applying the Borel-Cantelli lemma.

We do the convergence calculations in §5; in this and the next few sections we
determine the limiting behavior of the ensemble averages.
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The odd moments are readily determined, as counting the degrees of freedom
show the average odd moments vanish in the limit as N →∞.

Lemma 2.1. All the average odd moments vanish in the limit; i.e. limN→∞M2m+1,n;N

= 0

Proof. For the 2m + 1th moment, we consider E[bψ(i1,i2)bψ(i2,i3) · · · bψ(i2m+1,i1)]; we
may write this as E[br1`1 · · · b

rj
`j

] with r1 + · · · + rj = k and the b`’s distinct. As

2m + 1 is odd, at least one b` is raised to an odd power. If any of these occur to
just the first power, then the expectation is zero as the b’s are drawn from a mean
zero distribution.1 Thus at least one of the b`’s above occurs at least three times,
and every b` occurs at least twice. The maximum number of distinct b`’s occurs
when everything is matched in pairs except for one triple matching. Thus there
are at most m different b`’s in our tuple, and the number of tuples is bounded
independent of N . We have two degrees of freedom from the first matching of the
b`’s and one degree of freedom for each other matching,2 for a total of at most
m+ 1 degrees of freedom. Thus the number of indices i1, . . . , ik ∈ {1, . . . , N} that
can contribute to the moment in (2.9) for a given matrix is On(Nm+1) (where the
big-Oh constant may depend on n, as the larger n is the more choices we have for
diagonals). As we divide by Nm+3/2 in (2.9), the odd moments are On(N−1/2),
and thus vanish in the limit as N →∞. �

Corollary 2.2. For fixed n, as N → ∞ there is no contribution to the average
2mth moment from any tuple where the b`’s are not matched in pairs.

Proof. The corollary follows from a similar analysis as in Lemma 2.1. �

From the above corollary, we see that in order to study the eigenvalues of our
matrices we need to know how many different ways the k = 2m entries (the
aijij+1

’s) in our tuples can be matched into k/2 = m pairs. Letting r!! = r(r −
2)(r − 4) · · · , where the product stops at 1 if r is odd and 2 if r is even, we see
there are at most (2m − 1)!! ways to match in pairs.3 Note (2m − 1)!! is the
2mth moment of the standard normal, and has the combinatorial interpretation
of being the number of ways of matching 2m objects in m pairs where order does
not matter. For each legitimate matching we obtain a system of m equations, one

1If we assume our distribution p is even, then a similar argument immediately implies all the
odd moments vanish.

2For example, say bψ(i1,i2) = bψ(iv,iv+1), with i1 our first index. Both i1 and i2 are free
variables and we have N choices for each; however, iv is not (it will have occurred in a matching
before this point), and iv+1 is determined by requiring the two b`’s under consideration to be
equal. The number of choices for iv+1 depends on n (the larger n is, the more diagonals work);
what matters is that the number of choices for iv+1 is independent of N . Whenever we have
a new pair, we have a new choice for the value of the link function, and thus gain a degree of
freedom.

3There are
(
2m
2

)
ways to choose the first pair,

(
2m−2

2

)
ways to choose the second and so on;

we must divide by m! as it does not matter which pair we call the first. The claim follows by
elementary algebra. Alternatively we can prove this by induction. Assume there are (2m− 3)!!
ways to match 2m − 2 objects in pairs. If we have 2m objects, there are 2m − 1 choices of an
element to pair with the first element in our list, and then by induction there are (2m−3)!! ways
of pairing the remaining 2m− 2 elements.
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for each pair of entries, for which the number of solutions is the contribution of
the matching to the 2mth moment.

In order to understand the even moments, we need to know more about the
permissible matchings, and how many choices of the indices lead to valid config-
urations. In the original case of the ensemble of real symmetric Toeplitz matrices
[HM], the only way any two entries b` could match was for them to lie on the
same diagonal or on the reflection of that diagonal over the main diagonal. That
is, they matched if and only if

|im − im+1| = |il − il+1|. (2.12)

For highly palindromic Toeplitz matrices, more relations give matchings (as seen
in the investigation of palindromic matrices in [MMS]). An entry for which the
absolute value of the difference between its indices is in a given congruence class
modulo 2n can match with another entry if and only if it is in the same congruence
class or its negative. That is, two entries aimim+1 and ailil+1

can be matched in a
pair if and only if their indices satisfy one of the following relations:

(1) there is a C1 ∈ {(−b |il−il+1|
2n c+ k − 1) N

2n | k ∈ {1, . . . , 2n}} such that

|im − im+1| = |il − il+1|+ C1; (2.13)

(2) there is a C2 ∈ {(b |il−il+1|
2n c+ k) N

2n | k ∈ {1, . . . , 2n}} such that

|im − im+1| = −|il − il+1|+ C2; (2.14)

as is standard, bxc represents the largest integer at most x.

As a consequence of (2.13) and (2.14), for the matchings above there is some C
such that

in − in+1 = ±(il − il+1) + C. (2.15)

As there are two choices for sign and m matchings, there are potentially 2m cases
that can contribute. We now prune down the number of possibilities greatly by
showing only one case contributes in the limit, namely the case when all the signs
are negative.

In the Toeplitz ensembles studied in [HM] and [MMS], it was shown that any
matching with a positive sign (i.e., as in (2.15)) in any pair contributes a lower
order term to the moments, and thus it sufficed to consider the case where only
negative signs occurred. A similar result holds here, which greatly prunes the num-
ber of cases we need to investigate. Note by Lemma 2.1 we need only investigate
the even moments.

Lemma 2.3. Consider the contribution to the 2mth moment from all tuples (i1, . . . ,
i2m) in which the corresponding b`’s are matched in pairs. If an ainin+1 is matched
with an ailil+1

with a positive sign (which means

in − in+1 = +(il − il+1) + C

for some C as defined in (2.13) or (2.14)), then it contributes Om(1/N) to M2m,n;N

and therefore the contribution of all but one of the 2m choices for the m signs van-
ishes in the limit, with only the choice of all negative signs being able to contribute
in the limit.
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Proof. The argument is essentially the same as in [MMS]. For any tuple (i1, . . . , i2m)
in which the corresponding b`’s are matched in pairs, there exist k equations, one
for each pairing, of the form

in − in+1 = εm(il − il+1) + Cl where εl = 1 or − 1. (2.16)

Let x1, x2, . . . , x2k denote the absolute value of the difference between two indices
of each entry (so for ail,il+1

it would be xj = |i1 − il+1|), and let x̃1 = i1 − i2, x̃2 =
i2−i3, . . . and x̃2k = i2k−i1 (i.e., the unsigned differences). It follows immediately
that

2k∑
i=1

x̃i = 0. (2.17)

Each x̃m can be expressed in two ways. By breaking the absolute value sign in
(2.13) or (2.14), we have x̃m = ηjxj for some j with ηj = 1 or −1. We can also
express it through an equation like the one in (2.17) such that x̃m = εmx̃l + Cm
for some l. Thus

x̃m = ηjxj = εmx̃l + Cl. (2.18)

Then since ε2m = 1,
x̃l = εnηjxj − εnCl. (2.19)

Note each absolute value of a difference occurs twice, as everything is matched in
pairs. We therefore have

2m∑
i=1

x̃i =
m∑
j=1

[ηjxj + (εnηjxj − εnCn)] =
m∑
j=1

(njxj(1 + εn)− εnCj) = 0. (2.20)

If any εm = 1, then the xj’s are not linearly independent and we would have less
than m+ 1 degree of freedom.4 The contribution from such tuples to the moment
in (2.9) for a given matrix is therefore O(1/N) (as we divide by Nm+1), which
vanishes in the limit as N →∞ and can thus be safely ignored. �

Lemma 2.3 immediately implies

Lemma 2.4. If the indices of ailil+1
and ainin+1 satisfy (2.13) for some C1, then

|in − in+1| = |il − il+1|+ C1 implies{
in − in+1 = −(il − il+1) + C1

in > max{in+1, im+1 + C1}
or

{
in − in+1 = −(il − il+1)− C1

in < min{in+1, in+1 − C1}.
(2.21)

Similarly, if the indices satisfy (2.14) for some C2, then |in − in+1| = −|il −
il+1|+ C2 implies{

in − in+1 = −(il − il+1) + C2

in+1 < in < in+1 + C2,
or

{
in − in+1 = −(il − il+1)− C2

in+1 − C2 < in < in+1.

(2.22)

4As in the proof of Lemma 2.3, the first pair gives us two degrees of freedom and each
subsequent pair gives at most one degree of freedom. If the xj ’s are not linearly independent,
there can be at most m− 1 independent xj ’s, and thus at most m degrees of freedom.
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Instead of considering each value of C (either C1 or C2) individually, we will
consider a pair of constants C1, C2 such that C1 +C2 = N − 1. We claim that this
removes some of the Diophantine obstructions that arise when evaluating (2.21)
or (2.22) individually. Given an entry ailil+1

, we can associate each value of C with
one diagonal whose entries, generally denoted by aimim+1 , all equal ailil+1

. Except
for the main diagonal, every other diagonal has fewer than N entries and therefore
the index im ∈ {a, . . . , b} where 1 ≤ a < b ≤ N rather than im ∈ {1, . . . , N}.
Here we only need to restrict one of the two indices of aimim+1 and the other one
will automatically be determined. However, by considering aimim+1 on a pair of
diagonals associated with C1, C2, we can take the index im (or im+1) to be any
value between 1 and N . Furthermore, except for O(1) values, the first index of
entries from the pair of diagonals associated with C1, C2 are distinct, and similarly
for the second index. Therefore, if aimim+1 is on the diagonal associated with C1

and ai′mi
′
m+1

is on the diagonal associated with C2, then for some a, b ∈ {1, . . . , N},
we have: {

im ∈ {a, . . . , b}
i
′
m ∈ {0, . . . , a} ∪ {b, . . . , N}

(2.23)

3. Properties of the Even Moments

In Lemma 2.1 we showed that the average odd moments vanish in the limit.
In this section we analyze the even moments. While the low moments may be
computed by brute force, similar to other ensembles we are unable to obtain nice
closed form expressions for the higher moments. We have the same difficulties
seen in [BB, BDJ, HM]; however, as we shall see in §4, the situation is different
for the case of Doubly Palindromic Toeplitz (DPT) Matrices. There, similar to
[MMS], we are able to obtain closed form expressions in the general case.

3.1. General Properties. We first handle the zeroth and second moments.

Lemma 3.1. Assume that p has mean 0, variance 1 and finite higher moments,
and fix the degree of palindromicity n. Notation as above, for all AN we have
M0,n;N(AN) = 1 and M2,n;N(AN) = 1, which implies the average moments in the
limit are both 1 (explicitly, M0,n = 1 and M2,n = 1).

Proof. From (2.8), we see M0,n,N(AN) = 1. For the second moment, we have

M2,n;N =
1

N2

∑
1≤i1,i2≤N

E(ai1i2 · ai2i1)

=
1

N2

∑
1≤i1,i2≤N

E(a2
i1i2

) =
1

N2

∑
1≤i1,i2≤N

E(b2ψ(i1,i2)). (3.24)

Since we choose the b’s from a distribution with mean zero and variance 1, the
expected value above is just the variance (which is 1), and hence M2,n;N = 1,
which implies M2,n = limN→∞M2,n;N = 1. �

We need to consider the general even moment. By Corollary 2.2, the only con-
tributions to the moments M2m,n;N (see (2.9)) is when the aijij+1

’s are matched in
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pairs. There are (2m−1)!! such matchings; we need to determine the contribution
of each matching to M2m,n;N .

Each of the (2m−1)!! matchings, hereafter referred to as a configuration, leads
to a system of m equations of the form (2.21) or (2.22) (with the C’s coming from
(2.13) and (2.14)), for which each distinct solution gives us one possible choice for
the tuples (i1, . . . , i2m) and contributes one to the sum. The analysis is completed
by counting how many valid configurations there are (or at least determining the
main term).

Determining the exact value is complicated by the fact that there are many
ways for an aijij+1

and an aiviv+1 to be paired; they must correspond to the same
b`, but there are many diagonals each can lie on (with the number of diagonals
growing with n). Fortunately, we can obtain a weak bound depending on n that
nevertheless suffices to prove the existence of a limiting spectral measure. By
standard arguments, it suffices to show the average even moments converge as
N →∞ to a sequence satisfying Carleman’s condition, and then perform a similar
analysis on the variance (for weak convergence) or the fourth moment (for almost
sure convergence). We leave the convergence issues to §5, and instead prove the
existence of the limits.

Lemma 3.2. For fixed n, M2m,n exists and

M2m,n = lim
N→∞

M2m,n;N ≤ (2 · 2n)m(2m− 1)!!, (3.25)

which implies the M2m,n satisfy Carleman’s condition.

Proof. Fix n and m. Consider one of the (2m−1)!! pairings. We have m equations,
and thus we must choose m values for the C’s. For each equation there are at most
2 · 2n possible choices for a C; the largest the moment can be is if each possible
choice of the C’s lead to valid configurations. We therefore assume that happens.
The contribution of each configuration to the moment is at most 1. To see this,
note that as in all arguments in the subject, the number of tuples that contribute
in a given configuration is at most Nm+1, which is precisely what we divide by in
(2.9). Thus M2m,n;N ≤ (2 · 2n)m(2m− 1)!!, which implies

(2 · 2n)−1/2((2m− 1)!!)−1/2m ≤ M
−1/2m
2m,n;N . (3.26)

The existence of the limit is proved analogously to [BB, BDJ, HM, MMS]; now
that we know M2m,n is bounded, it is easy to see that the main term of the
contribution from each possible configuration is independent of N .

It remains to show that the M2m,n satisfy Carleman’s condition by showing the
sum of the reciprocals of their 2mth roots diverge. Trivial estimation suffices. As
(2m− 1)!! < (2m)2m, we have (2m− 1)!!−1/2m > 1/2m, and thus∑

m

M
−1/2m
2m,n >

∑
m

(2 · 2n)−1/2 · 1

2m
. (3.27)

The latter sum is the harmonic sum and diverges, completing the proof. �

In the arguments above we did not attempt to find optimal or even good bounds,
as these are not needed for convergence; however, if we want to understand the
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properties of the limiting spectral measure whose moments are the M2m,n’s, then
we need a more careful analysis (which we perform in §4).

In the case of real symmetric Toeplitz matrices, some configurations lead to
a system of equations with significantly fewer solutions than others. The first
instance of this was for the non-adjacent matchings in the fourth moment, which
contributed 2/3 and not 1 (see [HM]). In the case of real symmetric palindromic
Toeplitz matrices, though, all matchings contributed equally (see [MMS]). Thus
the presence of a palindrome leads to very different behavior. This leads to the
natural question of what is the effect of increasing the palindromicity. There are
now more possible configurations as a given b value is on more diagonals; do all
configurations contribute equally? The answer is yes. We prove this in stages.

3.2. The Fourth Moment. We analyze the fourth moment in detail below, prov-
ing in particular that the adjacent and non-adjacent matchings contribute equally
(which we compute in §4). As this analysis generalizes readily to higher moments,
we provide complete details. Further, as any distribution with finite mean and
variance can be normalized to have mean 0 and variance 1, if the distribution
is even then the fourth moment is the first moment to show the ‘shape’ of the
distribution, and thus merits special consideration.

Lemma 3.3 (Equal Contribution - Fourth Moment). The non-adjacent configu-
ration and the adjacent configuration contribute equally to the fourth moment.

Figure 1. The adjacent and the non-adjacent configurations of the
fourth moment.

Proof. The general configuration of the fourth moment of highly palindromic
Toeplitz matrices satisfies the following equations:{

ai1i2 = aj1j2
al1l2 = am1m2 ,

(3.28)

where in the adjacent configuration case i2 = j1, j2 = m1,m2 = l1 and l2 =
i1, while in the non-adjacent configuration case i2 = m1,m2 = j1, j2 = l1 and
l2 = i1. We have here a system of equation with 4 unknown variables, since two
adjacent entries in the tuples share one common index, and two equations. At
least two of those four unknown variables can be free indices. Our goal is to
show that the contribution from this general configuration depends on only at
most two nontrivially unequal indices and therefore all configurations contribute
equally. From the above system of equations relating the matchings, we obtain
the corresponding system of equations for the indices:{

|i1 − i2| = ±|j1 − j2|+ A

|l1 − l2| = ±|m1 −m2|+B.
(3.29)
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According the Lemma 2.3, in order for a tuple to contribute to the fourth moment
in the limit, we must have{

i1 − i2 = −(j1 − j2) + A
′

l1 − l2 = −(m1 −m2) +B
′
.

(3.30)

Where either A
′

= A or A
′

= −A (similarly for B
′
) depending on how we

expand the absolute value equations. Also, independent of whether this is the
adjacent or non-adjacent configuration, it must be true that:

A
′
+B

′
= i1 − i2 + j1 − j2 + l1 − l2 +m1 −m2 = 0. (3.31)

This implies that A and B must be of the same form, either in (2.13) or (2.14). If
A is of the form C2 in (2.14), then it follows immediately that A = B, while if A is
of the form C1 in (2.13), then it can be either be the case that A = B or it could
happen that A = −B. For each A, we have a system of two equations with four
unknown variables so we can always pick at least two free indices among them.
For convenience, we specify i1, i2 as free indices by choosing the first entry ai1i2 at
random. Moreover, we assume that we only pick ai1i2 in the lower diagonal half
of the matrix so that i1 > i2. By the symmetry of the matrix, picking ai1i2 in the
upper diagonal half would follow the same procedure. Finally, since A can only
be of the form C2 in (2.14) or C1 in (2.13), we first consider the case where A is
of the form C2 in (2.14), and thus A = B = C2 for some C2. We therefore find

{
|j1 − j2| = −|i1 − i2|+ C2

|l1 − l2| = −|m1 −m2|+ C2

=⇒


j1 − j2 = −(i1 − i2) + C2

j1 > j2
l1 − l2 = −(m1 −m2)− C2

m1 < m2 < m1 + A.

(3.32)

We now consider A of the form C1 in (2.13); then A = ±B = C1 for some C1

such that C1 + C2 = N − 1. The value C1 is unique for each choice of C2 and
the contribution from the pair (C1, C2) complements nicely one another as we will
show below. We have

{
|j1 − j2| = |i1 − i2|+ C1

|l1 − l2| = |m1 −m2| ± C1

=⇒


j1 − j2 = −(i1 − i2)− C1

j1 < j2
l1 − l2 = −(m1 −m2) + C1

m1 < m2 or m2 < m1 − C1.

(3.33)

Since we have already picked the first entry ai1i2 , choosing the entry am1m2 suffices
to specify at least three out of the four unknown variables, and once we know
three of the variables then the last variable is determined. Our choice of C1 (or C2

since the pair is unique) indicates the diagonals that am1m2 lies on. Finally, as only
one of the indices m1 or m2 need to be specified (since the other is restricted by
the diagonal), without loss of generality we choose m2. We now use our previous
analysis from (2.19) and Lemma 2.4 to analyze the diagonals associated to A = C1

and A = C2.
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(1) On the diagonal associated with A = C1:

m2 ∈ {m1, . . . ,m1 + C1} ∩ {a, . . . , b} (3.34)

(2) On the diagonal associated with A = C2:

m2 ∈ ({0, . . . ,m1 − C2} ∪ {m1, . . . , N}) ∩ ({0, . . . , a} ∪ {b, . . . , N}). (3.35)

Therefore, there are exactly C1 out of N+1 values of m2 we can pick (or exactly
C2 out of N +1 value of m2 we cannot pick). Since we have N2 choices for picking
the initial entry ai1i2 , the contribution to the fourth moment from the pair (C1, C2)
is given by

N2 · C1 =

(
N3

2n

)(
−
⌊
|i1 − i2|

2n

⌋
+ k − 1

)
. (3.36)

This contribution only depends on the initial choice of ai1i2 and the choice of
A. Summing over all possible choices of A of the form C1, we obtain the same
contribution to the fourth moment from either configuration. �

Corollary 3.4. Given any configuration at the fourth moment, the set of possible
values for each of the indices i, j, k and l is same.

The corollary follows immediately from our formula in ??. Given an initial entry
aij, we have

∑
Ci
N2Ci satisfying tuples. Since the value of Ci depends only on

b |i1−i2|
2n c, the number of satisfying tuples with initial entry aji is also

∑
Ci
N2Ci.

Therefore, over all satisfying tuples, if i takes on values {a, b, c, ...} then j must
also takes on the same value {a, b, c, ...}. Furthermore, should we choose the initial
entry at a different vertex of the configuration, we would obtain the same result
for the other index k and l.

3.3. Lifting Configurations and Contributions. Before extending the Lemma
3.3 to the general even moment, we introduce some notation for a “lift map”, which
is a way of relating one configuration of an even moment (say one of the (2m−1)!!
configurations of the 2mth moment) to one configuration of the next higher even
moment (to one of the (2m+ 1)!! configurations of the (2m+ 2)nd moment. If we
add a pair of entries to a configuration, this moves us from our initial configuration
to some configuration of the next even moment. There are only two ways to add
these entries: adding a pair of adjacent entries or adding a pair of non-adjacent
entries.

Lemma 3.5 (Configuration Lifting - Adjacent Case). Consider a configuration of
the 2mth moment. All configurations of the (2m+ 2)th moment obtained by adding
a pair of adjacent entries to this configuration contribute equally to the (2m+ 2)th

moment.

Figure 2. Moment Lifting by adding a pair of adjacent entries
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Proof. Let

(. . . , apq, . . . , aij, ajk, . . . alm, . . . )

be a tuple from one of the (2k−1)!! configurations of the 2kth moment; for brevity’s
sake we call this configuration (1). We let

(. . . , apq, . . . , aij, ajo, aos, ask, . . . , alm, . . . )

be the new tuple obtained by adding the pair of adjacent, matched entries ajo =
aos; we denote this by configuration (2). Let Ω2m be the set of all tuples that work
for configuration (1) and Ω2m+2 be the set of all tuples that work for configuration
(2). We define a “lift map” F : Ω2m → Ω2m+2 by

F ((. . . , apq, . . . , aij, ajk, . . . , alm, . . . )) = (. . . , apq, . . . , aij, ajo, aos, ask, . . . , alm, . . . ).
(3.37)

Note F maps each index in (. . . , apq, . . . , aij, ajk, . . . , alm, . . . ) to itself and inserts
a new index s = j − B + B

′
where B is the value of C corresponding to the pair

of entries (ajk = apq), and B
′

is any value of C such that s ∈ {1, . . . , N} and
(B − B

′
) is a valid value of C. The system of equations corresponding to the

tuples (. . . , apq, . . . , aij, ajk, . . . , alm, . . . ) is given as follows:
l −m = −(i− j) + A

p− q = −(j − k) +B

. . .

. . . .

(3.38)

Under the map F , we obtain a new tuple (. . . , apq, . . . , aij, ajo, aos, ask, . . . , alm, . . . )
satisfying the system of equations

l −m = −(i− j) + A

p− q = −(s− k) +B
′

j − o = −(o− s) + (B −B′
)

. . . .

(3.39)

Except for the two equations p−q = −(s−k)+B
′
and j−o = −(o−s)+(B−B′

),
every other equation of configuration (1) is preserved under F and therefore still
holds in configuration (2). Furthermore, since both B

′
and (B − B

′
) are valid

choices of the C value by the construction of F , the two equations p− q = −(s−
k) +B

′
and j − o = −(o− s) + (B −B′

) are also valid. Thus

(. . . , apq, . . . , aij, ajo, aos, ask, . . . , alm, . . . ) ∈ Ω2m+2. (3.40)

Next, we need to worry about the issue of whether the lift map F is well-defined
and exhausting. However, we fortunately only need to show that F is onto to
claim equal contribution. This is due to the fact that the map F only depends
on the choice of one index j and one C value B from the original configuration
(1). First, we can take j to be any value in {1, . . . , N}. For any configuration in
the 2mth moment, we have 2m indices (unknown variables) and m equations with
the last equation linearly dependent on the rest. Thus we must have at least two
completely free indices that can take on any value between 1 and N . We specify
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the two completely free indices by choosing the very first entry of the tuple, which
obviously can be any entry in the matrix. Furthermore, we can also choose the
first entry to be any vertex of the configuration. So if we choose aij to be our first
entry, we can pick j to be any value between 1 and N . Second, we can take B
to be any possible value of our C values since in order to obtain all the tuples of
configuration (1), we need to sum over all possible combinations of the C’s that
work for the system of equations corresponding to configuration (1).

Hence, starting from a configuration of the 2mth moment and adding in a pair
of adjacent entries to move up to a configuration at the next even moment, we
can always pick the entry preceding the location where we would add the new
adjacent pair to be the first entry in the tuples. As a consequence, the number
of tuples resulting from the map F is the same regardless of where we add the
adjacent pair if the map F can reach every possible tuple of configuration (2).

We complete the proof by showing F is onto. (IS THIS MORE INVOLVED
THAN NEEDED? DO WE HAVE F ONTO BY THE DEFINITION
OF THE TWO SETS Ω2k AND Ω2k+2? OR IS IT THAT WE HAVE A
VALID C CHOICE AS WELL?) Assume not; then F is not onto and hence
there exists some tuple

b = (. . . , apq, . . . , aij, ajo, aos, ask, . . . , alm, . . . ) ∈ Ω2k+2

such that for all tuples a ∈ Ω2m we have F (a) 6= b. Since ajo = aos and ask = apq
then for some C-value B and C{

p− q = −(s− k) + A

j − o = −(o− s) +B
=⇒

{
p− q = −(j − k) + (A+B)

s = j −B.
(3.41)

Now we consider the tuple a = (. . . , apq, . . . , aij, ajk, . . . , alm, . . . ) where j = s+B.
Everything entry except ajk and apq are matched in pair. Furthermore, ajk and
apq would also be matched in pair, and therefore a ∈ Ω2m, if for some C-value A
and B then A+B is a valid C-value. There are k+ 1 equations corresponding to
the configuration Ω2m+2. Let C1, . . . , Ck+1 be the C-value corresponding to each
of those equations. Lemma 2.3 implies that

C1 + C2 + · · ·+ Cm+1 = 0. (3.42)

We first analyze the low moments to build intuition. For the forth moment
(k = 1 so 2k+ 2 = 4) then 0 = C1 +C2 is obviously a valid C-value. For the sixth
moment (k = 2) then −C3 = C1 + C2 is also a valid C-value. More generally, for
any even moment, if there does not exist a valid C-value for which A + B is also
a valid C-value then p− q = −(j− k) + (A+B) would imply that given the entry
apq there exists no entry on the jth column of our matrix that can be matched in
pair with apq. This is a contradiction since just the single palindromic condition
guarantees that for any entry on the matrix, there exists at least one entry on each
column (or row) that can be matched in pair with it. (DOES SOMETHING
LIKE THIS MAKE ALL THIS TRIVIAL? ARE WE JUST DOING
EXISTENCE OR NUMBER OF MATCHINGS?) Finally, it is clear by
constructioin that F (a) = b, which completes the proof that F is onto. �
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Lemma 3.6 (Configuration Lifting - Nonadjacent Case). Consider a configuration
of matchings for the 2mth moment. All configurations at the (2m + 2)th moment
obtained by adding a pair of non-adjacent entries contribute equally to the (2m+
2)nd moment.

Figure 3. Moment Lifting by adding a pair of non-adjacent entries

Proof. Let (. . . , aij, ajm, . . . , alp, apq, . . . ) be a tuple of a configuration for the 2kth

moment; denote this by configuration (1). We let (. . . , aij, ajo, aom, . . . , alp, aps, asq, . . . )
be the new tuple obtained by adding the pair of entries ajo = aps. As before, let
Ω

′

2k be the set of all tuples that work for configuration (1) and Ω
′

2k+2 be the
set of all tuples that work for the configuration (2). We define the “lift map”
FF

′
: Ω

′

2k → Ω
′

2k+2 in this case by

F
′
((. . . , aij, ajm, . . . , alp, apq, . . . )) = (. . . , aij, ajo, aom, . . . alp, aps, asq, . . . )

(3.43)
such that F

′
maps every index in (. . . , aij, ajm, . . . , alp, apq, . . . ) to itself and adds

two new indices o = j + B − B′
and s = p + D − D′

where B and D are the C
values associated with the pairs containing ajm and apq respectively. Also, B

′
and

D
′

are any value of C such that o, s ∈ {1, . . . , N} and (D
′
+B

′−D−B) is a value
of C. For the tuple (. . . , aij, ajm, . . . , alp, apq, . . . ) we have the following system of
equations: 

i0 − j0 = −(i− j) + A

j0 −m0 = −(j −m) +B

l0 − p0 = −(l − p) + C

p0 − q0 = −(p− q) +D

. . .

(3.44)

Under the map F
′
, we obtain a new tuples (. . . , aij, ajo, aom, . . . , alp, aps, asq, . . . )

satisfying the system of equations:

i0 − j0 = −(i− j) + A

j0 −m0 = −(o−m) +B
′

l0 − p0 = −(l − p) + C

p0 − q0 = −(s− q) +D
′

j − o = −(p− s) + (D
′
+B

′ −D −B)

. . .

(3.45)

Similar to the analysis in Lemma 3.5, all equations except for j0 −m0 = −(o−
m) +B

′
and p0 − q0 = −(s− q) +D

′
and j − o = −(p− s) + (D

′
+B

′ −D −B)
are preserved under the map F

′
so they still hold. Furthermore, since B

′
, D

′

and (D
′
+ B

′ −D − B) are all valid choices of C, the other three equations also
hold true. Lastly, the existence of at least two completely free indices allow us
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to choose them to be the first index in ajm and the second index in alp. Thus,
following the same line of argument in Lemma 3.5, we can always choose the two
free indices such that the number of tuples resulting from the map F

′
(Ω

′

2k) are
the same regardless of where we add the non-adjacent pair. �

Corollary 3.7. Given any configuration, we can replace one of its adjacent pairs
by another adjacent pair, and similarly for non-adjacent pairs, without changing
its contribution to the corresponding moment.

Theorem 3.8. If all configurations at the 2mth moment contribute equally, then
all configurations at the (2m+ 2)th moment also contribute equally.

(Vincent) Please ignore this theorem for now. I’m making new pic-
tures to reflect the proof better

Proof. Given any configuration at the (2k + 2)nd moment, Corollary 3.7 allows
us to repeatedly replace adjacent pairs with other adjacent pairs, and similarly
for non-adjacent pairs. By iterating this process, we can move any configuration
down to the following two configurations:

Figure 4. Two possible final configurations

2
For any configuration at the (2k+2)th moment with k+1 pairs, we first move all

adjacent pairs to the left-hand side until there are only non-adjacent pairs left at
the right-hand side. We can replace those non-adjacent pairs to form the following
structure, which is possible since it contains only non-adjacent pairs:

Figure 5. Completely non-adjacent configuration

Consider the structure on the right-hand side. Since they WHAT ARE
THEY? are the same regardless of what initial configuration we start with, we
expect the same number of choices for the entries (ajk, . . . , ahl). For each choice of
entries (ajk, . . . , ahl) we need to find the number of choices for (ani, aij, alm, amn)
that work, then sum over all possible choices for (ajk, . . . , ahl) to find the contri-
bution to the moment.

Consider the structure on the left-hand side (ani, aij, alm, amn). They are only
slightly different from the adjacent and non-adjacent matching of the fourth mo-
ment. The only different is the the index j of aij and the index l of alm are not
required to be the same like before. Nonetheless, Lemma 3.3 still holds true for
this case if we choose the two completely free indices in Lemma 3.3 to be j and l
instead of choosing the first entries at random. So the two configurations in Fig-
ures ? ADD REFERENCES and ? contribute equally to the (2k+2)th moment
and therefore all configurations at the (2k + 2)th moment contribute equally. �
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I’M NOT SURE THAT I FULLY FOLLOW THIS AS IT IS IT ISN’T
ALWAYS CLEAR WHAT IS BEING REFERRED TO DUE TO LACK
OF NOTATION IN THE PICTURES AND SOME LACK OF SPE-
CIFIC LANGUAGE, BUT I THINK THE ARGUMENT IS OK.

It follows immediately by induction from Lemma 3.3 and Theorem 3.8 that
every configuration at any even moment contributes equally. The fact greatly
reduces the complexity of our moment problem as we only need to calculate the
contribution of the completely adjacent matching, and immediately get the same
contribution from the other (2k − 1)!!− 1 configurations.

4. Calculating the Moments

We determine below closed form expressions for the moments where possible.
Similar to other ensembles, there appear to be no nice closed form expressions
for general moments for arbitrary n; however, we are able to calculate the fourth
moment for any n, and in the special case of doubly palindromic matrices we
calculate all the even moments. Since each matching configuration contributes
equally, we need only determine the contribution from an adjacent matching in
the doubly palindromic case and then multiply by the number of configurations to
obtain the value for the even moments. We end this section with a discussion on
why this approach is not readily generalizable to matrices with a greater number
of palindromes.

4.1. The Fourth Moment. For the fourth moment, we have four indices i, j, k,
and l, and we consider an adjacent matching where

aij = ajk, akl = ali.

We think about this as follows. A pair i and j gives us a matrix element aij; we
want to find all pairs j and k such that aij = ajk. This could happen by having
the two on the same diagonal, or it could happen that ajk is on a palindromically
equivalent diagonal. As the formula for the fourth moment of our matrix AN
involves division by N3, we need only worry about situations where we have on
the order of N3 tuples. Clearly we may choose i and j freely. The matching then
forces there to be on the order of 1 choice for k (the exact answer depends on n,
the degree of palindromicity; what matters is that the answer is independent of
N in the limit), and on the order of N choices for l. The last is important, as
unless the number of choices of l is proportional to N , we will obtain a negligible
contribution from the matching aij = ajk and akl = ali. Exploiting the symmetry
of the matrix, this reduces to choosing k so that aij = akj and akl = ail. That is,
we want row i and row k to match well.

Figure 6. An example highlighting matchings for l in medium
shading, with mismatching in dark shading. Note that any anoma-
lous matchings won’t contribute in the limit.
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We isolate some of the most useful features of our matrices in the following
lemma. The proof follows immediately from the previous discussions and the
structure of the matrices in our ensemble.

Lemma 4.1. Fix n and consider the ensemble of N × N real symmetric palin-
dromic Toeplitz matrices with 2n palindromes in the first row. The main diagonal
is the only place (excluding the border of the matrix) where b0 occurs once rather
than twice. This implies the following useful properties.
Moving to the corresponding point in the next palindrome can require either moving
N2−n− 1 elements when crossing the main diagonal or N2−n elements otherwise.
As pictured in Figure 6, a given row and the row bN2−n rows down from that
given row do not match perfectly, but rather become unaligned when one row has
reached the main diagonal but the other row has not. Moreover, the row bN2−n−1
rows down starts out unaligned, but then becomes aligned in this same region.
Furthermore, only rows of this form match up well with the original row.

Proof. The first item follows directly from the observation that the main diagonal
is the only place where b0 appears once rather than consecutively. We also see that,
neglecting the first row which starts on the main diagonal, that the first elements
of a row and one bN2−n rows away match initially. Moreover, they evolve the
same way when moving from left to right, except when the first one hits the main
diagonal, in which case it skips forward one place in the palindrome, in which case
they do not match except possibly for repeating elements at the beginning/end
or middle of palindromes, like b0. However, once the second row hits the main
diagonal, it also skips forward, and they become realigned. The case for rows
bN2−n − 1 rows away from each other is argued similarly.

To prove that no other rows match sufficiently well we need to show that there
are only On(1) matchings in any of the other rows. Suppose we do have a matching
in one of the other rows. Since we can’t be at the corresponding point in the
palindrome, we must be at the other end of the palindrome. Thus, the two rows
will evolve in opposite directions, so although there may be additional anomalous
matchups, there will certainly not be more than four per palindrome, giving us
the desired maximum of On(1) possible matchings. �

Lemma 4.2. Let b ∈ {0, 1, . . . , 2n−1} and k = i+ bN2−n. There are then(
2n − b

2n

)3

N3 +On(N2)

good matchings, whereas if k = i+ bN2−n − 1, then there are

2nb2 − b3

23n
N3 +On(N2)

good matchings, where the big-Oh constants depend on n (which is fixed).5

5The constants may be taken to depend on b as well; however, as n is fixed and b ∈
{0, . . . , 2n−1}, we may take the maximum of all the constants and may replace b dependence
with n dependence.
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Proof. We begin by noting that by Lemma 4.1 above, choosing k so that aij and
akj are at corresponding points in a palindrome guarantees that aij = akj and
that there are On(N) choices of l satisfying akl = ail, as desired. Moreover, if
aij and akj aren’t at corresponding points in the palindrome, then there are only
On(1) good choices of l, and since there are at most n such possible cases, this
contribution can be ignored. Thus, we only consider the cases where aij and akj
are at corresponding places in a palindrome.

We now consider the case when k = i + bN2−n, hence aij and akj must be
on the same side of the main diagonal in order to match. Moreover, to have
k ∈ {1, 2, . . . , N} we must have i ∈ {1, 2, . . . , N − bN2−n}. Another restriction
arises from the fact that they are on the same side of the main diagonal. We note
that we won’t cross the main diagonal when moving down from any aij below
the main diagonal to akj. There will similarly be no crossing if aij lies more than
bN2−n elements above the main diagonal. This defines two right-triangular regions
of height N − bN2−n +On(1), which in total gives a square of area(

2n − b
2n

)2

N2 +On(N)

from which to choose aij, thus giving that many valid choices of aij. We also have
the restriction on the values of l as explained in Lemma 4.1, leaving N − bN2−n +
On(1) good values of l for each of these aij. In total bN2−n contributes(

2n − b
2n

)3

N3 +On(N2)

matchings to the fourth moment.
Next we consider the case where we cross the main diagonal when moving from

aij to akj, so that k = i + bN2−n − 1. In this case, the area of values of aij from
which we will cross the diagonal to give a matching will be mostly defined by
the parallelogram bordered by the triangles from the previous constant. However,
there may also be additional strips as depicted in light shading in Figure 7, but
these will only be of width 1, so the area is essentially that of the parallelogram
of height N − bN2−n + On(1) and width bN2−n + On(1). There will also be
bN2−n +On(1) good values of l, so in all this constant contributes

2nb2 − b3

23n
N3 +On(N2)

matchings. �

Figure 7. Regions where k = i+N
2

gives a matching are indicated

in medium shading, whereas those where k = i+ N
2
−1 are indicated

in dark shading. Regions where both are satisfied are indicated in
light shading: These are 1-dimensional, and thus won’t contribute
in the limit.
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We now comment on what happens for the negative constants {−bN2−n,−(bN2−n−
1)} for b ∈ {1, 2, . . . , 2n − 1}, in which case we are now moving up b palindromes,
and either crossing or not crossing the mian diagonal, respectively. We easily see
that this is essentially switching the roles of aij and ajk, so the contributions will
be the same. If we repeat the analysis above we find regions of identical size that
thus give identical contributions to the fourth moment. Pictorially, what happens
for a negative constant is that of the positive one rotated 180 degrees. Thus, the
contribution to the fourth moment will be given by the contributions from the
positive constants ({bN2−n, bN2−n − 1} for b ∈ {1, 2, . . . , 2n − 1} multiplied by a
factor of 2 to account for the negative constants.

Lemma 4.3. Fix n and consider the limit as N → ∞ of the average fourth
moment of our ensemble. The contribution from one of the adjacent matching
configurations (i.e., aij = ajk and akl = ali) to this limit is

2

3
2n +

1

3
2−n. (4.46)

Proof. For each value of b, we note that the contribution to M4,n(N) is

1

N3

((
2n − b

2n

)3

N3 +
2nb2 − b3

23n
N3 +On(N2)

)
=

(
2n − b

2n

)3

+
2nb2 − b3

23n
+On

(
1

N

)
.

Taking the limit as N →∞ yields the contribution to M4,n is(
2n − b

2n

)3

+
2nb2 − b3

23n
.

We sum over each value of b, multiply by 2 to account for the negative constants,
and include the contribution from C = 0, known to be 1 from [MMS] to obtain
the contribution to the fourth moment from the adjacent matching case:

Madj
4,n = 1 +

2

23n

2n∑
b=1

(
(2n − b)3 + 2nb2 − b3

)
. (4.47)

Extending the sum to include b = 0 cancels the first and last terms of the sum,
but we must subtract 4 to compensate. This then leaves a sum of squares which
is easily evaluated:

Madj
4,n = −1 +

2

23n

2n∑
b=0

2nb2

= −1 +
2

22n

2n(2n + 1)(2 · 2n + 1)

6

= −1 +
(1 + 2−n)(2 · 2n + 1)

3

= −1 +
1

3
(2 · 2n + 2 + 1 + 2−n)

=
2

3
2n +

1

3
2−n,

completing the proof. �
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4.2. The General Even Moments of DPT Matrix. Using Theorem 3.8, we
can determine any moment by calculating the contribution from one of the adja-
cent configurations. we generalize the pictorial method of the previous subsection
to higher moments. For the 2mth moment, we find that our final system of equa-
tions for an adjacent configuration becomes

i3 = i1 + C1

i5 = i3 + C2 = i1 + C1 + C2

...

i1 = i2m−1 + Cm = i1 +
m∑
k=1

Ck.

Remark 4.4. The even indices don’t appear because the nth matching gives the
equation i2n− i2n−1 = −(i2n+1− i2n)+Cn, and the i2n terms cancel. However, for
each non-zero constant Cl, we will have a picture similar to Figure 6, which limits
the number of good values of the even indices i2l analagous to the restrictions
on l for the fourth moment. Moreover, as each i2n+1 is related back to i1, the
difference between the maximum and minimum partial sums must be strictly less
than N +O(1) or we lose a degree of freedom.

These observations allow us to calculate the value of every moment for the
doubly palindromic case. First, we give some useful definitions.

Definition 4.5. A C-vector is the ordered collection of constants relating the
odd indices to each other. In the example at the beginning of this subsection, the
C-vector would be (C1, C2, . . . , Cm).

A core of a C-vector is the ordered collection of nonzero constants in the C-
vector. That is, we collapse down the C-vector to its core by removing all of the
zero constants from it. We can also think of the C-vector as being built up from
the core by adding back the zeros in the correct places.

Theorem 4.6. The 2mth moment averaged over the ensemble of doubly palin-
dromic Toeplitz matrices is given by:

M2m,1 = (2m− 1)!!

(
−2 + 2−m

(
3∑
b=1

bm

))
. (4.48)

Proof. The following observations greatly simplify the analysis for this case:

• If the constants ±N
2

appear in the C-vector (C1, . . . , Cn), then ±N
2
− 1

cannot occur as a main term. If it did, we would lose a degree of freedom
in i2, as ai1i2 would need to lie on a very specific set of diagonals.
• If some Cj is non-zero, then the next non-zero C chosen must be −Cj, as

we would otherwise lose a complete degree of freedom in i1.

Now consider the 2mth moment, which will have a C-vector of length m. We
can then consider a subset of length k (k even) of (N

2
,−N

2
, . . . , N

2
,−N

2
) that forms

the core of the C-vector, with the remaining entries being zero. There are then
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m
k

)
distinct ways to insert the remaining zeros, and thus

(
m
k

)
ways to build a

C-vector around this core.
We now consider the contribution from each of these C-vectors. By Remark

4.4, there will be N
2

values of i1 to choose from, and there will be k other i2l
(corresponding to the k nonzero Cl) that will have (N − N

2
) + O(1) good values.

Thus the contribution for each of these cases will be (1
2
)k+1. The total contribution

to the 2mth moment from this configuration, summing over all possible C-vectors,
is therefore

m∑
k even
k=2

(
m

k

)(
1

2

)k+1

. (4.49)

If we pull out a factor of 1
2

and include m = 0 in the sum, we can use the binomial
theorem to express this as

1

4

((
1 +

1

2

)m
+

(
1− 1

2

)m)
− 1

2
. (4.50)

The contribution from a core of (−N
2
, N

2
, . . . ,−N

2
, N

2
) will be the same as that

above. The cores of (±(N
2
−1),∓(N

2
−1), . . . ,±(N

2
−1),∓(N

2
−1)) can be similarly

analyzed, and they will also have the same contribution since N − N
2

+ O(1) =
N
2

+ O(1), so we multiply (4.50) by 4. We also include the contribution from
the 0-vector, which is 1 for the adjacent case. Thus, the contribution from each
configuration is

−2 +

(
1 +

1

2

)m
+ 1m +

(
1− 1

2

)m
= −2 + 2−m

(
3∑
b=1

bm

)
. (4.51)

Appealing to Theorem 3.8 and multiplying by (2m − 1)!! (the number of config-
urations, i.e., the number of ways of matching 2m objects in m pairs with order
not mattering), we have

M2m,2 = (2m− 1)!!

(
−2 + 2−m

(
3∑
b=1

bm

))
, (4.52)

completing the proof. �

Remark 4.7. Unfortunately, this method does not readily generalize to matrices
with a greater number of palindromes. The fundamental reason is that the obser-
vations made at the beginning of Theorem 4.6 no longer hold for these matrices,
which then makes it tremendously more difficult to generate all valid C-vectors.

To demonstrate these difficulties, we investigate the 6th moment of a matrix with
four palindromes. While we can construct C-vectors in the same manner as for
the doubly palindromic ensemble, we clearly will be missing a substantial number
of possible C-vectors. For instance, we miss the vector

(
N
2
, N

4
,−3N

4

)
.

In addition to these vectors, we have even more problematic vectors such as(
(N

2
, N

4
− 1,−

(
3N
4
− 1
))

, which turns out to be valid for aij chosen within a cer-
tain band. These new vectors, in which “mixing” is important, make it fiendishly
difficult to determine precisely which C-vectors to include and which to exclude.
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While we could in principle calculate any given moment for any number of palin-
dromes, there is no apparent method that will work for all of these simultaneously.
Similar to other investigations on related ensembles, we are left with general exis-
tence proofs of the moments, as well as estimates on their rate of growth.

Whenever one has involved combinatorial arguments such as the ones above,
it is worthwhile to numerically test our theory. We looked at 1000 real symmet-
ric doubly palindromic 2048 × 2048 Toeplitz matrices, and compared the even
moments to our predicted values (as expected, the odd moments were small). Un-
fortunately the rate of convergence is slow in N due to the presence of large big-Oh
constants.

moment predicted observed observed/predicted

2 1.000 1.001 1.001
4 4.500 4.521 1.005
6 37.500 37.887 1.010
8 433.125 468.53 1.082

10 6260.63 107717.3 17.206

It is worth noting how slow the convergence is. For example, when we considered
1000 real symmetric doubly palindromic 96 × 96 Toeplitz matrices, the observed
second moment was 0.990765, the fourth moment was 4.75209, the sixth was
45.7965 (for a ratio of 1.22) and the eight was 737.71 (for a ratio of 1.70).

5. Convergence

In §2 (specifically Lemma 2.1 and Corollary 2.2) we showed that the limit of the
average moments exist as N →∞, and in Lemma 3.2 we proved that the moments
grow slowly enough to uniquely determine a probability distribution. We now show
convergence in probability, and if p(x) is even, we prove almost sure convergence.
As these arguments closely follow those in [HM, MMS], we concentrate on the
novelties introduced by the higher palindromicity. We conclude by obtaining lower
bounds for the moments. These bounds imply that our limiting distributions
have unbounded support and fatter tails than the standard normal (possibly the
fattest tails observed from a random matrix ensemble arising from entries chosen
independently from a distribution whose moment generating function converges
in a neighborhood of the origin).

5.1. Weak Convergence. Recall

Definition 5.1 (Weak Convergence). A family of probability distributions µn
weakly converges to µ if and only if for any bounded, continuous function f we
have

lim
n→∞

∫ ∞
−∞

f(x)µn(dx) =

∫ ∞
−∞

f(x)µ(dx). (5.53)
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We will prove our probability measures converge weakly. We follow the argu-
ments in [HM]. We begin by defining our random variables. Let A be a sequence of
real numbers to which we associate an N×N real symmetric Toeplitz matrix with
2n palindromes, which we denote by AN . Thus we may view A as (b0, b1, b2, . . . ),
and we form AN by considering the initial segment of length N/2n+1, taking that
as the first half of our palindrome, and then building the matrix by having 2n

palindromes in the first row.
Let Xm,n;N(A) be a random variable that equals the mth moment of AN (so

Xm,n;N(A) = Mm,n;N(AN)), and set Mm,n;N to the mth moment averaged over the
ensemble as above (so Mm,n;N = E[Xm,n;N ]).

Thus, we have convergence in probability if for all ε > 0

lim
N→∞

PN({A ∈ ΩN : |Xm,n;N −Xm,n| > ε}) = 0. (5.54)

Using Chebyshev’s inequality and the fact that Var(Y ) = E[(Y −E[Y ])2] = E[Y 2]−
E[Y ]2, we have

PN({A ∈ ΩN : |Xm,n;N − E[Xm,n;N ]| > ε})

≤ E[(Xm,n;N −Mm,n;N)2]

ε2
.

=
E[X2

m,n;N ]−M2
m,n;N

ε2
. (5.55)

Thus, it suffices to show

lim
N→∞

(E[X2
m,n;N ]−M2

m,n;N) = 0 (5.56)

to prove convergence in probability.
We have

E[X2
m,n;N ] =

1

Nm+2

∑
1≤i1,...,im≤N

×
∑

1≤j1,...,jm≤N

E[b|i1−i2| · · · b|im−i1|b|j1−j2| · · · b|jm−j1|],

M2
m,n;N =

1

Nm+2

∑
1≤i1,...,im≤N

E[b|i1−i2| · · · b|im−i1|]

×
∑

1≤j1,...,jm≤N

E[b|j1−j2| · · · b|jm−j1|]. (5.57)

We can break this up into two cases. If the entries of the i diagonals are entirely
distinct from those of the j diagonals, then the contribution to E[X2

m,n;N ] and to

M2
m,n;N will clearly be the same. Thus, we need to approximate the contribution

from the cases where there are one or more shared diagonals. The degree of
freedom arguments of [HM] immediately apply here, though our big-Oh constants
will now depend on the value of 2n as we now have many more C-vectors to which
we apply these arguments. Thus, as N → ∞ these two quantities will converge,
and convergence in probability and weak convergence follow.
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5.2. Almost Sure Convergence. We assume that p(x) is even for convenience,
and use the same notation as above; in particular,

Mm,n = lim
N→∞

Mm,n;N = lim
N→∞

E[Xm,n;N(A)]. (5.58)

Almost sure convergence follows from showing that as N →∞ the event

{A ∈ ΩN : lim
N→∞

Xm,n;N(A)→Mm,n}

occurs with probability one for all non-negative integers m.
By the triangle inequality, we have that

|Xm,n;N(A)−Mm,n| ≤ |Xm,n;N(A)−Mm,n;N |+ |Mm,n;N −Mm,n|. (5.59)

We have already shown that limN→∞ |Mm,n;N −Mm,n| = 0, so we must show that
|Xm,n;N(A)−Mm,n;N | almost surely tends to zero. Clearly E[Xm,n;N(A)−Mm,n;N ] =
0, and we can modify the arguments in [HM] to show that the fourth moment of
Xm,n;N(A)−Mm,n;N is Om,2n( 1

N2 ). All of the degree of freedom arguments can be
applied directly for each C-vector.

However, Theorems 6.15 and 6.16 of [HM] require greater care as these use more
than degree of freedom arguments. Fortunately, equations (50) and (51) in [HM]
hold for any of our C-vectors, so a similar result holds in this case. We then apply
Chebyshev’s inequality to find

PN(|Xm,n;N(A)−Mm,n;N | ≥ ε) ≤ E[|Xm,n;N(A)−Mm,n;N |4]
ε4

≤ Cm,2n

N2ε4
. (5.60)

Finally, applying the Borel-Cantelli Lemma shows that we have convergence
everywhere except for a set of zero probability, thus proving almost sure conver-
gence.

5.3. Moment bounds and fat tails. We now extend Theorem 4.6 to matrices
with greater palindromicity. In doing so, we miss many of the C-vectors that con-
tribute to these moments, but exact calculations for even a quadruply palindromic
matrix have proven difficult. The goal is to obtain good enough bounds on the
moments to deduce properties of the limiting spectral measures. We begin with
the following lemma.

Lemma 5.2. For any fixed n we have

M2m,n ≥

(
−2 · (2n − 1) + 2−mn

(
2·2n−1∑
b=1

bm

))
· (2m− 1)!!. (5.61)

As m→∞, we have

M2m,n �
2mn

m
· (2m− 1)!!. (5.62)

Proof. Let Cb = bN
2n for b ∈ {1, . . . , 2n − 1}. We determine the contribution to

the average 2mth moment as N → ∞ from one of the two adjacent matchings.
That is, consider the core (i.e., the non-zero part) of the corresponding C-vectors
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is (±Cb,∓Cb, . . . ,±Cb,∓Cb) and its complement (±(N − 1 − Cb),∓(N − 1 −
Cb), . . . ,±(N − 1− Cb),∓(N − 1− Cb)). They contribute

−2 +

(
2− b

2n

)m
+

(
b

2n

)m
. (5.63)

The proof of this claim goes back to the observation in Figure 6 that for Cb = bN
2n ,

the number of free l values is N − bN
2n +O(1), whereas if Cb = bN

2n − 1, then there

are bN
2n + O(1) good l values. Thus the complementary Cb will give the same

restrictions on the number of l values.
Moreover, the restrictions on i1 from bN

2n and N − 1 − bN
2n sum to 1. Thus, as

there are the two cases (plus first or minus first) for each, when we sum them and
extend the sums back to 0, we have

−2 + 2 ·
m∑

j even

(
m

j

)(
2n − b

2n

)j+1

= −2 +

(
2 · 2n − b

2n

)m
+

(
b

2n

)m
. (5.64)

In order to get our lower bound for M2m,n, we repeat this for every value of
b ∈ {1, 2, . . . , 2n − 1}. Adding in the contribution from the zero vector, we obtain

−2 · (2n − 1) + 2−mn

(
2·2n−1∑
b=1

bm

)
, (5.65)

which is easily summed for any value of k. From Theorem 3.8, each of the (2m−1)!!
matchings contribute equally, and hence

M2m,n ≥

(
−2 · (2n − 1) + 2−mn

(
2·2n−1∑
b=1

bm

))
· (2m− 1)!!. (5.66)

The behavior for large m follows by approximating the sum with an integral. �

We can now turn to an analysis of the properties of the limiting spectral mea-
sures. Note n = 0 corresponds to the real symmetric palindromic Toeplitz matri-
ces studied in [MMS], and n = 1 corresponds to the doubly palindromic Toeplitz
matrices. We now prove Theorem 1.3, which we restate below for the reader’s
convenience.

Theorem 1.3 (Fat Tails). Consider the ensemble from Theorem 1.2. For any
fixed n ≥ 1, the moments grow faster than the corresponding moments of the
standard normal; specifically, if M2m,n denotes the 2mth moment of the limiting
spectral measure of our ensemble for a given n, then

M2m,n �
2mn

m
· (2m− 1)!!. (5.67)

The limiting spectral measure thus has unbounded support, and fatter tails than the
standard normal (or in fact any of the known limiting spectral measures arising
from an ensemble where the independent entries are chosen from a density whose
moment generating function converges in a neighborhood of the origin).
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Proof. From Lemma 5.2 we know

M2m,n �
2mn

m
· (2m− 1)!!. (5.68)

As n ≥ 1, for m large this is greater than the mth moment of the standard normal,
which is (2m− 1)!!. Thus our limiting spectral measure has unbounded support,
and more mass in the tails than the standard normal, or in fact, any normal if
n ≥ 2. To see the last claim, note that if X ∼ N(0, σ2) then the 2mth moment of
X is σ2m · (2m−1)!!, and thus when n ≥ 2 eventually the moment of our ensemble
is greater than the moment of this normal. �

I DON’T KNOW HOW TO START AN APPENDIX, SO I’M JUST
PUTTING IN A NEW SECTION FOR NOW. I’M ALSO NOT SURE
EXACTLY HOW FORMAL AND FLESHED OUT THIS SECTION
SHOULD BE.

6. Numerical Methods

While they can never be accepted as proof, numerical simulations did much to
guide our efforts in attacking this problem, and we would not have been successful
without it, as our naive adaptations of previous works on this subject failed to
give even remotely accurate predictions. Therefore we give a brief outline of our
use of these simulations below.

At first, we primarily used a basic, direct method to approximate the momemts
of the eigenvalue distribution. We first set up a matrix with 2n palindromes
and choose N so that the matrix has the desired form (every element appears
exactly 2n+1 times in the first row). For each moment we use the eigenvalue trace
lemma to calculate the moment of the eigenvalue distribution for this particular
matrix, then we average over a large number of such random matrices to get an
approximation for that moment averaged over the ensemble of Toeplitz matrices
with 2n palindromes. To get increased accuracy, we would simply increase N .

While this method was quite useful and accurate for lower moments or for
a small number of palindromes, for larger values of these quantities the big-Oh
constants grew quite large, making it computationally prohibitive to simulate a
representative sample of sufficiently large matrices, and thus leaving us with a
rather poor estimate of the moments and providing no guide to whether or not
our formulas were accurate.

To avoid simulating ever-larger matrices, we instead realized that the 2mth

moment of an N by N matrix will satisfy

M2m,n;N = M2m,n +
C1

N
+
C2

N2
+ · · ·+ Cm

Nm
.

Thus, rather than simulating prohibitively large matrices, we could instead simu-
late large numbers (to increase the likelihood of a representative sample) of several
sizes of smaller matrices then perform a regression to estimate the value of M2m,n.

In performing these regressions, we sometimes found big-Oh constants so large
that it would have been impossible to sufficiently large matrices to get an accuracy
of within a few percent for the moments. For example, for the fourth moment of
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a Toeplitz matrix with 64 palindromes we found the big-Oh constant to be above
30, 000 so that averages of quite large matrices would give an approximation for
the fourth moment that would be off by 10, compared to a true value of about
128.

While this again cannot replace a proof, it was successful in verifying our pre-
dictions for the higher moments of the doubly palindromic Toeplitz matrix and
for the fourth moment of the 64-palindrome Toeplitz matrix.
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