
DISTRIBUTION OF EIGENVALUES OF HIGHLY
PALINDROMIC TOEPLITZ MATRICES

STEVEN JACKSON, STEVEN J. MILLER, AND THUY PHAM

Abstract. Consider the ensemble of real symmetric Toeplitz matrices whose
entries are i.i.d random variables chosen from a fixed probability distribution p
of mean 0, variance 1 and finite higher moments. Previous works showed that
the limiting spectral measures (the density of normalized eigenvalues) converge
weakly and almost surely to a universal distribution almost that of the Gaussian,
independent of p. The deficit from the Gaussian distribution is due to obstruc-
tions to solutions of Diophantine equations and can be removed by making the
first row palindromic. In this paper, we study the case where there is more than
one palindrome in the first row of a real symmetric Toeplitz matrix. Using the
method of moments and an analysis of the resulting Diophantine equations, we
show that the moments of this ensemble converge to an universal distribution
with very fat tails.
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1. Introduction

1.1. Background. Since its inception, Random Matrix Theory has been a pow-
erful tool in modeling highly complicated systems, with applications in statis-
tics [Wis], nuclear physics [Wig1, Wig2, Wig3, Wig4, Wig5] and number theory
[KS1, KS2, KeSn]; see [FM] for a history of the development of some of these
connections. An interesting problem in Random Matrix Theory is to study sub-
ensembles of real symmetric matrices by introducing additional structure. One
of those sub-ensembles is the family of real symmetric Toeplitz matrices; these
matrices are constant along the diagonals:

AN =


b0 b1 b2 · · · bN−1

b−1 b0 b1 · · · bN−2

b−2 b−1 b0 · · · bN−3
...

...
...

. . .
...

b1−N b2−N b3−N · · · b0

 , aij = bj−i. (1.1)

Initially numerical investigations suggested that the density of the normalized
eigenvalues was given by the standard normal; however, Bose, Chatterjee, Gan-
gopadhyay [BCG], Bryc, Dembo and Jiang [BDJ] and Hammond and Miller [HM]
showed that this is not the case (in particular, the fourth moment is 2 2/3 and not
3). The analysis in [HM] shows that although the moments grow more slowly than
the Gaussian’s, they grow sufficiently fast to determine a universal distribution
with unbounded support. The deficit from the standard Gaussian’s moments is
due to obstructions to Diophantine equations.

In [MMS], Massey, Miller and Sinsheimer found that, by imposing additional
structure on the Toeplitz matrices by making the first row a palindrome, the Dio-
phantine obstructions vanish and the limiting spectral measure converges weakly
and almost surely to the standard Gaussian. A fascinating question to ask here is
how the behavior of the normalized eigenvalues changes if we impose other con-
straints. Basak and Bose [BB] obtain results for ensembles of Toeplitz (and other)
matrices that are also band matrices, with the results depending on the relative
size of the band length to the dimension of the matrices. In this paper we explore
the effect of increasing the palindromicity on the distribution of the eigenvalues.
Before stating our results, we first list our notation.

1.2. Notation.

Definition 1.1. For fixed n, we consider N ×N real symmetric Toeplitz matrices
in which the first row has 2n copies of a palindrome. We always assume N to be a
multiple of 2n so that each element occurs exactly 2n+1 times in the first row. For
instance, a doubly palindromic Toeplitz matrix (henceforth referred to as a DPT



DISTRIBUTION OF EIGENVALUES OF HIGHLY PALINDROMIC TOEPLITZ MATRICES 3

matrix) is of the form:

AN =



b0 b1 · · · b1 b0 b0 b1 · · · b1 b0
b1 b0 · · · b2 b1 b0 b0 · · · b2 b1
b2 b1 · · · b3 b2 b1 b0 · · · b3 b2
...

...
. . .

...
...

...
...

. . .
...

...
b2 b3 · · · b0 b1 b2 b3 · · · b1 b2
b1 b2 · · · b0 b0 b1 b2 · · · b0 b1
b0 b1 · · · b1 b0 b0 b1 · · · b1 b0


(1.2)

We always assume the entries of our matrices are i.i.d.r.v. chosen from some
distribution p with mean 0, variance 1 and finite higher moments. The entries of
the matrices are constant along diagonals. Furthermore, entries on two diagonals
that are N/2n diagonals apart from each other are also equal. Finally, entries on
two diagonals symmetric within a palindrome are also equal.

To succinctly keep track of which elements are equal, we may introduce a link
function ψ : {1, . . . , N}2 → {1, . . . , N} and new parameters b` such that aij =
bψ(i,j), where

ψ(i, j) =

{
|i− j| mod 2n if |i− j| mod 2n < N/2n+1

−|i− j| mod 2n if |i− j| mod 2n > N/2n+1.
(1.3)

Each N × N matrix AN in this ensemble can be identified with a vector in
RN/2n

by AN ↔ (b0(AN), b1(AN), . . . , bN/2n(AN)). We denote the set of N × N
real symmetric Toeplitz matrices with 2n palindromes by ΩN,n and subsequently
construct a probability space (ΩN,n,FN ,PN) by

PN({An ∈ ΩN,n : bi(AN) ∈ [αi, βi] for i ∈ {0, 1, . . . , N/2n − 1})

=

N
2n−1∏
i=0

∫ βi

αi

p(xi)dxi, (1.4)

where each dxi is Lebesgue measure. For each matrix AN ∈ ΩN,n we associate a
probability measure by placing a point mass of size 1/N at each of its normalized
eigenvalues λi(AN):

µAN
(x)dx :=

1

N

N∑
i=1

δ

(
x− λi(AN)√

N

)
dx, (1.5)

where δ(x) is the Dirac delta function.

1.3. Results. Our main result concerns the limiting behavior (as a function of
the palindromicity n) of the µAN

for generic AN as N → ∞. We analyze these
limits using the method of moments. Specifically, for each AN we calculate the
moments of µAN

by using the Eigenvalue Trace Lemma to relate the kth moment
to the trace of AkN . We show the average kth moment tends to the kth moment of
a distribution with unbounded support. By analyzing the rate of convergence, we
obtain results on convergence in probability and almost sure convergence.

Specifically, we prove the following.
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GIVE PRECISE STATEMENTS
The rest of the paper is organized as follows. We first establish some basic

results about our ensembles and the associated measures in §2. We then analyze
the even moments in detail in §3. We give the proof on the vanishing Diophantine
obstructions for highly palindromic Toeplitz matrices and show that all the config-
urations of highly palindromic Toeplitz matrices contribute equally at any general
even moment. While it is difficult to isolate the exact value of these moments, we
are able to analyze these moments well enough to prove our convergence claims
and to have some understanding of the limiting spectral measure. The situation is
different for both the fourth moment for any palindromicity and all even moments
for the doubly palindromic Toeplitz matrices, and we determine the exact values
in §4. We conclude in §5 by proving the convergence claims.

2. Diophantine Formulation

In this section we begin our analysis of the moments. We prove some combina-
torial results which restrict the number of configurations which can contribute a
main term; we then analyze the potential main terms in the following section.

Recall that for each matrix AN ∈ ΩN,n we associate a probability measure by
placing a point mass of size 1/N at each of its normalized eigenvalues λi(AN):

µAN
(x)dx :=

1

N

N∑
i=1

δ

(
x− λi(AN)√

N

)
dx, (2.6)

where δ(x) is the Dirac delta function. Thus the kth moment of µAN
(x) is

Mk,N(AN) :=

∫ ∞
−∞

xkµAN
(x)dx =

1

Nk/2+1

N∑
i=1

λki (AN). (2.7)

The expected value of the kth moment of the N × N matrices in our ensemble,
found by averaging over the ensemble with each AN weighted by (1.4) and using
the Eigenvalue Trace Lemma, is

Mk,N := E[Mk,N(AN)] =
1

Nk/2+1

∑
1≤i1,...,ik≤N

E[ai1i2ai2i3 · · · aiki1 ]

=
1

Nk/2+1

∑
1≤i1,...,ik≤N

E[bψ(i1,i2)bψ(i2,i3) · · · bψ(ik,i1)],

(2.8)

where from (1.4) the expectation equals

E[bψ(i1,i2)bψ(i2,i3) · · · bψ(ik,i1)] :=

∫
· · ·
∫
bψ(i1,i2)bψ(i2,i3) · · · bψ(ik,i1)

N
2n−1∏
i=0

p(bi)dbi.

(2.9)
We let Mk be the limit of the average moments; thus

Mk := lim
N→∞

Mk,N ; (2.10)
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we will prove later that these limits exist.
Our goal is to understand the Mk, i.e., the limiting behavior of the moments

in these ensembles. We use Markov’s method of moments, which we summarize
below. This is a standard method for proving results in the subject; a nice explicit
summary of this method begins Section 3 of [BB].

• We first show Mk = limN→∞Mk,N = limN→∞ E[Mk,N(AN)] exists for k a

positive integer, with theMk’s satisfying Carleman’s condition:
∑∞

k=1M
−1/2k
2k

= ∞. As these are the moments of the empirical distribution measures,
this implies that the Mk’s are the moments of a distribution.
• Convergence in probability follows from analyzing the second moment,

namely showing Var(Mk,N(AN)−Mk) tends to zero as N →∞.
• Almost sure convergence follows from showing the fourth moment tends to

zero and then applying the Borel-Cantelli lemma.

We do the convergence calculations in §5; in this and the next few sections we
determine the limiting behavior of the ensemble averages.

The odd moments are readily determined, as counting the degrees of freedom
show the average odd moments vanish in the limit as N →∞.

Lemma 2.1. All the average odd moments vanish in the limit; i.e., limN→∞M2m+1,N

= 0.

Proof. For odd k, we consider E[bψ(i1,i2)bψ(i2,i3) · · · bψ(ik,i1)]; we may write this as
E[br1`1 · · · b

rj
`j

] with r1 + · · ·+ rj = k and the b`’s distinct. As k is odd, at least one

b` is raised to an odd power. If any of these occur to just the first power, then the
expectation is zero as the b’s are drawn from a mean zero distribution.1 Thus at
least one of the b`’s above occurs at least three times, and every b` occurs at least
twice. The maximum number of distinct b`’s occurs when everything is matched
in pairs except for one triple matching. Thus there are at most k−1

2
different b`’s

in our tuple, and the number of tuples is bounded independent of N . We have two
degrees of freedom from the first matching of the b`’s and one degree of freedom
for each other matching,2 for a total of at most k−1

2
+ 1 = k+1

2
degrees of freedom.

Thus the number of indices i1, . . . , ik ∈ {1, . . . , N} that can contribute to the
moment in (2.8) for a given matrix is On(N (k+1)/2) (where the big-Oh constant
may depend on n, as the larger n is the more choices we have for diagonals). As
we divide by N (k/2)+1 in (2.8), the odd moments are On(N−1/2), and thus vanish
in the limit as N →∞. �

1If we assume our distribution p is even, then a similar argument immediately implies all the
odd moments vanish.

2For example, say bψ(i1,i2) = bψ(iv,iv+1), with i1 our first index. Both i1 and i2 are free
variables and we have N choices for each; however, iv is not (it will have occurred in a matching
before this point), and iv+1 is determined by requiring the two b`’s under consideration to be
equal. The number of choices for iv+1 depends on n (the larger n is, the more diagonals work);
what matters is that the number of choices for iv+1 is independent of N . Whenever we have
a new pair, we have a new choice for the value of the link function, and thus gain a degree of
freedom.
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In order to understand the even moments, we need to know more about which
matchings are permissible, and how many choices of the indices lead to valid
configurations. In the original case of the ensemble of real symmetric Toeplitz
matrices [HM], the only way any two entries b` could match was for them to lie
on the same diagonal or on the reflection of that diagonal over the main diagonal.
That is, they matched if and only if

|im − im+1| = |il − il+1|. (2.11)

For highly palindromic Toeplitz matrices, more relations give matchings (as seen
in the investigation of palindromic matrices in [MMS]). An entry for which the
absolute value of the difference between its indices is in a given congruence class
modulo 2n can match with another entry if and only if it is in the same congruence
class or its negative. That is, two entries aimim+1 and ailil+1

can be matched in a
pair if and only if their indices satisfy one of the following relations:

(1) there is a C1 ∈ {(−b |il−il+1|
2n c+ k − 1) N

2n | k ∈ {1, . . . , 2n}} such that

|im − im+1| = |il − il+1|+ C1; (2.12)

(2) there is a C2 ∈ {(b |il−il+1|
2n c+ k) N

2n | k ∈ {1, . . . , 2n}} such that

|im − im+1| = −|il − il+1|+ C2; (2.13)

as is standard, bxc represents the largest integer at most x.

As a consequence of (2.12) and (2.13), for the matchings above there is some C
such that

im − im+1 = ±(il − il+1) + C. (2.14)

As there are two choices for sign and k matchings, there are potentially 2k cases
that can contribute. We now prune down the number of possibilities greatly by
showing only one case contributes in the limit, namely the case when all the signs
are negative.

In the Toeplitz ensembles studied in [HM] and [MMS], it was shown that any
matching with a positive sign (i.e., as in (2.14)) in any pair contributes a lower
order term to the moments, and thus it sufficed to consider the case where only
negative signs occurred. A similar result holds here, which greatly prunes the num-
ber of cases we need to investigate. Note by Lemma 2.1 we need only investigate
the even moments.

Lemma 2.2. Consider the contribution to the 2kth moment from all tuples (i1, . . . ,
i2k) in which the corresponding b`’s are matched in pairs. If an aimim+1 is matched
with an ailil+1

with a positive sign (which means

im − im+1 = +(il − il+1) + C

for some C as defined in (2.12) or (2.13)), then it contributes Ok(1/N) to M2k(N)
and therefore the contribution of all but one of the 2k choices for the k signs van-
ishes in the limit, with only the choice of all negative signs being able to contribute
in the limit.
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Proof. The argument is essentially the same as in [MMS]. For any tuple (i1, . . . , i2k)
in which the corresponding b`’s are matched in pairs, there exist k equations, one
for each pairing, of the form

im − im+1 = εm(il − il+1) + Cl where εl = 1 or − 1. (2.15)

Let x1, x2, . . . , x2k denote the absolute value of the difference between two indices
of each entry (so for ail,il+1

it would be xj = |i1 − il+1|), and let x̃1 = i1 − i2, x̃2 =
i2−i3, . . . and x̃2k = i2k−i1 (i.e., the unsigned differences). It follows immediately
that

2k∑
i=1

x̃i = 0. (2.16)

Each x̃m can be expressed in two ways. By breaking the absolute value sign in
(2.12) or (2.13), we have x̃m = ηjxj for some j with ηj = 1 or −1. We can also
express it through an equation like the one in (2.16) such that x̃m = εmx̃l + Cm
for some l. Thus

x̃m = ηjxj = εmx̃l + Cl. (2.17)

Then since ε2m = 1,
x̃l = εmηjxj − εmCl. (2.18)

Note each absolute value of a difference occurs twice, as everything is matched in
pairs. We therefore have

2k∑
i=1

x̃i =
k∑
j=1

[ηjxj +(εmηjxj− εmCm)] =
k∑
j=1

(njxj(1+ εm)− εmCj) = 0. (2.19)

If any εm = 1, then the xj’s are not linearly independent and we would have less
than k + 1 degree of freedom.3 The contribution from such tuples to the moment
in (2.8) for a given matrix is therefore O(1/N) (as we divide by Nk/2+1), which
vanishes in the limit as N →∞ and can thus be safely ignored. �

If the indices of ailil+1
and aimim+1 satisfy (2.12) for some C1, then it follows

immediately from Lemma 2.2 that |im − im+1| = |il − il+1|+ C1 implies{
im − im+1 = −(il − il+1) + C1

im > max{im+1, im+1 + C1}
or

{
im − im+1 = −(il − il+1)− C1

im < min{im+1, im+1 − C1}.
(2.20)

Similarly, if they satisfy (2.12) for some C2, then it follows from Lemma 2.2 that
|im − im+1| = −|il − il+1|+ C2 implies{

im − im+1 = −(il − il+1) + C2

im+1 < im < im+1 + C2,
or

{
im − im+1 = −(il − il+1)− C2

im+1 − C2 < im < im+1.

(2.21)
Instead of considering each value of C (either C1 or C2) individually, we will

consider a pair of constants C1, C2 such that C1 +C2 = N − 1. We claim that this

3As in the proof of Lemma 2.2, the first pair gives us two degrees of freedom and each
subsequent pair gives at most one degree of freedom. If the xj ’s are not linearly independent,
there can be at most k/2− 1 independent xj ’s, and thus at most k/2 degrees of freedom.
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removes some of the Diophantine obstructions that arise when evaluating (2.20)
or (2.21) individually. Given an entry ailil+1

, we can associate each value of C with
one diagonal whose entries, generally denoted by aimim+1 , all equal ailil+1

. Except
for the main diagonal, every other diagonal has fewer than N entries and therefore
the index im ∈ {a, . . . , b} where 1 ≤ a < b ≤ N rather than im ∈ {1, . . . , N}.
Here we only need to restrict one of the two indices of aimim+1 and the other one
will automatically be determined. However, by considering aimim+1 on a pair of
diagonals associated with C1, C2, we can take the index im (or im+1) to be any
value between 1 and N . Furthermore, except for O(1) values, the first index of
entries from the pair of diagonals associated with C1, C2 are distinct, and similarly
for the second index. Therefore, if aimim+1 is on the diagonal associated with C1

and ai′mi
′
m+1

is on the diagonal associated with C2, then for some a, b ∈ {1, . . . , N},
we have: {

im ∈ {a, . . . , b}
i
′
m ∈ {0, . . . , a} ∪ {b, . . . , N}

(2.22)

3. Spectral Characteristic of Highly Palindromic Toeplitz
Matrices

3.1. The Moment Problems. To study the distribution of eigenvalues of highly
palindromic Toeplitz matrices, we rely on Markov’s method of moments.

Lemma 3.1. Assume that p has mean 0, variance 1 and finite higher moments.
Then M0 = 1, M1 = 0 and M2 = 1 and all odd moments vanish.

Proof. For all N , M0(AN) = M0(N) = 1. For the first moment, we have:

M1(N) =
1

N3/2

∑
1≤i1≤N

E(ai1i1) = 0 (3.23)

And for the second moment, we have:

M2(N) =
1

N2

∑
1≤i1,i2≤N

E(ai1i2 · ai2i1)

=
1

N2

∑
1≤i1,i2≤N

E(a2
i1i2

) =
1

N2

∑
1≤i1,i2≤N

E(b2ψ(i1,i2)). (3.24)

Since we choose b’s from a normalized distribution with variance 1 distribution,
the expected value above is 1. Thus, M2 = limN→∞M2(N) = limN→∞

N2

N2 = 1.
We have shown that all the odd moments vanish in the limit in Lemma (2.1). �

Thus, we only need to consider the general even moment. For the 2kth moment,
we have a tuples with 2k indices and therefore (2k − 1)!! ways to match them in
pairs. Each way of matching, hereafter referred to as configuration, leads to a
system of k equations of the form (2.20) or (2.21), for which each distinct solution
gives us one possible choice for the tuples (i1, . . . , i2k) and contribute one to the
sum. In the case of real symmetric Toeplitz matrices, some configurations lead to
a system of equations with more solutions than others, whereas in the case of real
symmetric palindromic Toeplitz matrices, all configurations lead to a system of
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equations with the same number of solutions, agreeing up to O( 1
N

). Fortunately,
this behavior is preserved in the case of highly palindromic Toeplitz matrices and
greatly simplifies the calculation of the moments.

3.2. The Matching Lemmas.

Lemma 3.2 (Equal Contribution - Fourth Moment). The non-adjacent configu-
ration and the adjacent configuration contribute equally to the fourth moment.

Figure 1. The adjacent and the non-adjacent configurations of the
fourth moment.

Proof. The general configuration of the fourth moment of highly palindromic
Toeplitz matrices satisfies the following equations:{

ai1i2 = aj1j2
al1l2 = am1m2 .

(3.25)

While we denote the indices by 8 different variables for full generality, there are
actually only four different indices here (two adjacent entries in the tuples always
share one index). Depending on which two variables refer to which index, we
obtain different configurations for the fourth moment. Our goal is to show that
the contribution from this general configuration is independent of the indices and
therefore all configurations contribute equally. From the above system of equations
relating the matchings, we obtain the corresponding system of equations for the
indices: {

|i1 − i2| = ±|j1 − j2|+ A

|l1 − l2| = ±|m1 −m2|+B
(3.26)

According the Lemma 2.2, in order for a tuples to contribute to the fourth moment
in the limit, we must have{

i1 − i2 = −(j1 − j2) + A
′

l1 − l2 = −(m1 −m2) +B
′
.

(3.27)

Since all equations occur with a negative sign before the indices on the left-hand
side, we have A

′
+B

′
= 0 I KNOW THIS IS TRUE, BUT IT’S HARD FOR

ME TO SEE IN THIS FULLY GENERAL CASE WHY IT MUST BE
TRUE, AND I CAN’T QUITE SEE WHAT THE PREVIOUS COM-
MENT HAS TO DO WITH IT AT THE MOMENT.. If A is of the form
C2 in (2.13), then it follows immediately that A = B since C2 is always positive.
But if A is of the form C1 in (2.12), then it can be either that A = B or A = −B.
To find the contribution of this configuration to the fourth moment, we need to
find the number of solutions of (3.22) WHY ARE WE REFERENCING A
LATER EQUATION?? for each A then sum over all possible values of A. For
each A, we have a system of two equations with four variables so we can always
at least pick two free indices among them. For convenience, we specify i1, i2 by
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choosing the first entry ai1i2 . Moreover, we assume that we only pick ai1i2 in the
lower diagonal half of the matrix so that i1 > i2. By the symmetry of the matrix,
picking ai1i2 in the upper diagonal half would follow the same procedure. Finally,
without loss of generality, we assume that A is of the form C2 in (2.13). Thus

{
|j1 − j2| = −|i1 − i2|+ A

|l1 − l2| = −|m1 −m2|+ A
⇒


j1 − j2 = −(i1 − i2) + A

j1 > j2

l1 − l2 = −(m1 −m2)− A
m1 < m2 < m1 + A.

(3.28)

We now consider A
′

of the form C1 in (2.12) such that A + A
′

= N − 1. This
contribution nicely complements the previous one:

{
|j1 − j2| = |i1 − i2|+ A

′

|l1 − l2| = |m1 −m2| ± A
′ ⇒


j1 − j2 = −(i1 − i2)− A

′

j1 < j2
l1 − l2 = −(m1 −m2) + A

′

m1 < m2 or m2 < m1 − A
′
.

(3.29)

Now consider the entry am1m2 . One of its indices, either m1 or m2, is determined
by the choice of ai1i2 . IT’S NOT EXACTLY CLEAR TO ME WHAT IS
MEANT BY THE FOLLOWING. By swapping the position of am1m2 and
al1l2 , we see that we can safely assume that m1 is the predetermined index. The
other index m2 can take on any value:

(1) On the diagonal associated with A = C1:

m2 ∈ {m1, . . . ,m1 + A} ∩ {a, . . . , b} (3.30)

(2) On the diagonal associated with A
′
= C2:

m2 ∈ ({0, . . . ,m1 − A
′} ∪ {m1, . . . , N}) ∩ ({0, . . . , a} ∪ {b, . . . , N}) (3.31)

IN THESE EQUATIONS WE HAVE INCLUSIVE, YET THE ABOVE
RELATIONS ARE INEQUALITIES. EITHER FIX THIS OR PUT A
DISCLAIMER SAYING WE’LL BE LOOSE WITH INEQUALITIES
SINCE SINGLE VALUES DON’T MATTER IN THE LIMIT. THIS
MAY ALSO AFFECT SOME OF THE “EXACTLY” COMMENTS
BELOW.

Therefore, there are exactly A out of N +1 values of m2 we can pick (or exactly
A
′

out of N + 1 value of m2 we cannot pick). Furthermore, since i1, i2 and m2

already determined the final index is determined. Finally, since we have N2 choices
for picking the initial entry ai1i2 , the contribution to the fourth moment from A
and A

′
is given by:

N2 · A =

(
N3

2n

)(
−
⌊
|i1 − i2|

2n

⌋
+ k − 1

)
(3.32)

The above formula only depends on the initial choice of ai1i2 and the choice of A,
and not on how we organize the four entries to form each configuration. Summing
over all possible choices of C1, we obtain the same contribution to the fourth
moment from either configuration. �
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Before extending the above lemma to the general even moment, we discuss
briefly some notation of a “lift map”, a way of relating one configuration of an
even moment to one configuration of the next higher even moment. Adding a
pair of entries to a configuration will move us from that configuration to some
configuration of the next even moment. There are only two ways to add these
entries: adding a pair of adjacent entries or adding a pair of non-adjacent entries.

Lemma 3.3 (Configuration Lifting - Adjacent Case). Conider a configuration of
the 2kth moment. All configurations of the (2k + 2)th moment obtained by adding
a pair of adjacent entries to this configuration contribute equally to the (2k + 2)th

moment.

Figure 2. Moment Lifting by adding a pair of adjacent entries

Proof. Let
(. . . , apq, . . . , aij, ajk, . . . alm, . . . )

be a tuple of configuration (1) of the moment M2k and

(. . . , apq, . . . , aij, ajo, aos, ask, . . . , alm, . . . )

be the new tuple obtained by adding the pair of entries ajo = aos. Let Ω2k be the
set of all tuples that work for configuration (1) and Ω2k+2 be the set of all tuples
that work for the configuration (2) WHAT ARE CONFIGURATION (1)
AND CONFIGURATION (2)? I DON’T RECALL SEEING THESE
DEFINED IN THE FIGURES EITHER.. We define a “lift map” F : Ω2k →
Ω2k+2 such that:

F [(. . . , apq, . . . , aij, ajk, . . . , alm, . . . )] = (. . . , apq, . . . , aij, ajo, aos, ask, . . . , alm, . . . )

We want the map F to map each index in (. . . , apq, . . . , aij, ajk, . . . , alm, . . . )
to itself and add the new index s = j − B + B

′
where B is the value of C

corresponding to the pair of entries containing ajk, and B
′

is any value of C such
that s ∈ {1, . . . , N} and (B −B′) is a valid choice of C. The system of equations
corresponding to the tuples (. . . , apq, . . . , aij, ajk, . . . , alm, . . . ) is given as follows:

l −m = −(i− j) + A

p− q = −(j − k) +B

. . .

(3.33)

Under the map F , we obtain a new tuple (. . . , apq, . . . , aij, ajo, aos, ask, . . . , alm, . . . )
satisfying the system of equations:

l −m = −(i− j) + A

p− q = −(s− k) +B
′

j − o = −(o− s) + (B −B′)
. . .

(3.34)
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Except for the entry ask immediately following the added pair of adjacent entries
(ajo, aos), every other entry is preserved under F . Therefore, the equations and
C values that held for the original configuration still hold true. Since both B

′
and

(B − B′) are valid choices for the C value, the two equations associated with ask
and the added pair of adjacent entries (ajoaos) are also valid. Therefore

(. . . , apq, . . . , aij, ajo, aos, ask, . . . , alm, . . . ) ∈ Ω2k+2. (3.35)

THIS PARAGRAPH IS PRETTY AWKWARD. Thus, the map F lifts
any tuple of the first configuration to a tuple of the configuration of the next even
moment. It is worth noticing that the map F is not one-to-one. In fact, how
many tuples of configuration (2) would result from the map F depending on the
choice of j, B and B

′
. Nor did we consider the Diophantine obstructions or other

conditions arising from solving the absolute value equations to obtain (3.35). One
reason is that we are only concerned with the number of tuples that work for each
configuration, rather than the specific value of each tuples. In doing so, we would
need to apply the map F to every possible tuples of configuration (1), as well as
considering every legitimate choice of B and B

′
. Fortunately, the map F only

depends on the choice of one index j and one C value B from the configuration
(1).

HAVING REMARKS WITHIN A PROOF STRIKES ME AS SOME-
WHAT WEIRD. THIS DOESN’T NECESSARILY MEAN THEY SHOULD
BE REMOVED OR MOVED ELSEWHERE.

Remark 3.4. We can take B to be any possible value of our C values since
in order to obtain all the tuples of configuration (1), we need to sum over all
possible combination of C that work for the system of equations corresponding to
configuration (1).

Remark 3.5. We can also take j to be any value in {1, . . . , N}. For any general
2kth even moment, we have 2k indices (unknown variables) and k equations with
the last equation not linearly independent of the rest. Therefore, we must have
at least two completely free indices that can take on any value between 1 and N .
Customarily, we choose the two completely free indices by choosing the very first
entry of the tuple, which obviously can be any entry on the matrix. Furthermore,
we can also choose the first entry to be any vertice of the configuration. So if we
choose aij to be our first entry, we can pick j to be any value between 1 and N .

Hence, starting from a configuration at the 2kth moment and adding in a pair
of adjacent entries to move up to a configuration at the next even moment, we
can always pick the entry preceding the location where we would add the new
adjacent pair to be the first entry in the tuples. As the consequence, the number
of tuples resulted from the map F would be the same regardless of where we add
the adjacent pair. �

Lemma 3.6 (Configuration Lifting - Nonadjacent Case). Consider a configuration
of matchings for the 2kth moment. All configurations at the 2kth moment obtained
by adding a pair of non-adjacent entries contribute equally to the (2k + 2)th mo-
ment.
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Figure 3. Moment Lifting by adding a pair of non-adjacent entries

Proof. Let (. . . , aij, ajm, . . . , alp, apq, . . . ) be a tuple of the configuration (1) for the
2kth moment and (. . . , aij, ajo, aom, . . . , alp, aps, asq, . . . ) be the new tuple obtained
by adding the pair of entries ajo = aps. As before, let Ω

′

2k be the set of all tuples
that work for the configuration (1)

′
and Ω

′

2k+2 be the set of all tuples that work

for the configuration (2)
′
WHERE DID THESE PRIMES COME FROM?

IF THEY ARE HERE TO DISTINGUISH FROM THE PREVIOUS
LEMMA, WHY WERE THEY NOT THERE FROM THE VERY BE-
GINNING?. We define a ”lift map” F

′
: Ω

′

2k → Ω
′

2k+2 such that:

F
′
[(. . . , aij, ajm, . . . , alp, apq, . . . )] = (. . . , aij, ajo, aom, . . . alp, aps, asq, . . . ) (3.36)

We want the map F
′
to map every index in (. . . , aij, ajm, . . . , alp, apq, . . . ) to itself

and add two new indices o = j +B −B′ and s = p+D −D′ where B and D are
the C values associated with the pairs containing ajm and apq respectively. Also,
B
′

and D
′

are any value of C such that o, s ∈ {1, . . . , N} and (D
′
+B

′ −D −B)
is a valie choice of C. For the tuple (. . . , aij, ajm, . . . , alp, apq, . . . ) we have the
following system of equations:

i0 − j0 = −(i− j) + A

j0 −m0 = −(j −m) +B

l0 − p0 = −(l − p) + C

p0 − q0 = −(p− q) +D

. . .

(3.37)

WHY ARE THINGS SUBSCRIPTED WITH ZEROS NOW?
Under the map F

′
, we obtain a new tuples (. . . , aij, ajo, aom, . . . , alp, aps, asq, . . . )

satisfying the system of equations:

i0 − j0 = −(i− j) + A

j0 −m0 = −(o−m) +B
′

l0 − p0 = −(l − p) + C

p0 − q0 = −(s− q) +D
′

j − o = −(p− s) + (D
′
+B

′ −D −B)

. . .

(3.38)

Like before, all entries except for the two immediately following the added en-
tries are preserved under the map F

′
so their associated equations and C value

still hold. Furthermore, since B
′
, D

′
and (D

′
+ B

′ −D − B) are all valid choices
of C, the other three equations also hold true. Lastly, the existence of at least two
completely free indices allow us to choose them to be the first index in ajm and
the second index in alp. Thus, following the same line of argument in Lemma 3.3,
we can always choose the two free indices such that the number of tuples resulting
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from the map F
′
(Ω
′

2k) are the same regardless of where we add the non-adjacent
pair. �

I’M NOT SURE THAT I’M 100% SATISFIED BY THE LIFTING
THEOREMS, BUT THE ONLY PART THAT SEEMS WEEK IS THE
APPARENT ASSUMPTION THAT THE VALUES OF B′ AND D′

SUCH THAT D′+B′−D−B IS A VALID C VALUE ARE THE ONLY
VALUES THAT CAN WORK FOR THE (2k + 2)th MOMENT CON-
FIGURATIONS. I’LL HAVE TO THINK ABOUT IT MORE.

Corollary 3.7. Given any configuration, we can replace one of its adjacent pairs
by another adjacent pair, and similarly for non-adjacent pairs, without changing
its contribution to the corresponding moment.

Theorem 3.8. If all configurations at the 2kth moment contribute equally, then
all configurations at the (2k + 2)th moment also contribute equally.

Proof. Given any configuration at the (2k + 2)th moment, Corollary 3.7 allows us
to repeatedly replace adjacent pairs with other adjacent pairs, and similarly for
non-adjacent pairs. By iterating this process, we can move any configuration down
to the following two configurations:

Figure 4. Two possible final configurations

For any configuration at the (2k+2)th moment with k+1 pairs, we first move all
adjacent pairs to the left-hand side until there are only non-adjacent pairs left at
the right-hand side. We can replace those non-adjacent pairs to form the following
structure, which is possible since it contains only non-adjacent pairs:

Figure 5. Completely non-adjacent configuration

Consider the structure on the right-hand side. Since they WHAT ARE
THEY? are the same regardless of what initial configuration we start with, we
expect the same number of choices for the entries (ajk, . . . , ahl). For each choice of
entries (ajk, . . . , ahl) we need to find the number of choices for (ani, aij, alm, amn)
that work, then sum over all possible choices for (ajk, . . . , ahl) to find the contri-
bution to the moment.

Consider the structure on the left-hand side (ani, aij, alm, amn). They are only
slightly different from the adjacent and non-adjacent matching of the fourth mo-
ment. The only different is the the index j of aij and the index l of alm are not
required to be the same like before. Nonetheless, Lemma 3.2 still holds true for
this case if we choose the two completely free indices in Lemma 3.2 to be j and l
instead of choosing the first entries at random. So the two configurations in Fig-
ures ? ADD REFERENCES and ? contribute equally to the (2k+2)th moment
and therefore all configurations at the (2k + 2)th moment contribute equally. �
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I’M NOT SURE THAT I FULLY FOLLOW THIS AS IT IS IT ISN’T
ALWAYS CLEAR WHAT IS BEING REFERRED TO DUE TO LACK
OF NOTATION IN THE PICTURES AND SOME LACK OF SPE-
CIFIC LANGUAGE, BUT I THINK THE ARGUMENT IS OK.

It follows immediately by induction from Lemma 3.2 and Theorem 3.8 that
every configuration at any even moment contributes equally. The fact greatly
reduces the complexity of our moment problem as we only need to calculate the
contribution of the completely adjacent matching, and immediately get the same
contribution from the other (2k − 1)!!− 1 configurations.

4. Calculating the Moments

4.1. The Fourth Moment. We consider the two cases of adjacent matching,
where either {

aij = ajk
akl = ali,

or

{
aij = ali
ajk = akl.

We note that these are equivalent by relabeling, so we will focus on the first case
and multiply by two to account for the two cases.

Given aij we want to find a matching ajk, but we also need a third degree of
freedom proportional to N to have a nonzero contribution. Thus, we choose ajk
so that it matches and many choices of l satisfy akl = ali. Exploiting the matrix
symmetry, this reduces to choosing k so that aij = akj and akl = ail. That is, row
i and row k should match up well.

Figure 6. An example highlighting matchings for l in green. Note
that any anomalous matchings won’t contribute in the limit.

Remark 4.1. We now note the most useful features of our matrices. Foremost
among these is the special feature of the main diagonal: It is the only place (ex-
cluding the border of the matrix) where b0 occurs once rather than twice, leading
to a few interesting properties. Firstly, moving to the corresponding point in the
next palindrome can require either moving N

2n −1 elements when crossing the main

diagonal or N
2n elements otherwise. Secondly, as pictured in Figure 6, it means

that a row and the row bN
2n rows down don’t match perfectly, but rather become

unaligned when one has reached the main diagonal but the other hasn’t. Moreover,
the row bN

2n − 1 rows down starts out unaligned, but then becomes aligned in this
same region. Furthermore, only rows of this form match up well with the original
row.

Thus, due to the way the rows match, choosing k so that aij and akj are at
corresponding points in a palindrome guarantees aij = akj and that there are
many choices of l satisfying akl = ail, as desired.

More specifically, consider when akj is b palindromes away from aij, with b
positive for simplicity. Then k = i+ bN

2n if aij and akj are on the same side of the
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main diagonal, and k = i+ bN
2n − 1 if crossing the main diagonal. In order to have

k ∈ {1, 2, . . . , N}, we must have

i ∈ {1, 2, . . . , N − bN

2n
+O(1)}

as our first restriction.

Figure 7. Regions where k = i+N
2

gives a matching are indicated

in green, whereas those where k = i + N
2
− 1 are indicated in red.

Regions where both are satisfied are indicated in yellow: These are
1-dimensional, and thus won’t contribute in the limit.

Another restriction comes about due to where the constant can be bN
2n and where

it will instead be bN
2n−1. For bN

2n , clearly any aij below the main diagonal won’t cross
the main diagonal when moving down to akj. Similarly, any aij that lies more than
bN
2n elements above the main diagonal won’t cross the main diagonal when moving

to akj. Thus, we have two triangular regions of height N − bN
2n +Ob(1) defined by

the main diagonal, which sum to give a square of area
(

2n−b
2n

)2
N2 + Ob(N). As

explained above, the only values of l that won’t work occur when the rows are
unaligned, leaving 2n−b

2n N +Ob(1) good values of l. Thus, these areas contribute a
total of (

2n − b
2n

)3

N3 +Ob(N
2)

matchings to the fourth moment.
We now consider the situation where bN

2n −1 is the constant. The area of possible
aij is the parallelogram in bordered by the triangles defined above, and thus it is
of height 2n−b

2n N + Ob(1) and width b
2nN + Ob(1). In this case, the contributing

values of ` will be those when one row has reached the diagonal but the other
hasn’t yet, and will thus be b

2nN +Ob(1). This constant will therefore contribute

2nb2 − b3

23n
N3 +Ob(N

2)

matchings.

Remark 4.2. We have not yet considered what happens for the negatives of these
constants. However, repeating the same analysis gives identical regions and thus
identical contributions to the fourth moment. Pictorially, what happens for a neg-
ative constant is that of the positive one rotated 180◦. Thus, the contribution to
the fourth moment will be given by the contributions for positive constants multi-
plied first by a factor of 2 to account for the negatives, and a further factor of 2
to account for the two adjacent configurations.

Theorem 4.3. The adjacent contribution to the 4th moment averaged over the
ensemble of real symmetric Toeplitz matrices with 2n palindromes is

4

3
2n +

2

3
2−n. (4.39)
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Proof. For each value of b, we note that the contribution to M4(N) is

1

N3

((
2n − b

2n

)3

N3 +
2nb2 − b3

23n
N3 +Ob(N

2)

)
=

(
2n − b

2n

)3

+
2nb2 − b3

23n
+Ob

(
1

N

)
.

Thus, the contribution to M4 is(
2n − b

2n

)3

+
2nb2 − b3

23n
.

We sum over each value of b, multiply by 4 to account for the negative constants
and the two adjacent configurations, and include the contribution from C = 0,
known to be 2 [MMS] to obtain the adjacent contribution to the fourth moment:

M4(adj) = = 2 +
4

23n

2n∑
b=1

(
(2n − b)3 + 2nb2 − b3

)
. (4.40)

Extending the sum to include b = 0 cancels the first and last terms of the sum,
but we must subtract 4 to compensate. This then leaves a sum of squares which
is easily evaluated:

M4(adj) = −2 +
4

23n

2n∑
b=0

2nb2

= −2 +
4

22n

2n(2n + 1)(2 · 2n + 1)

6

= −2 + 2
(1 + 2−n)(2 · 2n + 1)

3

= −2 +
2

3
(2 · 2n + 2 + 1 + 2−n)

=
4

3
2n +

2

3
2−n,

completing the proof. �

4.2. The General Even Moments of DPT Matrix. Theorem 3.8 ADD REF-
ERENCE allows us to solve the higher moments and higher palindromicities pro-
vided that we can solve a single matching case in general. Thus, we generalize
the above pictorial method for higher moments of the adjacent case. For the 2kth

moment, we find that our final system of equations becomes

i3 = i1 + C1

i5 = i3 + C2 = i1 + C1 + C2

...

i1 = i2k−1 + Ck = i1 +
k∑

n=1

Cn.
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Remark 4.4. The even indices don’t appear because the nth matching gives the
equation i2n − i2n−1 = −(i2n+1 − i2n) + Cn, and the i2n terms cancel. However,
for each non-zero constant Cl, we will have a picture similar to Figure 6, which
limits the number of good values of the even indices i2l. Moreover, as every i2n+1

is related back to i1, the difference between the maximum and minimum partial
sums must be stricly less than N +O(1) or we lose a degree of freedom.

These observations allow us to solve the doubly palindromic case.

Theorem 4.5. The 2kth moment averaged over the ensemble of doubly palindromic
Toeplitz matrices is given by:

M2k = (2k − 1)!!

(
−2 + 2−k

(
3∑
b=1

bk

))
. (4.41)

Proof. The following observations greatly simplify the analysis for this case:

• If the constants ±N
2

appear in the C-vector, then ±N
2
− 1 can’t occur as

we would lose a degree of freedom in i2, as ai1i2 would need to lie on a
certain diagonal.
• If some Cj is non-zero, then the next non-zero C chosen must be −Cj, as

we would otherwise lose a degree of freedom in i1.

Now consider the 2kth moment, which will have a C-vector of length k. We can
then consider a subset of length m (m even) of (N

2
,−N

2
, N

2
,−N

2
, . . .) that forms

the core of the C-vector, with the remaining entries being zero. There are then(
k
m

)
ways to insert the zeros, and thus

(
k
m

)
ways to build a C-vector around this

core.
We now consider the contribution from each of these C-vectors. By Remark

4.4, we see that we will have N
2

values of i1 to choose from, and there will be m

other i2l (corresponding to the m nonzero Cl) that will have (N − N
2

) +O(1) good

values. Thus, the contribution for each of these cases will be (1
2
)m+1. Therefore,

the total contribution to the 2kth moment from this configuration, summing over
all possible C-vectors, will be

k∑
m even
m=2

(
k

m

)(
1

2

)m+1

.

If we pull out a factor of 1
2

and include m = 0 in the sum, we can use the binomial
theorem to express this as

1

4

((
1 +

1

2

)k
+

(
1− 1

2

)k)
− 1

2
. (4.42)

The contribution from a core of (−N
2
, N

2
,−N

2
, N

2
, . . .) will be the same. The cores

of (±(N
2
− 1),∓(N

2
− 1), . . .) can be similarly analyzed, and they will also have the

same contribution since N − N
2

+ O(1) = N
2

+ O(1), so we multiply (4.42) by 4.
We must also include the contribution from the 0-vector, which is always 1 for the
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adjacent case. Thus, the contribution from each configuration is

−2 +

(
1 +

1

2

)k
+ 1k +

(
1− 1

2

)k
= −2 + 2−k

(
3∑
b=1

bk

)
. (4.43)

Appealing to Theorem 3.8 ADD REFERENCE and multiplying by the number
of configurations, we have

M2k = (2k − 1)!!

(
−2 + 2−k

(
3∑
b=1

bk

))
, (4.44)

completing the proof. �

5. Convergence

In this section, we show that the limit of the average moments exists, and that
the moments grow slowly enough to determine a unique probability distribution.
With this result, we then show convergence in probability. Finally, assuming that
p(x) is even, we prove almost sure convergence. These arguments closely follow
those in [HM] and [MMS], with modifications where necessary.

5.1. A Non-trivial Lower Bound for Higher Moments. We now extend
Theorem 4.5 to matrices with greater palindromicity. In doing so, we will miss
many of the C-vectors that contribute to these moments, but exact calculations
for even a quadruply palindromic matrix have proven difficult. We begin with the
following lemma:

Lemma 5.1. For a constant C = bN
2n for b ∈ {1, . . . , 2n−1}, the total contribution

from the cores of (±C,∓C,±C,∓C, . . .), and its complement (±(N−1−C),∓(N−
1− C), . . .) is

−2 +

(
2− b

2n

)k
+

(
b

2n

)k
. (5.45)

Proof. This goes back to the observation in Figure 6 that for C = bN
2n , the number

of free l values is N − bN
2n +O(1), whereas if C = bN

2n − 1, then there are bN
2n +O(1)

good l values. Thus, the complementary C will give the same restrictions on the
number of l values.

Moreover, the restrictions on i1 from bN
2n and N − 1 − bN

2n sum to 1. Thus, as
there are the two cases (plus first or minus first) for each, when we sum them and
extend the sums back to 0, we have

−2 + 2 ·
k∑

m even

(
k

m

)(
2n − b

2n

)m+1

= −2 +

(
2 · 2n − b

2n

)k
+

(
b

2n

)k
, (5.46)

completing the proof. �

In order to get our lower bound for the higher moments, we then repeat this
for every value of b ∈ {1, 2, . . . , 2n − 1}. Adding in the contribution from the zero
vector, we obtain
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Lemma 5.2. The lower bound for the 2kth moment averaged over the ensemble
of Toeplitz matrices with 2n palindromes is given by

M2k(2
n) ≥ −2 · (2n − 1) + 2−kn

(
2·2n−1∑
b=1

bk

)
, (5.47)

which is easily summed for any value of k.

5.2. Upper Bound for the Higher Moments. We first show that the higher
moments have a limit regardless of the palindromicity, even though we may not
be able to calculate it in closed form, and that these limits grow slowly enough to
ensure convergence to a unique probability distribution (see [Fe]).

For notational convenience, in this section we use C±|in− in+1| when we really
mean either only C+ |in− in+1| or C−|in− in+1|, where the choice of sign depends
on the value of C. Of course, the total number of possible values of C depends on
the palindromicity. If we have 2n palindromes, then we will have 4 ·2n−1 possible
values of Cj. Thus, for the 2kth moment, we will have at most (4 · 2n − 1)k−1

possible C-vectors (as Ck will be chosen to return to 0, if possible).
By matching 2k entries from the matrix in pairs, we obtain k equations of the

form

|in − in+1| = Cj ± |im − im+1|. (5.48)

From these equations, we then move to a system of equations of the form

in − in+1 = Cl − (im − im+1), (5.49)

where Cl can be either Cj or −Cj, and
∑k

l=1Cl = 0. In moving from (5.48) to
(5.49), we also obtain a system of inequalities that the i values must satisfy.

As was argued in Lemma 2.9 of [MMS] the k equations corresponding to (5.49)
leave k + 1 free indices. Of course, further degrees of freedom can be lost from
the inequalities, but none can be gained. If we divide by Nk+1 and take the limit
N → ∞, we can interpret these as uniform variables as in [BDJ] and [HM], and
thus interpret the equations as determining a region of a (k+ 1)-dimensional unit
cube. Thus, the contribution must converge to some c ∈ [0, 1].

Finally, we show that these moments grow sufficiently slowly to give a proba-
bility distribution. For each configuration, each C-vector can contribute at most
1 (if every free index ranges freely over {1, 2, . . . , N}), giving an upper bound for
the 2kth moment of (2k − 1)!! · (4 · 2n − 1)k−1.

Carleman’s condition ([Fe]) states that if a distribution µ has finite moments
and the moments satisfy

∞∑
k=1

M
−1/(2k)
2k = +∞

then the moments uniquely determine µ. For each moment, we have

M
−1/(2k)
2k ≥

(
(2k − 1)!! · (4 · 2n − 1)k−1

)−1/(2k)
(5.50)

= ((2k − 1)!!)−1/(2k) · (4 · 2n − 1)
1−k
2k . (5.51)
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In the limit k → ∞, the latter factor approaches (4 · 2n − 1)−1/2, so as the sum
of first factor diverges to infinity4, the product must also diverge to infinity, and
Carleman’s condition is satisfied.

5.3. Convergence in Probability. We begin by defining our random variables.
Let A be a sequence of real numbers to which we associate AN , an N×N real sym-
metric Toeplitz matrix with 2n palindromes. Let Xm;N(A) be a random variable
that equals the mth moment of AN , and set Xm(A) to the mth moment averaged
over the ensemble as above.

Thus, we have convergence in probability if for all ε > 0

lim
N→∞

PN({A ∈ ΩN : |Xm;N −Xm| > ε}) = 0. (5.52)

Chebychev’s inequality states that

PN({A ∈ ΩN : |Xm;N −Xm| > ε}) ≤ E[(Xm;N −Xm)2]

ε2
.

=
E[Mm(AN)2]− E[Mm(AN)]2

ε2
.(5.53)

Thus, it suffices to show

lim
N→∞

(E[Mm(AN)2]− E[Mm(AN)]2) = 0 (5.54)

to prove convergence in probability.
We have

E[Mm(AN)2] =
1

Nm+2

∑
1≤i1,...,im≤N

×
∑

1≤j1,...,jm≤N

E[b|i1−i2| · · · b|im−i1|b|j1−j2| · · · b|jm−j1|],

E[Mm(AN)]2 =
1

Nm+2

∑
1≤i1,...,im≤N

E[b|i1−i2| · · · b|im−i1|]

×
∑

1≤j1,...,jm≤N

E[b|j1−j2| · · · b|jm−j1|]. (5.55)

We can break this up into two cases. If the entries of the i diagonals are entirely
distinct from those of the j diagonals, then the contribution to E[Mm(AN)2] and
to E[Mm(AN)]2 will clearly be the same. Thus, we need to approximate the
contribution from the cases where there are one or more shared diagonals. The
degree of freedom arguments of [HM] immediately apply here, though our big-Oh
constants will now depend on the value of 2n as we now have many more C-vectors
to which we apply these arguments. Thus, as N → ∞ these two quantities will
converge, and convergence in probability and thus weak convergence follow.

4(2n− 1)!! = (2n)!
2nn! , then apply Stirling’s approximation: ((2k − 1)!!)−1/(2k) ≈

(
e
2k

)1/2. Thus,
the sum diverges.
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5.4. Almost Sure Convergence. We assume that p(x) is even for convenience.
Almost sure convergence follows from showing that as as N →∞

{AN ∈ ΩN : lim
N→∞

Xm;N(AN)→ Xm(AN)}

is an event with probability one for all non-negative integers m.
Let Mm(N) = E(Mm(AN). By the triangle inequality, we have that

|Mm(AN)−Mm| ≤ |Mm(AN)−Mm(N)| − |Mm(N)−Mm|. (5.56)

We have already shown that limN→∞ |Mm(N) −Mm| = 0, so we must show that
|Mm(AN)−Mm(N)| almost surely tends to zero. Clearly, E[|Mm(AN)−Mm(N)|] =
0, and we can modify the arguments in [HM] to show that the fourth moment of
Mm(AN) −Mm(N) is Om,2n( 1

N2 ). All of the degree of freedom arguments can be
applied directly for each C-vector.

However, Theorems 6.15 and 6.16 of [HM] require greater care as these use more
than degree of freedom arguments. Fortunately, equations (50) and (51) will hold
for any of our C-vectors, so a similar result will hold in this case. We then apply
Chebyshev’s inequality to find

PN(|Xm;N(A)−Xm(A)| ≥ ε) ≤ E[|Mm(AN)−Mm(N)|4]
ε4

≤ Cm,2n

N2ε4
. (5.57)

Finally, applying the Borel-Cantelli Lemma shows that we have convergence
everywhere except for a set of zero probability, thus proving almost sure conver-
gence.
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