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Abstract. De Bruijn and Newman introduced a deformation of the Riemann zeta
function ζ(s), and found a real constant Λ which encodes the movement of the zeros
of ζ(s) under the deformation. The Riemann hypothesis (RH) is equivalent to Λ ≤
0. Newman made the conjecture that Λ ≥ 0 along with the remark that “the new
conjecture is a quantitative version of the dictum that the Riemann hypothesis, if
true, is only barely so.”

Newman’s conjecture is still unsolved, and previous work could only handle the
Riemann zeta function and quadratic Dirichlet L-functions, obtaining lower bounds
very close to zero (for example, for ζ(s) the bound is at least −1.14541 ·10−11, and for
quadratic Dirichlet L-functions it is at least −1.17·10−7). We generalize the techniques
to apply to automorphic L-functions as well as function field L-functions. We further
determine the limit of these techniques by studying linear combinations of L-functions,
proving that these methods are insufficient.

We explicitly determine the Newman constants in various function field settings,
which has strong implications for Newman’s quantitative version of RH. In particular,
let D ∈ Z[T ] be a square-free polynomial of degree 3. Let Dp be the polynomial in
Fp[T ] obtained by reducing D modulo p. Then the Newman constant ΛDp

equals

log
|ap(D)|
2
√
p

; by Sato–Tate (if the curve is non-CM) there exists a sequence of primes

such that limn→∞ ΛDpn
= 0. We end by discussing connections with random matrix

theory.
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1. Introduction

1.1. Newman’s conjecture for the Riemann zeta function. Let

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s

2

)

ζ(s) (1.1)

be the completed Riemann zeta function, and let

Ξ(x) = ξ

(

1

2
+ ix

)

. (1.2)

Because of the functional equation ξ(s) = ξ(1−s), we know that x ∈ R implies Ξ(x) ∈ R.
In general, we allow x to be complex.

As Ξ(x) decays rapidly as x → ∞ along the real line, we have

Ξ(x) =

∫ ∞

−∞
Φ(u)eiux du =

∫ ∞

0

Φ(u)(eiux + e−iux) du, (1.3)

where Φ(u) := 1
2π

∫∞
−∞ Ξ(x)e−iux dx = 1

2π

∫∞
0

Ξ(x)(eiux + e−iux) dx is the Fourier trans-
form of Ξ(x). In the 1920s, Pólya introduced a “time” parameter t to Ξ, given as
follows:

Ξt(x) :=

∫ ∞

0

etu
2

Φ(u)(eiux + e−iux) du. (1.4)

We refer to the process beginning with (1.1) and ending with (1.4) as Pólya’s setup.
For each t ∈ R, (1.4) gives us a function in x that is both C → C and R → R. For
t = 0, we recover our original function Ξ. The Riemann Hypothesis (RH) is equivalent
to the assertion that Ξ0 has only real zeros. Pólya hoped to show that the function Ξt

has only real zeros for all t ∈ R, so RH would follow.
De Bruijn and Newman proved the following results about Ξt(x).

Lemma 1.1 (De Bruijn [dB]). If Ξt has only real zeros, then so does Ξt′ for all t′ > t.

Lemma 1.2 (Newman [New]). There exists some t ∈ R such that Ξt has a non-real
zero.
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In particular, Newman’s result shows that what Pólya had been trying to prove was
actually false. However, by combining the two results of De Bruijn and Newman, we
see the following.

Corollary 1.3. There exists a constant Λ ∈ R (called the De Bruijn–Newman constant)
such that

(1) if t ≥ Λ then Ξt has only real zeros, and
(2) if t < Λ then Ξt has a non-real zero.

The Riemann hypothesis is equivalent to Λ ≤ 0. Newman made the following com-
plementary conjecture.

Conjecture 1.4 (Newman’s conjecture). Let Λ be the De Bruijn–Newman constant.
Then Λ ≥ 0.

In Newman’s own words: “The new conjecture is a quantitative version of the dictum
that the Riemann hypothesis, if true, is only barely so.”

Csordas, Smith and Varga [CSV] used the differential equations governing the motion
of the zeros to show that “unusually” close pairs of zeros can give lower bounds on Λ.
[SGD] builds on this method of Csordas et. al. and achieves the current best-known
lower-bound: Λ ≥ −1.14541× 10−11.

A key step in the argument of [CSV] is the following.

Lemma 1.5 (Theorem 2.2 of [CSV]). If Ξt0(x) has a zero x0 of order at least 2, then
t0 ≤ Λ.

Remark 1.6. Observe that if we set F (x, t) = Ξt(x), then F satisfies ∂tF + ∂xxF = 0,
the backwards heat equation. This PDE provides physical intuition for why Lemma 1.5
is true: as we decrease t, the graph of Ξt changes in accordance to the diffusion of heat.
If Ξt0 has a double zero, these zeros are likely to “pop off” the real line as we further
decrease t. See Appendix A for an example of this phenomenon.

Remark 1.7. It is conjectured that all the zeros of ζ(s) are simple. If this is false,
then Lemma 1.5 implies that Newman’s conjecture is true. However, if the zeros of ζ(s)
are indeed all simple, we cannot make any conclusions of Newman’s conjecture. This is
discussed in Remark 3.13.

1.2. Structure of this paper. In Section 2, we look at conditions needed for a gener-
alized version of Newman’s conjecture. Stopple [Sto] has shown that Pólya’s setup also
holds for quadratic Dirichlet L-functions. We show it is possible to state a version of
Newman’s conjecture for automorphic L-functions. However, as we only see the same
behavior as before and the arguments are similar, we content ourselves with just de-
scribing how to extend the previous work here. We then quickly move on to rational
function fields Fq(T ), where new behavior emerges.

As in the number field case, each quadratic Dirichlet L-function L(s, χD) in the
function field setting also gives rise to a constant ΛD. This case, which we look at in
Section 3 (the main section of the paper), exhibits very different behavior. First of all,
RH is true, so we know ΛD ≤ 0. Second, the statement of Newman’s conjecture is
different.
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Whereas Newman’s conjecture in number fields is Λ ≥ 0, it is not necessarily true
that ΛD ≥ 0 in the function field setting. In fact, we can have ΛD = −∞. However,
if we look at certain “families” F of L-functions (as discussed in Section 3.4), we have
reason to believe that the supremum of ΛD over these family is nonnegative.

Conjecture 1.8 (Newman’s conjecture in the function fields setting). Let F be a family
of L-functions over a function field. Then

sup
D∈F

ΛD = 0. (1.5)

For an example of a family, suppose we fix an elliptic curve y2 = D(T ) over Q, and
look at the polynomials Dp ∈ Fp[T ] obtained by reducing D modulo p. Let ap(D) be
the trace of Frobenius of the elliptic curve y2 = D(T ). In Section 3.5, we prove that
Newman’s conjecture is true for this family, and explicitly relate the Newman constant
to ap(D).

Theorem 1.9 (Newman’s conjecture for fixed D, degD = 3). Let D ∈ Z[T ] be a square-
free polynomial of degree 3. Let Dp be the polynomial in Fp[T ] obtained by reducing D
modulo p. Then

ΛDp
= log

|ap(D)|
2
√
p

, (1.6)

which implies supp ΛDp
= 0.

To show the supremum is zero, we use the recent proof of the Sato–Tate conjecture
[BLGHT,CHT,HSBT,Tay]. This implies that the Newman conjecture for function fields
is connected to deep results in number theory.

Next, we change our approach to Newman’s conjecture in function fields and use re-
sults from random matrix theory to support our conjecture. By relating random matrix
theory statistics to the distributions of the zeros of our functions Ξ(x, χD), we prove
Newman’s conjecture for a different family. For detailed statements, see Section 3.8.

Finally, in Appendix B we examine the results of some numerical computations. In
particular, we observe that as we increase the degree, we find elements D ∈ F3[T ] such
that the Newman constants ΛD approach zero.

2. Conditions for a generalized Newman’s conjecture

As the results and proofs in this section are similar to existing results in the literature,
we content ourselves with quickly sketching the extensions to other automorphic forms.

2.1. Stopple’s generalization of Newman’s conjecture. Stopple [Sto] showed that
if D is a fundamental discriminant and χD(n) is the Kronecker symbol (D

n
), then we

can apply Pólya’s setup for ζ(s) to the Dirichlet L-function L(s, χD). This gives us an
analogue of (1.4):

Ξt(x, χD) :=

∫ ∞

0

etu
2

Φ(u, χD)(e
iux + e−iux) du. (2.1)

Each D has its own De Bruijn–Newman constant ΛD, and most of the techniques in
[CSV] for attaining lower bounds on Λ carry over to ΛD.
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Conjecture 2.1 (Newman’s conjecture for quadratic Dirichlet L-functions). Let D ∈ Z

be a fundamental discriminant. Then ΛD ≥ 0.

Stopple investigated a variation of this conjecture.

Conjecture 2.2 (Newman’s conjecture for quadratic Dirichlet L-functions, weaker
form). We have supD ΛD ≥ 0, where the supremum is taken over all fundamental dis-
criminants D.

Note that Conjecture 2.1 implies Conjecture 2.2. Instead of looking for close pairs
of zeros along the real line, Stopple looks for L-functions L(s, χD) with “unusually”
low-lying zeros.1 If an L-function has an unusually low-lying zero γ, then the zeros ±γ
would then form a close pair.

Stopple found that for D = −175990483, we have −1.13 · 10−7 < ΛD.

2.2. Sufficient conditions for generalization. Let L(s, f) be the L-function associ-
ated with some object f . In accordance with notation introduced earlier, let ξ(s, f) be
the completed L-function and let Ξ(x, f) = ξ(1

2
+ ix, f).

If we try to define Ξt(x, f) analogously, we need the following.

(1) Ξ( · , f) has to restrict to a R → R function, so that we can define the Fourier
transform Φ(u, f), as in (1.3). It is sufficient to have the functional equation
ξ(s, f) = ξ(1− s, f).

(2) Φ(u, f) has to have extremely rapid decay in order for the integral in (1.4) to

converge for each t ∈ R. It is sufficient to have Φ(u, f) = O(e−|u|2+ǫ

) for some
ǫ > 0.

Usually, the rapid decay of Φ(u, f) can be seen because it has an infinite sum repre-
sentation. For instance, in the case of the Riemann zeta function, we have

Φ(u) = 2
∞
∑

n=1

(2n4π2e9u/2 − 3n2πe5u/2)e−n2πe2u , (2.2)

which shows that Φ(u) decays as quickly as a double exponential. See [Tit, (10.1.4)].

2.3. Slight modifications of Pólya’s setup and limitations. The most stringent
requirement is the even functional equation: ξ(s, f) = ξ(1− s, f). This is why Stopple
did not investigate all Dirichlet L-functions – the complex L-functions do not have the
proper type of symmetry.

In general, a completed L-function satisfies a functional equation of the form ξ(s, f) =
ǫfξ(1 − s, f), where |ǫf | = 1. To obtain an even functional equation, we need f to be

self-dual (i.e., f = f) and we need the root number ǫf to be 1.
There are two straightforward attempts to “fix” a bad functional equation, but they

both fail when we attempt to state Newman’s conjecture for the L-function.

1Let the positive zeros of Ξ(x, χD) be denoted γ1, γ2, . . . with 0 < γ1 < γ2 < · · · . Then the zero γ1
is “unusually” low-lying, in the sense given in [Sto, (15)], if

5γ2
1

∑

|j|≥2

[

1

(−γ1 − γj)2
+

1

(γ1 − γj)2

]

< 1.

Stopple calls such D “Low discriminants” (“Low” is a person’s name).
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(1) We replace ξ(s, f) with ξ̃(s, f) := |ξ(s, f)|. Then ξ̃(s, f) = ξ̃(1 − s, f) for any

L-function. However, ξ̃(s, f) is no longer a smooth function in s. Thus, we lose
the backwards heat equation and other desirable properties and the results of
[CSV] do not carry over.

(2) We replace ξ(s, f) with ξ̃(s, f) := |ξ(s, f)|2, which is smooth in s. In this case

we have an analogue of Lemma 1.5, but since every zero of ξ̃(s, f) is doubled,

the lemma would make Newman’s conjecture for ξ̃(s, f) trivially true.

If we have an L-function with odd functional equation ξ(s, f) = −ξ(1 − s, f), what

we can do is define ξ̃(s, f) = i
s−1/2

ξ(s, f), which will then satisfy the conditions in

Section 2.2.
Alternatively, we can consider products of different L-functions. For example, if we

have two odd L-functions ξ(s, f) and ξ(s, g), then the product ξ̃(s) := ξ(s, f)ξ(s, g) has

the desired even symmetry. Thus there is a Pólya setup for ξ̃, and a corresponding
constant Λ. In this case, it is the distribution of union of the zeros of each L-function
that become relevant. (If the two L-functions share a zero then we have a double zero
and Newman’s conjecture is trivially true.)

Because of the lack of a proper functional equation, we cannot generalize Pólya’s
setup to (for example) the Hurwitz zeta function or linear combinations of L-functions.

2.4. Automorphic L-functions. One class of examples which can be analyzed with
these methods is H+

k (N), the holomorphic cuspidal newforms of weight k and level N
with even functional equation.

Lemma 2.3. As in [ILS, Section 3], consider the Hecke L-function given by L(s, f) =
∑

n≥1 λf(n)n
−s for f ∈ H+

k (N), and let Ξ(x, f) be the completed L-function evaluated at

s = 1
2
+ ix. Then we can follow Pólya’s setup and introduce the analogous deformation

Ξt(x, f), so there is a De Bruijn–Newman constant Λf for each f ∈ H+
k (N).

Proof. By definition of H+
k (N), the L-functions have even symmetry. Also, we have

Ξ(x, f) =

∫ ∞

0

Φ(u)(eiux + e−iux) du, (2.3)

where

Φ(u, f) =

(

2π√
N

)(k−1)/2
∑

n≥1

λf(n)n
(k−1)/2 exp

(

−2πn√
N
eu +

k

2
u

)

, (2.4)

which shows that Φ(u) decays rapidly as u → ∞. Thus, both conditions described in
Section 2.2 are satisfied. �

Conjecture 2.4 (The generalized Newman’s conjecture for H+
k (N)). Let f ∈ H+

k (N).
Then Λf ≥ 0.

In fact, most of the results in [CSV] and [Sto] on lower bounds of Λf carry over.
However, while we are able to make a Newman’s conjecture in the automorphic forms
setting, we see only the same behavior as before. Thus in the next section we focus our
attention on function field L-functions, where many new phenomena appear.
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3. Newman’s conjecture for function fields

In this section we explore Newman’s conjecture for function fields. The situation is
very different than the number field case due to the fact that the Riemann hypothesis
is known. For example, we are able to find L-functions where the associated constant is
−∞! This result indicates that some care is needed in formulating the correct analogue.
Briefly, we show that for certain families of L-functions then, in the limit, the constants
converge to zero. A key ingredient in our analysis is the recent proof of the Sato-Tate
conjecture for elliptic curves without complex multiplication. Interestingly, all that is
needed for the proof is that for such an elliptic curve E there is a sequence of primes
pn such that the normalized coefficients of its L-function, apn(E)/2

√
pn, converge to 1;

we are unaware of an elementary proof of this fact.

3.1. Background on function fields. In the function fields setting, the appropriate
analogue of Z is Fq[T ], the coordinate ring of the affine line over Fq. The background
introduced here is given in more detail in [Rud, Section 2] or [AK, Section 3]. For a
comprehensive text on number theory in function fields, see [Ros].

Definition 3.1. Let q be an odd prime power and let D ∈ Fq[T ]. For this paper, we
will say that (q,D) is a good pair if

• D is square-free and monic,
• degD is odd,
• degD ≥ 3.

For (q,D) a good pair, let χD : Fq[T ] → {−1, 0, 1} be the quadratic character modulo
D. That is, χD(f) = (D

f
), where ( ·

· ) is the Kronecker symbol.

Remark 3.2. We assume q is odd because if a field has characteristic 2, then every
element is a perfect square. We assume D is square-free and monic because this corre-
sponds to the fundamental discriminants in the number field setting.

We assume degD is odd only for simplicity and ease of exposition. The case when
degD is even can be handled similarly with some modifications.

For (q,D) a good pair, we define the L-function

L(s, χD) :=
∑

f monic

χD(f)

|f |s . (3.1)

By collecting terms, we can write

L(s, χD) =
∞
∑

n=0

cn(q
−s)n, (3.2)

where
cn =

∑

f monic
deg f=n

χD(f). (3.3)

It can be shown that cn = 0 for all n ≥ degD, so L(s, χD) is a polynomial in q−s of
at most degree degD − 1. In fact, the degree is exactly degD − 1.

Let g = 1
2
(degD − 1); we use the letter g because the value of g is the genus of

the hyperelliptic curve y2 = D(T ). The completed L-function ξ(s, χD) := qgsL(s, χD)
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satisfies the functional equation ξ(s, χD) = ξ(1 − s, χD). Note that this satisfies the
symmetry type we need, as discussed in Section 2.

Remark 3.3. By the Riemann Hypothesis for curves over a finite field, proved by Andre
Weil, we know that all the zeros of L(s, χD) lie on the critical line Re(s) = 1

2
. (A detailed

exposition of Bombieri’s proof is given in the appendix of [Ros].)

Using the functional equation, we can write

Ξ(x, χD) := Λ

(

1

2
+ i

x

log q
, χD

)

= Φ0 +

g
∑

n=1

Φn · (einx + e−inx) (3.4)

for some constants
Φn = cg−nq

n/2 = cg+nq
−n/2; (3.5)

the two equivalent expressions for Φn are due to the symmetry of the completed L-
function.

3.2. Introducing the t parameter. We observe that the right side of (3.4) gives the
Fourier series of our completed L-function. We can introduce a new parameter as in
(2.1), and find

Ξt(x, χD) := Φ0 +

g
∑

n=1

Φne
tn2

(einx + e−inx). (3.6)

Remark 3.4. What we call Φn here is the analogue of Φ(u) defined in the number field
setting. In both cases, Φ is the Fourier transform of Ξ. The difference is that in the
number field setting, Ξ(x) is a function on R with rapid decay as |x| → ∞, whereas here
in the function field Ξ(x) is now defined on the circle (x ∈ [0, 2π]). This is the reason
that Φ is now a Z → R function.

In order to guarantee the existence of a De Bruijn–Newman constant ΛD, we need
the following analogue of Lemma 1.1.

Lemma 3.5. Suppose for some t that Ξt(x, χD) has only real zeros. Then for all t′ > t,
Ξt′ has only real zeros.

Lemma 3.5 immediately follows from the following lemma.

Lemma 3.6 (Analogue of Theorem 13 in [dB]). Suppose F : Z → C satisfies
∑

|F (n)| <
∞, F (n) = F (−n) and F (n) = O(e−|u|2+ǫ

) for some ǫ > 0. Also suppose that the
roots of

∑∞
n=−∞ F (n)einx satisfy | Im z| ≤ ∆ for some ∆ ≥ 0. Then all the roots of

∑∞
n=−∞ F (n)etn

2

einx lie in the strip | Im z| ≤ max(∆2 − 2t, 0)1/2.

Proof. The key idea is to take (3.6) in De Bruijn’s paper, which is the trigonomet-
ric integral f(z) =

∫∞
−∞ F (t)eiztdt, and replace it with the trigonometric sum f(z) =

∑∞
n=−∞ F (n)einx. Then we note that the arguments to Theorems 11, 12, and 13 in De

Bruijn’s paper can be generalized to this situation. �

Proof of Lemma 3.5. Let

F (n) =

{

Φ|n| if |n| ≤ g

0 if |n| > g,
(3.7)

and apply Lemma 3.6. �
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Remark 3.7. Lemma 3.5 can be phrased as “zeros on the real line remain on the real
line.” Lemma 3.6 gives us more than that. It also tells us that the zeros off the real line
move towards the line, and furthermore provides a lower bound on the speed at which
the zeros move.

For instance, if we know all the zeros of Ξt0(x, χD) lie in the strip | Imx| ≤ ∆, then
we know all the zeros are real by the time t = t0 +

1
2
∆2. In the number field case,

since we know the zeros of Ξ(x) (for the Riemann zeta function) lie in the critical strip
| Im(x)| ≤ 1

2
, we know that Λ ≤ 1

2
.

By Lemma 3.5 and RH (see Remark 3.3), we know that for each good pair (q,D),
there exists a constant ΛD ∈ [−∞, 0] such that

(1) if t ≥ Λ then Ξt( · , χD) has only real zeros, and
(2) if t < Λ then Ξt( · , χD) has a non-real zero.

Note that we have not eliminated the possibility of ΛD = −∞. However, it turns out
that the analogue of Lemma 1.2 is false in the function field setting; that is, there are
L-functions with the property that Ξt( · , χD) has only real zeros for all t. (Remark 3.10
contains an example.)

There is a partial analogue, which holds for irreducible D. This at least assures us
that ΛD 6= −∞ often.

Lemma 3.8. Let (q,D) be a good pair and suppose D is irreducible. Then there exists
some t ∈ R such that Ξt has a non-real zero.

Proof. First we show that Φn 6= 0 for all 0 ≤ n ≤ g. Using (3.3) and (3.5), we have

Φn

qn/2
= cg−n =

∑

f monic
deg f = g−n

χD(f). (3.8)

Since q is odd, the number of terms in the sum is odd. Every f in the sum is relatively
prime to D, since g − n < 2g + 1 = degD. Hence, every term in the sum is either +1
or −1. Thus cg−n is odd, so Φn 6= 0.

Using the fact that Φn 6= 0, we can complete the proof of the lemma. For very
negative t (i.e., as t → −∞), the main terms of Ξt(x, χD) are Φ0 + Φ1e

t(eix + e−ix). If
x is a zero, we have

|Φ0/Φ1|e|t| ≈ |eix + e−ix|. (3.9)

As t → −∞, the left side goes to ∞ (since Φ0 6= 0), so for some t, the left side exceeds
2, which means x cannot be real. �

Remark 3.9. We can see from the proof of Lemma 3.8 that the conclusion of the lemma
holds if at least two of the Fourier coefficients of Ξt(x, χD) are nonzero.

Remark 3.10. An example of an L-function with ΛD = −∞ is D = T 3 + T ∈ F3[T ].
For this polynomial, Ξt(x, χD) =

√
3et cosx. As expected, D is not irreducible – we have

D = T (T 2 + 1).

3.3. The failure of Newman’s conjecture for individual L-functions. Using the
results of the previous section, we know that for each L-function L(s, χD), there is a De
Bruijn–Newman constant ΛD.
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At first, the “obvious” generalization of Newman’s conjecture to this setting is that
ΛD ≥ 0 for each D. However, this is false. Remark 3.10 provides an example with
ΛD = −∞. Appendix A provides an example with −∞ < ΛD < 0. In fact, for most (if
not all) D, ΛD will be strictly negative.

Lemma 3.11. Let (q,D) be a good pair. If Ξ0(x, χD) has only simple zeros, then
ΛD < 0.

Proof. The two key ideas of this technical argument are to use the implicit function
theorem, and to note that there are only finitely many zeros (which is very different
than the number field cases). Write F (x, t) = Ξt(x). Suppose γ is a simple zero
of Ξ0(x, χD). By the implicit function theorem, we can find a time interval (−ǫ, 0]
and a function y : (−ǫ, 0] → R defined on this time interval such that y(0) = γ and
F (y(s), s) = 0 for all s ∈ (−ǫ, 0].

Because Φg 6= 0, we know that Ξ0(x, χD) has exactly 2g zeros (with multiplicity) in
a period 0 ≤ Re(x) < 2π. Suppose all these zeros are simple, so we can write them
as 0 < γ1 < γ2 < · · · < γ2g < 2π. (We know the zeros of Ξ0 are real because of
Remark 3.3.)

For each zero, there is a time interval (−ǫn, 0] such that the zero γn stays real in
this interval. Then all the zeros stay real inside the time interval (−ǫ, 0], where ǫ =
min{ǫ1, . . . , ǫ2g}. Finally, since Ξt(x, χD) has exactly 2g zeros in 0 ≤ Re(x) < 2π for
every t, we have accounted for all of them. �

Remark 3.12. It is not known whether there exists a good pair (q,D) such that Ξ0(x, χD)
has a double zero.

Remark 3.13. There is no analogue of Lemma 3.11 in the number field setting. A
crucial part of the argument is the periodicity of Ξt(x, χD). Thus, ǫ is the minimum
of a finite set of positive numbers (as opposed to the infimum of an infinite set), which
allows us to conclude that ǫ is strictly positive.

3.4. Newman’s conjecture for families of L-functions. Because of Lemma 3.11,
we do not look at individual L-functions. Instead, following Stopple, we study families
of L-functions.

Conjecture 3.14 (Newman’s conjecture, fixed q). Keep q, the number of elements of
the finite field, fixed. Then

sup
(q,D) good pair

ΛD ≥ 0. (3.10)

Conjecture 3.15 (Newman’s conjecture, fixed g). Keep g, the genus, fixed. Then

sup
degD = 2g+1
(q,D) good pair

ΛD ≥ 0. (3.11)

Conjecture 3.16 (Newman’s conjecture, fixed D). Fix D ∈ Z[T ] square-free. For each
prime p, let Dp be the polynomial in Fp[T ] obtained by reducing D modulo p. Then

sup
(p,Dp) good pair

ΛDp
≥ 0, (3.12)
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Remark 3.17. As RH has been proved in this setting in the conjectures above, we could
replace the greater than or equal to 0 with equal to 0; we wrote it as above to remind the
reader of the analogues of Newman’s conjecture in the number field setting.

More generally, let F be a set of polynomials D belonging to good pairs (q,D) (where
q can vary). The corresponding family of L-functions is {L(s, χD) : D ∈ F}. (We often
use F to refer to not only the family of polynomials but also the family of L-functions.)
The Newman’s conjecture for a family F is the statement that

sup
D∈F

ΛD ≥ 0. (3.13)

The families F corresponding to Conjecture 3.14, Conjecture 3.15 and Conjecture 3.16,
respectively, are

• Fix q and let F = {D : (q,D) is a good pair}.
• Fix g and let F = {D : (q,D) is a good pair, degD = 2g + 1}.
• Fix D ∈ Z[T ] square-free and let F = {Dp : (p,Dp) is a good pair}.

3.5. The case degD = 3 and the Sato–Tate Conjecture. We examine a special
case of Conjecture 3.16 in which the fixed square-free polynomial D ∈ Z[T ] satisfies
degD = 3, so g = 1. In this section we prove this special case of Newman’s conjecture.

For a fixed D of degree 3, the corresponding Ξ functions have the form

Ξt(x, χDp
) = −ap(D) + 2

√
qet cosx, (3.14)

where

ap(D) =
∑

f∈Fp[T ]
deg f=1
f monic

χDp
(f). (3.15)

Note that ap(D) is the trace of Frobenius of the elliptic curve y2 = D(T ). In this setting,
we get an explicit formula for ΛDp

.

Lemma 3.18. Let D ∈ Z[T ] be a square-free polynomial of degree 3. Let Dp be the
polynomial in Fp[T ] obtained by reducing D modulo p. Then

ΛDp
= log

|ap(D)|
2
√
p

. (3.16)

Proof. Fix t and suppose x0 is a zero of Ξt. Then

cosx0 =
1

et
· 2

√
p

ap(D)
. (3.17)

If et ≥ |ap(D)|
2
√
p
, then −1 ≤ cosx0 ≤ 1, so x0 is real. On the other hand, if et < |a(D)|

2
√
q
,

then | cosx0| > 1, which implies x0 is not real. �

In order to show that supp ΛDp
= 0, we need a sequence of primes p1, p2, . . . such that

lim
n→∞

apn(D)

2
√
pn

→ 1. (3.18)
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Thus we need to investigate the distribution of |ap(D)|
2
√
p

as p varies. Hasse showed in the

1930s that −1 < ap(D)
2
√
p

< 1 [Sil, Theorem V.1.1]. (In fact, this is a special case of RH

for curves over a finite field.)
It is natural to let θp ∈ (0, π) satisfy

cos θp =
ap(D)

2
√
p

(3.19)

and to study the distribution of θp as p ranges.
If D has complex multiplication, then there is a spike at θp = π and otherwise a

uniform distribution on (0, π).
If D does not have complex multiplication, then the distribution is conjectured to

satisfy the semi-circle distribution:

lim
N→∞

#{p ≤ N : α < θp < β}
#{p ≤ N} =

2

π

∫ β

α

sin2 θ dθ. (3.20)

This is a specific case of the Sato–Tate conjecture. Clozel, Harris, Shepherd-Barron and
Taylor [CHT,HSBT,Tay] proved this for elliptic curves without complex multiplication,
provided that there is at least one prime of multiplicative reduction; that assumption
was recently removed by Barnet-Lamb, Geraghty, Harris and Taylor [BLGHT]. Thus,
for any square-free D ∈ Z[T ], we can find a sequence of primes satisfying (3.18). We
have therefore proved the following.

Theorem 3.19 (Newman’s conjecture for fixed D, degD = 3). Let D ∈ Z[T ] be square-
free with degD = 3. Then supp ΛDp

= 0.

Remark 3.20. When g ≥ 2, then Ξt contains multiple et terms and multiple cosnx
terms, making it much harder to find the explicit expression of ΛDp

.

3.6. Zeros of Ξ0(x, χD). In this section, we introduce notation for the zeros of Ξ(x, χD)
and discuss basic properties, which will be used in the remainder of the paper.

Remark 3.21. Because of (3.4), a zero γ of Ξ(x, χD) corresponds to a zero 1
2
+ iγ

log q
of

L(s, χD).

The following analogue of Lemma 1.5 gives us a lower bound on ΛD via double zeros.

Lemma 3.22. Let (q,D) be a good pair. Let t0 ∈ R. If Ξt0(x, χD) has a zero x0 of
order at least 2, then t0 ≤ ΛD.

Proof. If F (x, t) = Ξt(x, χD), then F satisfies the backwards heat equation: ∂tF +
∂xxF = 0. Using the observation, the lemma follows via the argument given in [Sto,
Lemma, page 7]. �

Remark 3.23. Because of Lemma 3.22, if Ξ0(x, χD) has a double zero, then Newman’s
conjecture is true. For most of the remaining paper, we assume that all the zeros of Ξ0

are simple.

Let (q,D) be a good pair and assume the zeros of Ξ0(x, χD) are simple. Because of
evenness, this implies that Ξ0 does not have a zero at x = 0. Let the positive zeros
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of Ξ0(x, χD) be denoted γ1, γ2, . . ., counted with multiplicity. We assume the zeros are
ordered so that 0 < γ1 < γ2 < · · · .

By (3.4), we see that the first 2g zeros lie in the interval (0, 2π), and the remaining
zeros are repeated by periodicity. Thus, all the zeros of Ξ are given by

{γj + 2πℓ : j ∈ {1, 2, . . . , 2g}, ℓ ∈ Z}. (3.21)

Next, by evenness and periodicity, we know for 1 ≤ j ≤ g, we have γ2g+1−j = −γj +2π.
This implies that the first g zeros lie in (0, π) and the next g zeros lie in (π, 2π). Thus,
all the zeros of Ξ0 are given by

{ǫγj + 2πℓ : ǫ ∈ {±1}, j ∈ {1, 2, . . . , g}, ℓ ∈ Z}. (3.22)

In other words, once we compute the first g zeros of Ξ0, we know the remaining zeros.

Remark 3.24. The observations above still apply if Ξ0(x, χD) does not have only simple
zeros. The only technical detail we have to pay attention to is if Ξ0 has a zero at x = 0.
We know that Ξ0 has a zero of even order, say 2n. Then we must let 0 = γ1 = · · · =
γn < γn+1, so that −γ1, . . . ,−γn cover the remaining multiplicities.

3.7. Main result of Csordas et. al. We have an analogue of the main result of [CSV]
and [Sto], which can be used to give lower bounds on Λ.

Lemma 3.25. Let (q,D) be a good pair and suppose the zeros of Ξ0(x, χD) are simple.
Let the positive zeros of Ξ0(z, χD) be denoted γ1, γ2, . . . as described in Section 3.6.
Define the quantity

G =
∞
∑

j=2

2

(γ1 − γj)2
. (3.23)

Then if 5γ2
1G < 1, we have

ΛD >
(1− 5γ2

1G)4/5 − 1

8G
. (3.24)

Proof. This is a direct generalization of [Sto, Theorem 1]. In [Sto], the quantity G has
the same form except the sum is over the zeros of a number field L-function.2 The
condition (5γ2

1G < 1) is the same as in [Sto], and the conclusion (a lower bound on ΛD)
is the same. The method of proof uses differential equations governing the motion of
the zero γ1 as t changes to find a time t < 0 when γ1 coalesces with −γ1. �

3.8. Low-lying zeros and connections with random matrix theory. We now
show that the condition 5γ2

1G in Lemma 3.25 does occur in certain families, using
connections to random matrix theory. We begin by analyzing (3.23).

We assume the zeros of Ξ0(x, χD) are simple, so by the discussion in Section 3.6, we
can write the first g positive zeros as 0 < γ1 < · · · < γg < π. Then all of the zeros of Ξ0

are given by Equation (3.22). Using this fact, we can write (3.23) as

G =
∑

ǫ∈{±1}

g
∑

j=1

∑

ℓ∈Z

′ 2

[γ1 − (ǫγj + 2πℓ)]2
, (3.25)

2In [Sto], the quantity analogous to (3.23) is actually called “g(0).” (See [Sto, (13)].) However, in
this paper, we use g for the genus of the hyperelliptic curve defined by D.
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where the prime mark (′) means we omit the two terms (ǫ, j, ℓ) = (±1, 1, 0). Using the
identity

∑

n∈Z(n+ α)−2 = π csc2 πα, after some algebraic manipulations, we obtain

G =
1

6
− 1

2γ2
1

+
1

2
csc2 γ1 +

1

2

∑

ǫ∈{±1}

g
∑

j=2

csc2
(

γ1 + ǫγj
2

)

. (3.26)

Observe that the sum on the right is now a finite sum.
With some work, we can determine sufficient conditions for 5γ2

1G, which allows us to
apply Lemma 3.25.

Lemma 3.26. Let (q,D) be a good pair and let γ1, . . . , γg be the zeros of Ξ0(x, χD) in
[0, π]. Assume the zeros are simple so that 0 < γ1 < · · · < γg < π. Suppose the following
conditions hold

• g ≥ 13,

•
(

g
π
γ1
)2 ≤ 1

500g
,

• 1
2
≤ g

π
γ2 ≤ 2.

Then 5γ2
1G < 1 (where G is defined in (3.26)).

Before we present the proof, we make a few observations. The quantities γ̃j :=
g
π
γj

are rescalings of the zeros. Since 0 < γ̃1 < · · · < γ̃g < g, the normalized zeros γ̃1, γ̃2, . . .
on average have unit spacing on the positive real line. Thus the condition γ̃2

1 ≤ 1
500g

says that the first zero is unusually small, while the condition 1
2
≤ γ̃2 ≤ 2 says that

second zero is around where it is “expected” to be.
These conditions (along with g ≥ 13) are very crude and the constants can easily be

improved with some work. However, our focus is not on the optimum, but the fact that
such a statement as the lemma exists.

Proof. This argument is technical, and relies on bounds for the function csc2 x. In
particular, for |x| ≤ 1

2
,

csc2 x ≤ 1.1

x2
, (3.27)

csc2 x ≤ 1

x2
+ 0.36. (3.28)

Next, we take the expression (3.26) for G and break it into two parts by writing

G =
1

6
+ SI + SII , (3.29)

where

SI =
1

2
csc2 γ1 −

1

2γ2
1

SII =
1

2

∑

ǫ∈{±1}

g
∑

j=2

csc2
(

γ1 + ǫγj
2

)

.
(3.30)

Using the bound (3.28) and our assumption on γ1, we have

SI ≤ 0.18. (3.31)
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Next we bound SII . The idea will be to bound the sum by the maximum term, i.e.,

SII =
1

2
· 2 · (g − 1) · max

ǫ∈{±1}
2≤j≤g

{

csc2
(

γ1 + ǫγj
2

)}

. (3.32)

Notice that csc2 x is large when x is near a multiple of π. The choice of (ǫ, j) ∈
{±1} × {2, . . . , g} that minimizes the distance between

γ1+ǫγj
2

and 0 is (ǫ, j) = (−1, 2).
That distance is

∣

∣

∣

∣

0− γ1 − γ2
2

∣

∣

∣

∣

=
γ2 − γ1

2
≤ γ2

2
≤ π

g
≤ π

13
. (3.33)

The choice of (ǫ, j) that minimizes the distance between
γ1+ǫγj

2
and π is (ǫ, j) = (1, g).

That distance is
∣

∣

∣

∣

π − γ1 + γg
2

∣

∣

∣

∣

= π − γ1 + γg
2

≥ π − 1 + π

2
≥ π

2
− 1

2
. (3.34)

Note that it suffices to obtain a lower bound on the absolute value of the difference, as
if it were large than it would be closer to a different multiple of π.

The choice of (ǫ, j) that minimizes the distance between
γ1+ǫγj

2
and −π is (ǫ, j) =

(−1, g). That distance is
∣

∣

∣

∣

−π − γ1 − γg
2

∣

∣

∣

∣

= π − −γ1 + γg
2

≥ π − 0 + π

2
≥ π

2
. (3.35)

It follows that csc2
(γ1+ǫγj

2

)

is maximized at (ǫ, j) = (−1, 2), so

SII ≤ 1

2

∑

ǫ∈{±1}

g
∑

j=2

csc2
(

γ1 − γ2
2

)

≤ g csc2
(

γ1 − γ2
2

)

. (3.36)

As shown in (3.33), we have
∣

∣

γ1−γ2
2

∣

∣ ≤ 1
2
. Thus, combining (3.28) and (3.36) yields

SII ≤ 1.1g

(

2

γ1 − γ2

)2

=
4.4g

γ2
2

(

1

1− γ1/γ2

)2

≤ 18g

γ2
2

. (3.37)

By combining (3.29), (3.31), and (3.37), we arrive at

5γ2
1G ≤ 1.8γ2

1 + 90g · γ
2
1

γ2
2

. (3.38)

By using γ̃2 ≥ 1
2
, we have

90g · γ
2
1

γ2
2

= 90g · γ̃
2
1

γ̃2
2

≤ 450gγ̃2
1 ≤ 0.9, (3.39)

where we use γ̃2
1 ≤ 1

500g
at the end. Then 1.8γ̃2

1 ≤ 1.8 · 1
500·13 ≤ 0.0003, so 5γ2

1G < 1. �

Analogous to [CSV, (4.25)] and [Sto, (17)], the expression on the right hand side of
(3.24) has the power series expansion

(1− 5γ2
1G)4/5 − 1

8G
= −1

2
γ2
1

(

1 +
γ2
1G

2
+O(γ4

1G
2)

)

. (3.40)
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Thus the smaller the first zero γ1 is, the better the lower bound on Λ given by Lemma 3.26
is.

We discuss an interpretation of the above. Since our Newman conjectures vary over
families, we write γ̃j(D) and g(D) to remind ourselves of dependence on D.

Corollary 3.27. Let F be a family of polynomials D belonging to good pairs (q,D).
Suppose there exists a sequence D1, D2, . . . in F such that γ1(Dn) → 0 as n → ∞ and
for all n,

• g(Dn) ≥ 13
• γ̃1(Dn)

2 ≤ 1
500g(Dn)

• 1
2
≤ γ̃2(Dn) ≤ 2.

Then ΛDn
→ 0 as n → ∞, so Newman’s conjecture is true for the family F .

The conditions above essentially say that there is a set of curves in our family where
the first zero is unusually small and the second zero is on the order of its expected value.
For many families with g and q tending to infinity, this is known due to work of Katz
and Sarnak [KS2,KS1].

Appendix A. Example of Ξt(x, χD) in function fields and the role of the
backwards heat equation.

For
D = T 5 + T 4 + T 3 + 2T + 2 ∈ F5[T ], (A.1)

we have
Ξt(x, χD) = 10e4t cos 2x− 2

√
5et cosx− 1. (A.2)

For any t, we observe that e2ix · Ξt(x, χD) is a fourth degree polynomial in eix. Thus
Ξt(x, χD) must have exactly four zeros with Re(x) ∈ [0, 2π).

Figure A.1 shows plots of Ξt(x, χD) for various times t. Observe that as we move
backwards in time, the peaks get smaller. Because Ξt(x, χD) solves the backwards heat
equation, the “flattening” of the function behaves like the diffusion of heat.

As we decrease t, the two zeros on the left move towards each other, until they coalesce
at t ≈ −0.189. If we keep going further back in time, these two zeros “pop off” the real
line. For instance, at t = −0.25, the function has zeros at x ≈ ±0.152i.

The time when the zeros coalesce (t ≈ −0.189) is the De Bruijn–Newman constant
ΛD for this D. It is the largest real solution to Ξt(0, χD) = 0. From (A.2), we see that
ΛD is the logarithm of the root of a fourth degree polynomial.

Appendix B. Numerical calculations

If Ξt( · , χD) has a zero at x = 0, then it has a double zero there by evenness. Thus,
by using Lemma 3.22, we see that a solution t to Ξt(0, χD) = 0 is a lower bound for ΛD.
We have

Ξt(0, χD) = Φ0 + 2

g
∑

n=1

Φn(e
t)n

2

, (B.1)

which is a polynomial in et of degree g2. As g increases, it becomes harder to find the
exact roots of this polynomial, but we may still proceed numerically. This gives us a
method to quickly find lower bounds of ΛD for D.
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Figure A.1. Plots of Ξt(x, χD) for different t.

For q = 3, this method produces the lower bounds given in Figure B.1 and Figure B.2.

g (c0, . . . , cg) lower bound on ΛD

1 (1,−3) −1.44 · 10−1

2 (1,−3, 5) −5.28 · 10−2

3 (1,−1, 1,−7) −1.26 · 10−2

4 (1,−3, 9,−23, 39) −1.05 · 10−3

5 (1,−3, 5,−3,−11, 27) −1.23 · 10−4

6 (1,−1, 3,−7, 5,−13, 11) −3.02 · 10−5

7 (1, 1, 5, 3, 1,−15,−51,−101) −1.28 · 10−5

Figure B.1. Lower bounds on ΛD for certain D ∈ F3[T ]. The values
c0, . . . , cg are the coefficients of the L-function as in (3.2) and (3.3).

The above supports the claim that

lim
g→∞

sup
D∈F3[T ]

degD≤2g+1

ΛD = 0,

which supports Newman’s conjecture for fixed q.
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g D

1 T 3 + 2T + 1

2 T 5 + T 3 + T + 1

3 T 7 + 2T 5 + T 3 + 2T 2 + 2T + 2

4 T 9 + T 6 + T 4 + T 3 + T 2 + T + 1

5 T 11 + 2T 9 + T 8 + 2T 7 + 2T 6 + 2T 5 + 2T 4 + T 2 + 2T + 1

6 T 13 + 2T 11 + T 10 + 2T 7 + 2T 6 + 2T 4 + T 3 + 2T + 1

7 T 15 + 2T 14 + 2T 9 + T 8 + 2T 6 + T 3 + 2T 2 + T + 2

Figure B.2. Polynomials in F3[T ] used in Figure B.1.
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