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ABSTRACT. Zeckendorf proved any integer can be decomposed unigselysam of non-adjacent Fibonacci
numbers,F’,. Using continued fractions, Lekkerkerker proved the ayeraumber of summands of an €

[F, Fry1) is essentiallyn/(o? + 1), with o the golden ratio. This result has been generalized by many,
often using Markov processes, to show that for any posifivear recurrence the number of summands in
decompositions for integers id+,, Gn4+1) converges to a Gaussian distribution. Below we insteadvoll
and further develop the combinatorial approach of Milled &dang, and show its power in handling related
questions. Specifically, we prove the probability of a gagdathan the recurrence length converges to decaying
geometrically, and that the distribution of the smallergydppends in a computable way on the coefficients of
the recurrence. These results hold both for the averageadver € [G.., G,+1) and almost surely for the
gap measure associated to individual These techniques also determine the distribution of thgdst gap
between summands, which we prove is similar to the disiobudf the longest gap between heads in tosses of
a biased coin. Itis a double exponential strongly concégdrabout the mean, and is on the ordelogfn with
computable constants depending on the recurrence.

1. INTRODUCTION

1.1. Background. We explore the distribution between summands in genethlfezzkendorf decomposi-
tions. These generalize the standard biasepansions, and have the following desirable propertigs: (
existence (every positive integer has a decompositioprfRjueness (there is only one decomposition for
each number), and (3) sparseness (many of the possible sudaraee not used). The latter property sug-
gests that such decompositions can have applications ipu@mscience, where storage costs are a major
issue. Zeckendorf[Ze] proved that every positive integar loe written uniquely as a sum of non-adjacent
Fibonacci number$} = 1, Fo = 2 andF,, s = F,,+1 + F),. The standard proof is by a greedy algorithm,
and illustrates the naturalness of the non-adjacency tondi

Lekkerkerker([Lek] proved that fon. € [F),, F,,+1), asn — oo the average number of summands needed

isn/(p? +1), with p = 1+T‘/5 the golden mean. More generally, we may replace the Fibaadth other
sequences and ask whether or not a decomposition existowitiree desired properties. The following
theorem gives a large class of recurrence relations whereassdecomposition exists, and gives the analogue
of non-adjacency (essentially we cannot use the recurneiagon to reduce our decomposition). See for

example [Dayl GrTil Ha, Ho, Ké, Leh, MWL, MW2] for some of thistory and proofs of results along
these lines,[[AI_ DDKMY] for generalizations to far-diffence representations (where we allow signed
decompositions), and [DDKMMNV] for other generalizatiorfsttee notion of a legal decomposition.
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Theorem 1.1(Generalized Zeckendorf and Lekkerkerker Theorer@gnsider goositive linear recurrence
Gpt1 = a1Gy + - -+ + ¢, Gpr1— With non-negative integer coefficientswith ¢1, ¢y, L > 1, and initial
conditionsG; = 1 andG4+1 = c1Gp + c2Gr—1+ - +¢,G1 + 1 for1 < n < L. For each integern > 0
there exists a uniquiegal decompositionzle a;Gn11—; With a; > 0, the othera; > 0, and one of the
following two conditions, which define a legal decompositinolds.

e We havelV < L anda; =¢; for1 <i < N.
e There exists as € {1,...,L} such thata; = ¢y, ay = co, ..., as—1 = cs—1 and a5 < cs,

Usi1,- - aspe = 0 for somel > 0, and {b; } 757 (with b; = a4 is either legal or empty.

As the decomposition is unique we defiiier), the number of summandsritis decomposition, by(m) =
S a;; we often writem = Y5 Gy,

There exist constant§.. > 0 and d such that asm — oo the average number of summands in a
generalized Zeckendorf decomposition of integeli&in G,,+1) is Crexn + d + o(1).

After determining the mean number of summands, the nextigues the variance or, more generally, the
distribution of the fluctuations about the mean. Using tépies from ergodic theory and number theory
the fluctuations about the mean were shown to converge to asiaau(see among othefs [DiGa, DuTh,
[EGNPT,[GTNP| LaTh, Ste]). Using a more combinatorial perpe, Kologlu, Kopp, Miller and Wang
[KKMW, MW1] reproved these results for the positivediar recurrences studied above, and their
proof applies to the far-difference representations a$ (et [DDKMV], as well as[[CEFHMN] for a linear
recurrence example wherg = 0); we use this result and perspective in our study of gaps§&e&efor a
discussion on alternative viewpoints and other, relatetlpms that one could investigate).

Theorem 1.2 (Gaussian Behavior of Summands in Generalized Zeckendecbpositions) Let {G,, }
be a positive linear recurrence as in Theoreml 1.1. For eaclke [G,,, G,,11) let k(m) be the number of
summands inn’s generalized Zeckendorf decomposition. rAs+ oo the distribution of thek(m)’s for
m € [Gn,Gnre1) CONverges to a Gaussfanvith explicitly computable mean of ordér; .n (for some
CrLex > 0) and variance of orden.

1.2. Notation. Before stating our results we first set some notation andlraceeeded result. LetG,,}
be a positive linear recurrence and takee [G),,G,+1). Notice thatG,, must be a summand in the
decomposition ofn, and if the coefficient; in the defining recurrence af,, is greater than 1 then it is
possible to have multiple copies 6f, in m’s decomposition. We writen as

k(m)
m =Y G (rgm) = n). (1.1)
j=1

For example, ifn = 1Gro1 +24Ggo1 +2013G5, we find 2035 gaps of length 0 (2012 coming frafi3G,

and 23 from24Ggp1), one gap of length 599 (coming fro6dsy; andGs), and one gap of length 100 (from
Gro1 andGgo1). By Theoreni 1R thé(m)’s converge to being normally distributed with mean of order
and standard deviation of ordefn; in particular, most:(m)’s are close, on an absolute scale, to the mean.
Below are the statistics we study.

e Spacing gap measur@he spacing gap measure ofanc [G,,, G,,+1) with k£(m) summands is
1
Vmin () = k(m) — 1 Z o (x—(rj—rj—1)), (1.2)

IWwhen we say the number of summands converges to a Gaussianehns that as — oo the fraction ofm € [G., Gny1)
such that the number of summandsiirs Zeckendorf decomposition is i, — aon, pun + bor,] converges to\/% f: et /24y,
wherey,, is the mean number of summands forc [G,,, G,+1) ando? is the variance.
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wheres is the Dirac delta functiond We do not include the gap to the first summand, as this is not
a gapbetweersummands; for almost ath one extra gap is negligible in the limit.

e Average spacing gap measuié:k(m) is the number of summandsin’s generalized Zeckendorf
decomposition, then it hdgm) — 1 gaps. Thus the total number of gaps forralle [G,,, G,,+1) IS

Gn+1—1
NgapS(n) = Z (k(m) -1), (1.3)
m=Gn
and by the Generalized Lekkerkerker Theorem we have
Ngaps(n) = Crexn (Gn1 — Gn) + O (G — Gy) . (1.4)
We define the average spacing gap measure for all [G,,, G,,+1) by
Gn1—1k(m)
Vo) = Z Y8z —(rj—rj-1)
gaps m=G, j=2
1 Gn+1 1
= — E(m) —1) vman(x). (1.5)
- m; (k(m) = 1) Vnin ()

Equivalently, if P, (k) is the probability of getting a gap of lengthamong all gaps from the de-
compositions of alln € [G,,, G, +1), then

n—1
= Pu(k)d(z — k). (1.6)
k=0

e Limiting average spacing gap measure, limiting gap probads: If the limits exist, we let
v(z) = nh_{goyn(x)v P(k) = nh_g;lo Py (k). (1.7)
We prove these limits exist, and determine them.
e Longest gapGiven a decompositiom = G;, +Gr,+---+Gy,,,, form € (G, Gny1), the longest

gap, denoted.,,(m), is the maximum difference between adjacent indices: i decomposition.
ThusL,(m) := MaXo< j<k(m ]r] -1l

1.3. Results: Gaps in the Bulk.

We can now state our results for gaps in the bulk.

Theorem 1.3(Average Gap Measure in the Bulklet {G,,} be a positive linear recurrence of length

as in Theoren 111, and assume eagh> 1. LetA\; > 1 denote the largest root (in absolute value) of
the characteristic polynomial of th€',,’s, and leta; be the leading coefficient in the Generalized Binet
expansion (thu€r,, = a1 A} + o(A\}); see Appendik]A). LeP, (k) be the probability of having a gap of
lengthk among the decompositionsaf € [G,,, Gy+1), and letP(k) = lim,,_, o, P, (k). Then

1—(—)(2)\1 +a;t=3) ifk=0
P(k) = { AN (o) (1 = 2a1) +ar) if k=1 (1.8)
(A — 1)2 (CLk)/\l‘k if k> 2.

In particular, the probability of having a gap of length> 2 decays geometrically, with decay constant the
largest root of the characteristic polynomial.

2Thus for any continuous functiofiwe have[”  f(z)é(z —a)dz = f(a); we may views(z — a) as representing a unit point
mass concentrated at
3



We included the conditior; > 1 above to simplify the algebra. An analogue of the above #mor
holds for general positive linear recurrences, but the tingioecomes more involved and it is not as easy to
extract nice closed form expressions. For such recurrahceslear that there is geometric decay for gaps
larger than the recurrence length but the behavior fok < L depends greatly on which'’s vanish.

We isolate some important examples. For bBsgecompositionsP(0) = (B — 1)(B — 2)/B?, and for
k>1,P(k)=cgB~* withcg = (B —1)(3B —2)/B?, while for the standard Zeckendorf decomposition
P(k) = 1/¢" for k > 2, with o = 145 the golden mean.

The proof of Theorern 113 falls from a careful counting of theier of times each gap length occurs.
Fork > 0 let

Xiitk(n) = #{m € [Gy,Gn41) : G, Giyr, In m’s decomposition, but nat; , for 0 < ¢ < k}. (1.9)
Note we can deduce the= 0 behavior if we know the answer for eagh> 1. Then

n—k
P(k) = lim 2iz1 Xiik(n) (1.10)
n—00 Ngaps(n)
The denominator is well-understood by Lekkerkerker's Theeq the proof of Theorern 1.3 follows from
a good analysis of; ;. ;(n), which can be deduced from the uniqueness arguments in tierajized
Zeckendorf decompositions. We give the proof[ifh §2.
Theoren LB gives the limiting behavior of tlawerageof the individual gap measures,,,(z). As
n — oo, for almost allm € [G,,, G,,+1) theindividual measures are close to the average gap measure.

Theorem 1.4(Individual Gap Measure in the BulkLet{G,, } be a positive linear recurrence as in Theorem
[L.1, with the additional assumption that eagh> 1. Asn — oo, the individual gap measures,,.,, ()
converge almost surely in distributito the limiting gap measure from Theorém|1.3.

We sketch the main ideas of the proof. L&f,,(¢) denote the characteristic functibof Vm:n(x), and
v(t) the characteristic function of the average gap distribufiom Theoreni1]3. LeE,,[ -] denote
the expectation over alh € [G,,,G,,+1), with all m equally likely to be chosen. We first show that

— —

1imyy 00 B |7 (£)] €qualsi(t), and then shovlim,, o [(ymm(t) - ﬁ(t))z] = 0. This allows us to in-

voke Lévy’s continuity theorem to obtain convergence irtribiation for almost allm € [G,,,G,+1) as
n — oo. We replacek:(m) with its average (and use the Gaussianity results to cotteagrror), and intro-
duce more general indicator functions suchXas. 4, ; i+¢.(n), reducing the proof to a counting problem.

1.4. Results: Longest Gap.

If G,,.+1 = 2G,,, then the distribution of the longest gap (m) for m € [G,,, G,+1) is essentially that of
the longest run of consecutive tailsrirtosses of a fair coin whose final toss is a head. The answeoiias ¢
is well-known, both for fair and biased coins (see for exan{Bich]). What is particularly remarkable about
the coin toss problem is how tightly concentrated the anssvabout the mean. For a coin with probability
p of heads ang = 1 — p of tails, the expected longest run of heads is

log(ng) " tam (@1

log(1/p) = log(1/p) 2

1
log (1) = 1o = 5 +a(n) + ea(n) =

while the variance is )
T 1
+ — 4+ 1r2(n) + e2(n), 1.12

3A sequence of random variablés , Ro, ... with corresponding cumulative distribution functiohs, F», ... converges in
distributionto a random variabl& with cumulative distributior¥” if lim,, ... F5(r) = F(r) for eachr whereF is continuous.
4The characteristic function of a random variableis E[e*], with a similar definition for a measure. We denote the charac
teristic function of a measurpe by i, as it is the Fourier transform of the measure (up to a nomatdin constant).
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where~ is Euler’s constant, the;(n) are at most .000016, and thgn) tend to zero as — oco. Very
importantly, the variance is bounded independenthy.dby essentially 3.5). This implies that there is
essentially no fluctuation of the observed longest stringezfds. We find similar behavior, both in terms
of the logarithmic size of the longest term in our sequencevels as the strong concentration about the
average.

Before we can state our results, however, we need to inteodome notation. It is technically more
convenient to rewrite the recurrence relation where we ostprd thenon-zero coefficients. Thus, in the
sections on longest gaps, we write our positive linear resnoe as

Gn+1 - Cj1+1Gn—j1 + Cj2+1Gn—j2 +oet CjL+1Gn—jL7 (1.13)
wherej; =0, j1 < jo < --- < jr, and all recurrence coefficients not shown are zero.

Theorem 1.5(Longest gap in generalized Zeckendorf expansiobe){G,, } be a positive linear recurrence
as in Theoreri 111, and assume the associated polynofidls = 1—cys—cj, 41827 —- - —¢;, 11872 T1

andR(s) = ¢1 + ¢j,4+1872 + - + (¢j,+1 — 1)s’L do not have multiple roots or roots of absolute value 1.
Let \; be the largest root of the recurrence f6Y,, G(s) = —M(s)/(s — 1/A1) and

#{m € [GmGn+1) ( ) < f}
Gn+1 Gn

P(n, f) = (1.14)

be the cumulative distribution of the longest gap in the 2adkrf decompositions of. € [G,,, Gy +1);
note we are computinggagsri ctly | ess than f, and we do not include the gap in the beginning.

(1) Asymptotically, for anyR i, € R with Ay < Ry, < 1 we have

P(n,f) = exp (-le (;)J) +0 (nf (R;m>f+n (}\11>2f_|_f (Além)n) . (1.15)

(2) LetK = A\R(1/A1)/G(1/\1) and~y be Euler’s constant. The mean of the longest gap.and the
variance of the longest gap2, are given by

log (nK) 07 1 9 2
Mn = log )\1 + log )\1 — 5 + 0(1), 0, = W + 0(1) (116)

The proof proceeds by introducing a generating functionfedongest gap distribution, where we obtain
the probabilities by analyzing the cumulative distribatioinction. We use a partial fraction decomposition
to extract information from the generating function, and B®uche’s theorem (among others) to deal with
the technicalities that arise. Taking into account that wendt consider the initial segment, our theorem
applied toG,, 11 = 2G,, is consistent with tosses of a fair coin.

The fit between numerics and theory is excellent. For exangolesider the Fibonacci numbérsive
chose 100 numbers randomly frdi,, F,,. 1) with n = 1,000,000. We observed a mean of 28.51 and a
standard deviation of 2.64, which compares very well with phedictions of 28.73 and 2.67. Increasing
to 10,000,000 and looking at 20 randomly chosen numberdegdeh mean of 33.6 and a standard deviation
of 2.33, again close to the predictions of 33.52 and 2665.

SDue to costs to store and recall objects from memory, andddhesBinet formula, we found it best to use Binet's formula to
find F,, and F,1, and then use the recurrence to compute backwards.

Swe saw similar behavior in other recurrences. ERri = 2a, + 4an—1, whenn = 51,200 (respectivelyl02, 400) the
predicted mean was 9.95 (resp. 10.54) and the standardidewi#as 1.09; choosing 100 points randomly in the interielded a
mean of 9.91 (resp. 10.45) and a standard deviation of 1e2p(11.10).
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1.5. Extensions and structure of the paper.Ben-Ari and Miller [B-AM] prove similar theorems as in this
paper, based on the observation that the resulting diitiisicoincide with the distribution of a conditioned
Markov chain. This allows them to obtain results on decontjpos from analogous results for Markov
chains, and gives some insight as to why the gap distribdiglmaves as it does. One of the main goals
of this paper is to highlight and further develop the comtwrial approach and machinery from [KKMW,
IMW?2], which gives similar results but more elementafiés well as error terms in some cases); we
hope that this vantage will be of use to other researchedyisig related problems.

We have chosen to study the distribution of gaps for numbef&j,, G,,+1). We made the decision
to localize in this manner as now each element has the sandéats summand seind the same largest
summand,; this is similar in spirit to studying primgsn the interval[x, 2z) so that the weight®g p are
essentially constant in the interval. Similar results casilg be derived for the interval, G,,) (this is im-
mediate as th&',,’s grow exponentially, and thus most[af G, ) is covered by the intervalsé,,_,_1,G,,—¢)
for 0 < ¢ < /logn, and all these sub-intervals have essentially the samervioeHar the statistics of in-
terest). One can also study other cut-offs, and similar\ieh& observed for almost all starting points for
sub-intervals that are not too small (see [BEDMMTW1, BEDMWZ]). With a little additional work, one
can also extend all our theorems to the general initial segsifie V) with N — oo. For these intervals the
Markov perspective of [B-AM] is particularly well-suitednd is cleaner than the combinatorial discussions
above. We discuss these extensions in Appendix C.

In §2 we prove Theorein 1.3 for the average gap measure in thedma prove almost sure convergence
for the individual measures i . 83. We prove Theofen 1.5 Ira@d, conclude with some final remarks. For
completeness we do all standard calculations in the arXsioe, [BILMT].

2. GAPS IN THEBULK |I: AVERAGE BEHAVIOR

In this section we prove Theorefm 11.3. Our combinatorial apphh begins by computing’; ;1 (n),
which allows us to findP, (k). We can determineX; ;,,(n) by counting the number of choices of the
summandq Gy, G, ..., G, } such thaG;, G, andG,, are chosen, no summand whose index is between
i andi + k is chosen, and all other indices are free to be chosen subj¢ice requirement that we have
a legal decomposition. Lek; ;1 4(n) and R; ;,,(n) be the number of ways to choose a valid subset of
summands from those before the gap of lengtarting at=; and after the gap (respectively). Since

Gjiy1 = aGj+--+cGjri-1 (2.1)

wherec; > 1, any time we have a gap of length> 1, the recurrence ‘resets’ itself. We see that, . (n)
andR; ;1 (n) are independent of each other wheir 2; thus fork > 2 we have

Xiitk(n) = Liirr(n) - Riiyr(n). (2.2)
The behavior fok < 1 is more delicate due to the dependencies, but follows froarefal counting.
We have the following counting lemma.

Lemma 2.1. Let {G,} be a positive linear recurrence as in Theorem| 1.1 with egch 1. Consider all
m € [Gp, Gny1) With a gap of lengthk > 2 starting atG; for 1 < i < n — k. The number of valid choices
for subsets of summands before the gap,.;(n), is

Lijtk(n) = Gip1 — Gy, (2.3)
while the number of valid choices for subsets of summanesthi gap,R; ;,(n), is
Riivi(n) = Gnoicir2 — 2Gn—i—py1 + Grizp. (2.4)

Proof. To countL; ;,;(n), we count the number of ways to have a legal decompositiamthat have the

summand’; such that all other summands which are less thamre free to be chosen or not. It is very

important that: > 2, as this means the summandZt, ;, does not interact with the summands earlier than

G through the recurrence relation. This;;(n) is the same as the number of legal choices of summands
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from {G1,Go,...,G;} with G; chosen. As each integer [&+;, G;+1) has a unique legal decomposition
with G; chosen, we seg; ;,(n) equals the number of elements in this interval, which isdust; — G;.

To computeR; ;. «(n), we consider how many ways we can choose summands ey, ..., G, }
such thatG; ., andG,, are chosen and the resulting decomposition is legal; since2 the summands
from G; and earlier cannot affect our choices here. Thus our proldeaguivalent to asking how many
legal ways there are to choose summands f{ém, . .., G, _;_x+1} with G1, G,,_;_x+1 both chosen and
the rest free. There are many ways to compute this; the satigléo note that this equals the number of
legal choices with,,_; ;11 chosen and where waay or may not choos&;, minus the number of legal
choices with7,,_;_ ;41 chosen where weo not choosé, . By a similar argument as above, the first count is
Gr—i—k+o—Gp_i_k+1 (@sitis the number of legal decompositions of a numb@&EiN ; 11, Grn_i—k+2)),
while the second i&7,,_;_;+1 — G,,—i—k. The proof is completed by subtracting. O

The next lemma counts how many legal decompositions have afgangth one. The main idea of the
proof is to remove the dependencies by breaking into cagkthan arguing as above.

Lemma 2.2. Let {G,,} be a positive linear recurrence as in Theoreml 1.1 such ¢hat 1. Consider all
m € [Gy, Gry1) With a gap of length 1 starting a; for 1 < <n — 1. Then

Xiit1(n) = (Gny1 — Gn) — Gig1(Gnei — Gn—i—1) — Gi(Gp—iy1 — 2Gn—i + Gp_i—1). (2.5)

Proof. We cannot count as in LemrmaR.1, silgg; (n) andR; ;1 are no longer independent. Instead, we
consider the total number of decomposition$Gfy, G,,+1) (Which isG,,+1 — G,,) and subtract off the three
different ways tanot have a gap of length one starting@@ for a decomposition: (1) not including; and
not includingG;+1, (2) includingG; but not includingG; 1, and finally (3) not including~; but including
G;+1. In each case we can use the methods of Lefnmia 2.1 since tbate dependency issues. O

We now prove Theoren 1.3. We use little-oh and big-Oh nataftto the lower order terms, which do
not matter in the limit.

Proof of Theorerh 1]3There are three cases to consider= 0, k = 1 andk > 2. Whenk > 1 we use
the generalized Binet's formula and take limits. Whieg= 0 it is harder to count gaps of length 0 since a
decomposition could have multiple gaps of length @ gtfortunately we can deduce the number of these
gaps by knowing the number of gaps with> 1.

As our analysis of gaps of lengthhad different answers fér = 1 andk > 2, we first consider the case
whenk > 2. We need to compute

n—k
1 Xig
P(k) = lim 2zt Xiik(n) (2.6)
n—00 Ngaps(n)

By LemmdZ.1,
Xiivk(n) = Ligprx(n) - Rigvx(n) = (Gig1 — Gi) - (Gnoickr2 — 2Gn—i—kr1 + Gnoick),  (2.7)
and by Binet's formula (LemnaAl.1)
Gi = e\l + 0 ((F720) = e\ (140 (P72 (0a/\)7)) . (2.8)

We want to use little-oh notation for the error term abovdptimnately the error is not necessarily small if
i is close to0. The error iso(1) if 7 is at leastlog® n and is bounded for smallér Thus we introduce the
notationo;.,,(1) for an error that i(1) for i > log? n and bounded otherwise. We have

Xiin(n) = et N\ = 1) (14 050(1) - ax NP77FOF = 200 + 1) (1 4 0p—i—gm(1))
= aINTTF O = 12 (14 040 (1) + 0 i (1)) - (2.9)
As

Ngaps(n) = CLexn (Gn+1 — Gn) + O (Gn+1 — Gn) = Clek "N -aj - )\?(/\1 — 1) + O (/\711) , (2.10)
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we find

- S Xk (n) B e @ e .
Ptk = L) g ()t o), (2.11)

as the sum over < log?n andi > n — k — log? n is negligible. By taking the limit, which clearly exists
for eachn and eachk > 2, we obtain the claimed expression B(k) for k > 2.

If & =1 we use LemmB2]2 to evalualg ;;(n) and use a similar argument as in the: 2 case, which
gives P(1). Whenk = 0, since probability distributions must sum to one, after s@igebra we find

P0) = 1— (P(l) +§:P(k)> =1- (C‘“ > 2\ '+ - 3), (2.12)
k=2

Lek

which completes the proof. O

3. GAPS IN THEBULK II: INDIVIDUAL MEASURES

In this section we prove Theordm IL.4. Recall the spacing gegsore oin € [G,,, G,,+1) with decom-
position given in[(1.11) with:(m) summands is defined to be

V() = W ; 5(x—(r;—r51). (3.1)

We first recall and set some notation.

e U,.(t): The characteristic function of,,.,(z).
e U(t): The characteristic function of the average gap distridouti(x) from Theoreni 113.

e E,.[ - ]: The expected value ovet € [G,,, G,,+1) with the uniform measure; thusX : [G,,, G,+1)
— R then
1 G7L+1_1
E,X| i = —— X . 3.2
X = e——=. m:ZG (m) (3:2)

® X\ ji4g1.j2.j2+g2- The number ofn € [G,,, G,,41) with a gap of length exactly; starting atj; and
a gap of length exactly, starting atj; (we have suppressed the subscripis it is always understood
from context). Ifg; or g» is zero then we count with multiplicity. For examplegif = 0 andgs = 3
then anm that has 5 summands@t, and has~;, andGj, 3 (but no summands between these last
two) is counted four times. We similarly count with multigty if we haveX;, ;, 1.

We sketch the proof. We use Lévy’s continuity theorém|[FQ@}jch says that if we have a sequence of
random variable$ R, } (which do not have to be defined on the same probability spelce$e characteristic
functions{, } converge pointwise to the characteristic functjonf a random variabldz, then the random
variables{ R, } converge in distribution ta (i.e., the cumulative distribution functions of th&, } converge
to that of{ R} at all points of continuity). We show given amythere is anV, such that for allh > N, the
characteristic functions,, ., (¢) are pointwise withire for almost allm € [G,,, G,,+1); we can’t have all the
characteristic functions close, as somédiave very few gaps.

Step 1 is to show thdk,, [V, (t)] = U(t). A key ingredient is to remove the individual normalizagon
of W wherek(m) is the number of summands in the generalized Zeckendorideasition ofm; we
can replace these with their average up to a negligible &ror because of previous work on the Gaussian
behavior of the number of summands. To complete the proofpneee that most characteristic functions
are concentrated near the mean. We do this in step 2 by showing

. _— -~ 2 o
nh_{go By |(Umin(t) = v(t)"| = 0,

which follows by reducing the problem to determiniig, ;, +¢,.j»,j2+g2-
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3.1. Expected Value of Individual Characteristic Functions. The first step towards a proof of Theorem
[I.4 is to show that the expected value of the individual attarsstic functions of the gap measures con-
verge to the characteristic function of the average gap uneasConvergence in distribution follows from
controlling the rate of convergence, which we handle in te Bubsection.

Proposition 3.1. Notation as above, we have

lim By, [V (t)] = D(2). (3.3)

n— o0

We need some preliminary results before we can prove thjzogition. Notice

0 k(m)
) = [ e t(a)de = T Z ei10ry=75-) (3.4)
0
where
= Gp, +Gpy +--- + Grk<m). (3.5)
Thus we have
Gry1—1 k(m)
— wt(r;—ri_
B [T ()] = G G, Z T =1 Z citlrj=ri—1) (3.6)

The difficulty in evaluatingE,, [,,,.,(¢)] is that we must deal with the presence of #{en) — 1 factors.
These vary withm, though weakly because of our Gaussianity result (The@ré&n RAs the mean is of
ordern and the standard deviation is of ordgn, thek(m) are strongly concentrated about their mean. We
first apply standard estimation arguments to show that wegsafgly replace:(m) with its mean. We have

1 1 (k(m) —1) — (Crexn + d+ o(1))

Km) -1 Ciantdtol)  (k(m)— D(Cran +d+o(1) (3.7)

We essentially replac%(ﬁ”})_1 with o3 knid%(l) at a negligible cost, as the second summand above is
extremely small most of the time and of moderate size almagtm We make this claim explicit in the next

lemma.

Lemma 3.2. Let {G,,} be a positive linear recurrence as in Theorem] 1.1, with egckr 1. Letm €
[Gy, Gp11) have decomposition given By (IL.1). Then for any fixedl we have

Gny1—1
m) 1) — (CLOkn +d + o( it(rj—rj—1) _
nh—>lgo Gn—|—1 G Z ( (k(m) — 1)(Crexn + d + of ) Z et =0, (3.8)

whereCrqcn + d + o(1) is the average number of summands needed in a decompositian integer in
[Gr, Gpy1) In Theoreni 111.

Proof. The distribution of the number of summands in a decompasftomn € [G,,, G,,+1) converges to a
Gaussian by Theorein1.2. The average number of summaags,is + d + o(1) (with Cex > 0) and the
standard deviation i&/n + o(y/n) for someb > 0. The proof is completed by partitioning based on the
deviation ofk(m) from its expected value. Fix@> 0 and let

1,(6) == {m € [Gn, Gui1) : k(m) € [Cran +d — />, Cran+d+bnl/2]} . (39)

Case 1: Letm € |Gy, Gny1) N 1,(0); thusk(m) is very close taCrecn + d + o(1). To simplify the
expressions below remember we are writingandr;_; for the indices in the decomposition of; while
9



we should really write-;(m), as the meaning is clear we prefer this more compact notéfioarefore

G7L+1_1 k(m)

1 (k(m) —1) — (Crexn +d+o(1)) 1) jaes
Gns1— Gn itry =i . (310
Gni1 = Gn m; < (k(m) = 1)(Crexn + d + o(1)) 2 T <n (3.10)

melp(5)

Jj=2

Case 2:Letk(m) ¢ I,,(9); thusk(m) is not too close t@rn + d. As the distribution of the number of
summands needed for a decomposition converges to a Gabysldeoreni 1.2, for sufficiently large the
probability anm € [G,,, G,,+1) hask(m) more tham? standard deviations from the mean is essentially

o0 1 2 2 26
2/ /g« 2, (3.11)
b0V 21h2n

Thus for sufficiently larger, the number ofn € [G,,, G,+1) such thatk(m) ¢ I,(0) is essentially
(Gpi1 — Gp) - e "/2, and we find

Gry1—1 k(m)

1 (k(m) —1) — (Crexn + d+0(1))> it(rj—1j_1) —n2 )2
- t(r;—rj— < n , 3.12
o1 — G Z ( (k(m) — 1)(Cracn + d + o(1)) 2 ‘ ‘ 812

e In(®) =
which tends rapidly to zero as— oo. This completes the proof. O

Remark 3.3. In calculating the variance, we need to approximétém) — 1) 2. A similar argument shows

that this can be replaced at a negligible cost Witfi .. + d + o(1)) ~2; the error in the resulting sums
from these replacementsd$l ), and thus vanishes in the limit.

Propositio_3.1L now follows. Replace as in the remark aboitle megligible error by Lemmba 3.2. We
then pull this factor outside of the@ summation, switch orders of summation and sends oo.

3.2. Variance of the Individual Gap Measures. The last ingredient in our proof of Theordm11.4 is to
show that the variance of the characteristic functions efiidividual measures tends to zero. We keep the
argument as general as possible for as long as possible.

Proposition 3.4. With the notation as above, we have
lim Var, () := lim By, [(Fnn(t) = 7a(1))%] = 0. (3.13)
Proof. Let
Xjvirtorsaiztos (M) = #{m € [Gu, Gui1) : Gj1y Giiigr, Gi, Gl g, In m's decomposition,
but notG, 44, Gjr4p for0 < g < g1,0 <p < gg}; (3.14)

if either g; or g5 is zero then we count:’s with multiplicity equal to the number of gaps of length aext
71 Or jo. Note

Vary (t) = Em[(Zmm(t) — m(£)?] = Em[Zmn(t)?] — 7 (t)?, (3.15)
and we knowlim,, 7,,(¢)? from the proof of Propositioh 3.1. We are left with findifi, [7,,.,,(¢)?]. The
algebra is long but standard (s€e [BILMT] for the calculatjowe highlight the main ideas. As,(t) =
v(t)+0o(1), by the triangle inequality it suffices to shdian,, E,,, [7,,.,(t)?] converges t&(¢)2. For the limit
of the average gap measure, the probability of a gap of lepgttP(g), and is given by Theorem1.3. Thus

D(t)? = Y P(g)e™ Y P(g)e™ = > P(g1)P(ga)e" 9119, (3.16)
g1=0 g2=0 91,92
10
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The proof follows by showing thaim,, E,, [, (t)?] differs from this byo(1). We do this by showing
that they are close for each p&ir , g2), with the difference summable andl) over all pairs; the pairwise
(almost) agreement follows by using our indicator variab\g, ;, 14, j..jo+¢. @and similar counting argu-
ments as above (though a bit more involved as there are mees ¢a consider). See Appendik B for the
details. 0

3.3. Proof of Theorem[1.4. We now turn to the proof of Theorem 1.4. We have already doaediffi-
cult part of the analysis iN'&3.1 anf 83.2. As the proof of engence follows from standard probability
arguments, we just sketch the details below.

Proof of Theoreri 311To use Lévy’s continuity theorem (sée [FG]), we need a secpi@h random vari-
ables{ R, } (which do not have to be defined on the same probability spake}e characteristic functions
{¢r} converge pointwise to the characteristic functipnf a random variable?. If we have this, then the
random variable§ R, } converge in distribution ta (i.e., the cumulative distribution functions of th&, }
converge to that of R} at all points of continuity).

For us,R is essentially a geometric decay (it's a pure geometricydéragaps of length 2 or more), and
for eachn the R,’s are the gap measures for eache [G,,, G,,+1). By our results on the convergence of
the meang,, [v,,,.,(t)] to v(t) and the variance tending to zero, Chebyshev’s inequalipfiés that given
e > 0, for eachn almost allm haver,, ,,(t) within € of 7(t) (we are able to do this for allsimultaneously).

Our set{ R, } is thus a collection of gap measures coming freme [G,,, G,,+1). We have shown that
asn — oo, for almost allm € [G,,G,+1) we have convergence of these measures to the average gap
measure. Thus the conditions of Lévy’s continuity theoreensatisfied, completing the proof. O

4. LONGESTGAP

4.1. Overview. We briefly describe our approach to determining the distigibuand limiting behavior
of the longest gap in Zeckendorf decompositions. We first &inditional generating functiof'(s, f),
whose coefficients is give the number of decompositions with longest §&ss t han f. This allows
us to determine the cumulative distribution of the longesp,gvhich we expand with a partial fraction
decomposition. Itis here that we need our additional r&gtns on the roots of the associated polynomials
M(s)andR(s). These lead to simpler partial fraction expansions, andmizes the technical obstructions.
In the process of obtaining this exact expression, we neegtaetechnical lemmas about the behavior
of the roots of the polynomials in the denominator of our gatieg functionsF'(s, f). In particular, in
order to obtain estimates for the longest gap for laigave use Rouché’s theorem, and show that the
distribution is essentially determined by the behavior single root. In turn, this root relates to the largest
eigenvalue,\{, of the recurrence relation of th@;’s. Approximating along these lines, we determine
an asymptotic expression for the cumulative distributianction P(n, f), which in the limit is doubly
exponential:P(n, f) = eXp(Cn)\l_f) + o(1); here the constartt' is a rational function of\;.
The error term inP(n, f) is sufficiently small to allow us to determine asymptotic gsions for the
mean and variance of the longest gap. To do this, we sum oudficiently large interval,,, h,,) containing
the mearnu,,, take partial sums, and then use the Euler-Maclaurin faatausmooth out our expression. This
yields a particularly nice asymptotic expression for theamand variance of the longest gap. This result is
directly analogous to behavior seen in flipping coins.

4.2. Exact Cumulative Distribution of the Longest Gap. Our first step is to determine the cumulative
distribution function of the longest gap. We begin by coogtihe number ofn € [G,,, G;,+1) with L,,(m)
less than som¢ € N, and finding the associated generating function. As thedsingap grows on the order
of log n, it suffices to studyf > log log n; in other words, in all arguments below we may assyfigemuch
larger than the length of the recurrence relation, and treidewnot need to worry about small numbers.
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Lemma 4.1. Let f > j;. The number ofn € [G,,, G,+1) with longest gap less thaji is given by the
coefficient of™ in the generating function

1— sl
F(Svf) = M(S)"—SfR(S)’ (41)
where
M(S) =1- c18 — Cj2+1sj2+l .. — CjL+1SjL+1
R(s) = 1+ cj2+13j2 N (T l)st .2)

and thec; and j; are defined as if1.13)
Before beginning our proof, we fix some notation. Recall thatrecurrence relation is written as
Gn+1 = Cj1+1Gn_j1 + Cj2+1Gn_j2 + -+ CjL'HGn—jL (4.3)
with eachc; non-zero ang;, = 0. We writeg;_1 = j; — j;,—1 for the gaps, with the conventiap = 1.
e A legal block of length/ is a sequence of non-negative integers‘_, wherea; = ¢; fori < ¢ and
ay < c¢. Notice that a legal block must be of lengthy; for somes, in order to satisfyr; < c;,.

e A string of zeroes of length/ is a sequencé;)’_, where eacth; = 0.
« Denote theconcatenation of two sequences = (a;)‘, andb = (bl-)fb:1 by a — b, where

a—b = (u)ed" (4.4)

with u; = a; fori € [1,4,] andu; = b;—s fori € [l, + 1,4, + 0p].

e A legal sequencds a sequence of non-negative integérs*_, (n, — 2,)) — T, where then,
are legal blocks, the, are strings of zeroes, aridis aterminal block (a sequencéc;)¢_, with
¢ < jp, with L the number of non-zero coefficients in the recurrence meidor theG;'s; see[(4.B)).
Informally, a legal sequence consistskaegal blocks, separated by strings of zeroes, and ended by
a terminal block. By definition, legal sequences of lengtire exactly those sequences that arise as
decompositions of € [G,,, G,,+1). We us€la| to denote the length of a sequence

o SetTy(s) = M(s) + s/ R(s), with M(s) andR(s) as in [42). We denote its roots by, ;, with
ay,y the smallest root. One of the difficulties in the analysisoheis that these roots depend on
f, though fortunately the only one that mattersvisy, which exponentially converges 19\, (the
reciprocal of the largest root of the characteristic potyial of the recurrence relation for thig’s).

Proof of Lemm&4]1By the Generalized Zeckendorf Theorem, Theofen 1.1, thestsea bijection be-
tweenm € [G,, Gy+1) and legal decompositions of length Accordingly, we count the number of length
n legal decomposition with longest gap less thfamAs remarked above, we assurfiés at leastiog logn
for n large, so in particulay is much greater than the length of the recurrence.

A gap of lengthg in the decomposition corresponds to a string of zeroes gtlen— 1 contained in the
legal sequence. To count the number of decompositions waiiigpelst gap less thafy we count the number
of legal sequences of lengthwith all strings of zeroes of length f — 2. First we consider legal blocks
followed by a string of 0’s, or sequences of the fogm> z wheren is a legal block and is a string of 0’s.

There are:;, 1 — 1 distinct legal blocks that have lengih+- 1 and do not end in a zero. Lgtbe a legal
block that does not end in a zero. As> j1, the only sequenceg — z with strings of zeroes of length at
leastf are those withz| > f. Let N(r) be the number of length sequences — = that contain no string
of zeroes of lengtke f — 1. Since|n| + |z| = r, we see thatlV(r) is given by the generating function

DN = ((er = D" 4o 4 (g4 — )2 (1 +s+et sf_1> . (4.5)
r=1
For anyi € N such tha < i < L there is exactly one legal blogkthat has length; + 1 and ends in

a zero. There are no other legal blocks that end in a zero.eS$imclast non-zero term imis thenn;, ,,
12



the legal block contains a string 9f 1 = j; — j;—1 zeroes at the end. L&t (r) be the number of length

r sequences of legal blocks ending with a zero, followed byiagstf zeroes, with no string of zeroes of
length at leasf; we denote this by — z. As f > j, the longest string of zeroes of such a block has length
gi + |z|. Son — z contains no strings of zeroes of length at leAdt |z| < f — g, — 1. As|n| + |z| =,

M (r) is given by the generating function

oo

, 1— g/ , 1— gf—92—1
ZM(T)ST — 8]2+1 <%_s> 4+t s]L-‘rl <137_8> ] (46)
r=1

Finally, there is exactly one terminal block of lengtfor eachr > 0 andr < j. Thus the numbeD(r)
of lengthr terminal blocks has the generating functipif® , D(r)s" = 1=~

We now use these generating functions to find the number af mgqluénces of length with £ legal
blocks and all strings of zeroes of length less tlia®@ur decomposition based on the number of summands
is similar to the analysis done i [KKMW, MW1, MW?2]; this is atural way to split into cases, and
provides a manageable route through the combinatoricst i$tvee fix £ and count the number of legal
sequenceé—~_, (n; — z;)) — T that do not contain a subsequence of zeroes of length atfipeetall the
n; are legal blocksz; are strings of zeroes, afidis terminal. Since the lengths of these separate components

must sum tar, the number of such lengthh sequences is the coefficient gfin

[ee] o0 k [ee]
<Z N(r)s" + Z M(’I‘)ST> Z D(r)s". 4.7)

To find F'(s, f), it remains only to sum the above expression ovek allhus the generating function of the
number of lengt legal sequences with longest gapf is

Fs, f) = L— st Z [((cl —1)sM 4 (4 — 1)) <d>

1—s 1—s5
k>0
_ of— _ of—g9L- k
4 glatl 1;91 4o gogintl & . (4.8)
1—s 1—s
This is a geometric series, so we can evaluate our sumkoaad then use the relatigh_ + ¢;_1 = j; to
calculate the desired result. O

We have found a rational generating function for the cunwdadistribution. To analyze it further, we
first recall a standard lemma on partial fraction expansion.

Lemma 4.2 (Partial Fraction Expansion).et R(s) = S(s)/T'(s) be a rational function forS,T" € Cl[z]
with deg(S) < deg(T"), and assumé’ has no multiple roots. Then the coefficientsdfin R(s)’s Taylor

expansion around zero is
i T (vip) \evisp ) '

deg(T)
=1
where{q; s} are the roots off".

Notice that in order to use this partial fraction expansimina, we need to ensure that the denominator
of our generating functio’(s, f) has no multiple roots. To achieve this, we impose some eastaictions
on our recurrence relation, and obtain the following.

Lemma 4.3. LetT;(s) = M(s) + s/ R(s), whereM(s) andR(s) have no multiple roots, and no roots of
absolute valud. Then there exists > 0 and F' € N such that for allf > F" and all rootsa of T (s) we
have‘T]é(a)‘ > €.
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The proof is standard, and follows from an analysis of thesref the polynomiall’s(s) as f varies; see
Appendix A.2 of [BILMT] for details. Essentially, the behiav of 7 (s) is as we may expect; the roots of
Ty(s) = M(s) + s/R(s) with absolute value less than one are close to the roats! 6f) for large f, and
the roots ofl’(s) with absolute value greater than one are closg(s) for large f. We also see that the
large number of roots of absolute value close to one will Higtée contribution.

Applying partial fractions, we immediately obtain the filing expression for the cumulative distribution
function, P(n, f).

Lemma 4.4. Let{ai;f}{:fL be the roots of (s). The cumulative distribution for the longest g&n, f),
the probability anm € [G,,, G,,+1) has its longest gap in its Zeckendorf decomposition less fhés

, 1 f+ic 1—a?§e 1\" 4.10
nf) = e ——c. - m<af> ' o

4.3. Asymptotic Expansion for the CDF of the Longest Gap.We need several facts about the roots of
the polynomialsT(s) to use Lemm&4l4. First, from the definition 8 (s), it is immediate thatM(s)’s
roots are exactly the inverse roots of the characteristlgnomial of the recurrence relation for the;.
We label the roots of this characteristic polynonﬂab}ggl. From Binet's formula (see Lemnia’A.1),
IA1] > |A2] = -+ = |\j,+1|. Furthermore, we know that; € R and\; > 1. In particular, this shows that
M(s) has a single smallest rodf \;, which is real-valued and has absolute value less thémturn, since

Ty(s) = M(s) + s'R(s), for large f, Ty (s) has a smallest root that converged 1o\, .

Proposition 4.5. There existd' € N and Ryax, Rmin € R satisfyingl /A1 < Rpin < min(1,|1/A2]) such
that for all f > F every roota; ; of M(s) + s/R(s) has|a; t| < Rmax, and such that the polynomial
M(s) + s/R(s) has exactly one roat;.  with |ay, t| < Ruin. Furthermore

1 Mlayy)
_ _|_ 7’a Tt
A Glany) M

where \; is the largest eigenvalue of the recurrence relation @grand G(s) := —M(s)/(s — 1/\1), a
polynomial. Moreover, there exisis> 0 such thatlG(aq.¢)| > ¢ for f > F.

any = (4.11)

The proof of Proposition 415 is standard and follows by R&'stheorem; see Appendix A.1 of [BILMT].
The roots{«.;}/_, appear in the terms of the sum in Lemmal 4.43%, and the smallest roat,
dominates the sum. Being careful to deal with coefficiente] approximatinga;.; A1, we obtain our

claimed asymptotic expression for the cumulative distidufunction of the longest gap.

Proof of Theorerh 115(1)From Lemma& 44, we have

. . L 1\" 4.12
nf) = e —c. 2 m<af> ' o

By definition, we have that/\; < Ruin < |1/XA2]. Therefore, by Binet formula (LemnaA.1)
Gn+1 - Gn = C,)‘rll +0 ((1/Rmin)n) (413)
for someC’ € R (C' = (A1 — 1)a). Further, for any rooty; s # a5 we have|a;.s| > Ruin. Also, by

Lemmd 4.3 there is a bourfd € R such tha#l/T}(ai;f) < B for all rootse;,  and for all f > F.
We see that forv,. 7, the critical root from before, that

(1_a{ff) 1 " —ny .
Pln-1) = ~ Clan Th(auy) <>\1a1;f> 0 (F Qi Fmin) ™) #.19
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note A\ Rnin > 1. Next we use the relation
1 a{;fR(al§f)
oanf = 5ot g
A1 g(al;f)

from Propositior_4.5 to express our formula in terms\ef Accordingly letC' = A\ /C". Sinceay,; <
Ryin < 1andG(aq,y) is bounded away from zero, this shows that; converges td /A; exponentially
fast. Substituting((4.15) three times and recallifjgs) = M(s) + s/ R(s) gives

—C (1 - )JlL) +0(of,) of Rlan)\ " B
L o TN Gy ) POV Gl
[TlM (L) +O(a], f)} +0(fal ) Lf
(4.16)
After a lot of algebra (using exponentiation, multiple T@yéxpansions and;.; < Ry, < 1) we find

C(1 =N n R(x) Ruiw\’  n f

Pn,f)= - exp [ ——— | +o0(nf +t ot —w |- (417
= M(5-) TG A1 A (M Rin)"

Further, since we always hav&n,n + 1) = 1, substitutingf = n into (4.17) gives

Ca(1—AP)

(4.15)

P(naf) -

lim P(n,n+1) = — (4.18)
It follows that—CA\; (1 — A{L)/M’(A—ll) = 1, completing the proof of Theorem 1.5(1). O

4.4. Mean and Variance of the Longest Gap.We use our asymptotic expression for the cumulative dis-
tribution function to calculate statistics of the longesipgdistribution. Remember that our cumulative
distribution is defined for the longest gap beingss t han a given valueThus in the analysis below it is

a little easier to first find, not the mean and variance of theloan variableX denoting the longest gap, but
the mean and the variance of the random variabighich is one more than the longest gap. These are

Zg P(n,g—1)); Zg P(n,g—1)) — poy.  (4.19)

Thus our desired mean (for the longest gap),is= u,.y — 1, and the variance is2.

As our asymptotic expression fét(n, g) is only accurate for values gfon the order ofog n or larger,
we replace the sums i (4]19) fromto n by sums from?,, to h,,, for suitable choices of,, andh,,, so
that the error from restricting the summation is negligiblehis is possible due to the very tight double
exponential behavior, which we proved in Theofen 1.5(1pdrticular, we have the following proposition.

Proposition 4.6. Choosingec, C' € R such thatd < ¢ < 1/A\; andC' > max(6,4log \1), we letl,, =
|clog(nK)| andh,, = |C'log(nK)| (remember\; > 1 and K is as in Theoreri 115(2)). We find that

hn,
Hny = Z g(P(’I’L,g) - P(’I’L,g - 1)) +0(1)
g=Ln
02 = ( Z g P(n,g — 1))) +o(1). (4.20)
g=ln

With these values of,, and/,,, to prove the above proposition only requires the crudeshie. The
analysis is standard, and can be found in Appendix B of [BIIMT
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Proof of Theoreri I15(2)We work simultaneously with,,.y- ando?. In preparation for approximating our
sums with integrals, we first sum by parts so that

hn

pny = (hn +1)P(n,hy) — 6, P(n, by — 1) — > P(n,g) +o(1)
g=ln
hn
op = = | phy — (hn+1°P(n,hy) + 62 P(n, by — 1) + > (29+1)P(n,g) | +o(1). (4.20)
g=tn
From Theoreni 115(1), we know th&t P(n, ¢,,) — 0 andh2 P(n, h,,) — h2 for largen, and hence
pny = (ha+1) = 81 + o(1), on = —(uny — (hn +1)> + 25 + S1) + o(1) (4.22)
for
ha
S; = Z ¢ P(n,g). (4.23)
g=tn

With K = \yR(1/A1)/G(1/A1), our estimates from Theordm 1.5 give us

I,
S; = Z g Lexp (—nK)\l_g) +0 (n_‘s(log n)’) . (4.24)
g=tn
Now we apply the Euler-Maclaurin formula ) and.S,, and find
hn

h
n o 1 . ,
S = / £ exp (—nK) dt + St P(n, 1) + Errory,, + o(1). (4.25)
ln

t=tn
Elementary analysis shows that Efgf = o(1) and Errof,;, = 1 + o(1), and thus the two errors above
are negligible (for completeness this standard calcuidSaone in Appendix C of [BILMT]). The bound-
ary terms approach/2 and h,, /2, respectively, sinceé’(n,h,) — 1 while P(n,¢,) — 0 so fast that
¢, P(n,t,) — 0. We are left with analyzing the two integrals.

Definew(t) = exp (—tlog A1 + log (nK)), with w'(t) = —w(t) log A\; andt = W. Writing
I; for the integrals in[(4.25), integrating by parts yields &tting u = w(t) gives

L o=te® 4 / Og(nl ) —logu e " du,
tw Jwin) 0g A1
hn wnin 2
o 1 B N / (hn) (log(nK)—logU> et du | (4.26)
2 o Juen) log A1

We expand the integrals and note thdt,,) = 0 + o(1) andw(¢,,) is positive and tends to infinity with.
Then, using the well known identities (see 4.331.1 and 41385|GrRy])

o] [e%¢) 2
/ log (u)e " du = —, / (log u)2 e “du = 2+ % (4.27)
0 0
with ~ the Euler-Mascheroni constant (note on page xxxii of [GriRgly setC' = ), we obtain
h
—ww| ™ log(nK) +v
L =tew® =T 1450
! ln log /\1 ( )
hn 2

log(nK)? + 2vlog(nK) +~° + %)) +o(1). (4.28)

1 1
L= Lo - L (
’ ( o (logh)?

Our claimed values for the mean and variance now follow byuewang the above and substituting.[]
16



Remark 4.7. We tookh,, = |C'log(nK)| with C' > max(6,4log A1). This constant can be replaced with
any sufficiently large value; however, we néedto be at least this large to facilitate the error analysis
arising from truncating the sums.

5. CONCLUDING REMARKS

Building on the combinatorial vantage introduced(in [KKM\Afid its sequels, we are able to determine
the limiting behavior for the distribution of gaps in the kuboth on average and almost surely for the
individual gap measures, as well as mean and variance obtiges$t gap. A natural future project is to
remove some of the assumptions we have made on the recuredaten. \We expect the answers in these
cases to be essentially the same, but the resulting algebizevnore involved.

An additional line of investigation is to apply these methad other decompositions, for example the
f-decompositions introduced in [DDKMMV].

Definition 5.1. Given a functionf : Ny — Ny and a sequence of integefs,, }, a summ = Zf:o anp, of
terms of{a,,} is an f-decomposition ofn. using{a, } if for everya,, in the f-decomposition, the previous
f(ni) t€rms @, _ r(n,)» Gn,— f(n;)+1s - - - » Gn;—1) @re not in thef-decomposition.

To see that this generalizes the standard Zeckendorf dexsition, takeu,, to be then™ Fibonacci num-
ber andf(n) = 1 for all n. The authors prove for anf/: Ny — N there exists a unique sequence of natural
numbers{a,} such that every positive integer has a unique lggdecomposition in{a,, }. Interestingly,
certain choices of lead to sequences defined by a recurrence relationneghativecoefficients in a funda-
mental way, where there is no equivalent definition using aoh-negative coefficients (the Fibonaccis can
be defined by, = 2F,, — F,,_o, but they are also given by the standard relatton, = F,, + F,,—1).
One example is thei-bin decompositions. We break the natural numbers into dinengthb, and say a
decomposition is legal if we never choose two elements flegrsime bin, nor two adjacent elements from
two consecutive bins. This leads to a periodic formula ferdlssociateg. For example, ib = 3 our se-
guence ofi,,’s starts 1, 2, 3,4, 7, 11, 15, 26, 41, 56, 97, 153, and satibisaecurrence,, = 4a,,_3— a,_g,
while if b = 2 we recover the standard Zeckendorf decomposition invglfibonacci numbers.

APPENDIXA. GENERALIZED BINET'S FORMULA

This standard generalization of Binet's formula followsrfr the Perron-Frobenius Theorem for irre-
ducible matrices (though it can be proved directly, whictidse in Appendix A of the arXiv version of this

paper, [BBGILMT]).

Lemma A.1 (Generalized Binet's Formula)Consider the positive linear recurrendg, .1 = c1G, +
coGp_1+ -+ + e G111 With thee;’s non-negative integers and, c;, > 0. Let )\, ..., Ar be the roots
of the characteristic polynomiaf (z) := 2% — (c1z’™' + oz 2+ -+ + ¢,z + ¢1) = 0, ordered so
that [A\;| > [A2| > --- > [AL]. ThenA; > |Ag| > --- > |AL], Ay > 1 is the unique positive root, and
there exist constants such th@f, = a1\ + O (n'"2)\}). More precisely, if\;,ws, ..., w, denote the
distinct roots of the characteristic polynomial with mplicities 1, mo, ..., m,, then there are constants
ap > 0, Qg j such thatG,, = a1>\? + Z§:2 Z;n:ll ai,jnj_lwln.

APPENDIX B. PROOF OFPROPOSITIONS.4

We now finish the proof of Propositidn_3.4, specifically shagvithatlim,, ., Var,(t) = 0. In the
calculation belowy; and g» denote two arbitrary gaps that start at the two indiges< jo; thusg,, g2 €
{0,1,...,n — 1} andji,j2 € {1,2,...,n}. As the number of indices in the proof is growing, we write
¢,(m) and/,,(m) for the summands im’s decomposition, making explicit the dependence. In the sum
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that follows, we have to separately deal with the casew. We have

Gny1—-1 1 k(m) k(m)
Eon [T (t)?] = e Z CCOEE Z it ™) et (m)~tu=1(m))
n+1 m=Gp N w=2
- (G — Gp)(CLexn + d)2 2 Z X1, j1491,d2,2+g2 (n)e 91tz 4 Z Xjijitar (n)e2 o |+ o(1),
n+1 n Lek J1<72 i

91,92

(B.1)

where the last line follows by using Remdrkl3.3 to replag¢ék(m) — 1)? with its average value up to a
negligible error and then doing the same change of variasdsefore, and the factor of 2 is because we
are takingj; < jo. As the denominator is of order’(G,,11 — Gy,) while > iv.g1 Xjr.ji+gi (n) is of order
n(Gp+1 — Gr), the diagonal term does not contribute in the limit, and #wtdr of 2 vanishes when we sum
overj; < js (Which givesn?/2 + O(n)). Therefore

2
(Gn—l-l -G )(CLekn + d 2 Z X31,31+!]1,]27J2+92

J1<J2
91,92

Em[lj/m?L(t)z] = (n)e it(gi+gz) o(1)

- = it(g1+g2)
- a1 AT (M — 1)(Crexn + d)?(1+ o Z Z Xj1ji+g1,g2.g2+92 ()€ . (B.2)

J1<j2 91,92=0

There are several different cases to consider for the(pair. ): at least one of them could be 0, at least one
of them could be 1, or both exceed 1. The argument is esdgritialsame in each case; the only difference
comes from slight changes in how we couti}, j, 44, j».jo+¢. (7). Note that if we restricted ourselves to
the Fibonacci numbers the first two cases cannot happen (fomsider only recurrences where all the
coefficients are 0 or 1 then the first case cannot happen).

We first consider the case whefn = ¢g» = 1. We chose to do this case in detail as it has some of
the counting obstructions, and gives the general flavor. ¥terohineX;, ; 11, j,+1(n) by counting the
total number of decompositions j&,,, G,,+1) which have a gap of length 1 fro;, to G, 41 (which we
know how to do by LemmBa 2.2) and then subtract the three diftewvays decompositions can have a gap
of length 1 fromG}, to G, 1 withouthaving a gap of length 1 &t, to G, +1: (1) includeG;,, G, +1 and
Gj,+1 but do not includeG),; (2) includeG,, G, 41 but do not include&;, andGj,1; and (3) include
Gj,,Gj +1,Gj, andG,, but do not include and';, ;1. These three cases can be counted by Lemna 2.1 and
similar counting techniques.

Note it is sufficient to analyze these cases under the addltassumption that, is at leasR L units from
j1 (whereL is the length of the recurrence). The reason is that the digxadon has a factor ofi?; if js is
within a bounded distance gf we only get am in the numerator, and the contribution is negligible.

There is one last technicality. If any ¢f, j2, j2 —j1, n—j1 orn— j is small then expanding @, (where
~ is one of these troubling indices) by the generalized Bioenhfila will not yield an error of size(1). This
is the same issue we had in the proof of Theorem 1.3, and iddwsimilarly. We introduce the notation
0, i»n(1), Which iso(1) if all of the combinations above are at ledsg” n away from 0, and bounded
otherwise. Again the sum of this over 4ll, jo will be lower order. We therefore assunjie > j; + 2L.
Because of the length of the lines, for formatting reasonpute¢he error term with the sum over gl < js
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and not over the restricted sums. We find

- -1
Z Z Xj17j1+1,j27j2+1(n) +o (n(Gn-i-l - Gh))
J1=1j2=51+1
n—2L n

=2 2

J1=1 jo=j1+2L
= (Gn—jr1 = 2Gn—j + Gn—jo—1)(Gjy = Gj141Gjo—ji—1 — Gj1 (Gjy—ji — Gjo—ji—1))
( n—j = Gn- —J2— 1)(Gj2 - Gj1+1Gj2—j1—1 - Gj1(Gj2—j1 - sz—jl—l))
— (Gn—j = Gn—jo-1)((Gjr1 — Gj) — Gj111(Gjy—jy — Gljp—ji—1)

(Gnt1 = Gn) = Gj141(Gn—jy — Gn—jyi—1) — G, (Gnjy+1 — 2Gn—jy, + Gn—jy—1)

— G (Gjy—jir1 —2Gj, g, + sz—jl—l))]

n—2L n

=y ¥ [(al)\?(/\l 1)1 —ay —a AT (0 — 1)1 +0o(1)))

J1=1 jo=j1+2L
— AT A = 1) (1— a1 — e AT (A = D1+ 0, juin(1)))
— N 0 — 11— a1 — @A = DL+ 05, (1))

— AN 0 - 21— @ — a0 - D) oﬁm(l»]

= (1 — a1 — al)\l_l()\l — 1))(&1/\?_1()\1 — 1)(/\1 — al(/\l — 1) — a1 — al(/\l — 1))
n—2L n

(14 o0(1 Z Z

J1=1 ja=j1+2L

_ <w> X — 1)(1+ o(1) (M (1 — 2a1) + an)ATY2. (B.3)

Notice that as — oo, (B.3) times the coefficient il (Bl.2) is, up to an error of site),

2
< ! )\1_1(/\1(1 — 2ay) —I—a1)> = P(1)%
CLek

which cancels with corresponding pieceift)? in the differencek,, [, (t)?] — v(t).

The other cases fdly;, g2) can be handled similarly, and again we find that the coniohuéquals the
corresponding terms from(t)? in the differencek,,,[7,,.,.(t)?] — 7(t). The only complication is we need
our error terms to be small enough so that we may sum overiadl @a, g2). This is not a problem as our
approach allows us to isolate the error term, which is sma#msummed over all pairs as the sunpfg)
is bounded. Thereforéim,,,, Var,(t) = 0, completing the proof.

APPENDIXC. EXTENSION TOINITIAL SEGMENTS (IDDO BEN-ARI AND STEVEN J. MILLER)

Our theorems for intervalg~,,, G,,+1) generalize to initial segmenfs, N). This appendix was inspired
by questions of one of the referees on such results, and fiasrioed the sequel project [B-AM]. There
the authors of this appendix adopt a Markov perspectivechviimplifies a lot of the technical issues but at
the cost of additional machinery. As our purpose here isgbgtate what is known and quickly highlight
the arguments for the extensions, we drop the combinatapjaloach (which is very natural for intervals of
the form|[G,,, G,,.1), and with work could be made to work here as well; see for exafBEDMMTW1,
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for such investigations of sub-intervals [¢f,,, G,,+1)) and instead introduce the perspective
of [B-AM].

If N = G, for somen, then the asymptotic results are easy to recover. Thisvisliommediately as the
intervals[G,,, G,,+1) are of exponentially growing length and the dependence ionall our statistics is at
most linear. Thus we can safely combine the results from dl sm@ber of intervals (say on the order of
logn or evenlog log n) where there is essentially no variation and which asyngaltly covers almost all
integers in the initial segmeifit, N'). Similarly we can also immediately do initial segments & fbrm
[1, Nj) with N; — co andN;/G,,; — 1 asj — oo.

The remaining case can be treated by the following classitidlisegments. Assume that> 0 and let
{IV;}52, be an increasing sequence of real numbers, Witte [[(1+¢)Gj-11, [(1 —€)G;]). The uniform
measure on the initial segmefit ;) is a convex combination of the uniform measures on the iaterv
[G1,G2),...,[Gj—2,G;-1), and the uniform measure on the last subintedalk= {n € [G;-1,G;) : n <
Nj}. This last measure is the uniform measure/@n_;,G;), conditioned ond;. The respective convex
coefficients are proportional to the number of elements am@aterval, which, in the case of the last one is
the number of elements in the subinterygl.

The main problem one needs to address is that the last suailyteontrary to all others, includes only
a portion of the numbers with representation of the cornegdjmg lengthj, and because of the exponential
growth of the intervals and the assumptidih > (1 + €)G;_1, this last subinterval is comparable in size
to the size of the union of all preceding intervals, so thatdaksociated convex coefficient is not vanishing
asymptotically. We just can’'t ignore this last subinteneadd it's different from all others. Now the uniform
measure or{; is obtained from the uniform measu€’ on [G;_1, G;), through conditioning: it is the
conditioned measur@’( - |A;). For most statistics appearing in the literature, inclgdime ones studied
in this paper, this conditioning has asymptotically vairigheffect, as they are asymptotically independent
of A; under@’. To explain this, observe first that determining whether mier in[G,_1, G;) belongs
to the subintervald; is essentially determined by a uniformly bounded number;)iof first digits in its
generalized Zeckendorf decomposition, and this is becalifee exponential growth of th€',,’s and the
fact thatN; > (1 + €)Gj41. (We write “essentially” because this rule does not applgltmumbers, but
rather a proportion tending th and this is good enough.)

In the authors provided a Markov chain interpretatiand representation of generalized Zeck-
endorf decompositions. There the uniform measures ontelivials(G;_,, G;) are obtained from a single
ergodic Markov chain. The key is ergodicity of the chain, efthguarantees that all asymptotic statistics
are stochastically independent of the first digits. As a ofithumb, all “scalable” quantities can be treated
through this procedure, and this includes the extensiveigied results including moments, laws of large
numbers and central limit theorems on the number of summanosre generally additive functionals of
the Markov chain, as well as law of largest gap, and tails efgap measures.
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