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ABSTRACT. Zeckendorf proved any integer can be decomposed uniquely as a sum of non-adjacent Fibonacci
numbers,Fn. Using continued fractions, Lekkerkerker proved the average number of summands of anm ∈

[Fn, Fn+1) is essentiallyn/(ϕ2 + 1), with ϕ the golden ratio. This result has been generalized by many,
often using Markov processes, to show that for any positive linear recurrence the number of summands in
decompositions for integers in[Gn, Gn+1) converges to a Gaussian distribution. Below we instead follow
and further develop the combinatorial approach of Miller and Wang, and show its power in handling related
questions. Specifically, we prove the probability of a gap larger than the recurrence length converges to decaying
geometrically, and that the distribution of the smaller gaps depends in a computable way on the coefficients of
the recurrence. These results hold both for the average overall m ∈ [Gn, Gn+1) and almost surely for the
gap measure associated to individualm. These techniques also determine the distribution of the longest gap
between summands, which we prove is similar to the distribution of the longest gap between heads in tosses of
a biased coin. It is a double exponential strongly concentrated about the mean, and is on the order oflog n with
computable constants depending on the recurrence.

1. INTRODUCTION

1.1. Background. We explore the distribution between summands in generalized Zeckendorf decomposi-
tions. These generalize the standard baseb expansions, and have the following desirable properties: (1)
existence (every positive integer has a decomposition), (2) uniqueness (there is only one decomposition for
each number), and (3) sparseness (many of the possible summands are not used). The latter property sug-
gests that such decompositions can have applications in computer science, where storage costs are a major
issue. Zeckendorf [Ze] proved that every positive integer can be written uniquely as a sum of non-adjacent
Fibonacci numbersF1 = 1, F2 = 2 andFn+2 = Fn+1 + Fn. The standard proof is by a greedy algorithm,
and illustrates the naturalness of the non-adjacency condition.

Lekkerkerker [Lek] proved that form ∈ [Fn, Fn+1), asn → ∞ the average number of summands needed

is n/(ϕ2 + 1), with ϕ = 1+
√
5

2 the golden mean. More generally, we may replace the Fibonaccis with other
sequences and ask whether or not a decomposition exists withour three desired properties. The following
theorem gives a large class of recurrence relations where such a decomposition exists, and gives the analogue
of non-adjacency (essentially we cannot use the recurrencerelation to reduce our decomposition). See for
example [Day, GrTi, Ha, Ho, Ke, Len, MW1, MW2] for some of the history and proofs of results along
these lines, [Al, DDKMV] for generalizations to far-difference representations (where we allow signed
decompositions), and [DDKMMV] for other generalizations of the notion of a legal decomposition.
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Theorem 1.1(Generalized Zeckendorf and Lekkerkerker Theorems). Consider apositive linear recurrence
Gn+1 = c1Gn + · · · + cLGn+1−L with non-negative integer coefficientsci with c1, cL, L ≥ 1, and initial
conditionsG1 = 1 andGn+1 = c1Gn + c2Gn−1 + · · ·+ cnG1 +1 for 1 ≤ n ≤ L. For each integerm > 0

there exists a uniquelegal decomposition
∑k

i=1 aiGN+1−i with a1 > 0, the otherai ≥ 0, and one of the
following two conditions, which define a legal decomposition, holds.

• We haveN < L andai = ci for 1 ≤ i ≤ N .
• There exists ans ∈ {1, . . . , L} such thata1 = c1, a2 = c2, . . . , as−1 = cs−1 and as < cs,
as+1, . . . , as+ℓ = 0 for someℓ ≥ 0, and{bi}N−s−ℓ

i=1 (with bi = as+ℓ+i) is either legal or empty.

As the decomposition is unique we definek(m), the number of summands inm’s decomposition, byk(m) :=∑m
i=1 ai; we often writem =

∑k(m)
i=1 Grj .

There exist constantsCLek > 0 and d such that asn → ∞ the average number of summands in a
generalized Zeckendorf decomposition of integers in[Gn, Gn+1) isCLekn+ d+ o(1).

After determining the mean number of summands, the next question is the variance or, more generally, the
distribution of the fluctuations about the mean. Using techniques from ergodic theory and number theory
the fluctuations about the mean were shown to converge to a Gaussian (see among others [DrGa, DuTh,
FGNPT, GTNP, LaTh, Ste]). Using a more combinatorial perspective, Kolŏglu, Kopp, Miller and Wang
[KKMW, MW1, MW2] reproved these results for the positive linear recurrences studied above, and their
proof applies to the far-difference representations as well (see [DDKMV], as well as [CFHMN] for a linear
recurrence example wherec1 = 0); we use this result and perspective in our study of gaps (see§1.5 for a
discussion on alternative viewpoints and other, related problems that one could investigate).

Theorem 1.2 (Gaussian Behavior of Summands in Generalized Zeckendorf Decompositions). Let {Gn}
be a positive linear recurrence as in Theorem 1.1. For eachm ∈ [Gn, Gn+1) let k(m) be the number of
summands inm’s generalized Zeckendorf decomposition. Asn → ∞ the distribution of thek(m)’s for
m ∈ [Gm, Gn+1) converges to a Gaussian1 with explicitly computable mean of orderCLekn (for some
CLek > 0) and variance of ordern.

1.2. Notation. Before stating our results we first set some notation and recall a needed result. Let{Gn}
be a positive linear recurrence and takem ∈ [Gn, Gn+1). Notice thatGn must be a summand in the
decomposition ofm, and if the coefficientc1 in the defining recurrence ofGn is greater than 1 then it is
possible to have multiple copies ofGn in m’s decomposition. We writem as

m =

k(m)∑

j=1

Grj (rk(m) = n). (1.1)

For example, ifm = 1G701+24G601+2013G2, we find 2035 gaps of length 0 (2012 coming from2013G2

and 23 from24G601), one gap of length 599 (coming fromG601 andG2), and one gap of length 100 (from
G701 andG601). By Theorem 1.2 thek(m)’s converge to being normally distributed with mean of ordern
and standard deviation of order

√
n; in particular, mostk(m)’s are close, on an absolute scale, to the mean.

Below are the statistics we study.

• Spacing gap measure:The spacing gap measure of anm ∈ [Gn, Gn+1) with k(m) summands is

νm;n(x) :=
1

k(m)− 1

k(m)∑

j=2

δ (x− (rj − rj−1)) , (1.2)

1When we say the number of summands converges to a Gaussian this means that asn → ∞ the fraction ofm ∈ [Gn, Gn+1)

such that the number of summands inm’s Zeckendorf decomposition is in[µn − aσn, µn + bσn] converges to 1√
2π

∫ b

a
e−t2/2dt,

whereµn is the mean number of summands form ∈ [Gn, Gn+1) andσ2
n is the variance.
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whereδ is the Dirac delta functional.2 We do not include the gap to the first summand, as this is not
a gapbetweensummands; for almost allm one extra gap is negligible in the limit.

• Average spacing gap measure:If k(m) is the number of summands inm’s generalized Zeckendorf
decomposition, then it hask(m)− 1 gaps. Thus the total number of gaps for allm ∈ [Gn, Gn+1) is

Ngaps(n) :=

Gn+1−1∑

m=Gn

(k(m)− 1) , (1.3)

and by the Generalized Lekkerkerker Theorem we have

Ngaps(n) = CLekn (Gn+1 −Gn) +O (Gn+1 −Gn) . (1.4)

We define the average spacing gap measure for allm ∈ [Gn, Gn+1) by

νn(x) :=
1

Ngaps(n)

Gn+1−1∑

m=Gn

k(m)∑

j=2

δ (x− (rj − rj−1))

=
1

Ngaps(n)

Gn+1−1∑

m=Gn

(k(m)− 1) νm;n(x). (1.5)

Equivalently, ifPn(k) is the probability of getting a gap of lengthk among all gaps from the de-
compositions of allm ∈ [Gn, Gn+1), then

νn(x) =

n−1∑

k=0

Pn(k)δ(x − k). (1.6)

• Limiting average spacing gap measure, limiting gap probabilities: If the limits exist, we let

ν(x) = lim
n→∞

νn(x), P (k) = lim
n→∞

Pn(k). (1.7)

We prove these limits exist, and determine them.
• Longest gap:Given a decompositionm = Gr1+Gr2+· · ·+Grk(m)

for m ∈ [Gn, Gn+1), the longest
gap, denotedLn(m), is the maximum difference between adjacent indices inm’s decomposition.
ThusLn(m) := max2≤j≤k(m) |rj − rj−1|.

1.3. Results: Gaps in the Bulk.

We can now state our results for gaps in the bulk.

Theorem 1.3(Average Gap Measure in the Bulk). Let {Gn} be a positive linear recurrence of lengthL
as in Theorem 1.1, and assume eachci ≥ 1. Let λ1 > 1 denote the largest root (in absolute value) of
the characteristic polynomial of theGn’s, and leta1 be the leading coefficient in the Generalized Binet
expansion (thusGn = a1λ

n
1 + o(λn

1 ); see Appendix A). LetPn(k) be the probability of having a gap of
lengthk among the decompositions ofm ∈ [Gn, Gn+1), and letP (k) = limn→∞ Pn(k). Then

P (k) =





1− ( a1
CLek

)(2λ−1
1 + a−1

1 − 3) if k = 0

λ−1
1 ( 1

CLek
)(λ1(1− 2a1) + a1) if k = 1

(λ1 − 1)2
(

a1
CLek

)
λ−k
1 if k ≥ 2.

(1.8)

In particular, the probability of having a gap of lengthk ≥ 2 decays geometrically, with decay constant the
largest root of the characteristic polynomial.

2Thus for any continuous functionf we have
∫∞
−∞ f(x)δ(x−a)dx = f(a); we may viewδ(x−a) as representing a unit point

mass concentrated ata.
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We included the conditionci ≥ 1 above to simplify the algebra. An analogue of the above theorem
holds for general positive linear recurrences, but the counting becomes more involved and it is not as easy to
extract nice closed form expressions. For such recurrencesit is clear that there is geometric decay for gaps
larger than the recurrence lengthL, but the behavior fork < L depends greatly on whichci’s vanish.

We isolate some important examples. For baseB decompositions,P (0) = (B − 1)(B − 2)/B2, and for
k > 1, P (k) = cBB

−k, with cB = (B− 1)(3B− 2)/B2, while for the standard Zeckendorf decomposition

P (k) = 1/ϕk for k ≥ 2, with ϕ = 1+
√
5

2 the golden mean.
The proof of Theorem 1.3 falls from a careful counting of the number of times each gap length occurs.

Fork ≥ 0 let

Xi,i+k(n) = #{m ∈ [Gn, Gn+1) : Gi, Gi+k in m’s decomposition, but notGi+q for 0 < q < k}. (1.9)

Note we can deduce thek = 0 behavior if we know the answer for eachk ≥ 1. Then

P (k) = lim
n→∞

∑n−k
i=1 Xi,i+k(n)

Ngaps(n)
. (1.10)

The denominator is well-understood by Lekkerkerker’s Theorem; the proof of Theorem 1.3 follows from
a good analysis ofXi,i+k(n), which can be deduced from the uniqueness arguments in the generalized
Zeckendorf decompositions. We give the proof in §2.

Theorem 1.3 gives the limiting behavior of theaverageof the individual gap measuresνm;n(x). As
n → ∞, for almost allm ∈ [Gn, Gn+1) the individual measures are close to the average gap measure.

Theorem 1.4(Individual Gap Measure in the Bulk). Let{Gn} be a positive linear recurrence as in Theorem
1.1, with the additional assumption that eachci ≥ 1. Asn → ∞, the individual gap measuresνm;n(x)

converge almost surely in distribution3 to the limiting gap measure from Theorem 1.3.

We sketch the main ideas of the proof. Let̂νm;n(t) denote the characteristic function4 of νm;n(x), and
ν̂(t) the characteristic function of the average gap distribution from Theorem 1.3. LetEm[· · · ] denote
the expectation over allm ∈ [Gn, Gn+1), with all m equally likely to be chosen. We first show that

limn→∞ Em[ν̂m;n(t)] equalsν̂(t), and then showlimn→∞

[
(ν̂m;n(t)− ν̂(t))2

]
= 0. This allows us to in-

voke Lévy’s continuity theorem to obtain convergence in distribution for almost allm ∈ [Gn, Gn+1) as
n → ∞. We replacek(m) with its average (and use the Gaussianity results to controlthe error), and intro-
duce more general indicator functions such asXi,i+g1,j,j+g2(n), reducing the proof to a counting problem.

1.4. Results: Longest Gap.

If Gn+1 = 2Gn, then the distribution of the longest gapLn(m) for m ∈ [Gn, Gn+1) is essentially that of
the longest run of consecutive tails inn tosses of a fair coin whose final toss is a head. The answer for coins
is well-known, both for fair and biased coins (see for example [Sch]). What is particularly remarkable about
the coin toss problem is how tightly concentrated the answeris about the mean. For a coin with probability
p of heads andq = 1− p of tails, the expected longest run of heads is

log1/p(nq)−
γ

log p
− 1

2
+ r1(n) + ǫ1(n) =

log(nq)

log(1/p)
+

γ

log(1/p)
− 1

2
+ r1(n) + ǫ1(n) (1.11)

while the variance is
π2

6 log2 p
+

1

12
+ r2(n) + ǫ2(n), (1.12)

3A sequence of random variablesR1, R2, . . . with corresponding cumulative distribution functionsF1, F2, . . . converges in
distributionto a random variableR with cumulative distributionF if limn→∞ Fn(r) = F (r) for eachr whereF is continuous.

4The characteristic function of a random variableX is E[eitX ], with a similar definition for a measure. We denote the charac-
teristic function of a measureµ by µ̂, as it is the Fourier transform of the measure (up to a normalization constant).
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whereγ is Euler’s constant, theri(n) are at most .000016, and theǫi(n) tend to zero asn → ∞. Very
importantly, the variance is bounded independently ofn (by essentially 3.5). This implies that there is
essentially no fluctuation of the observed longest string ofheads. We find similar behavior, both in terms
of the logarithmic size of the longest term in our sequence aswell as the strong concentration about the
average.

Before we can state our results, however, we need to introduce some notation. It is technically more
convenient to rewrite the recurrence relation where we onlyrecord thenon-zerocoefficients.Thus, in the
sections on longest gaps, we write our positive linear recurrence as

Gn+1 = cj1+1Gn−j1 + cj2+1Gn−j2 + · · · + cjL+1Gn−jL , (1.13)

wherej1 = 0, j1 < j2 < · · · < jL, and all recurrence coefficients not shown are zero.

Theorem 1.5(Longest gap in generalized Zeckendorf expansions). Let{Gn} be a positive linear recurrence
as in Theorem 1.1, and assume the associated polynomialsM(s) = 1−c1s−cj2+1s

j2+1−· · ·−cjL+1s
jL+1

andR(s) = c1 + cj2+1s
j2 + · · · + (cjL+1 − 1)sjL do not have multiple roots or roots of absolute value 1.

Letλ1 be the largest root of the recurrence forGn, G(s) = −M(s)/(s − 1/λ1) and

P (n, f) :=
#{m ∈ [Gn, Gn+1) : Ln(m) < f}

Gn+1 −Gn
(1.14)

be the cumulative distribution of the longest gap in the Zeckendorf decompositions ofm ∈ [Gn, Gn+1);
note we are computing gapsstrictly less than f , and we do not include the gap in the beginning.

(1) Asymptotically, for anyRmin ∈ R with λ1 < Rmin < 1 we have

P (n, f) = exp

(
−nλ−f

1

λ1R( 1
λ1
)

G( 1
λ1
)

)
+O

(
nf

(
Rmin

λ1

)f

+ n

(
1

λ1

)2f

+ f

(
1

λ1Rmin

)n
)
. (1.15)

(2) LetK = λ1R(1/λ1)/G(1/λ1) andγ be Euler’s constant. The mean of the longest gap,µn, and the
variance of the longest gap,σ2

n, are given by

µn =
log (nK)

log λ1
+

γ

log λ1
− 1

2
+ o(1), σ2

n =
π2

6(log λ1)2
+ o(1). (1.16)

The proof proceeds by introducing a generating function forthe longest gap distribution, where we obtain
the probabilities by analyzing the cumulative distribution function. We use a partial fraction decomposition
to extract information from the generating function, and use Rouche’s theorem (among others) to deal with
the technicalities that arise. Taking into account that we do not consider the initial segment, our theorem
applied toGn+1 = 2Gn is consistent with tosses of a fair coin.

The fit between numerics and theory is excellent. For example, consider the Fibonacci numbers.5 We
chose 100 numbers randomly from[Fn, Fn+1) with n = 1, 000, 000. We observed a mean of 28.51 and a
standard deviation of 2.64, which compares very well with the predictions of 28.73 and 2.67. Increasingn
to 10,000,000 and looking at 20 randomly chosen numbers yielded a mean of 33.6 and a standard deviation
of 2.33, again close to the predictions of 33.52 and 2.665.6

5Due to costs to store and recall objects from memory, and to use the Binet formula, we found it best to use Binet’s formula to
findFn andFn+1, and then use the recurrence to compute backwards.

6We saw similar behavior in other recurrences. Foran+1 = 2an + 4an−1, whenn = 51, 200 (respectively102, 400) the
predicted mean was 9.95 (resp. 10.54) and the standard deviation was 1.09; choosing 100 points randomly in the interval yielded a
mean of 9.91 (resp. 10.45) and a standard deviation of 1.22 (resp. 1.10).
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1.5. Extensions and structure of the paper.Ben-Ari and Miller [B-AM] prove similar theorems as in this
paper, based on the observation that the resulting distributions coincide with the distribution of a conditioned
Markov chain. This allows them to obtain results on decompositions from analogous results for Markov
chains, and gives some insight as to why the gap distributionbehaves as it does. One of the main goals
of this paper is to highlight and further develop the combinatorial approach and machinery from [KKMW,
MW1, MW2], which gives similar results but more elementarily (as well as error terms in some cases); we
hope that this vantage will be of use to other researchers studying related problems.

We have chosen to study the distribution of gaps for numbers in [Gn, Gn+1). We made the decision
to localize in this manner as now each element has the same candidate summand setand the same largest
summand; this is similar in spirit to studying primesp in the interval[x, 2x) so that the weightslog p are
essentially constant in the interval. Similar results can easily be derived for the interval[1, Gn) (this is im-
mediate as theGn’s grow exponentially, and thus most of[1, Gn) is covered by the intervals[Gn−ℓ−1, Gn−ℓ)
for 0 ≤ ℓ ≤ √

log n, and all these sub-intervals have essentially the same behavior for the statistics of in-
terest). One can also study other cut-offs, and similar behavior is observed for almost all starting points for
sub-intervals that are not too small (see [BEDMMTW1, BEDMMTW2]). With a little additional work, one
can also extend all our theorems to the general initial segments [1, N) with N → ∞. For these intervals the
Markov perspective of [B-AM] is particularly well-suited,and is cleaner than the combinatorial discussions
above. We discuss these extensions in Appendix C.

In §2 we prove Theorem 1.3 for the average gap measure in the bulk, and prove almost sure convergence
for the individual measures in §3. We prove Theorem 1.5 in §4,and conclude with some final remarks. For
completeness we do all standard calculations in the arXiv version, [BILMT].

2. GAPS IN THE BULK I: AVERAGE BEHAVIOR

In this section we prove Theorem 1.3. Our combinatorial approach begins by computingXi,i+k(n),
which allows us to findPn(k). We can determineXi,i+k(n) by counting the number of choices of the
summands{G1, G2, . . . , Gn} such thatGi, Gi+k andGn are chosen, no summand whose index is between
i and i + k is chosen, and all other indices are free to be chosen subjectto the requirement that we have
a legal decomposition. LetLi,i+k(n) andRi,i+k(n) be the number of ways to choose a valid subset of
summands from those before the gap of lengthk starting atGi and after the gap (respectively). Since

Gj+1 = c1Gj + · · ·+ cLGj+1−L (2.1)

whereci > 1, any time we have a gap of lengthk > 1, the recurrence ‘resets’ itself. We see thatLi,i+k(n)
andRi,i+k(n) are independent of each other whenk ≥ 2; thus fork ≥ 2 we have

Xi,i+k(n) = Li,i+k(n) · Ri,i+k(n). (2.2)

The behavior fork ≤ 1 is more delicate due to the dependencies, but follows from a careful counting.
We have the following counting lemma.

Lemma 2.1. Let {Gn} be a positive linear recurrence as in Theorem 1.1 with eachci ≥ 1. Consider all
m ∈ [Gn, Gn+1) with a gap of lengthk > 2 starting atGi for 1 6 i 6 n− k. The number of valid choices
for subsets of summands before the gap,Li,i+k(n), is

Li,i+k(n) = Gi+1 −Gi, (2.3)

while the number of valid choices for subsets of summands after the gap,Ri,i+k(n), is

Ri,i+k(n) = Gn−i−k+2 − 2Gn−i−k+1 +Gn−i−k. (2.4)

Proof. To countLi,i+k(n), we count the number of ways to have a legal decomposition that must have the
summandGi such that all other summands which are less thanGi are free to be chosen or not. It is very
important thatk > 2, as this means the summand atGi+k does not interact with the summands earlier than
Gi through the recurrence relation. ThusLi,i+k(n) is the same as the number of legal choices of summands
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from {G1, G2, . . . , Gi} with Gi chosen. As each integer in[Gi, Gi+1) has a unique legal decomposition
with Gi chosen, we seeLi,i+k(n) equals the number of elements in this interval, which is justGi+1 −Gi.

To computeRi,i+k(n), we consider how many ways we can choose summands from{Gi+k, . . . , Gn}
such thatGi+k andGn are chosen and the resulting decomposition is legal; sincek > 2 the summands
from Gi and earlier cannot affect our choices here. Thus our problemis equivalent to asking how many
legal ways there are to choose summands from{G1, . . . , Gn−i−k+1} with G1, Gn−i−k+1 both chosen and
the rest free. There are many ways to compute this; the simplest is to note that this equals the number of
legal choices withGn−i−k+1 chosen and where wemay or may not chooseG1, minus the number of legal
choices withGn−i−k+1 chosen where wedo not chooseG1. By a similar argument as above, the first count is
Gn−i−k+2−Gn−i−k+1 (as it is the number of legal decompositions of a number in[Gn−i−k+1, Gn−i−k+2)),
while the second isGn−i−k+1 −Gn−i−k. The proof is completed by subtracting. �

The next lemma counts how many legal decompositions have a gap of length one. The main idea of the
proof is to remove the dependencies by breaking into cases and then arguing as above.

Lemma 2.2. Let {Gn} be a positive linear recurrence as in Theorem 1.1 such thatci ≥ 1. Consider all
m ∈ [Gn, Gn+1) with a gap of length 1 starting atGi for 1 6 i 6 n− 1. Then

Xi,i+1(n) = (Gn+1 −Gn)−Gi+1(Gn−i −Gn−i−1)−Gi(Gn−i+1 − 2Gn−i +Gn−i−1). (2.5)

Proof. We cannot count as in Lemma 2.1, sinceLi,i+1(n) andRi,i+1 are no longer independent. Instead, we
consider the total number of decompositions in[Gn, Gn+1) (which isGn+1−Gn) and subtract off the three
different ways tonot have a gap of length one starting atGi for a decomposition: (1) not includingGi and
not includingGi+1, (2) includingGi but not includingGi+1, and finally (3) not includingGi but including
Gi+1. In each case we can use the methods of Lemma 2.1 since there are no dependency issues. �

We now prove Theorem 1.3. We use little-oh and big-Oh notation for the lower order terms, which do
not matter in the limit.

Proof of Theorem 1.3.There are three cases to consider:k = 0, k = 1 andk > 2. Whenk ≥ 1 we use
the generalized Binet’s formula and take limits. Whenk = 0 it is harder to count gaps of length 0 since a
decomposition could have multiple gaps of length 0 atGi; fortunately we can deduce the number of these
gaps by knowing the number of gaps withk ≥ 1.

As our analysis of gaps of lengthk had different answers fork = 1 andk ≥ 2, we first consider the case
whenk ≥ 2. We need to compute

P (k) = lim
n→∞

∑n−k
i=1 Xi,i+k(n)

Ngaps(n)
. (2.6)

By Lemma 2.1,

Xi,i+k(n) = Li,i+k(n) · Ri,i+k(n) = (Gi+1 −Gi) · (Gn−i−k+2 − 2Gn−i−k+1 +Gn−i−k) , (2.7)

and by Binet’s formula (Lemma A.1)

Gi = a1λ
i
1 +O

(
iL−2λi

2

)
= a1λ

i
1

(
1 +O

(
iL−2(λ2/λ1)

i
))

. (2.8)

We want to use little-oh notation for the error term above; unfortunately the error is not necessarily small if
i is close to0. The error iso(1) if i is at leastlog2 n and is bounded for smalleri. Thus we introduce the
notationoi;n(1) for an error that iso(1) for i ≥ log2 n and bounded otherwise. We have

Xi,i+k(n) = a1λ
i
1(λ1 − 1) (1 + oi;n(1)) · a1λn−i−k

1 (λ2
1 − 2λ1 + 1) (1 + on−i−k;n(1))

= a21λ
n−k
1 (λ1 − 1)3 (1 + oi;n(1) + on−i−k;n(1)) . (2.9)

As

Ngaps(n) = CLekn (Gn+1 −Gn) +O (Gn+1 −Gn) = CLek · n · a1 · λn
1 (λ1 − 1) +O (λn

1 ) , (2.10)
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we find

Pn(k) =

∑n−k
i=1 Xi,i+k(n)

Ngaps(n)
= (λ1 − 1)2

(
a1

CLek

)
λ−k
1 (1 + o(1)) , (2.11)

as the sum overi ≤ log2 n andi ≥ n − k − log2 n is negligible. By taking the limit, which clearly exists
for eachn and eachk > 2, we obtain the claimed expression forP (k) for k > 2.

If k = 1 we use Lemma 2.2 to evaluateXi,i+1(n) and use a similar argument as in thek > 2 case, which
givesP (1). Whenk = 0, since probability distributions must sum to one, after some algebra we find

P (0) = 1−
(
P (1) +

∞∑

k=2

P (k)

)
= 1−

(
a1

CLek

)(
2λ−1

1 + a−1
1 − 3

)
, (2.12)

which completes the proof. �

3. GAPS IN THE BULK II: I NDIVIDUAL MEASURES

In this section we prove Theorem 1.4. Recall the spacing gap measure ofm ∈ [Gn, Gn+1) with decom-
position given in (1.1) withk(m) summands is defined to be

νm;n(x) =
1

k(m)− 1

k(m)∑

j=2

δ (x− (rj − rj−1)) . (3.1)

We first recall and set some notation.

• ν̂m;n(t): The characteristic function ofνm;n(x).
• ν̂(t): The characteristic function of the average gap distribution ν(x) from Theorem 1.3.
• Em[· · · ]: The expected value overm ∈ [Gn, Gn+1) with the uniform measure; thus ifX : [Gn, Gn+1)
→ R then

Em[X] :=
1

Gn+1 −Gn

Gn+1−1∑

m=Gn

X(m). (3.2)

• Xj1,j1+g1,j2,j2+g2 : The number ofm ∈ [Gn, Gn+1) with a gap of length exactlyg1 starting atj1 and
a gap of length exactlyg2 starting atj2 (we have suppressed the subscriptn as it is always understood
from context). Ifg1 or g2 is zero then we count with multiplicity. For example, ifg1 = 0 andg2 = 3
then anm that has 5 summands atGj1 and hasGj2 andGj2+3 (but no summands between these last
two) is counted four times. We similarly count with multiplicity if we haveXj1,j1+g1.

We sketch the proof. We use Lévy’s continuity theorem [FG], which says that if we have a sequence of
random variables{Rr} (which do not have to be defined on the same probability space)whose characteristic
functions{ϕr} converge pointwise to the characteristic functionϕ of a random variableR, then the random
variables{Rr} converge in distribution toR (i.e., the cumulative distribution functions of the{Rr} converge
to that of{R} at all points of continuity). We show given anyǫ there is anNǫ such that for alln ≥ Nǫ the
characteristic functionŝνm;n(t) are pointwise withinǫ for almost allm ∈ [Gn, Gn+1); we can’t have all the
characteristic functions close, as somem have very few gaps.

Step 1 is to show thatEm[ν̂m;n(t)] = ν̂(t). A key ingredient is to remove the individual normalizations
of 1

k(m)−1 , wherek(m) is the number of summands in the generalized Zeckendorf decomposition ofm; we
can replace these with their average up to a negligible errorterm because of previous work on the Gaussian
behavior of the number of summands. To complete the proof, weprove that most characteristic functions
are concentrated near the mean. We do this in step 2 by showing

lim
n→∞

Em

[
(ν̂m;n(t)− ν̂(t))2

]
= 0,

which follows by reducing the problem to determiningXj1,j1+g1,j2,j2+g2 .
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3.1. Expected Value of Individual Characteristic Functions. The first step towards a proof of Theorem
1.4 is to show that the expected value of the individual characteristic functions of the gap measures con-
verge to the characteristic function of the average gap measure. Convergence in distribution follows from
controlling the rate of convergence, which we handle in the next subsection.

Proposition 3.1. Notation as above, we have

lim
n→∞

Em[ν̂m;n(t)] = ν̂(t). (3.3)

We need some preliminary results before we can prove this proposition. Notice

ν̂m;n(t) =

∫ ∞

0
eixtνm;n(x)dx =

1

k(m)− 1

k(m)∑

j=2

eit(rj−rj−1), (3.4)

where

m = Gr1 +Gr2 + · · ·+Grk(m)
. (3.5)

Thus we have

Em[ν̂m;n(t)] =
1

Gn+1 −Gn

Gn+1−1∑

m=Gn

1

k(m)− 1

k(m)∑

j=2

eit(rj−rj−1). (3.6)

The difficulty in evaluatingEm[ν̂m;n(t)] is that we must deal with the presence of thek(m) − 1 factors.
These vary withm, though weakly because of our Gaussianity result (Theorem 1.2). As the mean is of
ordern and the standard deviation is of order

√
n, thek(m) are strongly concentrated about their mean. We

first apply standard estimation arguments to show that we maysafely replacek(m) with its mean. We have

1

k(m)− 1
=

1

CLekn+ d+ o(1)
− (k(m)− 1) − (CLekn+ d+ o(1))

(k(m)− 1)(CLekn+ d+ o(1))
. (3.7)

We essentially replace 1
k(m)−1 with 1

CLekn+d+o(1) at a negligible cost, as the second summand above is
extremely small most of the time and of moderate size almost never. We make this claim explicit in the next
lemma.

Lemma 3.2. Let {Gn} be a positive linear recurrence as in Theorem 1.1, with eachci ≥ 1. Let m ∈
[Gn, Gn+1) have decomposition given by (1.1). Then for any fixedt ≥ 1 we have

lim
n→∞

1

Gn+1 −Gn

Gn+1−1∑

m=Gn

(
(k(m)− 1) − (CLekn+ d+ o(1))

(k(m) − 1)(CLekn+ d+ o(1))

) k(m)∑

j=2

eit(rj−rj−1) = 0, (3.8)

whereCLekn + d + o(1) is the average number of summands needed in a decomposition for an integer in
[Gn, Gn+1) in Theorem 1.1.

Proof. The distribution of the number of summands in a decomposition form ∈ [Gn, Gn+1) converges to a
Gaussian by Theorem 1.2. The average number of summands isCLekn+ d+ o(1) (with CLek > 0) and the
standard deviation isb

√
n + o(

√
n) for someb > 0. The proof is completed by partitioning based on the

deviation ofk(m) from its expected value. Fix aδ > 0 and let

In(δ) :=
{
m ∈ [Gn, Gn+1) : k(m) ∈

[
CLekn+ d− bn1/2+δ, CLekn+ d+ bn1/2+δ

]}
. (3.9)

Case 1: Let m ∈ [Gn, Gn+1) ∩ In(δ); thusk(m) is very close toCLekn + d + o(1). To simplify the
expressions below remember we are writingrj andrj−1 for the indices in the decomposition ofm; while
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we should really writerj(m), as the meaning is clear we prefer this more compact notation. Therefore

1

Gn+1 −Gn

Gn+1−1∑

m=Gn
m∈In(δ)

(
(k(m)− 1) − (CLekn+ d+ o(1))

(k(m)− 1)(CLekn+ d+ o(1))

) k(m)∑

j=2

eit(rj−rj−1) ≪ n−1/2+δ. (3.10)

Case 2:Let k(m) /∈ In(δ); thusk(m) is not too close toCLekn+ d. As the distribution of the number of
summands needed for a decomposition converges to a Gaussianby Theorem 1.2, for sufficiently largen the
probability anm ∈ [Gn, Gn+1) hask(m) more thannδ standard deviations from the mean is essentially

2

∫ ∞

bn
1
2+δ

1√
2πb2n

e−t2/2b2ndt ≪ e−n2δ/2. (3.11)

Thus for sufficiently largen, the number ofm ∈ [Gn, Gn+1) such thatk(m) /∈ In(δ) is essentially
(Gn+1 −Gn) · e−n2δ/2, and we find

1

Gn+1 −Gn

Gn+1−1∑

m=Gn,
m/∈In(δ)

(
(k(m)− 1) − (CLekn+ d+ o(1))

(k(m)− 1)(CLekn+ d+ o(1))

) k(m)∑

j=2

eit(rj−rj−1) ≪ e−n2δ/2, (3.12)

which tends rapidly to zero asn → ∞. This completes the proof. �

Remark 3.3. In calculating the variance, we need to approximate(k(m)− 1)−2. A similar argument shows
that this can be replaced at a negligible cost with(CLekn+ d+ o(1))−2; the error in the resulting sums
from these replacements iso(1), and thus vanishes in the limit.

Proposition 3.1 now follows. Replace as in the remark above with negligible error by Lemma 3.2. We
then pull this factor outside of them summation, switch orders of summation and sendm → ∞.

3.2. Variance of the Individual Gap Measures. The last ingredient in our proof of Theorem 1.4 is to
show that the variance of the characteristic functions of the individual measures tends to zero. We keep the
argument as general as possible for as long as possible.

Proposition 3.4. With the notation as above, we have

lim
n→∞

Varn(t) := lim
n→∞

Em[(ν̂m;n(t)− ν̂n(t))
2] = 0. (3.13)

Proof. Let

Xj1,j1+g1,j2,j2+g2(n) := #
{
m ∈ [Gn, Gn+1) : Gj1 , Gj1+g1 , Gj2 , Gj2+g2 in m’s decomposition,

but notGj1+q, Gj2+p for 0 < q < g1, 0 < p < g2

}
; (3.14)

if either g1 or g2 is zero then we countm’s with multiplicity equal to the number of gaps of length zero at
j1 or j2. Note

Varn(t) := Em[(ν̂m;n(t)− ν̂n(t))
2] = Em[ν̂m;n(t)

2]− ν̂n(t)
2, (3.15)

and we knowlimn ν̂n(t)
2 from the proof of Proposition 3.1. We are left with findingEm[ν̂m;n(t)

2]. The
algebra is long but standard (see [BILMT] for the calculation); we highlight the main ideas. Aŝνn(t) =
ν̂(t)+o(1), by the triangle inequality it suffices to showlimn Em[ν̂m;n(t)

2] converges tôν(t)2. For the limit
of the average gap measure, the probability of a gap of lengthg isP (g), and is given by Theorem 1.3. Thus

ν̂(t)2 =

∞∑

g1=0

P (g1)e
itg1

∞∑

g2=0

P (g2)e
itg2 =

∑

g1,g2

P (g1)P (g2)e
it(g1+g2). (3.16)
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The proof follows by showing thatlimn Em[ν̂m;n(t)
2] differs from this byo(1). We do this by showing

that they are close for each pair(g1, g2), with the difference summable ando(1) over all pairs; the pairwise
(almost) agreement follows by using our indicator variables Xj1,j1+g1,j2,j2+g2 and similar counting argu-
ments as above (though a bit more involved as there are more cases to consider). See Appendix B for the
details. �

3.3. Proof of Theorem 1.4. We now turn to the proof of Theorem 1.4. We have already done the diffi-
cult part of the analysis in §3.1 and §3.2. As the proof of convergence follows from standard probability
arguments, we just sketch the details below.

Proof of Theorem 3.1.To use Lévy’s continuity theorem (see [FG]), we need a sequence of random vari-
ables{Rr} (which do not have to be defined on the same probability space)whose characteristic functions
{ϕr} converge pointwise to the characteristic functionϕ of a random variableR. If we have this, then the
random variables{Rr} converge in distribution toR (i.e., the cumulative distribution functions of the{Rr}
converge to that of{R} at all points of continuity).

For us,R is essentially a geometric decay (it’s a pure geometric decay for gaps of length 2 or more), and
for eachn theRr ’s are the gap measures for eachm ∈ [Gn, Gn+1). By our results on the convergence of
the meansEm[ν̂m;n(t)] to ν̂(t) and the variance tending to zero, Chebyshev’s inequality implies that given
ǫ > 0, for eachn almost allm haveν̂m;n(t) within ǫ of ν̂(t) (we are able to do this for allt simultaneously).

Our set{Rr} is thus a collection of gap measures coming fromm ∈ [Gn, Gn+1). We have shown that
asn → ∞, for almost allm ∈ [Gn, Gn+1) we have convergence of these measures to the average gap
measure. Thus the conditions of Lévy’s continuity theorem are satisfied, completing the proof. �

4. LONGESTGAP

4.1. Overview. We briefly describe our approach to determining the distribution and limiting behavior
of the longest gap in Zeckendorf decompositions. We first finda rational generating functionF (s, f),
whose coefficients ins give the number of decompositions with longest gapless than f . This allows
us to determine the cumulative distribution of the longest gap, which we expand with a partial fraction
decomposition. It is here that we need our additional restrictions on the roots of the associated polynomials
M(s) andR(s). These lead to simpler partial fraction expansions, and minimizes the technical obstructions.

In the process of obtaining this exact expression, we need several technical lemmas about the behavior
of the roots of the polynomials in the denominator of our generating functionsF (s, f). In particular, in
order to obtain estimates for the longest gap for largen, we use Rouché’s theorem, and show that the
distribution is essentially determined by the behavior of asingle root. In turn, this root relates to the largest
eigenvalue,λ1, of the recurrence relation of theGi’s. Approximating along these lines, we determine
an asymptotic expression for the cumulative distribution functionP (n, f), which in the limit is doubly
exponential:P (n, f) = exp(Cnλ−f

1 ) + o(1); here the constantC is a rational function ofλ1.
The error term inP (n, f) is sufficiently small to allow us to determine asymptotic expressions for the

mean and variance of the longest gap. To do this, we sum over a sufficiently large interval(ℓn, hn) containing
the meanµn, take partial sums, and then use the Euler-Maclaurin formula to smooth out our expression. This
yields a particularly nice asymptotic expression for the mean and variance of the longest gap. This result is
directly analogous to behavior seen in flipping coins.

4.2. Exact Cumulative Distribution of the Longest Gap. Our first step is to determine the cumulative
distribution function of the longest gap. We begin by counting the number ofm ∈ [Gn, Gn+1) with Ln(m)
less than somef ∈ N, and finding the associated generating function. As the longest gap grows on the order
of log n, it suffices to studyf ≥ log log n; in other words, in all arguments below we may assumef is much
larger than the length of the recurrence relation, and thus we do not need to worry about small numbers.
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Lemma 4.1. Let f > jL. The number ofm ∈ [Gn, Gn+1) with longest gap less thanf is given by the
coefficient ofsn in the generating function

F (s, f) =
1− sjL

M(s) + sfR(s)
, (4.1)

where

M(s) = 1− c1s− cj2+1s
j2+1 − · · · − cjL+1s

jL+1

R(s) = c1 + cj2+1s
j2 + · · ·+ (cjL+1 − 1)sjL (4.2)

and theci andji are defined as in(1.13).

Before beginning our proof, we fix some notation. Recall thatour recurrence relation is written as

Gn+1 = cj1+1Gn−j1 + cj2+1Gn−j2 + · · ·+ cjL+1Gn−jL (4.3)

with eachci non-zero andj1 = 0. We writegi−1 = ji − ji−1 for the gaps, with the conventiong0 = 1.

• A legal block of lengthℓ is a sequence of non-negative integers(ai)
ℓ
i=1 whereai = ci for i 6 ℓ and

aℓ < cℓ. Notice that a legal blocka must be of lengthji for somei, in order to satisfyai < cji .
• A string of zeroes of lengthℓ is a sequence(bi)ℓi=1 where eachbi = 0.
• Denote theconcatenation of two sequencesa = (ai)

ℓa
i=1 andb = (bi)

ℓb
i=1 by a → b, where

a → b = (ui)
ℓa+ℓb
i=1 , (4.4)

with ui = ai for i ∈ [1, ℓa] andui = bi−s for i ∈ [ℓa + 1, ℓa + ℓb].
• A legal sequenceis a sequence of non-negative integers(→k

r=1 (ηr → zr)) → T , where theηr
are legal blocks, thezr are strings of zeroes, andT is a terminal block (a sequence(ci)ℓi=1 with
ℓ ≤ jL, with L the number of non-zero coefficients in the recurrence relation for theGi’s; see (4.3)).
Informally, a legal sequence consists ofk legal blocks, separated by strings of zeroes, and ended by
a terminal block. By definition, legal sequences of lengthn are exactly those sequences that arise as
decompositions ofx ∈ [Gn, Gn+1). We use|a| to denote the length of a sequencea.

• SetTf (s) = M(s) + sfR(s), with M(s) andR(s) as in (4.2). We denote its roots byαi;f , with
α1;f the smallest root. One of the difficulties in the analysis below is that these roots depend on
f , though fortunately the only one that matters isα1;f , which exponentially converges to1/λ1 (the
reciprocal of the largest root of the characteristic polynomial of the recurrence relation for theGi’s).

Proof of Lemma 4.1.By the Generalized Zeckendorf Theorem, Theorem 1.1, there exists a bijection be-
tweenm ∈ [Gn, Gn+1) and legal decompositions of lengthn. Accordingly, we count the number of length
n legal decomposition with longest gap less thanf . As remarked above, we assumef is at leastlog log n
for n large, so in particularf is much greater than the length of the recurrence.

A gap of lengthg in the decomposition corresponds to a string of zeroes of length g − 1 contained in the
legal sequence. To count the number of decompositions with longest gap less thanf , we count the number
of legal sequences of lengthn with all strings of zeroes of length6 f − 2. First we consider legal blocks
followed by a string of 0’s, or sequences of the formη → z whereη is a legal block andz is a string of 0’s.

There arecji+1 − 1 distinct legal blocks that have lengthji + 1 and do not end in a zero. Letη be a legal
block that does not end in a zero. Asf > jL, the only sequencesη → z with strings of zeroes of length at
leastf are those with|z| > f . LetN(r) be the number of lengthr sequencesη → z that contain no string
of zeroes of length> f − 1. Since|η|+ |z| = r, we see thatN(r) is given by the generating function

∞∑

r=1

N(r)sr =
(
(c1 − 1)sj1+1 + · · · + (cjL+1 − 1)sjL+1

) (
1 + s+ · · ·+ sf−1

)
. (4.5)

For anyi ∈ N such that2 6 i 6 L there is exactly one legal blockη that has lengthji + 1 and ends in
a zero. There are no other legal blocks that end in a zero. Since the last non-zero term inη is thenηji−1,
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the legal block contains a string ofgi−1 = ji − ji−1 zeroes at the end. LetM(r) be the number of length
r sequences of legal blocks ending with a zero, followed by a string of zeroes, with no string of zeroes of
length at leastf ; we denote this byη → z. Asf > jL, the longest string of zeroes of such a block has length
gi + |z|. Soη → z contains no strings of zeroes of length at leastf if |z| < f − gi − 1. As |η| + |z| = r,
M(r) is given by the generating function

∞∑

r=1

M(r)sr = sj2+1

(
1− sf−g1

1− s

)
+ · · · + sjL+1

(
1− sf−gL−1

1− s

)
. (4.6)

Finally, there is exactly one terminal block of lengthr for eachr > 0 andr < jL. Thus the numberD(r)

of lengthr terminal blocks has the generating function
∑∞

r=1 D(r)sr = 1−sjL
1−s .

We now use these generating functions to find the number of legal sequences of lengthn with k legal
blocks and all strings of zeroes of length less thanf . Our decomposition based on the number of summands
is similar to the analysis done in [KKMW, MW1, MW2]; this is a natural way to split into cases, and
provides a manageable route through the combinatorics. That is we fix k and count the number of legal
sequences(→k

i=1 (ηi → zi)) → T that do not contain a subsequence of zeroes of length at leastf ; recall the
ηi are legal blocks,zi are strings of zeroes, andT is terminal. Since the lengths of these separate components
must sum ton, the number of such lengthn sequences is the coefficient ofsn in

( ∞∑

r=1

N(r)sr +

∞∑

r=1

M(r)sr

)k ∞∑

r=1

D(r)sr. (4.7)

To findF (s, f), it remains only to sum the above expression over allk. Thus the generating function of the
number of lengthn legal sequences with longest gap< f is

F (s, f) =
1− sjL

1− s

∑

k>0

[ (
(c1 − 1)sj1+1 + · · ·+ (cjL+1 − 1)sjL+1

)(1− sf

1− s

)

+ sj2+1

(
1− sf−g1

1− s

)
+ · · ·+ sjL+1

(
1− sf−gL−1

1− s

)]k
. (4.8)

This is a geometric series, so we can evaluate our sum overk and then use the relationji−1 + gi−1 = ji to
calculate the desired result. �

We have found a rational generating function for the cumulative distribution. To analyze it further, we
first recall a standard lemma on partial fraction expansion.

Lemma 4.2 (Partial Fraction Expansion). LetR(s) = S(s)/T (s) be a rational function forS, T ∈ C[x]
with deg(S) < deg(T ), and assumeT has no multiple roots. Then the coefficient ofsn in R(s)’s Taylor
expansion around zero is

−
deg(T )∑

i=1

S(αi;f )

αi;fT ′(αi;f )

(
1

αi;f

)n

, (4.9)

where{αi;f} are the roots ofT .

Notice that in order to use this partial fraction expansion lemma, we need to ensure that the denominator
of our generating functionF (s, f) has no multiple roots. To achieve this, we impose some extra restrictions
on our recurrence relation, and obtain the following.

Lemma 4.3. LetTf (s) = M(s) + sfR(s), whereM(s) andR(s) have no multiple roots, and no roots of
absolute value1. Then there existsǫ > 0 andF ∈ N such that for allf > F and all rootsα of Tf (s) we

have
∣∣∣T ′

f (α)
∣∣∣ > ǫ.
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The proof is standard, and follows from an analysis of the roots of the polynomialTf (s) asf varies; see
Appendix A.2 of [BILMT] for details. Essentially, the behavior of Tf (s) is as we may expect; the roots of
Tf (s) = M(s) + sfR(s) with absolute value less than one are close to the roots ofM(s) for largef , and
the roots ofTf (s) with absolute value greater than one are close toR(s) for largef . We also see that the
large number of roots of absolute value close to one will havelittle contribution.

Applying partial fractions, we immediately obtain the following expression for the cumulative distribution
function,P (n, f).

Lemma 4.4. Let{αi;f}f+jL
i=1 be the roots ofTf (s). The cumulative distribution for the longest gapP (n, f),

the probability anm ∈ [Gn, Gn+1) has its longest gap in its Zeckendorf decomposition less than f , is

P (n, f) =
1

Gn+1 −Gn

f+jL∑

i=1

1− αjL
i;f

αi;f T ′
f (αi;f )

(
1

αi;f

)n

. (4.10)

4.3. Asymptotic Expansion for the CDF of the Longest Gap.We need several facts about the roots of
the polynomialsTf (s) to use Lemma 4.4. First, from the definition ofM(s), it is immediate thatM(s)’s
roots are exactly the inverse roots of the characteristic polynomial of the recurrence relation for theGi.
We label the roots of this characteristic polynomial{λi}jL+1

i=1 . From Binet’s formula (see Lemma A.1),
|λ1| > |λ2| > · · · > |λjL+1|. Furthermore, we know thatλ1 ∈ R andλ1 > 1. In particular, this shows that
M(s) has a single smallest root1/λ1, which is real-valued and has absolute value less than1. In turn, since
Tf (s) = M(s) + sfR(s), for largef , Tf (s) has a smallest root that converges to1/λ1.

Proposition 4.5. There existsF ∈ N andRmax, Rmin ∈ R satisfying1/λ1 < Rmin < min(1, |1/λ2|) such
that for all f > F every rootαi,f of M(s) + sfR(s) has |αi,f | < Rmax, and such that the polynomial
M(s) + sfR(s) has exactly one rootα1;f with |α1;f | < Rmin. Furthermore

α1;f =
1

λ1
+

M(α1;f )

G(α1;f )
αf
1;f , (4.11)

whereλ1 is the largest eigenvalue of the recurrence relation forGi andG(s) := −M(s)/(s − 1/λ1), a
polynomial. Moreover, there existsδ > 0 such that|G(α1;f )| > δ for f > F .

The proof of Proposition 4.5 is standard and follows by Rouche’s theorem; see Appendix A.1 of [BILMT].
The roots{αi;f}fi=1 appear in the terms of the sum in Lemma 4.4 asα−n

i;f , and the smallest rootα1;f

dominates the sum. Being careful to deal with coefficients, and approximatingα1;f λ1, we obtain our
claimed asymptotic expression for the cumulative distribution function of the longest gap.

Proof of Theorem 1.5(1).From Lemma 4.4, we have

P (n, f) =
1

Gn+1 −Gn

f+jL∑

i=1

1− αjL
i;f

αi;f T ′
f (αi;f )

(
1

αi;f

)n

. (4.12)

By definition, we have that1/λ1 < Rmin < |1/λ2|. Therefore, by Binet formula (Lemma A.1)

Gn+1 −Gn = C ′λn
1 +O ((1/Rmin)

n) (4.13)

for someC ′ ∈ R (C ′ = (λ1 − 1)a). Further, for any rootαi;f 6= α1;f we have|αi;f | > Rmin. Also, by

Lemma 4.3 there is a boundB ∈ R such that
∣∣∣1/T ′

f (αi;f )
∣∣∣ < B for all rootsαi;f and for allf > F .

We see that forα1;f , the critical root from before, that

P (n, f) = −
(1− αjL

1;f )

C ′α1;fT
′
f (α1;f )

(
1

λ1α1;f

)n

+O
(
f (λ1Rmin)

−n) ; (4.14)
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noteλ1Rmin > 1. Next we use the relation

α1;f =
1

λ1
+

αf
1;fR(α1;f )

G(α1;f )
(4.15)

from Proposition 4.5 to express our formula in terms ofλ1. Accordingly letC = λ1/C
′. Sinceα1;f <

Rmin < 1 andG(α1;f ) is bounded away from zero, this shows thatα1;f converges to1/λ1 exponentially
fast. Substituting (4.15) three times and recallingTf (s) = M(s) + sfR(s) gives

P (n, f) =
−C

(
1− λjL

1

)
+O(αf

1;f )[
1
λ1
M′( 1

λ1
) +O(αf

1;f )
]
+O(fαf

1;f )

(
1 + λ1

αf
1;fR(α1;f )

G(α1;f )

)−n

+O
(
f (λ1Rmin)

−n) .

(4.16)
After a lot of algebra (using exponentiation, multiple Taylor expansions andα1;f < Rmin < 1) we find

P (n, f) = −C(1− λjL
1 )

1
λ1
M′( 1

λ1
)
exp

(
− n

λf−1
1

R( 1
λ1
)

G( 1
λ1
)

)
+O

(
nf

(
Rmin

λ1

)f

+
n

λ2f
1

+
f

(λ1Rmin)
n

)
. (4.17)

Further, since we always haveP (n, n+ 1) = 1, substitutingf = n into (4.17) gives

lim
n→∞

P (n, n+ 1) = −Cλ1(1− λjL
1 )

M′( 1
λ1
)

. (4.18)

It follows that−Cλ1(1− λjL
1 )/M′( 1

λ1
) = 1, completing the proof of Theorem 1.5(1). �

4.4. Mean and Variance of the Longest Gap.We use our asymptotic expression for the cumulative dis-
tribution function to calculate statistics of the longest gap distribution. Remember that our cumulative
distribution is defined for the longest gap beingless than a given value.Thus in the analysis below it is
a little easier to first find, not the mean and variance of the random variableX denoting the longest gap, but
the mean and the variance of the random variableY which is one more than the longest gap. These are

µn;Y =

n∑

g=1

g (P (n, g)− P (n, g − 1)) ; σ2
n =

n∑

g=1

g2 (P (n, g) − P (n, g − 1)) − µ2
n;Y . (4.19)

Thus our desired mean (for the longest gap) isµn = µn;Y − 1, and the variance isσ2
n.

As our asymptotic expression forP (n, g) is only accurate for values ofg on the order oflog n or larger,
we replace the sums in (4.19) from1 to n by sums fromℓn to hn, for suitable choices ofℓn andhn, so
that the error from restricting the summation is negligible. This is possible due to the very tight double
exponential behavior, which we proved in Theorem 1.5(1). Inparticular, we have the following proposition.

Proposition 4.6. Choosingc, C ∈ R such that0 < c < 1/λ1 andC > max(6, 4 log λ1), we letℓn =
⌊c log(nK)⌋ andhn = ⌊C log(nK)⌋ (rememberλ1 > 1 andK is as in Theorem 1.5(2)). We find that

µn;Y =

hn∑

g=ℓn

g (P (n, g)− P (n, g − 1)) + o(1)

σ2
n = −


µ2

n;Y −
hn∑

g=ℓn

g2 (P (n, g)− P (n, g − 1))


+ o(1). (4.20)

With these values ofhn andℓn, to prove the above proposition only requires the crudest bounds. The
analysis is standard, and can be found in Appendix B of [BILMT].
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Proof of Theorem 1.5(2).We work simultaneously withµn;Y andσ2
n. In preparation for approximating our

sums with integrals, we first sum by parts so that

µn;Y = (hn + 1)P (n, hn)− ℓnP (n, ℓn − 1) −
hn∑

g=ℓn

P (n, g) + o(1)

σ2
n = −


µ2

n;Y − (hn + 1)2P (n, hn) + ℓ2n P (n, ℓn − 1) +

hn∑

g=ℓn

(2g + 1)P (n, g)


 + o(1). (4.21)

From Theorem 1.5(1), we know thatℓ2nP (n, ℓn) → 0 andh2nP (n, hn) → h2n for largen, and hence

µn;Y = (hn + 1)− S1 + o(1), σ2
n = −(µ2

n;Y − (hn + 1)2 + 2S2 + S1) + o(1) (4.22)

for

Si :=

hn∑

g=ℓn

gi−1P (n, g). (4.23)

With K = λ1R(1/λ1)/G(1/λ1), our estimates from Theorem 1.5 give us

Si =

hn∑

g=ℓn

gi−1 exp
(
−nKλ−g

1

)
+O

(
n−δ(log n)i

)
. (4.24)

Now we apply the Euler-Maclaurin formula toS1 andS2, and find

Si =

∫ hn

ℓn

ti−1 exp
(
−nKλ−t

1

)
dt +

1

2
ti−1P (n, t)

∣∣∣∣
hn

t=ℓn

+ ErroriEM + o(1). (4.25)

Elementary analysis shows that Error1
EM = o(1) and Error2EM = 1 + o(1), and thus the two errors above

are negligible (for completeness this standard calculation is done in Appendix C of [BILMT]). The bound-
ary terms approach1/2 andhn/2, respectively, sinceP (n, hn) → 1 while P (n, ℓn) → 0 so fast that
ℓnP (n, ℓn) → 0. We are left with analyzing the two integrals.

Definew(t) = exp (−t log λ1 + log (nK)), with w′(t) = −w(t) log λ1 andt = log(nK)−logw
log λ1

. Writing
Ii for the integrals in (4.25), integrating by parts yields andlettingu = w(t) gives

I1 = t e−w(t)

∣∣∣∣
hn

ℓn

+

∫ w(hn)

w(ℓn)

log(nK)− log u

log λ1
e−u du,

I2 =
1

2

(
t2 e−w(t)

∣∣∣∣
hn

ℓn

+

∫ w(hn)

w(ℓn)

(
log(nK)− log u

log λ1

)2

e−u du

)
. (4.26)

We expand the integrals and note thatw(hn) = 0 + o(1) andw(ℓn) is positive and tends to infinity withn.
Then, using the well known identities (see 4.331.1 and 4.335.1 of [GrRy])

∫ ∞

0
log (u) e−u du = −γ,

∫ ∞

0
(log u)2 e−u du = γ2 +

π2

6
(4.27)

with γ the Euler-Mascheroni constant (note on page xxxii of [GrRy]they setC = γ), we obtain

I1 = t e−w(t)

∣∣∣∣
hn

ℓn

− log(nK) + γ

log λ1
+ o(1)

I2 =
1

2

(
t2 e−w(t)

∣∣∣∣
hn

ℓn

− 1

(log λ1)2

(
log(nK)2 + 2γ log(nK) + γ2 +

π2

6

))
+ o(1). (4.28)

Our claimed values for the mean and variance now follow by evaluating the above and substituting.�
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Remark 4.7. We tookhn = ⌊C log(nK)⌋ with C > max(6, 4 log λ1). This constant can be replaced with
any sufficiently large value; however, we needhn to be at least this large to facilitate the error analysis
arising from truncating the sums.

5. CONCLUDING REMARKS

Building on the combinatorial vantage introduced in [KKMW]and its sequels, we are able to determine
the limiting behavior for the distribution of gaps in the bulk, both on average and almost surely for the
individual gap measures, as well as mean and variance of the longest gap. A natural future project is to
remove some of the assumptions we have made on the recurrencerelation. We expect the answers in these
cases to be essentially the same, but the resulting algebra will be more involved.

An additional line of investigation is to apply these methods to other decompositions, for example the
f -decompositions introduced in [DDKMMV].

Definition 5.1. Given a functionf : N0 → N0 and a sequence of integers{an}, a summ =
∑k

i=0 ani of
terms of{an} is anf -decomposition ofm using{an} if for everyani in thef -decomposition, the previous
f(ni) terms (ani−f(ni), ani−f(ni)+1, . . . , ani−1) are not in thef -decomposition.

To see that this generalizes the standard Zeckendorf decomposition, takean to be thenth Fibonacci num-
ber andf(n) = 1 for all n. The authors prove for anyf : N0 → N0 there exists a unique sequence of natural
numbers{an} such that every positive integer has a unique legalf -decomposition in{an}. Interestingly,
certain choices off lead to sequences defined by a recurrence relation withnegativecoefficients in a funda-
mental way, where there is no equivalent definition using only non-negative coefficients (the Fibonaccis can
be defined byFn+1 = 2Fn − Fn−2, but they are also given by the standard relationFn+1 = Fn + Fn−1).
One example is theirb-bin decompositions. We break the natural numbers into binsof lengthb, and say a
decomposition is legal if we never choose two elements from the same bin, nor two adjacent elements from
two consecutive bins. This leads to a periodic formula for the associatedf . For example, ifb = 3 our se-
quence ofan’s starts 1, 2, 3, 4, 7, 11, 15, 26, 41, 56, 97, 153, and satisfiesthe recurrencean = 4an−3−an−6,
while if b = 2 we recover the standard Zeckendorf decomposition involving Fibonacci numbers.

APPENDIX A. GENERALIZED BINET’ S FORMULA

This standard generalization of Binet’s formula follows from the Perron-Frobenius Theorem for irre-
ducible matrices (though it can be proved directly, which isdone in Appendix A of the arXiv version of this
paper, [BBGILMT]).

Lemma A.1 (Generalized Binet’s Formula). Consider the positive linear recurrenceGn+1 = c1Gn +
c2Gn−1 + · · ·+ cLGn+1−L with theci’s non-negative integers andc1, cL > 0. Letλ1, . . . , λL be the roots
of the characteristic polynomialf(x) := xL −

(
c1x

L−1 + c2x
L−2 + · · ·+ cL−1x+ cL

)
= 0, ordered so

that |λ1| ≥ |λ2| ≥ · · · ≥ |λL|. Thenλ1 > |λ2| ≥ · · · ≥ |λL|, λ1 > 1 is the unique positive root, and
there exist constants such thatGn = a1λ

n
1 + O

(
nL−2λn

2

)
. More precisely, ifλ1, ω2, . . . , ωr denote the

distinct roots of the characteristic polynomial with multiplicities 1,m2, . . . ,mr, then there are constants
a1 > 0, ai,j such thatGn = a1λ

n
1 +

∑r
i=2

∑mi
j=1 ai,jn

j−1ωn
i .

APPENDIX B. PROOF OFPROPOSITION3.4

We now finish the proof of Proposition 3.4, specifically showing that limn→∞Varn(t) = 0. In the
calculation belowg1 andg2 denote two arbitrary gaps that start at the two indicesj1 ≤ j2; thusg1, g2 ∈
{0, 1, . . . , n − 1} andj1, j2 ∈ {1, 2, . . . , n}. As the number of indices in the proof is growing, we write
ℓr(m) andℓw(m) for the summands inm’s decomposition, making explicit them dependence. In the sum
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that follows, we have to separately deal with the caser = w. We have

Em[ν̂m;n(t)
2] =

1

Gn+1 −Gn

Gn+1−1∑

m=Gn

1

(k(m)− 1)2

k(m)∑

r=2

eit(ℓr(m)−ℓr−1(m))

k(m)∑

w=2

eit(ℓw(m)−ℓw−1(m))

=
1

(Gn+1 −Gn)(CLekn+ d)2


2

∑

j1<j2
g1,g2

Xj1,j1+g1,j2,j2+g2(n)e
itg1eitg2 +

∑

j1,g1

Xj1,j1+g1(n)e
2itg1


+ o(1),

(B.1)

where the last line follows by using Remark 3.3 to replace1/(k(m) − 1)2 with its average value up to a
negligible error and then doing the same change of variablesas before, and the factor of 2 is because we
are takingj1 < j2. As the denominator is of ordern2(Gn+1 − Gn) while

∑
j1,g1

Xj1,j1+g1(n) is of order
n(Gn+1−Gn), the diagonal term does not contribute in the limit, and the factor of 2 vanishes when we sum
overj1 < j2 (which givesn2/2 +O(n)). Therefore

Em[ν̂m;n(t)
2] =

2

(Gn+1 −Gn)(CLekn+ d)2

∑

j1<j2
g1,g2

Xj1,j1+g1,j2,j2+g2(n)e
it(g1+g2) + o(1)

=
2

a1λn
1 (λ1 − 1)(CLekn+ d)2(1 + o(1))


o(1) +

∑

j1<j2

n−1∑

g1,g2=0

Xj1,j1+g1,j2,j2+g2(n)e
it(g1+g2)


 . (B.2)

There are several different cases to consider for the pair(g1, g2): at least one of them could be 0, at least one
of them could be 1, or both exceed 1. The argument is essentially the same in each case; the only difference
comes from slight changes in how we countXj1,j1+g1,j2,j2+g2(n). Note that if we restricted ourselves to
the Fibonacci numbers the first two cases cannot happen (if weconsider only recurrences where all the
coefficients are 0 or 1 then the first case cannot happen).

We first consider the case wheng1 = g2 = 1. We chose to do this case in detail as it has some of
the counting obstructions, and gives the general flavor. We determineXj1,j1+1,j2,j2+1(n) by counting the
total number of decompositions in[Gn, Gn+1) which have a gap of length 1 fromGj1 to Gj1+1 (which we
know how to do by Lemma 2.2) and then subtract the three different ways decompositions can have a gap
of length 1 fromGj1 toGj1+1 withouthaving a gap of length 1 atGj2 toGj2+1: (1) includeGj1 , Gj1+1 and
Gj2+1 but do not includeGj2 ; (2) includeGj1 , Gj1+1 but do not includeGj2 andGj2+1; and (3) include
Gj1 , Gj1+1, Gj2 andGn but do not include andGj2+1. These three cases can be counted by Lemma 2.1 and
similar counting techniques.

Note it is sufficient to analyze these cases under the additional assumption thatj2 is at least2L units from
j1 (whereL is the length of the recurrence). The reason is that the denominator has a factor ofn2; if j2 is
within a bounded distance ofj1 we only get ann in the numerator, and the contribution is negligible.

There is one last technicality. If any ofj1, j2, j2−j1, n−j1 orn−j2 is small then expanding aGγ (where
γ is one of these troubling indices) by the generalized Binet formula will not yield an error of sizeo(1). This
is the same issue we had in the proof of Theorem 1.3, and is handled similarly. We introduce the notation
oj1,j2;n(1), which is o(1) if all of the combinations above are at leastlog2 n away from 0, and bounded
otherwise. Again the sum of this over allj1, j2 will be lower order. We therefore assumej2 ≥ j1 + 2L.
Because of the length of the lines, for formatting reasons weput the error term with the sum over allj1 < j2
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and not over the restricted sums. We find
n−1∑

j1=1

n−1∑

j2=j1+1

Xj1,j1+1,j2,j2+1(n) + o (n(Gn+1 −Gn))

=

n−2L∑

j1=1

n∑

j2=j1+2L

[
(Gn+1 −Gn)−Gj1+1(Gn−j1 −Gn−j1−1)−Gj1(Gn−j1+1 − 2Gn−j1 +Gn−j1−1)

− (Gn−j+1 − 2Gn−j +Gn−j2−1)(Gj2 −Gj1+1Gj2−j1−1 −Gj1(Gj2−j1 −Gj2−j1−1))

− (Gn−j −Gn−j2−1)(Gj2 −Gj1+1Gj2−j1−1 −Gj1(Gj2−j1 −Gj2−j1−1))

− (Gn−j −Gn−j2−1)((Gj+1 −Gj)−Gj1+1(Gj2−j1 −Gj2−j1−1)

− Gj1(Gj2−j1+1 − 2Gj2−j1 +Gj2−j1−1))

]

=

n−2L∑

j1=1

n∑

j2=j1+2L

[
(a1λ

n
1 (λ1 − 1)(1 − a1 − a1λ

−1
1 (λ1 − 1)(1 + o(1)))

− a21λ
n−1
1 (λ1 − 1)2(1− a1 − a1λ

−1
1 (λ1 − 1)(1 + oj1,j2;n(1)))

− a21λ
n−1
1 (λ1 − 1)(1 − a1 − a1λ

−1
1 (λ1 − 1)(1 + oj1,j2;n(1)))

− a21λ
n−1
1 (λ1 − 1)2(1− a1 − a1λ

−1
1 (λ1 − 1)))(1 + oj1,j2;n(1))

]

= (1− a1 − a1λ
−1
1 (λ1 − 1))(a1λ

n−1
1 (λ1 − 1)(λ1 − a1(λ1 − 1)− a1 − a1(λ1 − 1))

· (1 + o(1))

n−2L∑

j1=1

n∑

j2=j1+2L

1

=

(
n2 +O(n)

2

)
a1λ

n
1 (λ1 − 1)(1 + o(1))((λ1(1− 2a1) + a1)λ

−1
1 )2. (B.3)

Notice that asn → ∞, (B.3) times the coefficient in (B.2) is, up to an error of sizeo(1),
(

1

CLek
λ−1
1 (λ1(1− 2a1) + a1)

)2

= P (1)2,

which cancels with corresponding piece inν̂(t)2 in the differenceEm[ν̂m;n(t)
2]− ν̂(t).

The other cases for(g1, g2) can be handled similarly, and again we find that the contribution equals the
corresponding terms from̂ν(t)2 in the differenceEm[ν̂m;n(t)

2] − ν̂(t). The only complication is we need
our error terms to be small enough so that we may sum over all pairs (g1, g2). This is not a problem as our
approach allows us to isolate the error term, which is small when summed over all pairs as the sum ofPn(g)
is bounded. Therefore,limn→∞Varn(t) = 0, completing the proof.

APPENDIX C. EXTENSION TO INITIAL SEGMENTS (IDDO BEN-ARI AND STEVEN J. MILLER)

Our theorems for intervals[Gn, Gn+1) generalize to initial segments[1, N). This appendix was inspired
by questions of one of the referees on such results, and has influenced the sequel project [B-AM]. There
the authors of this appendix adopt a Markov perspective, which simplifies a lot of the technical issues but at
the cost of additional machinery. As our purpose here is to just state what is known and quickly highlight
the arguments for the extensions, we drop the combinatorialapproach (which is very natural for intervals of
the form[Gn, Gn+1), and with work could be made to work here as well; see for example [BEDMMTW1,
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BEDMMTW2] for such investigations of sub-intervals of[Gn, Gn+1)) and instead introduce the perspective
of [B-AM].

If N = Gn for somen, then the asymptotic results are easy to recover. This follows immediately as the
intervals[Gn, Gn+1) are of exponentially growing length and the dependence onn in all our statistics is at
most linear. Thus we can safely combine the results from a small number of intervals (say on the order of
log n or evenlog log n) where there is essentially no variation and which asymptotically covers almost all
integers in the initial segment[1, N). Similarly we can also immediately do initial segments of the form
[1, Nj) with Nj → ∞ andNj/Gnj → 1 asj → ∞.

The remaining case can be treated by the following class of initial segments. Assume thatǫ > 0 and let
{Nj}∞j=2 be an increasing sequence of real numbers, withNj ∈ [⌈(1+ ǫ)Gj−1⌉, ⌊(1− ǫ)Gj⌋). The uniform
measure on the initial segment[1, Nj) is a convex combination of the uniform measures on the intervals
[G1, G2), . . . , [Gj−2, Gj−1), and the uniform measure on the last subintervalAj = {n ∈ [Gj−1, Gj) : n <
Nj}. This last measure is the uniform measure on[Gj−1, Gj), conditioned onAj . The respective convex
coefficients are proportional to the number of elements in each interval, which, in the case of the last one is
the number of elements in the subintervalAj .

The main problem one needs to address is that the last subinterval, contrary to all others, includes only
a portion of the numbers with representation of the corresponding lengthj, and because of the exponential
growth of the intervals and the assumptionNj ≥ (1 + ǫ)Gj−1, this last subinterval is comparable in size
to the size of the union of all preceding intervals, so that the associated convex coefficient is not vanishing
asymptotically. We just can’t ignore this last subinterval, and it’s different from all others. Now the uniform
measure onAj is obtained from the uniform measureQj on [Gj−1, Gj), through conditioning: it is the
conditioned measureQj( · |Aj). For most statistics appearing in the literature, including the ones studied
in this paper, this conditioning has asymptotically vanishing effect, as they are asymptotically independent
of Aj underQj. To explain this, observe first that determining whether a number in [Gj−1, Gj) belongs
to the subintervalAj is essentially determined by a uniformly bounded number (inj) of first digits in its
generalized Zeckendorf decomposition, and this is becauseof the exponential growth of theGn’s and the
fact thatNj ≥ (1 + ǫ)Gj+1. (We write “essentially" because this rule does not apply toall numbers, but
rather a proportion tending to1, and this is good enough.)

In [B-AM] the authors provided a Markov chain interpretation and representation of generalized Zeck-
endorf decompositions. There the uniform measures on all intervals[Gj−1, Gj) are obtained from a single
ergodic Markov chain. The key is ergodicity of the chain, which guarantees that all asymptotic statistics
are stochastically independent of the first digits. As a ruleof thumb, all “scalable” quantities can be treated
through this procedure, and this includes the extensively studied results including moments, laws of large
numbers and central limit theorems on the number of summandsor more generally additive functionals of
the Markov chain, as well as law of largest gap, and tails of the gap measures.
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