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Abstract The Katz-Sarnak Density Conjecture states that the behavior of zeros of a
family of L-functions near the central point (as the conductors tend to zero) agrees
with the behavior of eigenvalues near 1 of a classical compact group (as the matrix
size tends to infinity). Using the Petersson formula, Iwaniec, Luo and Sarnak proved
that the behavior of zeros near the central point of holomorphic cusp forms agrees
with the behavior of eigenvalues of orthogonal matrices for suitably restricted test
functions φ . We prove similar results for families of cuspidal Maass forms, the other
natural family of GL2/Q L-functions. For suitable weight functions on the space of
Maass forms, the limiting behavior agrees with the expected orthogonal group. We
prove this for supp(φ̂)⊆ (−3/2,3/2) when the level N tends to infinity through the
square-free numbers; if the level is fixed the support decreases to being contained
in (−1,1), though we still uniquely specify the symmetry type by computing the
2-level density.
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1 Introduction

In this section we set the stage for our results by quickly reviewing previous work
on zeros of L-functions, leading up to n-level correlations, densities and the con-
jectured correspondence with random matrix ensembles. As this is a vast field and
the readership of this book is likely to have diverse backgrounds and interests, we
discuss in some detail the history of the subject in order to put the present problems
in context. We concentrate on some of the key theorems and statistics, and refer the
reader to the extensive literature for more information. After this quick tour we de-
scribe the Katz-Sarnak conjectures for the behavior of low-lying zeros, and then in
§2 we state our new results for families of Maass forms (the reader familiar with this
field can skip this section and go straight to §2). The analysis proceeds by using the
Kuznetsov trace formula to convert sums over zeros to exponential sums over the
primes. Similar sums have been extensively studied by Maier in many papers over
the years (see for example [EMaS, Ma, MaP, MaS1, MaS2, MaT]); it is a pleasure
to dedicate this chapter to him on the occasion of his 60th birthday.

1.1 Zeros of L-Functions

The Riemann zeta function ζ (s) is defined for Re(s)> 1 by

ζ (s) :=
∞

∑
n=1

1
ns = ∏

p prime

(
1− 1

ps

)−1

; (1)

the Euler product expansion is equivalent to the Fundamental Theorem of Arith-
metic on the unique factorization of integers into prime powers. Much can be
gleaned in this regime. For example, looking at the limit as s→ 1 from above shows
the sum of the reciprocals of the primes diverge (and with just a little work one gets
∑p<x 1/p∼ log logx), and hence there are infinitely many prime. The true utility of
this function, however, doesn’t surface until we consider its meromorphic continua-
tion ξ (s) to the entire complex plane, where

ξ (s) := Γ (s/2)π−s/2
ζ (s) = ξ (1− s). (2)

The product expansion shows ξ (s) has no zeros for Re(s) > 1, and from the func-
tional equation the only zeros for Re(s) < 0 are at the negative even integers. The
remaining zeros all have real part between 0 and 1; the Riemann Hypothesis [Rie]
is the statement that these zeros all have real part of 1/2.

Ever since Riemann’s classic paper, researchers have exploited the connections
between zeros of ζ (s) (and later other L-functions) to arithmetically important prob-
lem to translate information about the zeros to results in number theory. For exam-
ple, it can be shown that ζ (s) is never zero on the line Re(s) = 1. This implies the
Prime Number Theorem: the number of primes at most x, π(x), is Li(x) plus a lower
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order term, where

Li(x) :=
∫ x

2

dt
log t

; (3)

excellent references for this and the subsequent results are [Da, IK].
Similar results about primes in arithmetic progressions modulo m follow from

analogous results about the distribution of zeros of Dirichlet L-functions L(s,χ) :=
∑n χ(n)/ns, where χ ranges over all primitive characters modulo m. It is worth
noting that to study primes congruent to a modulo m it is not enough to study one
specific Dirichlet L-function, but rather we need to understand the entire family
coming from all characters of modulus m in order to invoke orthogonality relations
to extract information about our progression from averages of χ(m); this notion of
family will be very important in our work later.

After determining main terms, it is natural to ask about the form of the lower
order terms. While the Riemann Hypothesis (RH) implies that π(x) = Li(x) +
O(x1/2 logx), neither it nor its generalization to other L-functions (GRH) is pow-
erful enough to explain how the distribution of primes modulo m varies with the
residue class, as these fluctuation are at the size of the errors from GRH. Chebyshev
observed that there appeared to be more primes congruent to 3 modulo 4 than to 1
modulo 4. We now have an excellent theory (see [RubSa]) that explains this phe-
nomenon. A key ingredient is the Grand Simplicity Hypothesis, which asserts that
the zeros of these L-functions are linearly independent over the rationals.

Assuming RH, the non-trivial zeros of ζ (s) all have real part equal to 1/2, and
may thus be ordered on the line. It therefore makes sense to talk about spacings
between adjacent zeros ρ j = 1/2+ iγ j, or better yet spacings between adjacent nor-
malized zeros (where we have normalized so that the average spacing is 1). Recent
work has shown powerful connections between these gaps and important arithmetic
quantities. For example, we can obtain excellent bounds on the size of the class
groups of imaginary quadratic fields through knowing the existence of L-functions
with multiple zeros at the central point [Go, GZ], or knowing that a positive per-
centage of gaps between normalized zeros of the Riemann zeta function are at least
a certain fixed fraction of the average spacing [CI].

The central theme in the above examples is that the more information we know
about the zeros of the L-functions, the more we can say about arithmetically impor-
tant questions. We started with just knowledge of the zeros on the line Re(s) = 1,
and then extended to GRH and all non-trivial zeros having real part 1/2, and then
went beyond that to the distribution of the zeros on that critical line. In this chapter
we expand on this last theme, and explore the distribution of zeros of L-functions
on the critical line.

1.2 n-Level Correlations and Random Matrix Theory

While zeros of L-functions is a rich subject with an extensive history, our story on
the number theory side begins in the 1970s with Montgomery’s [Mon] work on the
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pair correlation of the zeros of ζ (s). Given an increasing sequence of numbers {α j}
and B⊂ Rn−1 a compact box, the n-level correlation Rn(B) is defined by

Rn(B) := lim
N→∞

#
{
(α j1 −α j2 , . . . , α jn−1 −α jn) ∈ B, ji ≤ N

}
N

, (4)

where the indices above are distinct. Instead of using a box (which is equivalent
to a sharp cut-off) it’s often technically easier to consider a similar version with a
smooth test function (see [RS]).

While knowing all the n-level correlations allows one to determine all the neigh-
bor spacings (see for example [Meh]), computing these for arbitrary B (or for any ad-
missible test function) is well beyond current technology. There are, however, many
important partial results. The first is the referred to one of Montgomery [Mon], who
showed that for suitable test functions the 2-level density agrees with the 2-level
density of eigenvalues of the Gaussian Unitary Ensemble (GUE). There are many
ways to view this ensemble of matrices. The easiest is that these are Hermitian ma-
trices whose upper triangular entries are independently drawn from Gaussians (as
the diagonal must be real, we draw from a different Gaussian for these entries than
we do for the non-diagonal ones). An alternative definition, which explains the use
of the word unitary, deals with the equality of the probability of choosing a matrix
and its conjugation by a unitary matrix; note this is equivalent to saying the proba-
bility of a matrix is independent of the base used to write it down. From a physical
point of view these matrices represent the Hamiltonian of a system. What matters
are their eigenvalues, which correspond to the energy levels. While the entries of the
matrix change depending on the basis used to write it down, the eigenvalues do not,
which leads us to the unitary invariance condition. These and other matrix families
had been extensively studied by Dyson, Mehta and Wigner among many others; see
[Con, FM, For, Ha, Meh, MT-B] and the multitude of references therein for more
on the history and development of the subject.

This suggested a powerful connection between number theory and random ma-
trix theory, which was further supported by Odlyzko’s numerical investigations
[Od1, Od2] showing agreement between the spacings of zeros of ζ (s) and the eigen-
values of the GUE. Subsequent work by Hejhal [Hej] on the triple correlation of ζ (s)
and Rudnick-Sarnak [RS] on the n-level correlations for all automorphic cuspidal
L-functions, again under suitable restrictions, provided additional support for the
conjectured agreement between the limiting behavior of zeros of L-functions (as we
move up the critical line) and eigenvalues of N×N matrices (as N→ ∞).

These results indicated a remarkable universality in behavior; while there are
many random matrix ensembles, it appeared that only one was needed for number
theory. A little thought, however, shows that this might not be the full story. The
reason is that the n-level correlations are insensitive to the behavior of finitely many
zeros. In other words, we can remove finitely many zeros and not change Rn(B). This
is particularly troublesome, as there are many problems where only a few zeros mat-
ter. For example, the Birch and Swinnerton-Dyer conjecture [BS-D1, BS-D2] states
that the order of vanishing of the L-function associated to the elliptic curve equals
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the rank of its Mordell-Weil group; thus in studies on this problem we only care
about what is happening at the central point, and not at all about what is happening
far away on the critical line.

Later studies by Katz and Sarnak [KaSa1, KaSa2] confirmed that more care is
needed. The n-level correlations of the zeros of L-functions agree not only with
those from the GUE, but also with those coming from the classical compact groups.
The advantage of the latter is that the probability distribution a matrix is chosen is
derived from the Haar measure on the group, which is a canonical choice. This is in
sharp contrast to the definition of the GUE, where we fix a probability distribution
and choose independent entries from it, which begs the question why one distribu-
tion was chosen over another (for the GUE, the answer is that the Gaussian is forced
upon us by our assumption of the probability being invariant under unitary trans-
formations of the basis). They proved that as N→ ∞ the n-level correlations of the
eigenvalues are the same for all the classical compact groups (unitary, symplectic,
and orthogonal, split or not split by sign). Thus one could just as easily say that
the zeros of ζ (s) behave like the eigenvalues of orthogonal matrices instead of the
GUE.

This led Katz and Sarnak to introduce a new statistic that is both able to distin-
guish the different classical compact groups and which depends on the behavior of
eigenvalues near 1. We briefly describe the comparisons between number theory and
random matrix theory. If we assume the Riemann hypothesis then the non-trivial ze-
ros have real part 1/2 and we may write them as ρ j = 1/2+ iγ j for γ j real. On the
random matrix theory side, the classical compact groups are unitary matrices, and
we can therefore write their eigenvalues as eiθk with θk real. From intuition gleaned
from earlier results, as well as function field analogues, Katz and Sarnak were led
to conjecture that in the appropriate limits the behavior of zeros near 1/2 agree with
the behavior of eigenvalues near 1 (more generally, one can also compare values of
L-functions and characteristic polynomials of matrices).

1.3 n-level Densities and the Katz-Sarnak Philosophy

Unfortunately, it is not possible to compare just the zeros of one L-function near
the central point to the eigenvalues of one matrix. As in many problems in ana-
lytic number theory, we need to be able to execute some type of averaging and take
some kind of limit in order to isolate out a main term and make progress. For the
n-level correlations (or, equivalently, for Odlyzko’s work on spacings between adja-
cent zeros), one L-function provides infinitely many zeros, and the average spacing
between critical zeros at height T is on the order of 1/ logT . Thus if we go high up,
we are essentially averaging over the zeros of that L-function, and can isolate out
a universal, main term behavior. If instead we concentrate on the low-lying zeros,
those near the central point, the situation is very different; due to the symmetry of
the zeros about the central point we may restrict to studying the zeros in the upper
half plane (this is why, in the definitions below, we use even test functions). To each
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L-function L(s, f ) we can associate a quantity, called the analytic conductor c f , such
that the first few zeros are of height 1/ logc f . If we rescale so that these zeros are
of mean spacing one, then given any constant C there are essentially a finite number
(depending basically just on C) that are at most C.

In order to make progress we need to collect a large number of L-functions which
should behave similarly and are naturally connected. We call such a collection a fam-
ily of L-functions. The definition of what is a family is still a work in progress (see
[DM2] among others), but most natural collections of L-functions are. Examples
include families of Dirichlet characters (either all of a given conductor, all whose
conductor is in a given range say [N,2N], or just quadratic characters whose con-
ductor is in a range), cuspidal newforms (and very important subsets, one or two
parameter families of elliptic curves), symmetric powers of cusp forms, and so on.
Collections that are not families would include arbitrary subsets, for example, cusp
forms whose third Fourier coefficient is 2 modulo 5, or cusp forms whose first zero
above the central point is at least twice the average. Typically as the conductors (or
range) grows we have more and more L-functions in the family. The Katz-Sarnak
philosophy is that if we take averages of statistics of zeros over the family then in
the limit it will converge and agree with the corresponding statistic for the scaling
limit of a classical compact group as the matrix size tends to infinity.

The main statistic we study in this paper is their n-level density. For convenience
of exposition we assume the Generalized Riemann Hypothesis for L(s, f ) (and thus
all the zeros are of the form 1/2+ iγ j; f with γ j; f real), though the statistic below
makes sense even if GRH fails. Let φ(x) = ∏

n
j=1 φ j(x j) where each φ j is an even

Schwartz functions such that the Fourier transforms

φ̂ j(y) :=
∫

∞

−∞

φ j(x)e−2πixydx (5)

are compactly supported. The n-level density for f with test function φ is

Dn( f ,φ) = ∑
j1 ,..., jn
j` 6= jm

φ1
(
L f γ j1; f

)
· · ·φn

(
L f γ jn; f

)
, (6)

where L f is a scaling parameter which is frequently related to the conductor. The
idea is to average over similar f , and use the explicit formula to relate this sum
over zeros to a sum over the Fourier coefficients of the L-functions. See for example
[ILS], the seminal paper in the subject and the first to explore these questions, and
see [RS] for a nice derivation of the explicit formula for general automorphic forms.

The subject is significantly harder if the conductors vary in the family, as then
we cannot just pass the averaging over the forms through the test function to the
Fourier coefficients of the L-functions. If we only care about the 1-level density,
then we may rescale the zeros by using the average log-conductor instead of the
log-conductor; as this is the primary object of study below we shall rescale all the
L-functions in a family by the same quantity, which we denote R, and we emphasize
this fact by writing Dn( f ,φ ,R). For more on these technical issues, see [Mil1, Mil2],
which studies families of elliptic curves where the variation in conductors must be
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treated. There it is shown that if the conductors vary within a family then this global
renormalization leads to problems, and in the 2-level computations terms emerge
where we cannot just pass the averaging through the test function. In some problems,
however, it is important to compute the n-level densities. One application is to obtain
significantly better bounds on the order of vanishing at the central point (see [HM]).
Another is to distinguish orthogonal candidates if the 1-level can only be computed
for small support; we will elaborate on this below.

Given a family F = ∪NFN of L-functions with conductors tending to infinity,
the n-level density Dn(F ,φ ,R;w) with test function φ , scaling R and a non-negative
weight function w is defined by

Dn(F ,φ ,R;w) := lim
N→∞

∑ f∈FN w( f )Dn( f ,φ ,R;w)

∑ f∈FN w( f )
. (7)

The advantage of this statistic is that for a fixed f , individual zeros of L(s, f ) can
contribute, with most of the contribution coming from the zeros near the central
point due to the rapid decay of the test functions. Further, as we are averaging over
similar forms there is a hope that there is a nice limiting behavior. In our applications
later we will have weights wT (t) = w(t/T ) with T a parameter tending to infinity,
but suppress the subscript T as it is always understood.

Katz and Sarnak [KaSa1, KaSa2] proved that the n-level density is different for
each classical compact group, and found nice determinant expansions for them. Set
K(y) := sinπy

πy and Kε(x,y) := K(x− y)+ εK(x+ y) for ε = 0,±1. They proved that
if GN is either the family of N×N unitary, symplectic or orthogonal families (split
or not split by sign), the n-level density for the eigenvalues converges as N→ ∞ to∫

· · ·
∫

φ(x1, . . . ,xn)Wn,G(x1, . . . ,xn)dx1 · · ·dxn

=
∫
· · ·
∫

φ̂(y1, . . . ,yn)Ŵn,G(y1, . . . ,yn)dy1 · · ·dyn, (8)

where

Wm,SO(even)(x) = det(K1(xi,x j))i, j≤m

Wm,SO(odd)(x) = det(K−1(xi,x j))i, j≤m +
m

∑
k=1

δ (xk)det(K−1(xi,x j))i, j 6=k

Wm,O(x) =
1
2

Wm,SO(even)(x)+
1
2

Wm,SO(odd)(x)

Wm,U(x) = det(K0(xi,x j))i, j≤m

Wm,Sp(x) = det(K−1(xi,x j))i, j≤m. (9)

While these densities are all different, for the 1-level density with test functions
whose Fourier transforms are supported in (−1,1) the three orthogonal flavors can-
not be distinguished from each other, though they can be distinguished from the
unitary and symplectic. Explicitly, the Fourier Transforms for the 1-level densities
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are

Ŵ1,SO(even)(u) = δ0(u)+
1
2

η(u)

Ŵ1,O(u) = δ0(u)+
1
2

Ŵ1,SO(odd)(u) = δ0(u)−
1
2

η(u)+1

Ŵ1,Sp(u) = δ0(u)−
1
2

η(u)

Ŵ1,U (u) = δ0(u), (10)

where η(u) is 1, 1/2, and 0 for |u| less than 1, 1, and greater than 1, and δ0 is the
standard Dirac Delta functional. Note that the first three densities agree for |u| < 1
and split (ie, become distinguishable) for |u| ≥ 1. Thus in order to uniquely specify
a symmetry type among the three orthogonal candidates, one either needs to ob-
tain results for support exceeding (−1,1), or compute the 2-level density, as that is
different for the three orthogonal groups for arbitrarily small support [Mil1, Mil2].

The Katz-Sarnak Density Conjecture states that the behavior of zeros near the
central point in a family of L-functions (as the conductors tend to infinity) agrees
with the behavior of eigenvalues near 1 of a classical compact group (as the matrix
size tends to infinity). For suitable test functions, this has been verified in many fam-
ilies, including Dirichlet characters, elliptic curves, cuspidal newforms, symmetric
powers of GL(2) L-functions, and certain families of GL(4) and GL(6) L-functions;
see for example [DM1, DM2, ER-GR, FiM, FI, Gao, Gü, HM, HR, ILS, KaSa2, LM,
Mil2, MilPe, OS, RR, Ro, Rub, Ya, Yo]. This correspondence between zeros and
eigenvalues allows us, at least conjecturally, to assign a definite symmetry type to
each family of L-functions (see [DM2, ShTe] for more on identifying the symmetry
type of a family).

For this work, the most important families studied to date are holomorphic cusp
forms. Using the Petersson formula (and a delicate analysis of the exponential sums
arising from the Bessel-Kloosterman term), Iwaniec, Luo, and Sarnak [ILS] proved
that the limiting behavior of the zeros near the central point of holomorphic cusp
forms agrees with that of the eigenvalues of orthogonal matrices for suitably re-
stricted test functions. In this chapter we look at the other GL2/Q family of L-
functions, Maass waveforms.

2 Statement of Main Results

We first describe the needed normalizations and notation for our families of Maass
forms, and then conclude by stating our new results and sketching the arguments.
The beginning of the proofs are similar to that in all families studied to date: one uses
the explicit formula to convert sums over zeros to sums over the Fourier coefficients
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of the L-functions. The difficulty is averaging over the family. In order to obtain
support beyond (−1,1), we have to handle some very delicate exponential sums;
these arise from the Bessel-Kloosterman term in the Kuznetsov trace formula. To
facilitate applying it, we spend a lot of time choosing tractable weights. This is
similar to previous work on cuspidal newforms where the harmonic weights were
used to simplify the application of the Petersson trace formula. It is possible to
remove these weights, and this is done in [ILS]. For some applications it is important
to have unweighted families, in order to talk about the percentage of forms that
vanish at the central point to a given order (see [HM]); for our purposes we are
primarily interested in obtaining large enough support to uniquely determine the
symmetry type, and thus choose our weight functions accordingly.

2.1 Normalizations and Notation

We quickly recall the basic properties of Maass forms (see [Iw2, IK, Liu, LiuYe]
for details), and then review the 1-level density from the last section with an empha-
sis on the important aspects for the subsequent computations. We use the standard
conventions. Specifically, by A� B we mean |A| ≤ c|B| for a positive constant c.
Similarly, A� B means A� B and A� B. We set e(x) := exp(2πix), and define the
Fourier transform of f by

f̂ (ξ ) :=
∫
R

f (x)e(−xξ )dx. (11)

In the rest of the paper u always denotes a Hecke-Maass cusp form on Γ0(N)
with N square-free. Thus u is an eigenfunction of the Laplacian with eigenvalue
λu =: ( 1

2 + itu)( 1
2 − itu), and it is either even or odd with respect to the involution

z 7→ −1/z; if u is even we set ε = 0, otherwise we take ε = 1. Selberg’s 3/16ths
theorem implies that we may take tu ≥ 0 or tu ∈ [0, 1

4 ]i. Next we Fourier expand u as
follows:

u(z) = y1/2
∑
n 6=0

an(u)Ks−1/2(2π|n|y)e(ny). (12)

Let

λn(u) :=
an(u)

cosh(πtu)1/2 . (13)

We normalize u so that λ1(u) = 1.
The L-function associated to u is

L(s,u) := ∑
n≥1

λnn−s. (14)
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By results from Rankin-Selberg theory the L-function is absolutely convergent in the
right half-plane ℜ(s)> 1 (one could also use the work of Kim and Sarnak [K, KSa]
to obtain absolutely convergent in the right half-plane ℜ(s)> 71/64, which suffices
for our purposes). These L-functions analytically continue to entire functions of the
complex plane, satisfying the functional equation

Λ(s,u) = (−1)ε
Λ(1− s,u), (15)

with

Λ(s,u) := π
−s

Γ

(
s+ ε + it

2

)
Γ

(
s+ ε− it

2

)
L(s,u). (16)

Factoring
1−λpX +X2 =: (1−αpX)(1−βpX) (17)

at each prime (the αp,βp are the Satake parameters at p not dividing the level N; if
p divides the level then either αp or βp is zero), we get an Euler product

L(s,u) = ∏
p
(1−αp p−s)−1(1−βp p−s)−1, (18)

which again converges for ℜ(s) sufficiently large.
For the remainder of the paper BN denotes an orthogonal basis of Maass cusp

forms on Γ0(N), all normalized so that λ1 = 1; thus BN is not orthonormal under
the Petersson inner product on the space. Note we do not take a basis of newforms
— that is, the delicate sieving out of oldforms as in [ILS] is not done. Using Weyl’s
law, however, one can control the sieving (see [Iw2]).

We use the notation Avg(A;w) to denote the average of A over BN with each
element u ∈BN given weight w(u). That is,

Avg(A;w) :=
∑u∈BN A(u)w(u)

∑u∈BN w(u)
. (19)

Our main statistic for studying the low-lying zeros (i.e., the zeros near the central
point) is the 1-level density; we quickly summarize the needed definitions and facts
from §1.3. Let φ be an even Schwartz function such that the Fourier transform φ̂ of
φ has compact support; that is,

φ̂(y) =
∫

∞

−∞

φ(x)e−2πixydx (20)

and there is an η < ∞ such that φ̂(y) = 0 for y outside (−η ,η).
The 1-level density of the zeros of L(s,u) is

D1(u,φ ,R) = ∑
ρ

φ

(
logR
2π

γ

)
, (21)
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where ρ = 1/2+ iγ are the nontrivial zeros of L(s,u), and logR is a rescaling pa-
rameter related to the average log-conductor in the weighted family, whose choice
is forced upon us by (46). Under GRH all γ are real and the zeros can be ordered;
while GRH gives a nice interpretation to the 1-level density, it is not needed for
our purposes. As φ is a Schwartz function, most of the contribution comes from
the zeros near the central point s = 1/2. The different classical compact groups
(unitary, symplectic, and orthogonal) have distinguishable 1-level densities for arbi-
trarily small support; however, the 1-level densities for the even and odd orthogonal
matrix ensembles are equal for test functions whose Fourier transforms are sup-
ported in (−1,1). There are two solutions to this issue. One possibility is to perform
a more detailed analysis and “extend support”. The other is to study the 2-level
density, which Miller [Mil1, Mil2] showed distinguishes the orthogonal ensembles
for arbitrarily small support. For some of the families studied below we are able
to calculate the support beyond (−1,1), and we may thus determine which of the
orthogonal groups should be the symmetry group; for the other families our support
is too limited and we instead study the 2-level density.

2.2 Main Results

Similar to how the harmonic weights facilitate applications of the Petersson for-
mula to average the Fourier coefficients of cuspidal newforms (see for instance
[ILS, MilMo]), we introduce nice, even weight functions to smooth the sum over
the Maass forms. As we will see below, some type of weighting is necessary in or-
der to restrict to conductors of comparable size. While our choice does not include
the characteristic function of [T,2T ], we are able to localize for the most part to con-
ductors near T , and are able to exploit smoothness properties of the weight function
in applications of the Kuznetsov trace formula. Further, in problems such as these
the primary goal is to have as large support as possible for the Fourier transform
of the test function that hits the zeros. For more on these issues see [AM], where
Alpoge and Miller impose even more restrictions on the weight functions, which
allow them to increase the support.

We consider the averaged one-level density weighted by two different weight
functions of “nice” analytic properties. Let Ĥ ∈ C∞

((
− 1

4 ,
1
4

))
be an even smooth

bump function of compact support on the real line (thus it should be close to 1 in
some region and decay very quickly to zero outside there), and let H be its Fourier
transform. We may of course (by applying this construction to a square root — recall
that the support of a convolution is easily controlled) take H ≥ 0. We may also take
H to have an order K zero at 0. Let

HT (r) := H
( r

T

)
. (22)

This is essentially supported in a band of length � T about ±T .
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Next, in the same way, let ĥ ∈C∞
((
− 1

4 ,
1
4

))
be even. We also require h to have

an order at least 8 zero at 0. Note that, by the same process as above, we may take
h(x) ≥ 0 for all x ∈ R and also (by Schwarz reflection) h(ix) ≥ 0 for all x ∈ R. Let
T be a positive odd integer. We let

hT (r) :=
r
T h
( ir

T

)
sinh

(
πr
T

) . (23)

This is the same test function used in [AM], and is essentially supported in a band
of length � T about ±T .

By trivially bounding the Fourier integral we observe that

H(x+ iy), h(x+ iy) � exp
(

π|y|
2

)
. (24)

Hence

HT (ir) � exp
(

π|r|
2T

)
, (25)

and, using sinh(x)� e|x|, we find

hT (r) � exp
(
−π|r|

4T

)
. (26)

These will both be useful in what follows.
In one-level calculations we will take an even Schwartz function φ such that φ̂ is

supported inside [−η ,η ]. We suppress the dependence of constants on h,H,φ and
η (as these are all fixed), but not T or the level N since one or both of these will be
tending to infinity.

We weight each element u ∈BN by either HT (tu)/||u||2 or hT (tu)/||u||2, where

||u||2 = ||u||2
Γ0(N)\h =

1
[SL2(Z) : Γ0(N)]

∫
Γ0(N)\h

u(z)
dxdy

y2 (27)

is the L2-norm of u on the modular curve Y0(N), and, as before, λu =
1
4 + t2

u is the
Laplace eigenvalue of u. Recall that

[SL2(Z) : Γ0(N)] =: ν(N) = ∏
p|N

(p+1). (28)

The averaged weighted one-level density may thus be written (we will see in (46)
that R� T 2N is forced)

D1(BN ,φ ,R;w) := Avg
(
D1(u,φ ,R);w(tu)/||u||2

)
, (29)

where w(tu) is either HT (tu) or hT (tu).
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The main question is to determine the behavior of D1(BN ,φ ,R;w) as either
the level N or the weight parameter T tends to infinity; specifically, one is gener-
ally interested in the corresponding symmetry group. There are now several works
[DM2, KaSa1, KaSa2, ShTe] which suggest ways to determine the symmetry group.
For our family, they suggest the following conjecture.

Conjecture 2.1 Let hT be as in (23), φ an even Schwartz function with φ̂ of compact
support, and R� T 2N. Then

lim
R→∞

D1 (BN ,φ ,R;w) =
∫
R

φ(t)W1,O(t)dt, (30)

where W1,O := 1+ 1
2 δ0. In other words, the symmetry group associated to the family

of Maass cusp forms of level N is orthogonal.

In [AM] the above conjecture is shown for N = 1,w = hT , with the extra restric-
tions that h has 2K ≥ 8 zeros at the origin and supp(φ̂) ⊆ (−2+ 2

2K+1 ,2−
2

2K+1 ).
Our first result here is in the case where the level N tends to infinity (remember that
N must be square-free), T and K are fixed, and w = wT equals either hT or HT .

Theorem 2.2 Fix T and K and let R� T 2N with N square-free. Let H be an even,
non-negative function with K zeros at 0 and Fourier transform Ĥ ∈C∞

((
− 1

4 ,
1
4

))
,

and let h be an even function with 8 zeros at 0 and ĥ∈C∞
((
− 1

4 ,
1
4

))
. Let the weights

w = wT be either HT or hT , where these are the functions given by (22) and (23),
respectively. Let φ be an even Schwartz function with supp(φ̂)⊆ (− 3

2 ,
3
2 ). Then

lim
N→∞

N square−free

D1(BN ,φ ,R;wT ) =
∫
R

φ(t)W1,O(t)dt. (31)

Notice that the support in Theorem 2.2 exceeds (−1,1), and thus we have
uniquely specified which orthogonal group is the symmetry group of the family.

Next we investigate the case where N is fixed and T tends to infinity through odd
values. For ease of exposition we take N = 1.

Theorem 2.3 Let h be an even function with 8 zeros at 0 and ĥ∈C∞
((
− 1

4 ,
1
4

))
, and

define hT as in (23). Let φ be an even Schwartz function with supp(φ̂) ⊆ (−1,1),
and take R� T 2N with N = 1. Then

lim
T→∞

T odd

D1(B1,φ ,R;hT ) =
∫
R

φ(t)W1,O(t)dt. (32)

We also get a similar, though slightly weaker, result for the weight function w =
HT if we allow K = ordz=0 H(z) to vary. For the argument given we invoke the work
of [ILS] twice, since we reduce the Bessel-Kloosterman term of the Kuznetsov trace
formula to sum of Kloosterman terms arising in the Petersson trace formula. Since
[ILS] use GRH (specifically, for Dirichlet L-functions and L-functions associated to
symmetric squares of holomorphic cusp forms), we must, too.
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Theorem 2.4 Assume GRH for Dirichlet L-functions and symmetric squares of
holomorphic cusp forms of level 1. Let H be an even, non-negative function with
K zeros at 0 and Fourier transform Ĥ ∈C∞

((
− 1

4 ,
1
4

))
, and let the weights w = wT

be HT , which is given by (22). Let φ be an even Schwartz function with supp(φ̂) ⊆
(−1+ 1

5+2K ,1−
1

5+2K ). Take R� T 2N. Then

lim
T→∞

D1(B1,φ ,R;HT ) =
∫
R

φ(t)W1,O(t)dt. (33)

Notice the support in Theorems 2.3 and 2.4 is too small to uniquely determine
which orthogonal symmetry is present (this is because the one-level densities of
the orthogonal flavors all agree inside (−1,1)). At the cost of more technical argu-
ments, Alpoge and Miller [AM] are able to extend the support beyond (−1,1) when
weighting by hT , thereby determining the symmetry group to be orthogonal. In this
work we instead compute the 2-level density, which provides a second proof that
the symmetry type of the family of Maass cusp forms on SL2(Z) is orthogonal. The
2-level density is defined in (36). As any support for the 2-level density suffices to
uniquely determine the symmetry group, we do not worry about obtaining optimal
results.

Theorem 2.5 Let wT equal hT or HT , R� T 2, and let

N (−1) :=
1

∑u∈B1
wT (tu)
||uu||2

∑
u∈B1

(−1)ε=−1

wT (tu)
||u||2

(34)

be the weighted percentage of Maass forms in B1 with odd functional equation.
Write

D2(B1,φ1,φ2,R;wT ) := Avg
(
D2(u,φ1,φ2,R);wT (tu)/||u||2

)
, (35)

with

D2(u,φ1,φ2,R) := ∑
i6=± j

φ1

(
logR
2π

γi

)
φ2

(
logR
2π

γ j

)
= D1(u,φ1,R)D1(u,φ2,R)

− 2D1(u,φ1φ2,R)

+ δε,1φ1(0)φ2(0), (36)

the average 2-level density of the weighted family of level 1 Maass cusp forms, and
the 2-level density of u ∈B1, respectively. Let f ∗g denote the convolution of f and
g. Then, for ε � 1 and φ̂1, φ̂2 even Schwartz functions supported in (−ε,ε),
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lim
T→∞

D2(B1,φ1,φ2,R;wT ) =

(
φ1(0)

2
+ φ̂1(0)

)(
φ2(0)

2
+ φ̂2(0)

)
+2

∫
R
|x|φ̂1(x)φ̂2(x)dx

− (1−N (−1))φ1(0)φ2(0)−2(φ̂1 ∗ φ̂2)(0), (37)

agreeing with the 2-level density of the scaling limit of an orthogonal ensemble with
proportions of N (−1) SO(odd) matrices and 1−N (−1) SO(even) matrices.

A similar result holds for BN — all the calculations will be standard given our work
on the one-level densities.

2.3 Outline of Arguments

By a routine application of the explicit formula we immediately reduce the problem
to studying averages of Hecke eigenvalues over the space of Maass cusp forms of
level N. For this we apply the Kuznetsov trace formula, as found in [KL]. We are
quickly reduced to studying a term of shape

ν(N) ∑
c≥1

S(m,1;cN)

cN

∫
R

J2ir

(
4π
√

m
cN

)
rwT (r)

cosh(πr)
dr. (38)

In all cases the idea is to move the contour from R to R− iY with Y → ∞. The
properties of the weights hT or HT ensure that the integral along the moving line
vanishes in the limit, so all that is left in place of the integral is the sum over poles,
of shape (up to negligible error in the case of hT , which also has poles of its own)

∑
k≥0

(−1)kJ2k+1

(
4π
√

m
cN

)
(2k+1)wT

(
2k+1

2
i
)
. (39)

Now the N → ∞ limit is very easy to take, as all the Bessel functions involved
have zeros at 0. So the term does not contribute (the total mass is of order T 2ν(N),
canceling the ν(N) out in front). With some care we arrive at Theorem 2.2.

If instead we take N = 1 and wT = HT , then, by standard bounds on Bessel
functions, J2k+1(

4π
√

m
c ) is very small for k larger than�

√
m

c . For us
√

m will always
be bounded in size by something that is � T η . Thus for k smaller than this range,
the Bessel term is still controlled but not too small. It is the term

wT

(
2k+1

2
i
)
� H

(
2k+1

2T
i
)
�
(

k
T

)K

(40)

that is small. Upon taking
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K � 1
1−η

(41)

it is in fact small enough to bound trivially. For slightly larger support we instead
appeal to the bounds of [ILS] on sums of Kloosterman sums, which are derived
from assuming GRH for Dirichlet L-functions. This gives Theorem 2.4. In fact, the
expression we get is exactly a weighted sum of terms appearing in [ILS] from the
Kloosterman terms of Petersson formulas. It would be interesting to find a concep-
tual explanation for this.

The proof of Theorem 2.3 is a simplified version of the argument given in [AM],
except considerably shortened — instead of delicate analysis of exponential sums,
we just use Euler-Maclaurin summation. As one would expect our support is thus
smaller than that in [AM], but the argument and main ideas are significantly easier
to see.

The proof of Theorem 2.5 follows from the previous results and another applica-
tion of the Kuznetsov formula, this time to the inner product of Tp` with Tq`′ with
p,q primes.

3 Preliminaries for the Proofs

In this section we compute and analyze some expansions and resulting expressions
that are useful in the proofs of our main theorems. We start in §3.1 by using the
explicit formula to relate the sum over zeros to sums over the Hecke eigenvalues of
the associated cusp forms. The weights and normalizations are chosen to facilitate
applying the Kuznetsov trace formula to these sums, which we do. After trivially
handling several of the resulting terms, in §3.2 we analyze the Bessel function inte-
gral that arises. We then use these results in §4 to prove the stated theorems.

3.1 Calculating the averaged one-level density

We first quickly review the computation of the explicit formula; see [ILS, RS] for
details. Let u ∈BN , and for an even Schwartz test function φ set

Φ(s) := φ

((
s− 1

2

)
logR

2πi

)
. (42)

Consider ∫
σ= 3

2

Φ(s)
Λ ′

Λ
(s,u)ds. (43)
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By moving the integration to σ =− 1
2 and applying the functional equation, we find

that

2
∫

σ= 3
2

Λ ′

Λ
(s,u)Φ(s)ds = D1(u,φ) (44)

(use the rapid decay of φ along horizontal lines and Phragmen-Lindelöf to justify
the shift). After expanding the logarithmic derivative out in the usual way, applying
the Kim-Sarnak bound, and noticing that λp2 = λ 2

p − χ0(p) for χ0 the principal
character modulo N, this equality simplifies to

D1(u,φ) =
φ(0)

2
+ φ̂(0)

(
logN + log(1+ t2

u )

logR

)
+O

(
log logR+ log logN

logR

)
+ 2

2

∑
`=1

∑
p

λp` log p

p
`
2 logR

φ̂

(
` log p
logR

)
. (45)

Thus, if wT is essentially supported on � T (as are hT and HT ), the averaged
one-level density is (since ||u|| � 1 under our normalizations, by [Smi])

D1(BN ,φ ,R;wT ) =
φ(0)

2
+ φ̂(0)

(
log(T 2N)

logR

)
+O

(
log logR+ log logN

logR

)
+2

2

∑
`=1

∑
p

log p

p
`
2 logR

φ̂

(
` log p
logR

)
Avg(λp` ;wT ). (46)

Notice the above computation tells us the correct scaling to use is R� T 2N.
The difficulty is in determining the averages over Hecke eigenvalues. For this we

use the Kuznetsov formula for BN . Let wT equal hT or HT .

Theorem 3.1 (Kuznetsov trace formula (see [KL], page 86)) Let m ∈ Z+. Then

∑
u∈BN

λm(u)
||u||2

wT (tu) =
δm,1ν(N)

π2

∫
R

rwT (t) tanh(πr)dr

− 1
π

∑
(ip)p|N∈{0,1}ω(N)

∫
R

σ̃ir(m,(ip))σ̃ir(1,(ip))mirwT (r)
||(ip)||2|ζ (1+2ir)|2

dr

+
2i
π

ν(N)

N ∑
c≥1

S(m,1;Nc)
c

∫
R

J2ir

(
4π
√

m
Nc

)
rwT (r)

cosh(πr)
dr,

(47)

where S is the usual Kloosterman sum, (ip)p|N runs through all 0 ≤ ip ≤ 1 with p
ranging over the prime factors of N,
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σ̃ir(a,(ip)) :=(
∏
p|N

pip

)−1−2ir

∑
d|a

χ0(d mod ∏p|N p1−ip)

d2ir ∑
f∈(Z/∏p|N pipZ)

×
e

(
a f

d ∏p|N pip

)
,(48)

J is the usual Bessel function, and

||(ip)||2 = ∏
p|N

p1−ip

1+ p
=

N
ν(N)∏p|N pip

. (49)

In our applications we always have (m,N) = 1 since we only take m = 1, p, or
p2, which means that the contribution from the principal character in the definition
of σ̃ir may be ignored. Also the inner sum in σ̃ir(a,(ip)) is of the form

∑
ξ∈(Z/nZ)×

e
(

ξ

n

)
= µ(n) � 1. (50)

Hence, bounding trivially and noting that our m have at most three divisors, we find

σ̃ir(a,(ip)) �

(
∏
p|N

pip

)−1

. (51)

Also, by work of de la Vallée Poussin on the prime number theorem, ζ (1+2ir)�
log(2+ |r|)−1. Hence the second term in (47), the Eisenstein contribution, is

� ν(N)

N ∑
(ip)p|N

1
∏p|N pip

∫
R

wT (r) log(2+ |r|)dr

� ν(N)T logT
N ∏

p|N

(
1+

1
p

)

=

(
ν(N)

N

)2

T logT. (52)

In our applications we will always divide these expressions by the corresponding
expression with m = 1, which gives the total mass of the family (“the denominator”
in the sequel). We will see that it is of order � T 2ν(N) (see Corollary 3.4). Hence,
since it will be divided by something of order� T 2ν(N), the Eisenstein contribution
is thus negligible for N or T large.

Note that the diagonal term (that is, the first term of (47), with m = 1) is

ν(N)
∫
R

rwT (r) tanh(πr)dr � T 2
ν(N). (53)

Hence to show the claim about the total mass it suffices to bound the last term of
(47) in the case of m = 1.
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We have therefore reduced the computation of the weighted 1-level density to
understanding the “Bessel-Kloosterman” terms. We isolate this result below.

Lemma 3.2 If m = 1, p or p2 is coprime to N and wT equals hT or HT , then

∑
u∈BN

λm(u)
||u||2

wT (tu) = δm,1 ·
(
� T 2N

)
+O

((
ν(N)

N

)2

T logT

)

+
2i
π

ν(N)

N ∑
c≥1

S(m,1;Nc)
c

∫
R

J2ir

(
4π
√

m
Nc

)
rwT (r)

cosh(πr)
dr,

(54)

where δm,1 ·
(
� T 2N

)
is the product of a term on the order of T 2N with Kronecker’s

delta.

3.2 Handling the Bessel integral

As in [AM], the technical heart of the analysis of the Kuznetsov formula is the fol-
lowing claim, which relies on the analytic properties of hT and HT ; see §5 (Appendix
I) for a proof.

Proposition 3.3 Let T be an odd integer. Let X ≤ T . Let wT equal hT or HT , where
these are the weight functions from Theorems 2.2 through 2.5. Then∫

R
J2ir(X)

rwT (r)
cosh(πr)

dr = c1 ∑
k≥0

(−1)kJ2k+1(X)(2k+1)wT

((
k+

1
2

)
i
)

[
+c2T 2

∑
k≥1

(−1)kJ2kT (X)k2h(k)

]
(55)

= c1 ∑
k≥0

(−1)kJ2k+1(X)(2k+1)wT

((
k+

1
2

)
i
)

[
+O

(
Xe−c3T )] , (56)

where c1, c2, and c3 are constants independent of X and T , and the terms in brackets
are included if and only if wT = hT .

Since Bessel functions of integer order are much better-studied objects than those
of purely imaginary order, this is a useful reduction. The calculation also realizes the
Kloosterman term in the Kuznetsov formula as a sort of average (though the “weight
function” is growing exponentially in the case of HT ) of Kloosterman terms arising
in Petersson formulas over all even weights.
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For what follows we quickly note the following corollary, which determines the
size of the denominator (total mass) mentioned above.

Corollary 3.4 Let wT equal hT or HT (as above). Then

∑
u∈BN

wT (tu)
||u||2

� T 2
ν(N). (57)

Proof. It suffices to show that

ν(N)

N ∑
c≥1

S(1,1;c)
c ∑

k≥0
(−1)kJ2k+1

(
4π

cN

)
(2k+1)wT

((
k+

1
2

)
i
)
� ν(N)T

N
.

(58)

To see this, we bound trivially by using

Jk(x) �
(x/2)k

k!
, (59)

and

sin
(

2k+1
2T

π

)
� T−1 (60)

in the case of wT = hT .

4 Proofs of the Main Theorems

Using the results from the previous section, we can now prove our main theorems.
All arguments begin with the following reductions. We first use (46) to reduce the
determination of the 1-level density to that of sums of the weighted averages of λp
and λp2 . We then use the Kuznetsov trace formula (Theorem 3.1) to analyze these
sums. By Lemma 3.2 we are reduced to bounding the contribution from the Bessel-
Kloosterman term, to which we apply Proposition 3.3 to analyze these exponential
sums. We now turn to the details of each of these cases.

4.1 Proof of Theorem 2.2

It suffices to study
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S :=
2

∑
`=1

∑
p

2log p

p
`
2 logR

φ̂

(
` log p
logR

)
ν(N)

N ∑
c≥1

S(p`,1;c)
c

· ∑
k≥0

(−1)kJ2k+1

(
4π p

`
2

cN

)
(2k+1)wT

(
2k+1

2
i
)
, (61)

and bound S by something growing strictly slower than ν(N). This is because we
get to divide this term by the total mass, which by Corollary 3.4 is of the order
T 2ν(N). As T is fixed, we are dividing by a quantity on the order of ν(N).

Bounding trivially, we find

S � ν(N)

N ∑
c≥1

1
c ∑

k≥0

(2π)2k+1wT
( 2k+1

2 i
)

(2k)!

2

∑
`=1

∑
p`/2≤Rη/2

2log p
logR

(cN)
1
2+ε−2k−1 pk`

� ν(N)

N
3
2−ε

∑
k≥0

(2π)2k

(2k)!
wT

(
2k+1

2
i
)

Rη(k+1)

N2k logR

� ν(N)
Nη− 3

2+ε T 2η

logN + logT
eOT (T 2η Nη−2). (62)

As T is fixed, the above is negligible for η < 3/2, which completes the proof. �

4.2 Proof of Theorem 2.3

It suffices to study

S :=
2

∑
`=1

∑
p

log p

p
`
2 logT

φ̂

(
` log p
2logT

)
∑
c≥1

S(p`,1;c)
c

· ∑
k≥0

(−1)kJ2k+1

(
4π p

`
2

c

)
(2k+1)hT

(
2k+1

2
i
)

(63)

and bound S by something growing strictly slower than T 2. This is because N is
fixed, so by Corollary 3.4 the denominator that occurs in the weighted averages is
on the order of T 2.

In [AM] (see their (3.8) to (3.18) — for the convenience of the reader, this argu-
ment is reproduced in §6 (Appendix II), it is proved that
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∑
k≥0

(−1)kJ2k+1

(
4π p

`
2

c

)
(2k+1)hT

(
2k+1

2
i
)

= c8T ∑
|α|< T

2

e
(

Y sin
(

πα

T

))
˜̃h
(

πY
T

cos
(

πα

T

))
+O(Y )

=: c8T Sh(Y )+O(Y ), (64)

where ˜̃h(x) := x2h(x) and Y := 2p`/2/c. We apply the Euler-Maclaurin summation
formula to the first term, yielding

Sh(Y ) =
∫ T

2

− T
2

e
(

Y sin
(

πα

T

))
˜̃h
(

πY
T

cos
(

πα

T

))
dα

+
M

∑
k=2

Bk

k!

(
e
(

Y sin
(

πα

T

))
˜̃h
(

πY
T

cos
(

πα

T

)))(k)
∣∣∣∣∣

T
2

− T
2

+O

(∫ T
2

− T
2

∣∣∣∣∣
(

e
(

Y sin
(

πα

T

))
˜̃h
(

πY
T

cos
(

πα

T

)))(M)
∣∣∣∣∣dα

)
.

(65)

In differentiating the expression

e
(

Y sin
(

πα

T

))
˜̃h
(

πY
T

cos
(

πα

T

))
(66)

k times, the worst case is when we differentiate the exponential every single time
and pick up a factor of

(Y
T

)k; otherwise we gain at least one factor of T (remember
that Y should be thought of as order T η ). Hence we may bound the error term by

∫ T
2

− T
2

∣∣∣∣∣
(

e
(

Y sin
(

πα

T

))
˜̃h
(

πY
T

cos
(

πα

T

)))(M)
∣∣∣∣∣dα �

(
Y
T

)M

T. (67)

Taking M ≥ 1+ 1
1−η

, the error term is thus O(Y/T ).
Next, by the same analysis, in the second term of (65) we either differentiate the

exponential every single time, or we gain a factor of T from differentiating h̃ or one
of the cos(πα/T )’s produced from differentiating the exponential. Thus, since we
differentiate at least twice, all but one term in the k-fold derivative is bounded by
Y/T 2. The last remaining term, obtained by differentiating the exponential k times,
vanishes because ˜̃h has a zero at 0.

Hence it remains to bound the first term of (65). This we do by integrating by
parts, via ∫

eφ(x) f (x)dx = − 1
2πi

∫
eφ(x)

(
f (x)

φ ′(x)

)′
dx. (68)
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We get

∫ T
2

− T
2

e
(

Y sin
(

πα

T

))
˜̃h
(

πY
T

cos
(

πα

T

))
dα

= c10
Y
T 2

∫ T
2

− T
2

e
(

Y sin
(

πα

T

))
h̃′
(

πY
T

cos
(

πα

T

))
sin
(

πα

t

)
dα

� Y
T
. (69)

Hence we obtain the bound

Sh(Y ) �
Y
T
. (70)

Thus

∑
k≥0

(−1)kJ2k+1

(
4π p`/2

c

)
(2k+1)hT

(
2k+1

2
i
)
� p`/2

c
. (71)

That is, this tells us that

2

∑
`=1

∑
p

log p
p`/2 logT

φ̂

(
` log p
2logT

)
∑
c≥1

S(p`,1;c)
c

·

[
∑
k≥0

(−1)kJ2k+1

(
4π p`/2

c

)
(2k+1)hT

(
2k+1

2
i
)]

�
2

∑
`=1

∑
p

log p
p`/2 logT

∣∣∣∣φ̂ ( ` log p
2logT

)∣∣∣∣∑
c≥1

c−
1
2+ε

[
p`/2

c

]

�
2

∑
`=1

∑
p`/2≤T η

log p
logT

� T 2η

logT
. (72)

For η < 1 this is negligible upon division by the total mass (which is of order T 2),
completing the proof. �

4.3 Proof of Theorem 2.4

Before proceeding it bears repeating that the same limiting support as K gets large
(namely, (−1,1)) can be achieved by just trivially bounding as above (that is, with-
out exploiting cancellation in sums of Kloosterman sums), but we present here an
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argument connecting the Kuznetsov formula to the Petersson formula as studied in
[ILS] instead.

It suffices to study

S :=
2

∑
`=1

∑
p

log p
p`/2 logT

φ̂

(
` log p
2logT

)
∑
c≥1

S(p`,1;c)
c

· ∑
k≥0

(−1)kJ2k+1

(
4π p

`
2

c

)
(2k+1)HT

(
2k+1

2
i
)

(73)

and bound S by something growing strictly slower than T 2. Let

Q∗k(m;c) := 2πik ∑
p

S(p,1;c)Jk−1

(
4πm
√

p
c

)
φ̂

(
log p
logR

)
2log p
√

p logR
, (74)

exactly as in [ILS]. Then this simplifies to (dropping constants)

∑
c≥1

c−1
∑
k≥0

(2k+1)H
(

2k+1
2T

i
)

Q∗2k+2(1;c) (75)

if we ignore the `= 2 term, which is insignificant by e.g. GRH for symmetric square
L-functions on GL3/Q (as in [ILS]).

In Sections 6 and 7 of [ILS] they prove

Theorem 4.1 Assume GRH for all Dirichlet L-functions. Then

Q∗k(m;c) � γ̃k(z)mT η kε(log(2c))−2 (76)

where

γ̃k(z) :=

{
2−k k ≥ 3z
k−1/2 otherwise

(77)

and

z :=
4πT η

c
. (78)

Hence the sum over c now converges with no problem, and we may ignore it.
What remains is

T η
∑
k≥0

(2k+1)H
(

2k+1
2T

i
)

γ̃k(z)kε

= T η

(
∑

0≤k � T η

kε+ 1
2 H
(

2k+1
2T

i
)
+ ∑

T η � k

k1+ε H
( 2k+1

2T i
)

2k

)
. (79)
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The second term in parentheses poses no problem. For the first term, using
H(x)� xK , we see that the above is bounded by

T η
∑

0≤k � T η

kε+ 1
2+KT−K � T

5
2 η−(1−η)K . (80)

Thus we need

η <
2+K
5
2 +K

= 1− 1
5+2K

. (81)

Again, by taking K even larger we could have just trivially bounded throughout and
not invoked [ILS] or GRH, but the connection noted above may be of independent
interest.

4.4 Proof of Theorem 2.5

By definition

D2(u,φ1,φ2,R) = D1(u,φ1,R)D1(u,φ2,R)

− 2D1(u,φ1φ2,R)+δε,1φ1(0)φ2(0).
(82)

Averaging, we see that for φ̂1 and φ̂2 of sufficiently small support (actually
(
− 1

2 ,
1
2

)
would work fine), given our results above on one-level densities, up to negligible
error

D2(B1,φ1,φ2,R;wT ) = Avg
(

D1(u,φ1,R)D1(u,φ2,R);
wT (tu)
||u||2

)
− (1−N (−1))φ1(0)φ2(0)−2φ̂1 ∗ φ̂2(0)+o(1).(83)

Now

D1(u,φ1,R)D1(u,φ2,R) =(
φ̂1(0)

log(1+ t2
u )

logR
+

φ1(0)
2
−

2

∑
`=1

∑
p

2log p

p
`
2 logR

λp` φ̂1

(
` log p
logR

))

·

(
φ̂2(0)

log(1+ t2
u )

logR
+

φ2(0)
2
−

2

∑
`=1

∑
p

2log p

p
`
2 logR

λp` φ̂2

(
` log p
logR

))
. (84)

Since wT is supported essentially around tu � T , the log(1+ t2
u ) terms are all, up

to negligible error, approximately logR (again we invoke the bound of [Smi] on the
L2-norms occurring in the denominator). Also by an application of the Kuznetsov
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formula, now with the inner product of two Hecke operators (namely Tp` and Tq`′

for p,q primes and 0≤ `,`′ ≤ 2 — this uses the results on the Bessel-Kloosterman
term established above), we see that the resulting average is, up to negligible error,

Avg
(

D1(u,φ1,R)D1(u,φ2,R);
wT (tu)
||u||2

)
=(

φ̂1(0)+
φ1(0)

2

)(
φ̂2(0)+

φ2(0)
2

)
+

2

∑
`=1

∑
p

4log2 p
p` log2 R

φ̂1

(
` log p
logR

)
φ̂2

(
` log p
logR

)
.

(85)

That is, only the diagonal terms p` = q`
′

matter. Now partial summation (and the
prime number theorem, as usual) finishes the calculation.

5 Appendix I: Contour integration

We prove Proposition 3.3 below. We restate it for the reader’s convenience.

Proposition 5.1 Let T be an odd integer and X ≤ T . Let wT equal hT or HT , where
these are the weight functions from Theorems 2.2 to 2.5. Then∫

R
J2ir(X)

rwT (r)
cosh(πr)

dr = c1 ∑
k≥0

(−1)kJ2k+1(X)(2k+1)wT

((
k+

1
2

)
i
)

[
+ c2T 2

∑
k≥1

(−1)kJ2kT (X)k2h(k)

]
(86)

= c1 ∑
k≥0

(−1)kJ2k+1(X)(2k+1)wT

((
k+

1
2

)
i
)

[
+O

(
Xe−c3T )] , (87)

where c1, c2, and c3 are constants independent of X and T , and the terms in brackets
are included if and only if wT = hT .

Proof. In the proof below bracketed terms are present if and only if wT = hT .
Recall that

Jα(2x) = ∑
m≥0

(−1)mx2m+α

m!Γ (m+α +1)
. (88)

By Stirling’s formula, Γ (m+α + 1)cosh(πr)� |m+ 2ir + 1|m+1. Hence by the
Lebesgue Dominated Convergence Theorem (remember that wT (z) is of rapid decay
as |ℜz| → ∞) we may switch sum and integral to get
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R

J2ir(X)
rwT (r)

cosh(πr)
dr

= ∑
m≥0

(−1)mx2m

m!

∫
R

x2irrwT (r)
Γ (m+1+2ir)cosh(πr)

dr, (89)

where X =: 2x.
Now we move the line of integration down to R− iR, R 6∈ Z+ 1

2 (or TZ if wT =
hT ). To do this, we note the estimate (for A� 1)∫
±A→±A−iR

x2irrwT (r)
Γ (m+1+2ir)cosh(πr)

dr�
∫
±A→±A−iR

x2R|r||m+2ir|−m|wT (r)|dr

�T,R A−2, (90)

where again we have used the rapid decay of wT along horizontal lines, and B→
B− iR denotes the vertical line from B∈C to B− iR∈C. (Rapid decay also ensures
the integral along R− iR converges absolutely.)

Note that the integrand

x2irrwT (r)
Γ (m+1+2ir)cosh(πr)

(91)

has poles precisely at r ∈ −i(N+ 1
2 ) = {−

1
2 i,− 3

2 i, . . .}, and, if wT = hT , poles also
at r ∈ −iTZ+. The residue of the pole at r = − 2k+1

2 i (k ≥ 0) is, up to an overall
constant independent of k,

x2k+1

Γ (m+1+(2k+1))
(−1)k(2k+1)wT

(
2k+1

2
i
)
. (92)

If wT = hT , the residue of the pole at r = −ikT (k ≥ 1) is, up to another overall
constant independent of k,

x2kT

Γ (m+1+(2kT ))
k2T 2 h(k)

cos(πkT )
=

x2kT

Γ (m+1+(2kT ))
(−1)kk2T 2h(k). (93)

Hence the sum of (89) becomes
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∑
m≥0

(−1)mx2m

m!

∫
R

x2irrwT (r)
Γ (m+1+2ir)cosh(πr)

dr

= c1 ∑
m≥0

(−1)mx2m

m!

(
∑

0≤k�R

x2k+1

Γ (m+1+(2k+1))
(−1)k(2k+1)wT

(
2k+1

2
i
)

+
∫
R−iR

x2irrwT (r)
Γ (m+1+2ir)cosh(πr)

dr[
+c2 ∑

m≥0

(−1)mx2m

m! ∑
0≤k�R

x2kT

Γ (m+1+(2kT ))
(−1)kk2T 2h(k)

])
.

(94)

Now we take R→ ∞. Note that∫
R−iR

x2irrwT (r)
Γ (m+1+2ir)cosh(πr)

dr �
∫
R−iR

x2R|r||wT (r)||m+2ir+1|−m−1−2Rdr

�m x2Re
πR
2T R−m−1−2R, (95)

again by Stirling and rapid decay of wT on horizontal lines (that is, wT (x+ iy)�
(1+ x)−4e

πy
2T since both h and H have all their derivatives supported in

(
− 1

4 ,
1
4

)
).

This of course vanishes as R→ ∞.
Hence we see that∫
R

J2ir(X)
rwT (r)

cosh(πr)
dr

= c1 ∑
m≥0

(−1)mx2m

m! ∑
k≥0

x2k+1

Γ (m+1+(2k+1))
(−1)k(2k+1)wT

(
2k+1

2
i
)

[
+c2 ∑

m≥0

(−1)mx2m

m! ∑
k≥0

x2kT

Γ (m+1+(2kT ))
(−1)kk2T 2h(k)

]
. (96)

Switching sums (via the exponential bounds on wT along the imaginary axis) and
applying Jn(X) = ∑m≥0

(−1)mx2m+n

m!(m+n)! gives us the claimed calculation. For the bound
on the bracketed term, use

Jn(ny) � ynen
√

1−y2

(1+
√

1− y2)n
(97)

(see [AS], page 362) and bound trivially.
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6 Appendix II: An exponential sum identity

The following proposition and proof are also used in [AM].

Proposition 6.1 Suppose X ≤ T . Then

SJ(X) := T ∑
k≥0

(−1)kJ2k+1(X)
˜̃h
( 2k+1

2T

)
sin
( 2k+1

2T π
)

= c8T ∑
|α|< T

2

e
(

Y sin
(

πα

T

))
˜̃g
(

πY
T

cos
(

πα

T

))
+O(Y ), (98)

where c8 is some constant, X =: 2πY , and for any f set f̃ (x) := x f (x).

Proof. Observe that k 7→ sin(πk/2) is supported only on the odd integers, and maps
2k+1 to (−1)k. Hence, rewriting gives

SJ(X) = T ∑
k≥0

k 6∈2TZ

Jk(X) ˜̃h
(

k
2T

)
sin
(

πk
2

)
sin
(

πk
2T

) . (99)

As

sin
(

πk
2

)
sin
(

πk
2T

) =
e

πik
2 − e−

πik
2

e
πik
2T − e

πik
2T

=

T−1
2

∑
α=−( T−1

2 )

e
πikα

T (100)

when k is not a multiple of 2T , we find that

SJ(X) = T ∑
|α|< T

2

∑
k≥0

k 6∈2TZ

e
(

kα

2T

)
Jk(X) ˜̃h

(
k

2T

)
. (101)

Observe that, since the sum over α is invariant under α 7→ −α (and it is non-zero
only for k odd!), we may extend the sum over k to the entirety of Z at the cost of a
factor of 2 and of replacing h by

g(x) := sgn(x)h(x). (102)

Note that g is as differentiable as h has zeros at 0, less one. That is to say, ĝ decays
like the reciprocal of a degree ordz=0 h(z)−1 polynomial at ∞. This will be crucial
in what follows.

Next, we add back on the 2TZ terms and obtain
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1
2

SJ(X) = T ∑
|α|< T

2

∑
k∈Z

e
(

kα

2T

)
Jk(X) ˜̃g

(
k

2T

)
−T 2

∑
k∈Z

J2kT (X)k2h(k)

= T ∑
|α|< T

2

∑
k∈Z

e
(

kα

2T

)
Jk(X) ˜̃g

(
k

2T

)
+O

(
Xe−c4T )

=: VJ(X)+O
(
Xe−c4T ) , (103)

where we have bounded the term T 2
∑k∈Z J2kT (X)k2h(k) trivially via Jn(2x) �

xn/n!.
Now we move to apply Poisson summation. Write X =: 2πY . We apply the inte-

gral formula (for k ∈ Z)

Jk(2πx) =
∫ 1

2

− 1
2

e(kt− xsin(2πt))dt (104)

and interchange the sum and integral (via rapid decay of g) to get that

VJ(X) = T ∑
|α|< T

2

∫ 1
2

− 1
2

(
∑
k∈Z

e
(

kα

2T
+ kt

)
˜̃g
(

k
2T

))
e(−Y sin(2πt))dt. (105)

By Poisson summation, (105) is just (interchanging the sum and integral once more)

VJ(X) = T 2
∑
|α|< T

2

∑
k∈Z

∫ 1
2

− 1
2

ĝ′′ (2T (t− k)+α)e(−Y sin(2πt))dt

= c5T ∑
|α|< T

2

∫
∞

−∞

ĝ′′(t)e
(

Y sin
(

πt
T

+
πα

T

))
dt

=: c5Wg(X). (106)

As

sin
(

πt
T

+
πα

T

)
= sin

(
πα

T

)
+

πt
T

cos
(

πα

T

)
− π2t2

T 2 sin
(

πα

T

)
+O

(
t3

T 3

)
,

(107)
we see that
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Wg(X)

= c6T ∑
|α|< T

2

e
(

Y sin
(

πα

T

))∫ ∞

−∞

ĝ′′(t)e
(

πYt
T

cos
(

πα

T

))
dt

− c7
π2Y

T ∑
|α|< T

2

e
(

Y sin
(

πα

T

))
sin
(

πα

T

)∫ ∞

−∞

t2ĝ′′(t)e
(

πYt
T

cos
(

πα

T

))
dt

+ O
(

Y
T
+

Y 2

T 2

)
(108)

= c8T ∑
|α|< T

2

e
(

Y sin
(

πα

T

))
˜̃g
(

πY
T

cos
(

πα

T

))

− c9
Y
T ∑
|α|< T

2

e
(

Y sin
(

πα

T

))
sin
(

πα

T

)
˜̃g′′
(

πY
T

cos
(

πα

T

))

+ O
(

Y
T
+

Y 2

T 2

)
. (109)

Now bound the second term trivially to get the claim.

7 Appendix III: 2-Level Calculations

The purpose of this appendix is to provide additional details to the 2-level compu-
tation of §4.4. Letting

S1(u j,φi) := ∑
p

2λp(u j) log p
p1/2 logR

φ̂i

(
log p
logR

)
S2(u j,φi) := ∑

p

2λp2(u j) log p

p logR
φ̂i

(
2log p
logR

)
(110)

and summing over the family, a standard calculation reduces the determination of
the 2-level density to understanding

1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2

2

∏
i=1

[
φ̂i(0)

log(1+ t2
j )

logR
−Sc(i)

1 (u j,φi)−Sc(i)
2 (u j,φi)+O

(
log logR

logR

)]2

(111)

(the other terms are straightforward consequences of the combinatorial book-keeping
from the inclusion-exclusion argument), where c(1) is the identity map and c(2) de-
notes complex conjugation.

We can move the factor O(log logR/ logR) outside the product at the cost of an
error of the same size outside all the summations. To see this, since O(log logR/ logR)
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is independent of u j these terms are readily bounded by applying the Cauchy-
Schwarz inequality. Letting S represent any of the factors in the product over i
in (111), the product involving this is O(log logR/ logR):

1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2 S ·O
(

log logR
logR

)

�

 1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2 O

((
log logR

logR

)2
)1/2

·

 1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2 |S |
2

1/2

� O
(

log logR
logR

)
·

 1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2 |S |
2

1/2

. (112)

We now analyze the four possibilities for the sum involving |S |2. If S is either

φ̂i(0)
log(1+t2

j )

logR or O
(

log logR
logR

)
, this sum is trivially O(1), and thus the entire expres-

sion is O
(

log logR
logR

)
. We are left with the non-trivial cases of S = S1 or S = S2.

To handle these cases, we rely on results that we will soon prove in lemmas below:
for sufficiently small support |S1|2 = O(1) and |S2|2 = o(1). Note that we use these
lemmas for φ = φ1φ1 instead of the usual φ = φ1φ2, but this does not affect the
proofs, and thus we may move the O

(
log logR

logR

)
factor outside the product.

By symmetry, it suffices to analyze the following terms to determine the 2-level
density:

1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2 φ̂1(0)φ̂2(0)

(
log(1+ t2

j )

logR

)2

1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2 φ̂1(0)
log(1+ t2

j )

logR
Sk(u j,φ2), k ∈ {1,2}

1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2 Sk(u j,φ1)S`(u j,φ2) k, ` ∈ {1,2}. (113)

We now analyze these terms. For small support, a similar analysis as performed
earlier in the paper shows that the first term in (113) satisfies

1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2 φ̂1(0)φ̂2(0)

(
log(1+ t2

j )

logR

)2

= φ̂1(0)φ̂2(0)+O
(

1
loglogR

)
.

(114)
We next handle the terms where we have exactly one S-factor.
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Lemma 7.1 For sufficiently small support, the φ̂1(0)S1(u j,φ2) and φ̂1(0)S2(u j,φ2)
terms are O(log logR/ logR), and thus do not contribute.

Proof. The proof is almost identical to the application of the Kuznetsov trace for-
mula to prove similar results for the 1-level density, the only change being that now
we have the modified weight function hT (t j) log(1+ t2

j ).

We now turn to the more interesting terms in (113). We first handle the second
term.

Lemma 7.2 For sufficiently small support,

1

∑ j
hT (t j)

‖u j‖2
∑

j

hT (t j)

‖u j‖2 S1(u j,φ1)S1(u j,φ2) = 2
∫

∞

−∞

|z|φ̂1(z)φ̂2(z)dz+O
(

log logR
logR

)
.

(115)

Proof.

∑
j

hT (t j)

‖u j‖2 S1(u j,φ1)S1(u j,φ2)

= 4∑
j

hT (t j)

‖u j‖2 ∑
p1,p2

λp1(u j)λp2(u j)

p1/2
1 p1/2

2

log p1 log p2

log2 R
φ̂1

(
log p1

logR

)
φ̂2

(
log p2

logR

)
= 4 ∑

p1,p2

1

p1/2
1 p1/2

2

log p1 log p2

log2 R
φ̂1

(
log p1

logR

)
φ̂2

(
log p2

logR

)
∑

j

hT (t j)

‖u j‖2 λp1(u j)λp2(u j).

(116)

As before, we apply the Kuznetsov formula to the inner sum. Since the formula has
a δp1,p2 , we need to split this sum into the case when p1 = p2 and the case when
p1 6= p2. For small support one easily finds the case p1 6= p2 does not contribute;
however, the case p1 = p2 does contribute. Arguing as in the 1-level calculations,
after applying the Kuznetsov formula we are left with

4∑
p

1
p

log2 p
log2 R

φ̂1

(
log p
logR

)
φ̂2

(
log p
logR

)
= 2

∫
∞

−∞

|z|φ̂1(z)φ̂2(z)dz+O
(

log logR
logR

)
.

(117)

(the equality follows from partial summation and the Prime Number Theorem, see
[Mil1] for a proof).

Lemma 7.3 For small support, the contribution from the Sk(u j,φ1)S`(u j,φ2) terms
are O(log logR/ logR) if (k, `) = (1,2) or (2,2).

Proof. The proof is similar to the previous lemma, following again by applications
of the Kuznetsov trace formula. The support is slightly larger as the power of the
primes in the denominator are larger.
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