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A PROBABILISTIC APPROACH TO GENERALIZED ZECKENDORF
DECOMPOSITIONS∗

IDDO BEN-ARI† AND STEVEN J. MILLER‡

Abstract. Generalized Zeckendorf decompositions are expansions of integers as sums of elements
of solutions to recurrence relations. The simplest cases are base-b expansions, and the standard
Zeckendorf decomposition uses the Fibonacci sequence. The expansions are finite sequences of non-
negative integer coefficients (satisfying certain technical conditions to guarantee uniqueness of the
decomposition) and which can be viewed as analogues of sequences of variable-length words made
from some fixed alphabet. In this paper we present a new approach and construction for uniform
measures on expansions, identifying them as the distribution of a Markov chain conditioned not to
hit a set. This gives a unified approach that allows us to easily recover results on the expansions
from analogous results for Markov chains, and in this paper we focus on laws of large numbers,
central limit theorems for sums of digits, and statements on gaps (zeros) in expansions. We expect
the approach to prove useful in other similar contexts.
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1. Introduction.

1.1. Background. A representation of the set of integers in terms of a sequence
of digits is known in the literature as a numeration system. The most common nu-
meration systems are decimal (radix) expansions, yet many other numeration systems
appear in theory and applications, and the study of numeration systems has been an
active research area in mathematics and theoretical computer science. Many of these
arise from a greedy algorithm (see, for example, [Fra]), though there are systems aris-
ing from recurrence relations where the greedy algorithm fails a positive percentage
of the time (see [CFHMN2, CFHMNPX]). While our focus will be on recurrence
relations and greedy algorithms, other choices are possible and often closely related.
These include starting from a rational language and, using an ordering inherited from
an ordering of the digits, representing n as the nth element of the language (see [LR]),
or (see [Du, DuTh1]) starting with a substitution σ on a finite alphabet and encoding
n by the n letter prefix of a fixed point of σ (represented by concatenating iterates of
σ applied to certain letters, which are the digits), or having variable rules for which
summands are available at which points in a decomposition (see the f -decompositions
of [DDKMMU]).

As many closely related systems are studied in different disciplines, often the
same result is proved again and again, though from different vantages. Stolarsky [Sto]
(see also [CHZ]) wrote, Whatever its mathematical virtues, the literature on sums of
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digital sums reflects a lack of communication between researchers. We agree, and
in fact this lack of communication was the impetus for the present paper. While
many of our results are already known, we adopt a perspective used fruitfully in
related problems and give a unified treatment using Markov methods (see, for example,
[DuTh2, GR, Ma, MW1]) of many results previously done through combinatorial
approaches. In particular, we apply these techniques to some problems that appear
not to have been studied by other researchers using these methods, such as properties
of gaps between summands.

We focus on the case where the numeration system is obtained from the greedy
algorithm. Unfortunately there are several different notational conventions in the
subject, depending on the perspective one adopts. We use a simple one below to
motivate the problem and discuss the small changes later.

Fix a sequence of integers 1 = u0 < u1 < · · · (also known as the basis). Then any
N ∈ N can be represented uniquely as a combination of elements from the sequence
as follows. Let un be the largest element in the sequence which is ≤ N , and set
dn = bN/unc. Continue inductively by letting dk−1 = b(N −

∑
n≥k≥j djuj)/uk−1c

for k = n, . . . , 1. Clearly, the digits d1, . . . , dN are uniquely determined, and it is
easy to see that N =

∑
0≤j≤n djuj . We refer the reader to [Fra] for more details and

results. The sequence of digits dn . . . d1 is the word representing N relative to the basis
(un). A numeration system is called regular if it can be given as an output of a finite
automaton or, equivalently, the set of words is a regular language. It is known that
for the greedy algorithm to be regular, (un) must satisfy a linear recurrence relation
with integer coefficients [Sha]. A partial converse also holds [Hol]. As a result, the
numeration systems associated to linear recurrence are of outmost importance for
theory and applications. The simplest examples are when un = bn for some integer
b ≥ 2, and the resulting numeration system is the base-b decimal system (or b-radix
system). The corresponding language is simply a set of all words from the alphabet
{0, . . . , b−1}. When u1 = 1, u2 = 2 and for n ≥ 1 we take un+1 = un+un−1, we obtain
the Fibonacci numeration system, also commonly and henceforth referred to as the
Zeckendorf decomposition. In this system each natural number is uniquely expressed
as a sum of nonadjacent elements of the Fibonacci sequences (for us the Fibonacci
sequence starts 1, 2, 3, 5, 8, . . . , as otherwise we do not have unique decompositions),
and the corresponding language is all binary sequences starting with 1 and with no
adjacent 1’s, formally expressed as 1{0, 01}∗, where ∗ is the Kleene star. For example,
for N = 11 = 8 + 3 = F5 + F3, so that d5 = 1, d4 = 0, d3 = 1, d2 = d1 = 0, and the
decomposition could be viewed as the binary sequence 10100.

1.2. The generalized Zeckendorf decomposition. We now introduce the
generalized Zeckendorf decomposition and present some related results. This discus-
sion is mostly a motivation and preparation for our probabilistic construction. These
results have been extensively studied in the past for both the Zeckendorf and the
generalized Zeckendorf and also for other numeration systems, and we will discuss
this in section 1.3 below.

Recall that if we define the Fibonacci numbers {Fn} by F1 = 1, F2 = 2, and
Fn+2 = Fn+1 + Fn, then every integer can be written uniquely as a sum of non-
adjacent Fibonacci numbers. This is known as Zeckendorf’s theorem [Ze]. For inte-
gers m ∈ [Fn, Fn+1), using a continued fraction approach Lekkerkerker [Lek] proved
that the average number of summands is n/(ϕ2 + 1), with ϕ = 1+

√
5

2 the golden
mean. The precise probabilistic meaning of “average” is the expectation with respect
to the uniform measure on the decompositions of integers in [Fn, Fn+1), and then
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Zeckendorf’s theorem provides an asymptotic statement on a certain statistic under
the sequence of uniform probability measures on decompositions of length n, as n→
∞. Analogues hold for more general recurrences, such as linear recurrences with non-
negative coefficients [Al, BCCSW, Day, GT, Ha, Hog, Ke, Len, MW1, MW2], general-
izations where additionally the summands are allowed to be signed [DDKMU, MW1],
and f -decompositions (given a function f : N→ N, if an is in the decomposition, then
we do not have an−1, . . . , an−f(n) in the decomposition) [DDKMMU]. The notion of
a legal decomposition below generalizes the nonadjacency condition.

Definition 1.1. Given a length L ∈ N and coefficients c1, . . . , cL ∈ Z+ with
c1cL > 0, the corresponding positive linear recursion is a sequence 1 = G1, G2, . . . ∈ N
satisfying

Gn+1 = c1Gn + c2Gn−1 + · · ·+ cnG1 + 1, n = 1, . . . , L− 1,(1.1)

Gn+1 =

L∑
j=1

cjGn+1−j , n = L,L+ 1, . . . .

Definition 1.2. Given a positive linear recursion with coefficients c1, . . . , cL, an
integer N has a legal decomposition of length n ∈ N if there exist a1 ∈ N, a2, . . . , an ∈
Z+ such that

(1.2) N =

n∑
i=1

aiGn+1−i,

and
• n < L and ai = ci for 1 ≤ i ≤ n; or
• there exists some s ∈ {1, . . . , L} such that

(1.3)
a1 = c1, a2 = c2, . . . , as−1 = cs−1, and as < cs,
as+1, . . . , as+` = 0 for some ` ≥ 0,

{bi}n−s−`i=1 with bi = as+`+i, is either legal or empty.


We remark that the notation above differs slightly from the representation as∑

j djuj ; because of our use of the recurrence relation for our analysis it is more
convenient to index this way. To emphasize this we now use ai for the digits and
Gn for our sequence. It is important that c1cL > 0, as when this fails there are
some sequences where decompositions still exist but are no longer unique and others
where the decompositions are still unique; see [CFHMN1, CFHMN2, CFHMNPX,
DFFHMPP]. The following theorem has been proved many times (see, for example,
[MW1]), and is the starting point for our investigations.

Theorem 1.3 (generalized Zeckendorf decomposition). Consider a positive lin-
ear recurrence with coefficients c1, . . . , cL and c1cL > 0. Then every N ∈ N has a
unique legal decomposition.

The main idea in the theorem is to identify the notion of legal decomposition from
(1.2) with the representation obtained from the greedy algorithm. The characteristic
polynomial for the recurrence relation is given by Lemma 2.4 and is equal to p(x) =
xL −

∑L
j=1 cjx

L−j . Its Perron (aka dominant) eigenvalue is λC > 1 and satisfies
1 =

∑L
j=1 cjλ

−j
C , and it then follows from [Hol, Theorem 8.1] that the generalized

Zeckendorf decomposition is regular. Here is a corresponding finite automaton. The
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states are labeled (i, j), where i = 1, . . . , L and j ∈ {0, . . . , ci} for i < L and j ∈
{0, . . . , ci−1} if i = L. If L > 1, the initial states are (1, 0), . . . , (1, c1). The transitions
are as follows. From (i, j) where j < ci, there is an edge to all states of the form (i, j′),
and if j = ci (only possible when i < L), then there is an arrow to all states of the form
(i+1, j′). As an example of how this works, consider the recurrence relation of length
L = 3 with c1 = c2 = c3 = 1. Then we have (Gn)n∈N = (1, 2, 3, 6, 11, 20, 37, . . . ).
Consider the word 1101. Then the corresponding path for the automaton is (1, 1)→
(2, 1) → (1, 0) → (1, 0), and it is accepted. If, however, we consider the word 1110,
then the first two vertices in the path are (1, 1) → (2, 1). However, since c2 = 1,
L = 3, and c3 = 1, it follows that the only allowed transition from (2, 1) is to (3, 0),
but as the third digit is equal to 1, this sequence is rejected. In fact, the accepted
sequences are exactly those beginning with 1 and having no three consecutive ones,
which we can formally write as the regular language {1, 11}{0, 01, 011}∗, where ∗ is
the Kleene star, and this is exactly the set of legal decompositions.

In what follows we will fix a linear recurrence as in Definition 1.1. From Theorem
1.3 it follows that there’s a one-to-one correspondence between the set of integers in
[Gn, Gn+1) through (1.2), where the integer N is mapped to its legal decomposition
(a1(N), . . . , an(N)). Let Qn denote the uniform distribution on the legal decomposi-
tions of integers in [Gn, Gn+1), and with this identification it is natural to consider N
and a1(N), . . . , an(N) as random variables. In what follows, we denote expectation
with respect to Qn by EQn .

For N ∈ [Gn, Gn+1), (1.2) can be rewritten as

(1.4) N = Gi1(N) +Gi2(N) + · · ·+Gik(N)
,

where 1 ≤ i1 ≤ · · · ≤ ik(N) ≤ n. The random variable k(N) gives the number of
summands, in the generalized Zeckendorf decomposition, or the sum of digits, that is,
k(N) =

∑n
i=1 ai(N). It was the main object of previous works. The first result was

Lekkerkerker’s theorem on the asymptotic expectation of k(N) when Gn = Fn. Here
is its generalization to our setting.

Theorem 1.4 (generalized Lekkerkerker’s theorem). There exist constants CLek >
0 and d such that

(1.5) EQnk(N) = CLekn+ d+ o(1) as n→∞.

Many of the proofs of Theorem 1.4 are plagued by the need to prove results about
roots of the characteristic polynomials associated to the recurrence in order to show
CLek > 0; recently, though, a combinatorial approach was developed in [CFHMNPX]
which bypasses these technicalities.

Once the average number of summands has been determined, it is natural to in-
vestigate other and finer properties of the decompositions. Three natural questions
concern the fluctuations in the number of summands k(N) about the mean, the distri-
bution of gaps ij+1(N)−ij(N), j = 1, . . . , k(N)−1 between adjacent summands, and
the length of the longest gap in a decomposition. For positive linear recurrences as in
Theorem 1.3, the distribution of the number of summands converges to a Gaussian
with computable mean and variance, both of order n. There is an extensive literature
on these results. See [DG, FGNPT, GTNP, LT, Ste1] for an analysis using techniques
from ergodic theory and number theory, and see [KKMW, MW1, MW2] for proofs
via a combinatorial perspective. These results hold true for other numeration sys-
tems and are exactly the kind of results referred to by Stolarsky in the quote given in
section 1.1. As before, all these are statements on the asymptotic behavior of certain
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statistics of generalized Zeckendorf decompositions of integers in [Gn, Gn+1) under
the uniform measure, as n→∞.

Results on the distribution of gaps between adjacent summands have recently been
obtained by Beckwith et al. [BBGILMT, BILMT]. They show that the distribution
of gaps larger than the recurrence length converges to that of a geometric random
variable whose parameter is the largest eigenvalue of the characteristic polynomial of
the recurrence relation. For gaps smaller than the recurrence relation closed forms
exist for special recurrences, though with enough work explicit formulas can be derived
for any given relation. They also determine the distribution of the longest gap and
prove the behavior is similar to that of the length of the longest run of heads in a
sequence of tosses of a possibly biased coin. Their proofs are a mix of combinatorics
and a careful analysis of polynomials associated with the recurrence relations. The
details become involved as some of the associated polynomials depend on the interval
[Gn, Gn+1) under consideration.

1.3. Probabilistic approach. Most results mentioned in section 1.2 above are
not unique to the generalized Zeckendorf, and similar and even finer results were
obtained for other numeration systems. A recurring subject of study is the sum of
digits function, which, as in the case of generalized Zeckendorf, we denote by k(N).
The sum of digits has a natural generalization to additive functions, that is, instead of
summing the digits, the summation is over some fixed function applied to each digit
(for example, the indicator that the digit is not zero, and the resulting sum is the
number of nonzero digits; this is the same as k(N) for the standard Zeckendorf and for
the binary system). We note that in many of the works, these additive functionals are
referred to as sums of digits functions or additive functions. The recent survey paper
[CHZ] presents results on sum of digits for the base-b expansion, under the uniform
measure on [1, . . . , N), and includes a very rich bibliography on the topic, including
other numeration systems. Two other works we would like to highlight are [DuTh2],
which provides expressions for limiting distributions for regular languages, based on
combinatorial and matrix analysis, and [Ma], which studies the additive functional
through analysis of a corresponding time-inhomogeneous Markov chains.

So why another work on this topic? We believe that we have a new approach,
which allows for a more comprehensive treatment and is not limited to additive func-
tionals. Specifically, what we provide here is a tractable analytic expression for the
uniform distribution on generalized Zeckendorf decompositions of fixed length, that
is, for random numbers in the intervals of the form [Gn, Gn+1). The reason why we
focus on these intervals is because this is were the structure has the simplest expres-
sion (though with additional work the results can be extended to [1, N), as shown in
Appendix C of [BILMT] and section 4.2). The reason why we chose the generalized
Zeckendorf is because of the large body of work on the generalized Zeckendorf in the
setting of fixed-length decompositions, mentioned above, which was the motivation
for the present work, a natural setting to our construction and a reference point to
examine our new approach to the model.

The main idea concerns the problem of constructing uniform measures on words of
fixed length n from some alphabet under certain prescribed constraints. The alphabet
is the set of digits {0, . . . ,max ci}, the word is a sequence of length n from the alpha-
bet, and the constraint is that the word yields a legal decomposition. The uniform
measure we are interested in is then the uniform measure on the set of legal decom-
positions of length n. In the base-b case, the alphabet is {0, . . . , b−1} and there is no
constraint; in the Zeckendorf case, the alphabet is {0, 1} and the constraint is to have
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no consecutive 1’s. In the generalized Zeckendorf, we will consider a similar yet more
complex constraint. We construct the uniform measure on legal decompositions from
the uniform measure on the sequence of digits, that is, when the digits are indepen-
dent and identically distributed (IID), by conditioning. The observation is that if the
constraints are in some sense shift-homogeneous and localized—which is exactly the
case for the generalized Zeckendorf decomposition—then they can be realized through
a stopping rule for the IID sequence, which eventually is reduced to a hitting time of a
time-homogeneous Markov chain, and our uniform measure under constraints is then
viewed as a Markov chain conditioned not to hit some set. Through some elementary
transformations this conditioned measure coincides with the distribution of a time-
homogeneous Markov chain known in the literature as Doob’s h-process, pinned to a
point after n steps. In other words, the analysis of the uniform measure boils down
to the analysis of a certain related time-homogeneous Markov chain. We note that
all the quantities above depend on the length of the sequence only through the time
the Markov chain is pinned, so that regardless of the length of the decomposition,
we only need to consider the evolution of a single Markov chain. This identification
gives a very simple expression and characterization of the uniform measure on legal
decompositions, which allows us to compute many quantities with little effort, as we
show in later sections. Furthermore, this approach gives access to the vast literature
on Markov chains, specifically but not limited to asymptotic results, as we have a
simple formula for the uniform measure in terms of the Markov chain.

We illustrate our method by studying the classical problems of additive functionals
including mean, law of large numbers, and central limit theorem, as well as obtain
new results on the distribution of gaps between nonzero digits in decompositions.

1.4. Organization. The paper is organized as follows. In section 2 we describe
the Markovian model and how to obtain large-time asymptotics for our model from
that of the underlying Markov chain. In section 3 we present the results on additive
functionals in a setting which includes our particular model, first by introducing the
theoretical results in section 3.1 and then applying them to the generalized decom-
positions in section 3.2. These results include the classical results in this area: sharp
estimates on expectation, a law of large numbers, and a central limit theorem. In
section 4 we then apply the results on additive functionals (or the sum of digits) to
the generalized Zeckendorf decompositions. In section 4 we treat the gap distribution
as a consequence of the regenerative structure of the underlying Markov chain, and
the analogy with Bernoulli trials. Finally, in the appendix we explain how to extend
our results for decompositions of fixed length or numbers in the interval [Gn, Gn+1)
to numbers in intervals of the form [1, N).

2. Probabilistic approach. Throughout the discussion we assume that L ∈ N
and the coefficients c1, . . . , cL ∈ Z+ satisfy c1cL > 0 as in Definition 1.1.

The main idea is to show that for a given n ∈ Z+, the uniform distribution on
generalized Zeckendorf decompositions consisting of n+1 digits (that is, the (n+ 1)th
digit is nonvanishing and all higher digits are not present) coincides with the distri-
bution of a certain conditioned Markov chain. This provides a unified framework for
the model, which, in particular, gives rather easy access to many asymptotic results.
We first define the Markov chain. Let (X,Y ) =

(
(Xn, Yn) : n ∈ Z+

)
be the two-

dimensional process with Xn ∈ {0, . . . ,maxi ci} and Yn ∈ {1, . . . , L}. The idea is
that X0, X1, . . . will be used to represent the coefficients ai in (1.2), while Y0, Y1, . . .
will be used to keep track of whether the Xn’s satisfy the condition (1.3). This will
be explained below, after we finish describing our construction. Let P denote the
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distribution under which this is an IID process, (X0, Y0) being uniformly distributed
over {0, . . . ,maxi ci} × {1, . . . , L}.

Definition 2.1. Suppose L ∈ N and c1, . . . , cL ∈ Z+, c1cL > 0 are the coeffi-
cients of a linear recursion. We say that the realization

(
(X0, Y0), (X1, Y1), . . .

)
of the

process (X,Y ) is legal with respect to the recursion if
1. X0 > 0 and Y0 = 1,
2. there exists a random variable J ∈ Z+ such that XJ > 0, Xn = 0, and Yn = 1

for n > J ,
3. for all n ∈ N, either

(a) Xn < cYn and Yn+1 = 1 or
(b) Xn = cYn and Yn = Yn+1 + 1.

Note that condition 3(b) and the assumption that Yn ∈ {1, . . . , L} for all n
implicitly mean that in a legal realization Xn = cYn only if Yn < L.

The main observation is the following. Given a legal realization and letting (com-
pare to (1.2))

(2.1) N =

n∑
j=0

XjGn−j+1,

then (X0, . . . , Xn) is the legal decomposition of N ∈ [Gn+1, Gn+2), according to
Definition 1.2.

Let

τ = inf{n ∈ Z+ : ((X0, Y0), (X1, Y1), . . . , (Xn, Yn))(2.2)
does not extend to a legal realization}.

With a slight abuse of notation, let Qn be the probability measure on the σ-
algebra generated by (X0, Y0), . . . , (Xn, Yn) defined through

(2.3) Qn(B) = P (B|τ > n).

Since P is uniform, Qn is uniform over all finite realizations (X0, Y0), . . . , (Xn, Yn)
that extend to legal realizations. Any such finite realization corresponds to a unique
Zeckendorf decomposition of length n + 1 given in (2.1). Conversely, every integer
with Zeckendorf decomposition of length n + 1 corresponds to a unique finite real-
ization (X0, Y0), . . . , (Xn, Yn) extending to a legal realization. Therefore Qn could be
identified with the uniform distribution on generalized Zeckendorf decompositions of
length n+ 1.

We now define an auxiliary process that allows us to introduce ideas on condi-
tioned Markov chains. The reason for doing that is the following: τ is not a hitting or
even stopping time for (X,Y ), as in order to determine whether τ = n, it is evident
from Definition 2.1, 3(b), that on certain circumstances the value of Yn+1 is needed.
Therefore, the probabilistic analysis of Markov chains through stopping times, which
is key to our approach, cannot be applied. To fix this, let Zn = (Xn, Yn, Yn+1), and
let Z = (Zn : n ∈ Z+). Below we will write Zn(1) for Xn, Zn(2) for Yn and Zn(3) for
Yn+1. It is easy to see that τ is a hitting time for Z. Specifically, letting

L = {(x, j, j′) : (x < cj and j′ = 1) or (j < L and x = cj and j′ = j + 1)};(2.4)
L0 = L ∩ {(x, 1, j′) : x > 0},
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then

(2.5) τ =

{
0 if Z0 6∈ L0,
inf{n : Zn 6∈ L} otherwise.

Under P , Z is a Markov chain. We abuse notation and denote its transition
function by P as well. Since the measure P is uniform, it immediately follows that
the restriction PL of the transition function P to L×L is an irreducible and aperiodic
substochastic matrix. From the Perron–Frobenius theorem we know that PL possesses
a Perron root λc ∈ (0, 1) and corresponding left and right eigenfunctions, νc and ϕc,
respectively, whose entries are strictly positive. We normalize them so that ϕc and
νcϕc are probability measures. Let Q be a stochastic transition function on L × L
defined as follows:

(2.6) Q(z, z′) =
1

λcϕc(z)
PL(z, z

′)ϕc(z
′).

Observe that Q inherits irreducibility and is aperiodic from PL. As a result, Q
is ergodic, and we denote its unique stationary distribution by πQ. Recall that from
the definition of a stationary distribution, πQQ = πQ, if πQ is considered as a row
vector, and it immediately follows that

(2.7) πQ(z) = νc(z)ϕc(z).

We also define the marginal of the first coordinate πQ1 by letting

(2.8) πQ1 (x) =
∑
b,b′

πQ(x, b, b′).

Next we fix some notation. We write Pµ for the distribution of the Markov chain Z
under P with initial distribution µ and EPµ for the corresponding expectation. When
µ is a point mass δz, we denote this with z as a subscript instead of the notationally
correct but more cumbersome δz. We also define the analogous expressions with Q
instead of P .

The following result identifies the uniform distribution Qn with the distribution
of the Markov chain Z under Q.

Theorem 2.2. Let f = f(Z0, . . . , Zn) be a complex-valued random variable. Then

(2.9) EQn(f) =
EQϕ̃c

(
f

ϕc(Zn)

)
EQϕ̃c

(
1

ϕc(Zn)

) ,
where ϕ̃c is the probability measure given by ϕc conditioned on L0 in (2).

The theorem has a nice and simple interpretation in terms of the Markov chain
corresponding to Q pinned at time n. Specifically, if D is a random variable on the
same probability space as Z, independent of Z and satisfying Q(D = z) = c

ϕc(z)
,

where c is a normalizing constant to make the right-hand side a probability mass
function, then we can restate the theorem as

(2.10) EQn(f) =
EQϕ̃c(f1{Zn=D})

Qϕ̃c(Zn = D)
.
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In other words, Qn is simply the distribution of Q starting from ϕ̃c, pinned at
time n to the randomly selected point D. Note that the dependence on n is only
through the time of the pinning, and this means that in order to study the sequence
of probability measures (Qn), one only needs to study Z.

Proof of Theorem 2.2. Observe that if z0 ∈ L0 and z1, . . . , zn ∈ L, then

Pz0

 n∏
j=0

{Zj = zj}, τ > n

 =

n−1∏
j=0

P (zj , zj+1)(2.11)

= λnc

n−1∏
j=0

ϕc(zj)Q(zj , zj+1)
1

ϕc(zj+1)

= λncϕc(z0)Qz0

 n∏
j=0

{Zj = zj}

 1

ϕc(zn)
,

and otherwise Pz0(
∏n
j=0{Zj = zj}, τ > n) = 0. In particular, if f = f(Z0, . . . , Zn) is

a complex valued random variable, then

EP (f, τ > n)=
∑
z0∈L0

EP (f, τ > n,Z0 = z0)=
∑
z0∈L0

EP (1{Z0=z0}f(z0, . . . , Zn), τ > n)

(2.12)

=
∑
z0∈L0

P (Z0 = z0)E
P
z0(f(Z0, . . . , Zn), τ > n)

= λnc
∑
z0∈L0

P (Z0 = z0)ϕc(z0)E
Q
z0

(
f

ϕc(Zn)

)
.

Since P is uniform, it follows that P (Z0 = z0) is constant on L0, and the result
follows.

Next we consider limits. The following provides sufficient conditions under which
Qn expectations and expectations with respect to Q are asymptotically equivalent.

Proposition 2.3. Suppose that for n ∈ Z+, fn(Z0, . . . , Zn) is a complex-valued
random variable, and (jn : n ∈ Z+) is a subsequence of Z+ such that

1. min(jn, n− jn)→∞,
2. EQϕ̃c |fn − fjn | → 0.

Then

(2.13) |EQnfn − EQϕ̃cfn| = o(1)max(|EQϕ̃c(fn)|, 1).

Proof. Because of condition 2, we have

(2.14) EQn (fn) =
EQϕ̃c

(
fjn

ϕc(Zn)

)
EQϕ̃c

(
1

ϕc(Zn)

) + o(1).

Then, by the Markov property,

(2.15) EQϕ̃c

(
fjn

ϕc(Zn)

)
= EQϕ̃c

(
fjnEZjn

(
1

ϕc(Zn−jn)

))
.
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The ergodicity of Z under Q and the fact that n − jn → ∞ guarantee that
EQZjn (

1
ϕc(Zn−jn )

) = EπQ
1
ϕc

+ o(1) = ‖νc‖1 + o(1). Thus

EQn(fn) =
(‖νc‖1 + o(1))EQϕ̃c(fjn)

‖νc‖1 + o(1)
+ o(1)(2.16)

= (1 + o(1))EQϕ̃c(fjn) + o(1) = (1 + o(1))EQϕ̃c(fn) + o(1).

For applications, it would be useful to know more about Q. It turns out that the
underlying structure is determined by the matrix C, which we now describe. Let C
be the L × L matrix given by C = (Ci,j), Ci,1 = ci, and Ci,i+1 = 1 and all other
entries equal to 0:

(2.17) C =


c1 1 0 · · ·
c2 0 1 0 · · ·
... 0 · · ·

cL−1 0 . . . 1
cL 0 . . . 0

 .

Let λC denote the Perron eigenvalue of C, ϕC a corresponding positive right eigen-
vector, and νC a corresponding left eigenvector. A straightforward computation gives
the following.

Lemma 2.4. Let C be as in (2.17). Then
1. the characteristic polynomial of C is λL −

∑L
j=1 cjλ

L−j;

2. up to multiplicative constants: νC(b) = λ−bC and ϕC(b′) = λb
′

C−
∑b′−1
j=1 cjλ

b′−j
C .

With this lemma we obtain a description of Q.

Proposition 2.5. Let C be as in (2.17), and let λc, νc, ϕc, respectively, be the
Perron eigenvalue, and corresponding left and right eigenvectors for PL, the restriction
of the transition function P to L, normalized so that ϕc and νcϕc are probability
distributions:

1. λc = λC
(max ci+1)L .

2. There exist positive constants K1,K2 such that ϕc(a, b, b′) = K1ϕC(b
′) and

νc(a, b, b
′) = K2νC(b). In particular, πQ(a, b, b′) = K1K2νC(b)ϕC(b

′), and
K1K2 = 1

λC
∑L
b=1 νC(b)ϕC(b)

.

3. Q((a, b, b′), (a′, b′, b′′)) = ϕC(b′′)
λCϕC(b′) for allowed transitions and is 0 otherwise.

Furthermore, allowed transitions satisfy either of the following:
(a) b′′ = 1 and then the probability of the transition is ϕC(1)

λCϕC(b′) ;

(b) b′′ = b′ + 1 and then the probability of the transition is 1− ϕC(1)cb′
λCϕC(b′) .

Example 2.6. For the standard Zeckendorf decomposition, we have

1. C =
( 1 1

1 0

)
. In particular,

(a) the characteristic polynomial is λ2 − λ− 1, and λC = φ, where φ is the
golden ratio φ = 1+

√
5

2 ;
(b) νC(b) = φ−b, and ϕC(b′) = φ2−b

′
.

2. L = {(0, 1, 1), (0, 2, 1), (1, 1, 2)}. Identifying these states as 1, 2, and 3 in the
order written, then
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(a)

Q =

 1
φ 0 1− 1

φ
1
φ 0 1− 1

φ

0 1 0

 ,

(b) πQ(0, 1, 1) = φ
2+φ , π

Q(0, 2, 1) = 1
2+φπ

Q(1, 1, 2) = 1
2+φ , and πQ1 (0) =

1+φ
2+φ , π

Q
1 (1) = 1

2+φ ,
(c) ϕc = 1

2φ+1 (φ, φ, 1)
t, and

(d) νc = 1
φ+2 (2φ+ 1, φ+ 1, 2φ+ 1)

t.

Proof of Proposition 2.5.
1. The first part is a straightforward calculation.
2. Observe that for the row of P corresponding to transition from (a, b, b′), we

have exactly |S1| × |S2| = (maxi ci + 1)L allowed sites to transition to, and
due to the choice of uniform distribution, all are of equal probability. As P
is stochastic, its nonzero entries are equal to γ = 1

(max ci+1)L . We first study
the restriction PL of P to L × L. Recall that the elements of L are of the
form (x, k, 1), where x < ck, or (ck, k, k+1), where k = 1, . . . , L−1. For each
(a, b, b′) ∈ L, PL has a corresponding row, listing all transitions from (a, b, b′).
We will count the number of such nonzero entries according to the value of
b′. If b′ ∈ {1, . . . , L − 1}, then there are 1 + cb′ transitions: one to the site
(cb′ , b

′, b′ + 1) and cb′ to (x, b′, 1), where x ∈ {0, . . . , cb′ − 1}. If b′ = L, then
there are only cL allowed transitions, all of which are of the second kind.
We define a function ϕ on L by letting ϕ(a, b, b′) = ϕC(b

′). Fix (a, b, b′) ∈ A.
If b′ < L, then according to the allowed transitions listed above, we have

PLϕ(a, b, b
′) = γ(ϕC(b

′ + 1) + cb′ϕC(1)) = γ(CϕC)(b
′) = γλCϕ(a, b, b

′).
(2.18)

Similarly, if b′ = L, then PLϕ(a, b, L) = γcLϕC(1) = γλCϕ(a, b, L). Thus
γλC = λc, the Perron root for PL, and ϕ is a corresponding positive eigen-
vector. Next we want to find the corresponding left-eigenvector for PL. To
do that, let D be the transpose of C, and let νC be a Perron eigenvector. De-
fine νc(a, b, b′) := νC(b). If b ∈ {2, . . . , L}, then there is exactly one allowed
transition to it, that is, from (cb−1, b − 1, b). As a result, νcPL(a, b, b′) =
γνc(cb−1, b− 1, b) = γ(DνC)(b) = γλCνc(a, b, b

′). Next, if b = 1, then the al-
lowed transitions are from (x, k, 1), where k = 1, . . . , L and x ∈ {0, . . . , ck−1}.
We obtain νcPL(a, 1, b′) = γ

∑L
k=1 ckνC(k) = γ(DνC)(1) = γλCνc(a, 1, b

′).
The formula for πQ follows directly from (2.7) and the preceding identities,

while the formula for K1K2 follows from the calculation below:∑
a,b,b′

πQ(a, b, b′) =
∑
a,b

πQ(a, b, 1) +
∑
a,b

πQ(a, b, b+ 1)(2.19)

= K1K2

(
L∑
b=1

cbνC(b)ϕC(1) +

L−1∑
b=1

νC(b)ϕC(b+ 1)

)

= K1K2

L∑
b=1

νC(b) (cbϕC(1) + ϕC(b+ 1))

= K1K2λC

L∑
b=1

νC(b)ϕC(b).

3. This follows from (2.6) and parts 1 and 2.
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3. Additive functionals.

3.1. General theory. In this section we will study some theoretical aspects of
large-time behavior of additive functionals of an ergodic finite state Markov chain,
under a change of measure which generalizes the way Qn was obtained from Q. The
assumptions in this section are the following.

Definition 3.1. Let Z = (Zn : n ∈ Z+) be an irreducible and aperiodic Markov
chain on the finite state space L with transition function Q. Let ϕ : L → (0,∞) be a
positive function, and let µ be a probability distribution on L. For every n ∈ Z+, let
Qn be a probability measure on σ(Z0, . . . , Zn) given by

(3.1) Qn(A) =
EQµ

(
1A

ϕ(Zn)

)
EQµ

(
1

ϕ(Zn)

) , A ∈ σ(Z0, . . . , Zn).

We will consider the behavior of additive functionals of the form Sn =
∑n
j=0 g(Zj),

where g : L → C under Qn as n → ∞. In the context of generalized Zeckendorf de-
compositions, an example for an additive functional is the number of, say, nonzero
digits in the decomposition. In the next section, we show that gaps in the decompo-
sition can be viewed as additive functionals of some Markov chain, so we can treat
them with the same tools.

We need to fix some notation. Functions on L will interchangeably be viewed as
column vectors. As an example, if g is such a function, then Qg is to be identified as
the function or, equivalently, the column f vector given by f(z) =

∑
z′∈LQ(z, z′)g(z′).

We will write hg for the product of two such functions, namely, hg is the function
given by (hg)(z) = h(z)g(z), z ∈ L. In addition, h(Qg) means the product of the
function h and the function Qg, not their scalar product.

Let πQ denote the stationary distribution for Q. Recall that I−Q is invertible on
the Q-invariant subspace of V , where V = {g : EπQg(z) = 0}. We denote this inverse
by Q# and extend it to all functions by letting Q#1 = 0. This is the only choice that
guarantees that Q and Q# commute, and Q# is known as the group inverse of Q. It
is well-known that

(3.2)
∞∑
j=0

EQz (g(Zj)− EπQg) = (Q#g)(z).

Our first result is the following.

Theorem 3.2. Let g : L → C. Let g̃ = g − EπQg, and S̃n =
∑n
j=0 g̃(Zj). Then

EQn S̃n = Eµ(Q
#g) +

EπQ g̃(Q
# 1
ϕ )

EπQ
1
ϕ

+ o(1)(3.3)

EQ
πQ
S̃2
n = (n+ 1)EπQ

(
g̃((2Q# − I)g̃)

)
+ o(1) and EQn S̃2

n = (1 + o(1))EQ
πQ
S̃2
n.

(3.4)

Proof. We will first prove (3.3). From Theorem 2.2 with f = S̃n, and the Markov
property, we have that
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EQµ
1

ϕ(Zn)
× EQn S̃n =

n∑
j=0

EQµ g̃(Zj)EZj
1

ϕ(Zn−j)
(3.5)

=

n∑
j=0

EQµ g̃(Zj)

(
EQZj

1

ϕ(Zn−j)
− EπQ

1

ϕ

)
︸ ︷︷ ︸

(I)

+ EπQ
1

ϕ

n∑
j=0

EQµ g̃(Zj)︸ ︷︷ ︸
(II)

.

By (3.2), (II) → Eµ(Q
#g̃) = EµQ

#g, because Q# maps constant function to 0. In
order to estimate (I), we recall that from the exponential ergodicity of irreducible
finite state Markov chains, there exists ρ ∈ (0, 1) and c1 > 0 such that for every
function h and k ∈ Z+,

(3.6) sup
z
|EQz h(Zk)− EπQh| ≤ c1‖h‖∞ρk.

Letting h(z) = 1
ϕ(z) − EπQ

1
ϕ , we have that EπQh = 0. This allows us to rewrite

(I) as
∑n
j=0Eµg̃(Zj)EZjh(Zn−j). In order to estimate this sum, we break it into two

parts. First ∣∣∣∣∣∣
bn/2c∑
j=0

EQµ g̃(Zj)EZjh(Zn−j)

∣∣∣∣∣∣ ≤ ‖g̃‖∞
bn/2c∑
j=0

sup
z
|Ezh(Zn−j)|(3.7)

≤ c1‖g̃‖∞‖h‖∞ρn/2n/2→ 0,

where the last inequality follows from (3.6). Next, let hk(z) = g̃(z)Ezh(Zk). Then

(3.8)
n∑

j=bn/2c+1

EQµ g̃(Zj)EZj
1

ϕ(Zn−j)
=

n∑
j=bn/2c+1

EQµ hn−j(Zj).

Applying (3.6) to each of the functions hk, and observing that ‖hk‖∞ ≤ ‖g̃‖∞‖h‖∞,
it follows that for j ≥ bn/2c+ 1,

(3.9) |EQµ hk(Zj)− EπQhk| ≤ c1‖g̃‖∞‖h‖∞ρn/2.

Also, since πQ is the stationary distribution for Q, we have that EπQhk = EQ
πQ
hk(Zj),

and as a result

(3.10)
n∑

j=bn/2c+1

(
EQµ hn−j(Zj)− E

Q
πQ
hn−j(Zj)

)
≤ c1‖g̃‖∞‖h‖∞ρn/2n/2→ 0.

In addition, EQ
πQ
hn−j(Zj) = EπQ g̃(Z0)EZ0

h(Zn−j), and therefore

(3.11)
n∑

j=bn/2c+1

EQ
πQ
hn−j(Zj) =

n−bn/2c−1∑
k=0

EQ
πQ
g̃(Z0)EZ0h(Zk).
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Since by our choice EπQh = 0, it follows from (3.2) that the right-hand side is equal
to EπQ g̃(Q#h) + o(1). As a result, (I) = EπQ g̃(Q

# 1
ϕ ) + o(1), completing the proof

of (3.3).
We turn to proving (3.4). We first prove the first equality.

EQ
πQ

(
S̃2
n

)
=

n∑
j=0

EQ
πQ
g̃2(Zj) + 2

∑
0≤j<k≤n

EπQ g̃(Xj)g̃(Xk)

= (n+ 1)EQ
πQ
g̃2 + 2

∑
0≤j<k≤n

EQ
πQ
g̃(X0)E

Q
X0
g̃(Xk−j)

= −(n+ 1)EπQ g̃
2 + 2

n∑
j=0

n∑
k=j

EQ
πQ
g̃(X0)E

Q
X0
g̃(Xk−j)

= −(n+ 1)EπQ g̃
2 + 2

n∑
j=0

EQ
πQ
g̃(X0)

(
n−j∑
k=0

EQX0
g̃(Xk)

)

= −(n+ 1)EπQ g̃
2 + 2

n∑
j=0

EπQ g̃Q
#g̃ − 2

n∑
j=0

EQ
πQ

g̃(X0)
∑

k>n−j

EQX0
g̃(Xk)


︸ ︷︷ ︸

(∗)

= (n+ 1)EπQ g̃(2Q
# − I)g̃ + (∗).(3.12)

Observe that by exponential ergodicity, (3.6), |EQz g̃(Xk)| ≤ c1‖g̃‖∞ρk, uniformly over
z, and so

(3.13) |(∗)| ≤ c1‖g̃‖2∞
n∑
j=0

ρn−j+1

1− ρ
≤ c1‖g̃‖2∞

1

(1− ρ)2
= O(1).

This completes the proof of the first equality in (3.4). It remains to prove the asymp-
totic equivalence of EQQn S̃

2
n and EQµ S̃

2
n. This, again, follows from the exponential

ergodicity, as we now explain. We have

(3.14) S̃2
n = S̃2

m + 2S̃m(S̃n − S̃m) + (S̃n − S̃m)2.

From the Markov property and exponential ergodicity (3.6), it follows that

(3.15) |Eµ(Sn − Sm)2 − EπQ S̃2
n−m| ≤ c1‖g̃‖∞n2ρm.

Choose m = c lnn for c = 4/ ln(1/ρ). It follows that the right-hand side tends to 0 as
n → ∞. In particular, Eµ(Sn − Sm)2 ≤ c2n. Next, observe that EµS̃2

m ≤ ‖g̃‖2∞m2,

and by Cauchy–Schwarz, |EµS̃m(S̃n− S̃m)| ≤
√
EµS̃2

m

√
Eµ(S̃n − S̃m)2 ≤ c3m

√
n. In

summary, for all n large enough,

(3.16) |Eµ
(
S̃2
m + 2S̃m(S̃n − S̃m)

)
| ≤ c4(lnn)2

√
n ≤ c4n3/4.

In particular,

(3.17) |EµS̃2
n − E

Q
πQ
S̃2
n−m| ≤ c4n3/4,

so that

(3.18) EµS
2
n = (1 + o(1))nEπQ g̃(2Q

# − I)g̃,

and the claim is proved.
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We turn to laws of large numbers and central limit theorems for additive func-
tionals.

Theorem 3.3. Under the same assumptions of Theorem 3.2 we have the follow-
ing:

1. Weak law of large numbers: For ε > 0, limn→∞Qn(| S̃nn+1 | > ε) = 0.

2. Central limit theorem: Qn( S̃n√
n+1

≤ x) ⇒ P (Y ≤ x), where Y ∼ N(0, σ2),
and σ2 = EπQ g̃((2Q

# − I)g̃).
Proof of Theorem 3.3. The weak law of large numbers follows from Chebychev’s

inequality and the asymptotic estimate for EQn S̃2
n given in Theorem 3.2:

(3.19) Qn

(∣∣∣∣∣ S̃n
n+ 1

∣∣∣∣∣ > ε

)
≤ EQn S̃2

n

(n+ 1)2ε2
=
EπQ g̃(2Q

# − I)g̃
(n+ 1)ε2

→ 0 as n→∞.

We now prove the central limit theorem. To do this we apply Proposition 2.3
with jn = n− blnnc and

(3.20) fn = exp

(
iθ√
n+ 1

S̃n

)
.

Observe that the choice of jn guarantees that condition 1 in the proposition holds.
Next,

EQz |fn − fjn | ≤ EQz |1− E
Q
Zjn

e
iθ√
n+1

S̃n−jn |(3.21)

≤ max
z

(∣∣∣∣∣1− EQz cos

(
θS̃n−jn√
n+ 1

)∣∣∣∣∣+
∣∣∣∣∣EQz sin

(
θS̃n−jn√
n+ 1

)∣∣∣∣∣
)
.

Since |Sn−jn | = O(lnn), it follows from bounded convergence that supz E
Q
z |fn −

fjn | → 0, and so condition 2 holds. Finally, we recall from the central limit theorem
for additive functionals of finite state Markov chains (e.g., [MW00], [BAN12, Theorem
5] that

(3.22) EQµ (fn)→ e−
σ2

2 ,

where σ2 = limn→∞
1

n+1E
Q
πQ

(S̃2
n). The result now follows from Theorem 3.2.

3.2. Application to Zeckendorf decompositions. In this section we show
how the results obtained in section 3.1 apply to generalized Zeckendorf decomposi-
tions. In particular we will show that the generalized Lekkerkerker’s theorem
(Theorem 1.4) and the corresponding central limit theorem are special cases to The-
orem 3.2.1 and Theorem 3.3.2. We will also carry out explicit computations for the
standard Zeckendorf decomposition, where all quantities are easily computable.

In order to apply the results in the context of generalized Zeckendorf decomposi-
tion, in Definition 3.1 we identify L, Z, and Q in the definition as the same quantities
defined in section 2, and we set ϕ = ϕc and µ = ϕ̃c, where ϕc and ϕ̃c are as in section
2. With these choices, the measure Qn of Definition 3.1 coincides with Qn of section 2.

Recall k(N), the number of nonzero summands in the generalized Zeckendorf
decomposition of N , defined in (1.4). Let g : L → {0, 1} be defined as g(x, j, j′) = 1
if and only if x > 0. Then if N ∈ [Gn+1, Gn+2), from (2.1) we have that that
k(N) = Sn, where Sn is the additive functional Sn =

∑n
j=0 g(Zj). Observe that
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EπQg = 1− π1(0), and so g̃ = g − 1 + π1(0). Furthermore, since πQ(z) = ϕc(z)νc(z),
it follows that EπQ 1

ϕc
= ‖ϕ‖1. The following therefore follow immediately from

Theorems 3.2 and 3.3.

Corollary 3.4. For generalized Zeckendorf decomposition we have the following:
1. Generalized Lekkerkerker’s theorem (Theorem 1.4):

(3.23) EQnk(N) = CLek(n+ 1) + d,

where

(3.24) CLek = 1− π1(0), d = Eϕ̃cQ
#(1− δ) +

EπQ(1− δ)(Q# 1
ϕc

)

‖νc‖1
.

2. Variance:

(3.25) EQn(k(N)− CLek(n+ 1))2 = (1 + o(1))(n+ 1)σ2,

where

(3.26) σ2 = EπQ g̃((2Q
# − I)g̃).

Corollary 3.5. For generalized Zeckendorf decompositions we have the follow-
ing:

1. Law of large numbers:

(3.27) Qn (|k(N)− CLek(n+ 1)| > nε) → 0.

2. Central limit theorem:

(3.28) Qn

(
k(N)− CLek(n+ 1)√

n+ 1
∈ ·
)
→ N(0, σ2),

where σ2 is as in Corollary 3.4.

In the remainder of the section we compute all constants above for the standard
Zeckendorf decomposition. First we need to compute Q#.

Example 3.6. For the standard Zeckendorf decomposition,

(3.29) Q# =
1

5

 5− φ φ− 4 −1
−φ φ+ 1 −1

1− 3φ 2φ− 2 φ+ 1

 .

To prove the identity, recall the expressions for Q and πQ computed in Example
2.6. Let A = I − Q, and let v1 = (0, 1,−1)t, v2 = (1, 0,−φ)t, and v3 = (1, 1, 1)t.
Then EπQv1 = EπQv2 = 0. Since v1 and v2 are linearly independent, it follows that
they span the A-invariant space V = {v : EπQv = 0}. In addition Av3 = 0. Letting
q = 1 − 1

λC
= 1

λ2
C
, a straightforward calculation shows that Av1 = qv2 + (1 + q)v1

and Av2 = v2. Thus v1 = qv2 + (1 + q)Q#v1, Q#v2 = v2, and Q#v3 = 0. These
determine Q#.

Also, from Example 2.6 we have that π1(0) = φ+1
φ+2 , ϕ̃c is a point mass, and ‖νc‖1 =

5φ+3
φ+2 . In addition, πQ = 1

φ+2 (φ, 1, 1)
t, and ϕc = 1

2φ+1 (φ, φ, 1)
t. Since also g =

(0, 0, 1)t, we haveQ#g = 1
5 (1− 3φ, 2φ− 2, φ+ 1)

t, andQ# 1
ϕc

= 1
5(φ−1) (−1,−1, φ+1)

t.
As a result, we have the following.



1318 IDDO BEN-ARI AND STEVEN J. MILLER

Example 3.7. For the standard Zeckendorf decomposition,

(3.30) CLek =
1

φ+ 2
=

5−
√
5

10
, d =

3

5
.

We finally compute σ2. Clearly, g̃ = (0, 0, 1)t− 1
2+φ (1, 1, 1)

t = 1
2+φ (−1,−1, 1+φ)

t.
It therefore follows that g̃Q#g̃ = g̃Q#(0, 0, 1)t = 1

5 (
1

φ+2 ,
1

2+φ , (1−
1

2+φ )(φ+ 1))t, and
so the expectation is equal to

(3.31) 2EπQ g̃Q
#g̃ =

2

5

(
1 + φ+ (1 + φ)2

(φ+ 2)2

)
=

2(φ+ 2)

25
.

Since g̃2 = ( 1
(φ+2)2 ,

1
(φ+2)2 ,

(φ+1)2

(φ+2)2 )
t = 1

5(1+φ) (1, 1, (1 + φ)2)t, it follows that

(3.32) EπQ g̃
2 =

1

5(1 + φ)

(φ+ 1) + (φ+ 1)2

φ+ 2
=

1

5
.

We therefore have the next example.

Example 3.8. For the standard Zeckendorf decomposition, σ2 = 2φ−1
25 =

√
5

25 .

4. Gaps in Zeckendorf decomposition.

4.1. Gap distribution. In this section we consider the asymptotic distribution
of gaps between nonzero terms in the generalized Zeckendorf decomposition. This
will be an application of our results on additive functionals from the previous section.
We will first prove a statement on an “average” gap distribution, Theorem 4.1, and
we will later prove convergence of empirical gap measures in probability, Theorem
4.2. Let us first define the notion of a gap. We work under the same assumptions
and notation as in section 2. Suppose that N ∈ N admits a legal decomposition (2.1)
with X0 > 0. Note that Xj counts the repetitions of Gn−j+1, and if repeating more
than 1 times, we can view this as Xj − 1 gaps of length zero. If Xj > 0, then we
have a gap of length 1 or larger, the length of the gap equal to min{k ≥ 1 : Xj+k >
0}. Let Nn(k) denote the number of gaps of length k in the first n digits, and let
Nn =

∑
kNn(k). We define the gap distribution µn as a probability measure on Z+

given by

(4.1) µn(k) =
EQnNn(k)

EQnNn
.

To state the next theorem, let

(4.2) ν(k) = λ
−(k−1)
C (1− λ−1C )

denote the probability density of a geometric random variable with parameter λ−1C .
We have the following.

Theorem 4.1. Let H1 = {(0, b, 1) ∈ L} and H2 = {(0, b + 1, b + 2) ∈ L : cb >
0, cb+1 = 0}. For z = (0, b+ 1, b+ 2) ∈ H2 we let
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r(b) = max{j : cb+j = 0},(4.3)
ρ(b) = Q((0, b+ r(b), b+ r(b) + 1), (0, b+ r(b) + 1, 1))

=
ϕC(1)

λCϕC(b+ r(b) + 1)
, and

h(b, k) =


0, k < r(b) + 1,

1− ρ(b), k = r(b) + 1,

ρ(b)λ
−(k−r(b)−2)
C (1− λ−1C ), k > r(b) + 1.

Then
1. limn→∞

1
nE

QnNn =MπQ1
,

2.
(4.4)

lim
n→∞

µn(k) =


1− 1−πQ1 (0)

M
π
Q
1

, k = 0,

1−πQ1 (0)−πQ(H1)(1−λ−1
C )−

∑
z∈H2

πQ(z)(1−ρ(z(2)))
M
π
Q
1

, k = 1,

3. for k ≥ 2,

lim
n→∞

µn(k) =
πQ(H1)ν(k − 1)

MπQ1

(4.5)

+

∑
z∈H2

πQ(z) (h(z(2)− 1, k)− ρ(z(2))ν(k − 1))

MπQ1

.

Since
∑
k≥2 ν(k − 1) =

∑
k≥2 h(b, k) = 1, it follows that the limit limn→∞ µn(·)

is a probability measure, which we denote by µ∞. A simple argument shows that a
stronger result holds. For n ∈ N, define the empirical gap distribution µ̂n as a random
measure on Z+, defined by

(4.6) µ̂n(A) =

∑
k∈ANn(k)

max(Nn, 1)
.

We therefore have the following.

Theorem 4.2. For any A ⊂ Z+ and ε > 0,

(4.7) lim
n→∞

Qn(|µ̂n(A)− µ∞(A)| > ε) = 0.

We comment that the expression for the limit in Theorem 4.1 is much simpler
when cj > 0 for all j = 1, . . . , L. In this case H2 = ∅. For the standard Zeckendorf,
we have the following.

Example 4.3. For the standard Zeckendorf decomposition, MπQ1
= πQ1 (1) = 1

φ+2

and λC = φ. Therefore
1. limn→∞

1
nE

QnNn = 1
φ+2 ,

2.

lim
n→∞

µn(k) =

{
0, k = 0, 1,

φ−k, k ≥ 2.

When some of the coefficients are zero, then some gaps of length ≥ 2 are forced
by the recurrence relation, and taking this into account is the source of the lengthy
expression in the theorem.



1320 IDDO BEN-ARI AND STEVEN J. MILLER

Example 4.4. Consider the recurrence relation with L = 4, c1 = 1, c2 = c3 =
0, c4 = 2. Then λC is the largest (real) root of λ3(λ− 1) = 2, λC ≈ 1.5437. We have

(4.8) h(k) =


0, k < 3,
1
2 , k = 3,
1
2λ
−(k−4)
C (1− λ−1C ), k ≥ 4,

and

(4.9) lim
n→∞

µn(k) =


0, k = 0,

2− λ2
C+1
3λC

, k = 1,
(λC−1)2−λC

3λC
ν(k − 1) + 2λC−1

3λC
h(k), k ≥ 2.

In this example,

L =
{
z1 = (0, 1, 1), z2 = (1, 1, 2), z3 = (0, 2, 3), z4 = (0, 3, 4), z5 = (0, 4, 1),(4.10)

z6 = (1, 4, 1)
}
.

There are no gaps of length 0 as the coefficients immediately show. Gaps of length 1
only appear in the form (1, 4, 1) followed by (1, 1, 2). Larger gaps can be formed as
follows:

• gaps of length k ≥ 2 through a sequence of the form (1, 4, 1), (0, 1, 1), . . . ,
(1, 1, 2), with (0, 1, 1) repeated k − 1 times;

• gaps of length k ≥ 3 through a sequence beginning with (1, 1, 2), (0, 2, 3),
(0, 3, 4), followed by (1, 4, 1) if length is 3 or by k − 3 repetitions of (0, 1, 1)
followed by (1, 1, 2) otherwise.

The larger gaps of the second type are forced by the recurrence, in the sense
that the condition c2 = c3 = 0 implies Q((1, 1, 2), (0, 2, 3)) = Q((0, 2, 3), (0, 3, 4)) = 1,
and so every time the sequence hits the state (1, 1, 2), a gap of minimal length 3
occurs. Let us see how this is reflected in the formula. H1 = {(0, 1, 1), (0, 4, 1)} and
H2 = {(0, 2, 3)}. There’s only one element in H2 and therefore we omit the reference
to b in the functions r, ρ, h. So r = 2, ρ = Q((0, 3, 4), (0, 4, 1)) = 1

2 , and the expression
for h follows.

We now compute πQ. Let p = πQ(z2). Since Q(z2, z3) = Q(z3, z4) = 1, we
have that p = πQ(z3) = πQ(z4). Next, Q(z4, z5) = Q(z4, z6) = 1

2 , and so πQ(z5) =
πQ(z6) = p/2. We also observe that

(4.11) πQ(z1) = πQ(z1)λ−1C + πQ(z5)Q(z5, z1) + πQ(z6)Q(z6, z1).

Therefore, πQ(z1) = p
λC−1 . Now we have 1 = p

λC−1 + 4p, so altogether, p = λC−1
4λC−3 ,

and the expression for the limit of µn follows after some algebra.

Proof of Theorem 4.1. For a real number x, let x+ = max(x, 0). We begin with
gaps of length 0:

(4.12) EQz Nn(0) =

n−1∑
j=0

(Zj(1)− 1)+.

The ergodicity of Z under Q implies that

(4.13) lim
n→∞

EQz Nn(0)

n
=

∑
z=(x,j,j′)

πQ(z)(x− 1)+ =MπQ1
− 1 + πQ1 (0).
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Before moving to gaps of larger length, we consider the total number of jumps. We
have

1

n
EQz

∑
k≥1

Nn(k) =
1

n
EQz

n−1∑
j=0

1{Zj(0)>0}

→
n→∞

1− πQ1 (0),(4.14)

and so from (4.13), (4.14)

(4.15) lim
n→∞

1

n
EQz Nn =MπQ1

.

We move to calculation of gaps of length ≥ 2. We will treat gaps of length 1 last. Let
k ≥ 2. Then

1

n
EQz Nn(k) =

1

n
EQz

n−k∑
j=0

1{Zj(1)>0}

(
k−1∏
`=1

1{Zj+`(1)=0}

)
1{Zj+k(1)>0}.(4.16)

Let B = {(0, b, b′) ∈ L}. It therefore follows from the Markov property and ergodicity
that

(4.17) lim
n→∞

1

n
EQz Nn(k) =

∑
z0∈A

πQ(z0)fB(z
0),

where for D ⊂ L we have

(4.18) fD(z
0) =

 ∑
z1∈D,...,zk−1∈B

k−1∏
`=1

Q(z`−1, z`)

Q(zk−1, A).

Letting

B0 = {(0, 1, 1)},
B1 = {(0, b+ 1, 1) ∈ L : b ≥ 1, cb > 0},
B2 = {(0, b+ 1, b+ 2) ∈ L : b ≥ 1, cb > 0, cb+1 = 0}, and
B3 = {(0, b+ 1, 1) ∈ L : b ≥ 1, cb = 0, cb+1 > 0},(4.19)

we can write

(4.20)
∑
z0∈A

πQ(z0)fB(z
0) =

3∑
m=0

∑
z0∈A

πQ(z0)fBm(z
0).

Note that ∪3m=0Bm = {(0, b, b′) ∈ L : cb−1 6= 0 or cb′ 6= 0}, and so this union does
not necessarily contain all elements (0, b, b′) ∈ L. However, it does contain all such
elements which are accessible from A in one step (and more, whenever B3 is not
empty).

We now simplify the expression, beginning with the sum over B1. It is important
to observe that B1 is the subset of states in B accessible in one step only from A. In
addition, if z1 ∈ B1, then it immediately follows that z2 = · · · = zk−1 = (0, 1, 1) and
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that allowed transitions to (0, 1, 1) always have probability λ−1C . As a result, we have
that

(4.21) fB1
(z0) = Q(z0, z1)λ

−(k−2)
C (1− λ−1C ),

and thus

(4.22)
∑
z0∈A

πQ(z0)fB1(z
0) = πQ(B1)ν(k − 1).

Next we consider the sum over B0, namely, z1 = (0, 1, 1). Clearly,∑
z0∈A

πQ(z0)f(0,1,1)(z
0) =

∑
z0∈L

πQ(z0)f(0,1,1)(z
0)−

∑
z0∈B

πQ(z0)f(0,1,1)(z
0).(4.23)

Since (0, 1, 1) is accessible in one step either from A or from states in z ∈ B0∪B1∪B3

and for all such z, Q(z, (0, 1, 1)) = λ−1C , it follows that

(4.24)
∑
z0∈A

πQ(z0)f(0,1,1)(z
0) =

(
πQ((0, 1, 1))− πQ(B0 ∪B1 ∪B3)λ

−1
C

)
ν(k − 1).

Hence,

(4.25)
∑
z0∈A

πQ(z0)fB0∪B1
(z0) = πQ(B0∪B1∪B3)(1−λ−1C )ν(k−1)−πQ(B3)ν(k−1).

We now consider z1 ∈ B2. Suppose then that z0 ∈ A and z1 ∈ B2 and Q(z0, z1) >
0. Since z1 = (0, b+1, b+2), it follows that z0 = (cb, b, b+1) and cb > 0. Now if cb+2 =
0, then the only allowed transition from z1 is to z2 = (0, b+2, b+3). Let r = r(b) and
ρ = ρ(b) as defined in the statement of the theorem. Then zj = (0, b+ j, b+ j+1) for
all j = 1, . . . r, and we conclude that Q(zj , zj+1) = 1 for j = 0, . . . , r. We continue
according to the following two cases:

1. r > k − 1. In this case Qk(z0, A) = 0.
2. r ≤ k − 1. Then either

• r = k − 1, in which case Qk(z0, A) = Q((0, b+ r, b+ r + 1), A) = 1− ρ;
or

• 1 < r ≤ k − 2, in which case zr+1 = (0, b+ r + 1, 1) and zr+l = (0, 1, 1)
for all 2 ≤ l ≤ k − 1− r. In particular, since Q((0, 1, 1), A) = Q((0, b+
r + 1, 1), A) = 1− λ−1C , we have that

(4.26) Qk(z0, A) = Q((0, b+ r, b+ r + 1), (0, b+ r + 1, 1))ν(k − r − 1).

The only allowed transitions from (0, b + r, b + r + 1) to (x, b + r + 1, 1) are to
x = 0, . . . , cb+r+1 − 1, all with equal transition probability. Since there are exactly
cb+r+1− δL(b+ r+1) possible values for x, exactly one of which is with x = 0, letting
ρ(b) = 1

cb−δL(b) , we have

(4.27) Qk(z0, A) =


0, k < r(z) + 1,

1− ρ(b+ r + 1), k = r(z) + 1,

ρ(b+ r + 1)ν(k − r − 1), k > r(z) + 1.

Summarizing the two cases, we conclude that

(4.28)
∑
z0∈A

πQ(z0)fB2
(z0) =

∑
z1∈B2

h(z1(2)− 1, k).
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Next, when z0 ∈ A, and z1 ∈ B3, then Q(z0, z1) = 0. Thus, we have proved

3∑
m=0

πQ(z0)fBm(z
0) =

(
(1− λ−1C )πQ(H1)− πQ(B3)

)
ν(k − 1)(4.29)

+
∑

z0=(0,b+1,b+2)∈B2

πQ(z0)h(b− 1, k).

Let z′ ∈ B3. Then there exists a unique z1 = (0, b + 1, b + 2) ∈ B2 such that
z1 = (0, b, b + 1), z2 = (0, b + 2, b + 3), . . . , zr(b) = (0, b + r(b), b + r(b) + 1), and
zr(b)+1 = z′. Since Q(zk, zk+1) = 1 for k = 1, . . . , r(b) − 1, it easily follows that
πQ(z′) = πQ(zr)ρ(b) = πQ(zr−1)ρ(b) = · · · = πQ(z1)ρ(b). This shows that πQ(B3) =∑
{z1=(0,b+1,b+2)∈B2} π

Q(z1)ρ(b). Plugging this into the formula above, and noting
that H1 in the theorem is B0 ∪B1 ∪B3 and H2 in the theorem is B2, we obtain

lim
n→∞

1

n
EQz Nn(k) =

2∑
m=0

πQ(z0)fBm(z
0)(4.30)

= (1− λ−1C )πQ(H1)ν(k − 1)

+
∑

z0=(0,b+1,b+2)∈H2

πQ(z0)(h(b− 1, k)− ρ(b)ν(k − 1)).

We turn to gaps of length 1:

1

n
EQz Nn(1) =

1

n
EQz

n−1∑
j=0

1{Zj(1)>0}1{Zj+1(1)>0}(4.31)

=
1

n

n−1∑
j=0

EQz 1{Zj(1)>0}E
Q
Zj
1{Z1(1)>0},

where in the second line we applied the Markov property. Let

(4.32) A = {(x, b, b′) ∈ L : x > 0}.

Ergodicity of Z under Q then gives

lim
n→∞

1

n
EQz Nn(1) =

∑
z∈A

πQ(z)Q(z,A) = πQ(A)−
∑
z∈Ac

πQ(z)Q(z,A).(4.33)

Given z = (0, b, b′) ∈ Ac, exactly one of the following holds:
• cb = 0, b′ = b+ 1, cb+1 = 0, and then Q(z,A) = 0.
• cb = 0, b′ = b + 1, cb+1 > 0. From the argument in the paragraph above

(4.30), and since Q(z,A) = 1−Q(z,Ac), we obtain that∑
{z=(0,b,b+1)∈L:cb=0,cb+1=1}

πQ(z)Q(z,A) = πQ(B2)− πQ(B3)(4.34)

=
∑

z0=(0,b+1,b+2)∈H2

πQ(z0)(1− ρ(b)).

• cb > 0 and then b′ = 1, equivalently, z ∈ H1, in which case Q(z,A) =
1−Q(z, (0, 1, 1)) = 1− λ−1C .
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Summarizing,

lim
n→∞

1

n
EQz Nn(1) = 1− πQ1 (0)− (1− λ−1C )πQ1 (H1)(4.35)

−

 ∑
z0=(0,b+1,b+2)∈H2

πQ(z0)(1− ρ(b))

 .

To finish the proof, we need to show that the results continue to hold when
considering the measure Qn instead of Q. However, by the Markov property, the
expectation under Qn of Nn and Nn(k) are equal to the expectations of corresponding
additive functionals. Therefore it follows from Theorem 3.2 that the expectations of
Nn(k) and Nn under Qn are asymptotically equivalent to their expectations with
respect to Qϕc . The theorem now follows.

Proof of Theorem 4.2. We have

{|µ̂n(A)− µ∞(A)| > ε} ⊂ ∪k∈A{|µ̂n(k)− µ∞(k)| > ε}(4.36)
= ∪k∈A{|Nn(k)− µ∞(k)Nn| > εNn} ∪ {Nn = 0}.

Since Qn(Nn = 0) = Qn(Z0 > 0, Z1 = · · · = Zn = 0) → 0, we can ignore the event
{Nn = 0}. Now for every fixed k ∈ A, we have

{|Nn(k)−µ∞(k)Nn|>εNn}⊂{|Nn(k)−µ∞(k)EQ
πQ
Nn|>ε/2}∪{|Nn − EQπQNn|>ε/2}.

(4.37)

Next observe that both Nn and Nn(k) are additive functionals for the process Zk =
(Zkn : k ∈ Z+), where Zkn = (Zn, Zn+1, . . . , Zn+k), and so we can consider Nn(k)
and Nn as additive functionals of Zk. Letting ϕ′c(z

0, z1, . . . , zk) = ϕc(z
0), and

ϕ̃′c(z
0, . . . , zk), the distribution of Z0, . . . , Zk under Qϕ̃c , then if as in Definition 3.1

we define

(4.38) Q′n,k(A) =
EQϕ̃′c

(
1A

ϕ′c(Z
k
n)

)
EQϕ̃′c

(
1

ϕ′c(Z
k
n)

) ,
it follows that the restriction of Q′n,k to events generated by Z0, . . . , Zn coincides with
Qn. In particular, the distribution of the additive functionals Nn and Nn(k) for Zk
under Qn,k′ coincides with their distribution under Qn. From the variance estimate
(3.4) in Theorem 3.2 applied to these additive functionals under Q′n,k, we conclude
that

Qn({|Nn(k)− µ∞(k)EQ
πQ
Nn| > ε/2}) = O(n−1) and Qn({|Nn − EQπQNn| > ε/2})

(4.39)

= O(n−1).

Therefore if A is finite, we obtain that

(4.40) lim
n→∞

Qn(|µ̂n(A)− µ∞(A)| > ε) = 0.

Now if A is infinite, letting AM = A ∩ {0, . . . ,M}, we observe that

|µ̂n(A)− µ∞(A)| = |µ̂n(AM )− µ∞(AM )|+ µ̂n({M + 1, . . . }) + µ∞({M + 1, . . . })
(4.41)

≤ |µ̂n(AM )− µ∞(AM )|+ µ̂({M + 1, . . . }) + µ∞({M + 1, . . . }).
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Fix ε, and let M be such that µ∞({M + 1, . . . }) < ε. Thus for n large enough,

{|µ̂n(A)− µ∞(A)| > 5ε} ⊂ {|µ̂n(AM )− µ∞(AM )| > 2ε} ∪ {µ̂n({M + 1, . . . }) > 2ε}.
(4.42)

The measure of the first event on the right-hand side tends to 0 as n → ∞ by
(4.40). As for the second event, it is equal to the event {µ̂n({0, . . . ,M}) < 1 − 2ε}.
However, since again by (4.40) µ(|µ̂n({0, . . . ,M}) − µ∞({M + 1, . . . })| > ε/2) tends
to 0, it follows that Qn({µ̂n({0, . . . ,M} > 1 − 3ε/2) tends to 1. But this event is
{µ̂n({M + 1, . . . , }) < 3ε/2}, and so Qn(µ̂n({M + 1, . . . , }) > 2ε) tends to 0 as well.
The result now follows.

4.2. Maximal gap. Next we consider the maximal gap Mn, defined as

(4.43) Mn = sup{k ∈ Z+ : Nn(k) > 0}.

Although we can prove the results at the same level of generality as in the pre-
vious section, we prefer to keep the expressions cleaner and simpler and will assume
throughout this section that c1, . . . , cL > 0.

Our analysis is based on a renewal structure we now describe. We refer to the
gaps of length k ≥ 2 as “long gaps” and denote the lengths of the long gaps, indexed
by order of appearance, by (Rj : j ∈ N). Observe that any long gap is followed
by a possibly empty sequence of gaps of zero length (summand repeated more than
once; see the first paragraph of section 4.1) and gaps of length 1, independent of k.
This is then followed again by an independent long gap. The number of the small
gaps is bounded above by (L − 1) +

∑
i(ci − 1) = (

∑
i ci) − 1, as the first summand

bounds the number of length 1, and the second summand bounds the number of gaps
of length zero. Let Tm denote the first time exactly m long gaps are completed,
m(n) = sup{m : Tm ≤ n}. Observe that a long gap is completed whenever the digit
zero is followed by a nonzero digit. Therefore

(4.44) m(n) =

n−1∑
j=0

10(Zj(1))1{Zj+1(1)>0}.

From the Markov property,

(4.45) EQm(n) =

n−1∑
j=0

EQ
(
10(Zj(1))QZj (Z1(1) > 0)

)
.

Letting A = {z = (x, b, b′) ∈ L : x > 0}, and repeating a similar computation as in
the proof of the case k = 1 in Theorem 4.1, it follows that

lim
n→∞

1

n
EQm(n) =

∑
z∈Ac

πQ(z)Q(z,A) = piQ(Ac)−
∑
z∈A

πQ(z)Q(z,A)

= (1− πQ(0))− (1− πQ(0)) + (1− λ−1C )πQ(0),(4.46)

where the last equality follows from (4.33) and (4.35). Also, by the renewal theorem
[Dur10, Theorem 2.4.6]

(4.47) lim
n→∞

m(n)

n
= α, Q-a.s.,
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where α = 1/EQρ T1 and ρ is the uniform distribution on c1 elements: (x, 1, 1), 1 <
x < c1 and (c1, 1, 2). The limit above also holds in L1(Q), as m(n) ≤ n. Consequently

(4.48) α = πQ1 (0)

(
1− 1

λC

)
.

To state our result we need to introduce some additional assumption. We say
that a sequence (nk : k ∈ N) of natural numbers tending to ∞ satisfies the spacing
condition with respect to α and q if

(4.49) lim inf
k→∞

inf
z∈Z+

∣∣∣∣∣ ln(nkα)ln 1
q

− z

∣∣∣∣∣ > 0.

Roughly speaking, this means that nkα is eventually uniformly far from integer
powers of 1/q in some normalized sense.

Theorem 4.5. Assume c1c2 · · · cL > 0. Then for every k ∈ Z,

(4.50) lim
n→∞

Qn

(
Mn ≤

⌊
lnnπ1(0)(1− 1

λC
)

lnλC

⌋
+ k

)
= e−λ

−(k−2)
C ,

when the limit is taken along any sequence satisfying the spacing condition (4.49) with
respect to α = π1(0)(1− 1

λC
) and q = 1

λC
.

Example 4.6. For the standard Zeckendorf decomposition, λC = φ and π1(0) =
φ+1
φ+2 . This gives

(4.51) lim
n→∞

Qn

(
Mn ≤

⌊
lnn− ln(φ+ 2)

lnφ

⌋
+ k

)
= e−φ

−(k−2)

.

Proof of Theorem 4.5. To prove the theorem, we need to recall some facts on the
maximum of negative geometric random variables. Let G be a negative geometric
random variable with parameter p ∈ (0, 1). That is, for k ∈ Z+, P (G ≥ k) = qk,
where q = 1 − p. Let G be negative geometric with parameter p. That is, G takes
values in Z+, and P (G ≥ k) = qk, where q = 1 − p. We denote this distribution by
Geom−(p). Let (Gk : k ∈ N) be IID Geom−(p)-distributed random variables, and let
MG
m = maxk≤m Gk. Then P (MG

m ≤ j) = (1− qj)m. For each m ∈ N, let δm be chosen
so that lnmδm

ln 1/q = b lnm
ln 1/q c. Observe then that δm ∈ (q, 1]. From this we obtain that for

any k ∈ Z,

(4.52) P

(
MG
m ≤

⌊
lnm

ln 1/q

⌋
+ k

)
=

(
1− qk

mδm

)m
→

m→∞
e−q

k

.

We return to the proof. Fix some sequence satisfying the spacing condition.
Abusing notation, we will refer to a generic element in the sequence as n. Observe
that if we choose Gj = Rj − 2, then (Gj : j ∈ N) is an IID sequence of Geom−(p)
random variables with p = 1− λ−1C . In particular, for every m

(4.53) MTm =MG
m + 2.

Clearly Tm(n) ≤ n, but also by the law of large numbers and (4.47)

(4.54)
Tm(n)

n
=
Tm(n)

m(n)
× m(n)

n
→

n→∞
1, Q-a.s.
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From (4.47) we can find εn > 0 with limn→∞ εn = 0 and satisfying

(4.55) Q

(
m(n)

n
∈ [1− εn, 1 + εn]α

)
→

n→∞
1.

Observe then that

Q

(
Mn ≤

⌊
lnnα

ln 1
q

⌋
+ k

)
≥ Q

(
Mn ≤

⌊
lnnα

ln 1
q

⌋
+ k, 0 < m(n) ≤ (1 + εn)nα

)(4.56)

≥ Q

(
MG
b(1+εn)nαc ≤

⌊
lnnα

ln 1
q

⌋
+ k − 2

)
−Q(m(n)

> (1 + εn)nα)−Q(m(n) = 0).

The last two terms on the right-hand side tend to 0. In addition, since ln(n(1 +
εn)α) − ln(nα) →

n→∞
0, it follows from the spacing condition that for all n large

enough,b b(1+εn)nαc
ln 1
q

c = b lnnα
ln 1
q

c. It then follows from (4.52) that

(4.57) lim inf
n→∞

Q

(
Mn ≤

⌊
lnnα

ln 1
q

⌋
+ k

)
≥ e−q

k−2

.

We turn to the upper bound.

Q

(
Mn ≤

⌊
lnnα

ln 1
q

⌋
+ k

)
≤ Q

(
Mn ≤

⌊
lnnα

ln 1
q

⌋
+ k − 2,m(n) ≥ (1− εn)nα

)(4.58)

+ Q (m(n) < (1− εn)nα)

≤ Q

(
MG
d(1−εn)nαe ≤

⌊
lnnα

ln 1
q

⌋
+ k

)
+ o(1).

The same argument as before shows that for n large enough, b lnd(1−εn)nαe
ln 1
q

c = b lnnα
ln 1
q

c,
and so

(4.59) lim sup
n→∞

Q

(
Mn ≤

⌊
lnnα

ln 1
q

⌋
+ k

)
≤ e−q

k−2

.

Summarizing,

(4.60) lim
n→∞

Q

(
Mn ≤

⌊
lnnα

ln 1
q

⌋
+ k

)
= e−q

k−2

.

It remains to convert the result to Qn. Let An = {Mn ≥ bln lnnc}. Then
Q(An) →

n→∞
1. Let bn = bln lnnc. Then as n − bn = n(1 + o(1)), we conclude that

the sequence n− bn also satisfies the spacing condition. Furthermore, for sufficiently
large n, b ln(n−bn)αln 1/q c = b lnnαln 1/q c. Thus, from (4.60)

(4.61) lim
n→∞

Q

(
Mn−bn ≤

⌊
lnnα

ln 1
q

⌋
+ k

)
= e−q

k−2

.
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Letting Bn = {Mn−bn ≤ b lnnαln 1
q

c + k}, it follows from the Markov property and the
ergodicity of Z that

EQ
(
1Bn

1

ϕc(Zn)

)
= EQ

(
1BnEXn−bn

1

ϕc(Xbn)

)
(4.62)

= EQ
(
1BnEπQ

1

ϕc

)
+ o(1) = Q(Bn) + o(1).

Now

Q

(
Mn ≤

⌊
lnnα

ln 1
q

⌋
+ k,

1

ϕc(Xn)

)
≤ Q

(
1Bn , E

Q
Xn−bn

1

ϕc(Xbn)

)
(4.63)

= Q(Bn)EπQ
1

ϕc
+ o(1),

and so

(4.64) lim sup
n→∞

Qn

(
Mn ≤

⌊
lnnα

ln 1/q

⌋
+ k

)
≤ e−q

k−2

.

We turn to the lower bound. Observe that Mn > Mn−bn only if one of the last
bn + 1 long gaps among the first m(n) is maximal. Fix c > 0; then for all n large
enough, depending on c and on the event {Mn > c lnn}, those maximal gap among
the last bn+1 must begin before n−bn (because otherwise it will have length at most
bn < c lnn) and end after n− bn (otherwise already included in Mn−bn). That is,

(4.65) {Mn > Mn−bn} ∩ {Mn > c lnn} ⊂ { max
j=1,...,m(n−bn)+1

Gj = Gm(n−bn)+1}.

Denote the event on the right-hand side by Cn. We have that

Q(Cn) ≤ Q(Cn,m(n) ∈ ((1− ε)nα, (1 + ε)nα)) + o(1)

≤ 2εnα× 1

(1− ε)nα
+ o(1) →

n→∞

2ε

1− ε
.(4.66)

Since ε is arbitrary, we conclude that Q(Cn) →
n→∞

0. Hence

EQ

(
Mn >

⌊
lnnα

ln 1
q

⌋
+ k,

1

ϕc(Zn)

)
(4.67)

≤ Q

(
Mn−bn >

⌊
lnnα

ln 1
q

⌋
+ k,Ccn,

1

ϕc(Xn)

)
+Q(Cn)

≤ Q

(
Mn−bn >

⌊
ln(n− bn)α

ln 1
q

⌋
+ k,

1

ϕc(Zn)

)
+ o(1).

The remainder of the proof is identical to the argument presented in (8), with the
obvious changes. This gives the lower bound

(4.68) lim inf
n→∞

Qn

(
Mn ≤

blnnαc
ln 1

q

+ k

)
≥ e−q

k−2

,

thus completing the proof.
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Appendix: Generalization to initial segments. Although our approach is
most natural for intervals of the form [Gn, Gn+1), most of the results can be easily
extended to the general case where we consider the interval [1, N). We will now briefly
show how this can be done. For every N ∈ N there exists a unique n = n(N) such
that N ∈ [Gn+1, Gn+2). Denote the uniform measure on [1, N) by WN . Then it
follows from Theorem 2.2 that

(4.69) WN (A) =

n(N)−1∑
j=0

αjQ
j(A) + αnQ

n(A|[Gn+1, N)),

where G0 = 0, αj = (min(Gj+2, N) − Gj+1)/N , and for simplicity we consider Qj
as a probability measure on N which gives zero mass to elements outside the interval
[Gj+1, Gj+2).

Consider now a function F : N → [0, 1], and assume that limj→∞EQjF = c(F ).
We will make more assumptions on F later. We will basically require F not to depend
too much on its first and last digits.

Then we can write

(4.70) EWNF =

N(n)−1∑
j=1

αjE
QjF + αnE

Qn(F |[Gn+1, N)) = (I) + (II).

It is easy to see that along sequences satisfying either αn → 0 or αn → 1, the
right-hand side converges to c(F ). However, when this is not the case, then the term
(II) may be oscillatory. However, if we can show that EQ

n

(F |[Gn+1, N)) → c(F ),
then it follows that EWNF → c(F ). The idea is very much in the spirit of Proposition
2.3. This cannot hold for all F , so we need to restrict our discussion to those F not
affected much by first or last digits.

In order to do this we make some assumptions of F so that the oscillations will
asymptotically vanish. Denote the length of the decomposition of x by |x|. Suppose
that for each x large enough, there exists nx such that nx, |x| − nx → ∞, and if Ax
denotes all numbers with length |x| whose decomposition differs from that of x only
in the first nx or last nx digits, we will assume

(4.71) lim
x→∞

sup
x′∈Ax

|F (x′)− F (x)| = 0.

An example of such a function is any additive functional S, divided by the length
of the decomposition D (a random variable we localized to numbers with decomposi-
tions of fixed length in previous sections). Another example is eiθ(S−c)/

√
D for some

c. We note that we can make weaker assumptions on F for the argument to work.
Before presenting the argument, we state the result.

Proposition 4.7. Suppose that F : N→ [0, 1] satisfies limj→∞EQjF = c(F ). If
(4.71) holds, then limN→∞EWNF = c(F ).

Proof. Assume then that we have a sequence N1 < N2 < · · · with n1(N1) ≤
n2(N2) ≤ · · · . Without loss of generality, we may assume that nj < nj+1 and
inf αnj > ρ ∈ (0, 1). That is,

(4.72) (Nj −Gnj+1)/Nj > ρ,



1330 IDDO BEN-ARI AND STEVEN J. MILLER

which in turn implies Nj > (1+ c2)Gnj+1. This along with the exponential growth of
(Gn) guarantees that for any ε > 0, there exists some K ∈ N and Ñj ∈ [Gnj+1, Nj)
such that

1. the first K digits of Ñj coincide with those of Nj ,
2. all other digits of Ñj are zero,
3. Ñj/Nj ≥ (1− ε).

In other words, the fact that Nj is at least a certain fixed multiple (depending only on
(Nj)) of Gnj+1 means that the first digits may have some constraints, but not the last
(because they cannot contribute much to the sum). This allows us to “round” down
Nj to Ñj , a near number for which the condition of being in the interval [Gnj+1, Ñj)
is determined only by the first K digits.

Now we repeat the argument from Proposition 2.3 which allows us to separate
the first K < nx and the last nx digits from the rest. This gives

(4.73) lim
j→∞

EQnj
(
F (X)|X < Ñj

)
= c(F ).

The last step is to recover (II) for Nj from the corresponding expression for Ñj .
We have

EQnj (F (X), X < Nj) = EQnj
(
F (X), X < Ñj

)
+ EQnj

(
F (X), Ñj ≤ X < Nj

)
.

(4.74)

By condition 3 in the choice of Ñj , the absolute value of second summand on the
right-hand side is bounded above by (Nj − Ñj)/(Gnj+2 − Gnj+1) ≤ ε

Nj
GNj+2

−GNj+1
.

This implies

EQnj (F (X)|X < Nj) = EQnj
(
F (X)|X < Ñj

) |Ñj −Gnj+1
|

|Nj −Gnj+1
|
+ ε

Nj
|Nj −Gnj+1

|
O(1).

(4.75)

Thus,

∣∣∣EQnj (F (X)|X < Nj)− EQnj
(
F (X)|X < Ñj

)∣∣∣ = |Nj − Ñj |
Nj −Gnj+1

O(1)

(4.76)

+ ε
Nj

|Nj −Gnj+1
|
O(1)

= ε
Nj

Nj −Gnj+1
O(1) = εO(1),

the first equality on the second line is from condition 3 in the choice of Ñj , and the
second equality there follows from (4.72). Therefore |EQnj (F (X)|X < Nj)− c(F )| =
O(ε), and it then follows from (4.70) that lim supj |E

WNjF (X) − c(F )| = εO(1),
completing the proof.

Acknowledgments. We thank the participants of the 2011, 2012, and 2013
SMALL REU at Williams College for many useful discussions and the referee for
helpful comments on an earlier draft, especially on related work.



ZECKENDORF DECOMPOSITIONS 1331

REFERENCES

[Al] H. Alpert, Differences of multiple Fibonacci numbers, Integers, 9 (2009), pp. 745–
749.

[BBGILMT] O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. J. Miller, and
P. Tosteson, The average gap distribution for generalized Zeckendorf decom-
positions, Fibonacci Quart., 51 (2013), pp. 13–27.

[BAN12] I. Ben-Ari and M. Neumann, Probabilistic approach to Perron root, the group
inverse, and applications, Linear Multilinear Algebra, 60 (2012), pp. 39–63.

[BILMT] A. Bower, R. Insoft, S. Li, S. J. Miller, and P. Tosteson, The distribu-
tion of gaps between summands in generalized Zeckendorf decompositions, J.
Combin. Theory Ser. A, 135 (2015), pp. 130–160.

[BCCSW] E. Burger, D. C. Clyde, C. H. Colbert, G. H. Shin, and Z. Wang, A
generalization of a theorem of Lekkerkerker to Ostrowski’s decomposition of
natural numbers, Acta Arith., 153 (2012), pp. 217–249.

[CHZ] L. H. Y. Chen, H.-K. Hwang, and V. Zacharovas, Distribution of the sum-
of-digits function of random integers: A survey, Probab. Surveys, 11 (2014),
pp. 177–237.

[CFHMN1] M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson, Generaliz-
ing Zeckendorf’s theorem: The Kentucky sequence, Fibonacci Quart., 52, pp.
68–90.

[CFHMN2] M. Catral, P. Ford, P. Harris, S. J. Miller, and D. Nelson, Legal Decom-
positions Arising from Non-positive Linear Recurrences, preprint.

[CFHMNPX] M. Catral, P. Ford, P. E. Harris, S. J. Miller, D. Nelson, Z. Pan, and
H. Xu, New Behavior in Legal Decompositions Arising from Non-positive Lin-
ear Recurrences, preprint.

[Day] D. E. Daykin, Representation of natural numbers as sums of generalized Fibonacci
numbers, J. Lond. Math. Soc., 35 (1960), pp. 143–160.

[DDKMMU] P. Demontigny, T. Do, A. Kulkarni, S. J. Miller, D. Moon, and U.
Varma, Generalizing Zeckendorf’s theorem to f-decompositions, J. Number
Theory, 141 (2014), pp. 136–158.

[DDKMU] P. Demontigny, T. Do, A. Kulkarni, S. J. Miller, and U. Varma, A gen-
eralization of Fibonacci far-difference representations and Gaussian behavior,
Fibonacci Quart., 52 (2014), pp. 247–273.

[DFFHMPP] R. Dorward, P. Ford, E. Fourakis, P. E. Harris, S. J. Miller, E. Palsson,
and H. Paugh, A generalization of Zeckendorf’s theorem via circumscribed
m-gons, Involve, to appear.

[DG] M. Drmota and J. Gajdosik, The distribution of the sum-of-digits function, J.
Théor. Nombrés Bordeaux, 10 (1998), pp. 17–32.

[Du] J.-M. Dumont, Formules sommatoires et systèmes de numération lies aux sub-
stitutions, in Proceedings, Séminaires de Théorie des Nombres, Bordeaux
(1987/88).

[DuTh1] J.-M. Dumont and A. Thomas, Systèmes de numération et fonctions fractales
relatifs aux substitutions, Theoret. Comput. Sci., 65 (1989), pp. 153–169.

[DuTh2] J.-M. Dumont and A. Thomas, Gaussian asymptotic properties of the sum-of-
digits function, J. Number Theory, 62 (1997), pp. 19–38.

[Dur10] R. Durrett, Probability: Theory and Examples, 4th ed., Camb. Ser. Stat. Probab.
Math., Cambridge University Press, Cambridge, UK, 2010.

[FGNPT] P. Filipponi, P. J. Grabner, I. Nemes, A. Pethö, and R. F. Tichy, Corri-
gendum to: “Generalized Zeckendorf expansions,” Appl. Math. Lett., 7 (1994),
pp. 25–26.

[Fra] A. S. Fraenkel, Systems of numeration, Amer. Math. Monthly, 92 (1985),
pp. 105–114.

[GR] P. J. Grabner and M. Rigo, Distribution of additive functions with respect to
numeration systems on regular languages, Theory Comput. Syst., 40 (2007),
pp. 205–223.

[GT] P. J. Grabner and R. F. Tichy, Contributions to digit expansions with respect
to linear recurrences, J. Number Theory, 36 (1990), pp. 160–169.

[GTNP] P. J. Grabner, R. F. Tichy, I. Nemes, and A. Pethö, Generalized Zeckendorf
expansions, Appl. Math. Lett., 7 (1994), pp. 25–28.

[Ha] N. Hamlin, Representing positive integers as a sum of linear recurrence sequences,
in Abstracts of Talks, 14th International Conference on Fibonacci Numbers and
Their Applications, 2010, pp. 2–3.



1332 IDDO BEN-ARI AND STEVEN J. MILLER

[Hog] V. E. Hoggatt, Generalized Zeckendorf theorem, Fibonacci Quart., 10 (1972),
pp. 89–93.

[Hol] M. Hollander, Greedy numeration systems and regularity, Theory Comput. Syst.,
31 (1998), pp. 111–133.

[Ke] T. J. Keller, Generalizations of Zeckendorf’s theorem, Fibonacci Quart., 10
(1972), pp. 95–102.

[LT] M. Lamberger and J. M. Thuswaldner, Distribution properties of digital ex-
pansions arising from linear recurrences, Math. Slovaca, 53 (2003), pp. 1–20.

[LR] P. B. A. Lecomte and M. Rigo, Numeration systems on a regular language,
Theory Comput. Syst., 34 (2001), pp. 27–44.

[Len] T. Lengyel, A counting based proof of the generalized Zeckendorf’s theorem, Fi-
bonacci Quart., 44 (2006), pp. 324–325.

[Lek] C. G. Lekkerkerker, Voorstelling van natuurlyke getallen door een som van
getallen van Fibonacci, Simon Stevin, 29 (1951–1952), pp. 190–195.
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