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ABSTRACT. Benford’s law describes a common phenomenon among many naturally occurring data
sets and distributions in which the leading digits of the data are distributed with the probability of a
first digit of d base B being logB

d+1
d . As it often successfully detects fraud in medical trials, vot-

ing, science and finance, significant effort has been made to understand when and how distributions
exhibit Benford behavior. Most of the previous work has been restricted to cases of independent vari-
ables, and little is known about situations involving dependence. We use copulas to investigate the
Benford behavior of the product of n dependent random variables. We develop a method for approx-
imating the Benford behavior of a product of n dependent random variables modeled by a copula
distribution C and quantify and bound a copula distribution’s distance from Benford behavior. We
then investigate the Benford behavior of various copulas under varying dependence parameters and
number of marginals. Our investigations show that the convergence to Benford behavior seen with
independent random variables as the number of variables in the product increases is not necessarily
preserved when the variables are dependent and modeled by a copula. Furthermore, there is strong
indication that the preservation of Benford behavior of the product of dependent random variables
may be linked more to the structure of the copula than to the Benford behavior of the marginal
distributions.
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1. INTRODUCTION

Benford’s law of digit bias applies to many commonly encountered data sets and distributions.
A set of data {xi}i∈I is said to be Benford base B if the probability of observing a value xi in the
set with the first digit d (where d is any integer from 1 to B − 1) is given by the equation

Prob (first digit of{xi}i∈I is d) base B = logB

(
d+ 1

d

)
. (1.1)

These probabilities monotonically decrease, from base 10 about 30.103% of the time having a
leading digit of 1 to about 4.576% of the time starting with a 9.

Benford’s law was discovered in 1881 by the astronomer-mathematician Simon Newcomb who,
looking at his logarithm table, observed earlier pages were more heavily worn than later pages. As
logarithm tables are organized by leading digit, this led him to conclude that values with leading
digit 1 occurred more commonly than values with higher leading digits. These observations were
mostly forgotten for fifty years, when Benford [Benf] published his work detailing similar biases in
a variety of settings. Since then, the number of fields where Benford behavior is seen has rapidly
grown, including accounting, biology, computer science, economics, mathematics, physics and
psychology to name a few; see [BerH1, BerH2, Mil, Nig1, Rai] for a development of the general
theory and many applications. This prevalence of Benford’s law, particularly in naturally occurring
data sets and common distributions, has allowed it to become a useful tool in detecting fraud. One
notable example of this was its in 2009 to find evidence suggesting the presence of fraud in the
Iranian elections [Batt]; while Benford’s law cannot prove that fraud happened, it is a useful tool
for determining which sets of data are suspicious enough to merit further investigation (which is
of great importance given finite resources); see for example [Nig2, Sing].

To date, most of the work on the subject has involved independent random variables or deter-
ministic processes (see though [B–, IMS] for work on dependencies in partition problems). Our
goal below is to explore dependent random variables through copulas, quantifying the connections
between various relations and Benford behavior.

Copulas are multivariate probability distributions restricted to the unit hypercube by transform-
ing the marginals into uniform random variables via the probability integral transform (see Section
2 for precise statements). The term copulas was first defined by Abe Sklar in 1959, when he
published what is now known as Sklar’s Theorem (see Theorem 2.7), though similar objects were
present in the work of Wassily Hoeffding as early as 1940. Sklar described their purpose as linking
n-dimensional distributions with their one-dimensional margins. See [Nels] for a detailed account
of the presence and evolution of copulas.

Quoting the Encyclopedia of Statistical Sciences, Nelsen [Nels] writes: “Copulas [are] of in-
terest to statisticians for two main reasons: Firstly, as a way of studying scale-free measures of
dependence; and secondly, as a starting point for constructing families of bivariate distributions,
sometimes with a view to simulation.” More specifically, copulas are widely used in application in
fields such as economics and actuarial studies; for example, Kpanzou [Kp] describes applications
in survival analysis and extreme value theory, and Wu [WVS] details the use of Archimedean cop-
ulas in economic modeling and risk management. Thus, as copulas are a convenient and useful
way to model dependent random variables, they are often employed in fields relating to finance and
economics. Since many of these areas are also highly susceptible to fraud, it is worth exploring
connections between copulas and Benford’s law, with the goal to develop data integrity tests.
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Essentially, since so many dependencies may be modeled through copulas, it is natural to ask
when and how often these structures will display Benford behavior. In this paper, we investigate
when data modeled by a copula is close to Benford’s law by developing a method for approximating
Benford behavior. In Section 3, we develop this method for the product of n random variables
whose joint distribution are modeled by the copula C. We then apply this method in Section 4 to
directly investigate Benford behavior for various copulas and dependence parameters. We conclude
that Benford behavior depends heavily on the structure of the copula. Figure 1 shows a small
subset of the results covered in Section 4 that display the changing χ2 values of three different
copulas compared to a Benford distribution as their dependence parameters vary. These three
plots indicate how three different copulas modeling the same marginals may display drastically
different behavior. Furthermore, Figure 2 shows the χ2 values of a copula compared to a Benford
distribution as the number of marginals increases. As we will show, the behavior seen in this plot
indicates that the product of many random variables with dependence modeled by a copula will
not necessarily level-off like products of independent random variables, the log of which we may
expect to become more uniform as the number of variables increases.

FIGURE 1. The y-axes of these three plots represent the approximate values of the
copula PDF of log10XY mod 1 at various values of x ∈ [0, 1], where X and Y are
the marginal distributions. In each case, the marginal distributions are N(0, 1), and
Pareto(1). A Benford variable is equivalent to log10XY mod 1 = 1 at all points,
thus the red line at y = 1 represents the PDF of a Benford variable. We clearly see
that the first two cases are close to Benford at all points. The third case, however, is
highly variable and therefore does not display Benford behavior.
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FIGURE 2. The χ2 values comparing the behavior of the product to a Benford PDF
as the number of marginals increases. We have 8 degrees of freedom and a signifi-
cance level of 0.005, so we reject the hypothesis if the value exceeds 1.3.

The results of this paper extend current techniques for testing Benford’s law to situations where
independence is not guaranteed, allowing analyses like that carried out by Cuff et. al. [CLM] on
the Weibull and Durst et. al. [D–] on the Inverse Gamma distributions to be conducted in the
case of n dependent random variables. In Section 5, we restrict ourselves to n-tuples of random
variables in which at least one is a Benford distribution and develop a concept of distance between
our joint distribution and a Benford distribution, thus developing a concept of distance from a
Benford distribution in order to understand how much deviation from Benford one might expect of
a particular distribution. We then provide an upper bound for this distance using the L1 norm of the
function N(u1, u2, . . . , un) = 1 − ∂nC(u1,u2,...,un)

∂u1∂u2...∂un
. In doing so, we draw an interesting connection

between the distance from a Benford distribution and a copula’s distance from the space of copulas
for which Cuv(u, v) = 1 for all u, v in [0, 1].

2. TERMS AND DEFINITIONS

We abbreviate probability density functions by PDFs and cumulative distribution functions as
CDFs, and assume all CDFs are uniformly or absolutely continuous. All results below are standard;
see the references for proofs.

2.1. General Mathematics and Benford’s Law.

Lemma 2.1 (Barbalat’s Lemma (Lemma 2.1 in [FM])). Let t→ F (t) be a differentiable function
with a finite limit as t→∞. If F ′ is uniformly continuous, then F ′(t)→ 0 as t→∞.

Definition 2.2 (Scientific Notation). Any real number, x, can be written in the form

x = SB(x) ·Bn, (2.1)

where n is an integer. We call B the base and SB(x) the significand.

We define strong Benford’s law base B (see, for example, [BerH2, Mil]). This is the definition
we primarily use in Section 3; strong indicates that we are studying the entire significand of the
number and not just its first digit. In Section 5, we will provide insight into how one may define
a weaker version of Benford’s law that permits the probabilities to be within ε of the theoretical
Benford probabilities.
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Definition 2.3 (Strong Benford’s Law (see Definition 1.6.1 of [Mil])). A data set satisfies the
Strong Benford’s Law Base B if the probability of observing a leading digit of at most s in base B
is logB s.

Theorem 2.4 (Absorptive Property of Benford’s Law (see page 56 of [Tao]).). Let X and Y be
independent random variables. If X obeys Benford’s law, then the product W = XY obeys
Benford’s law regardless of whether or not Y obeys Benford’s law.

2.2. Copulas. All theorems and definitions in this section are from Nelsen [Nels] unless otherwise
stated.

Remark 2.5. In [Nels], functions are defined on the extended real line, [−∞,∞]; thus f(t) is
defined when t = ±∞. We use this notation in order to maintain consistency with [Nels], as this
is one of the central texts in copula theory.

Definition 2.6 (n-Dimensional Copula). An n-dimensional copula, C, is a function satisfying the
following properties:

(1) the domain of C is [0, 1]n,

(2) (n-increasing) the nth-order difference of C is greater than or equal to zero,

(3) (grounded) C(u1, u2, . . . , un) = 0 if uk = 0 for at least one k in {1, 2, . . . , n}, and

(4) C(1, 1, . . . , 1, uk, 1, , . . . , 1) = uk for some k in {1, 2, . . . , n}.

Theorem 2.7 (Sklar’s Theorm (Theorem 2.10.9 in [Nels])). Let H be a n-dimensional distribution
function with marginal CDFs F1, F2, . . . , Fn. Then there exists a n-copula C such that for all
(x1, x2, . . . , xn) in [−∞,∞]n,

H(x1, x2, . . . , xn) = C(F1(x1), f2(x2), . . . , Fn(xn)). (2.2)

If all Fi are continuous, then C is unique; otherwise, C is uniquely determined on Range(F1) ×
Range(F2) × · · · × Range(Fn). Conversely, if C is a copula and F1, F2, . . . , Fn are cumulative
distribution functions, then the function H defined by (2.2) is a distribution function with marginal
cumulative distribution functions F1, F2, . . . , Fn.

Theorem 2.8 (Extension of Theorem 2.4.2 in [Nels]). Let X1, X2, . . . , Xn be continuous ran-
dom variables. Then they are independent if and only if their copula, CX1,X2,...,Xn , is given by
CX1,X2,...,Xn(x1, x2, . . . , xn) = Π(x1, x2, . . . , xn) = x1x2 · · · xn), where Π is called the product
copula.

Theorem 2.9 (Extension of Theorem 2.4.3 in [Nels]). Let X1, X2, . . . , Xn be continuous ran-
dom variables with copula CX1,X2...Xn . If a1, a2, . . . , an are strictly increasing on Range(X1),
Range(X2), . . . , Range(Xn), respectively, thenCa1(X1),a2(X2)...an(Xn) = CX1,X2...Xn . ThusCX1,X2...Xn

is invariant under strictly increasing transformations of X1, X2, . . . , Xn.

Remark 2.10. For the following three definitions, see [Nels] page 116 for the 2-copula formulas
and page 151 for the n-copula extension.
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Definition 2.11 (Clayton Family of Copulas). A (n-dimensional) copula in the Clayton family is
given by the equation

C(u1, u2, . . . , un) = max {u−α1 + u−α2 + · · ·+ u−αn + n− 1, 0}, (2.3)

where α ∈ [−1,∞) \ {0} is a parameter related to dependence with α = 0 as the independence
case.

Definition 2.12 (Ali-Mikhail-Haq Family of Copulas). A (n-dimensional) copula in the Ali-Mikhail-
Haq family is given by the equation

C(u1, u2, . . . , un) =
(1− α)

(
∏n

i=1
1−α(1−ui)

ui
)− α

, (2.4)

where α ∈ [−1, 1) is a parameter related to dependence with α = 0 as the independence case.

Definition 2.13 (Gumbel-Barnett Family of Copulas). A (n-dimensional) copula in the Gumbel-
Barnett family is given by the equation

C(u1, u2, . . . , un) = exp
1 + (α log u1 − 1)(α log u2 − 1) · · · (α log un − 1)

α
, (2.5)

where α ∈ (0, 1] is a parameter related to dependence with α = 0 as the independence case.

3. TESTING FOR BENFORD BEHAVIOR OF A PRODUCT

We state the results below in arbitrary dimensions but for notational convenience give the proofs
for just two dimensions (as the generalization is straightforward).

Let X1, X2, . . . , Xn be continuous random variables with CDFs FX1(x1), . . . , FXn(xn). Let
their joint PDF beHX1,X2,...,Xn(X1, X2, . . . , Xn). By Theorem (2.7), we know there exists a copula
C such that

HX1,X2,...,Xn(X1, X2, . . . , Xn) = C(FX1(X1), . . . , FXn(Xn)). (3.1)

Assume X1, . . . , Xn are such that their copula C is absolutely continuous. This allows us to define
the joint probability density function (see [Nels], page 27) by ∂nC

∂x1∂x2···∂xn . Furthermore, we restrict
ourselves to Xi such that all FXi

are uniformly continuous, as this allows us to use Lemma (2.1)
to later ensure that the PDFs approach zero in their right and left end limits.

From here we have the following lemma.

Lemma 3.1. Given X1, X2, . . . , Xn continuous random variables with joint distribution modeled
by the absolutely continuous copula C, let Ui = logBXi for all i ≤ n and for some base B,
and let the CDFs of each Ui be Fi(ui). Also, let fi(ui) be the PDF of Ui for all i. Finally, let
u0 = (u1, u2, . . . , un−1, s+ k − (u1 + u2 + · · ·+ un−1)). Then

Prob

(
(
n∑
i=1

Ui)mod1 ≤ s

)
=

∫ s

0

∞∑
k=−∞

∫ ∞
u1=−∞

· · ·
∫ ∞
un−1=−∞

∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1∂u2 · · · ∂un

∣∣∣
u0

du1 · · · dun−1. (3.2)



BENFORD’S LAW BEYOND INDEPENDENCE: TRACKING BENFORD BEHAVIOR IN COPULA MODELS 7

Therefore, the PDF of (U + V )mod1 is given by
∞∑

k=−∞

∫ ∞
u1=−∞

· · ·
∫ ∞
un−1=−∞

∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1∂u2 · · · ∂un

∣∣∣
u0

du1 · · · dun−1. (3.3)

See Appendix A for the proof.

If (3.3) equals 1 for all s, then our product is Benford. If it is not identically equal to 1 for
all s, then at each point we may assign a value εs that represents our distance from a Benford
distribution. Thus we have

εs =

∣∣∣∣∣1 −
∞∑

k=−∞

∫ ∞
u1=−∞

· · ·
∫ ∞
un−1=−∞

∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1∂u2 · · · ∂un

∣∣∣
u0

du1 · · · dun−1

∣∣∣∣∣ .
(3.4)

This formulation will form the basis of Section 5.
Unfortunately, the infinite sum and improper integral in (3.3) makes it highly impractical to use

in application unless we can determine a method to closely approximate it by a finite sum and finite
integral. We note that (3.3) is a PDF, and so is ∂nC

∂x1∂x2···∂xn , so we have the following properties
(for notational convenience we state them in the two-dimensional case; similar results hold for
n-dimensions).

(1)
∫ 1

0

(∑∞
k=−∞

∫∞
−∞Cu1u2(F1(u1), F2(s+ k − u1))f1(u1)f2(s+ k − u1)du1

)
ds = 1.

(2)
∑∞

k=−∞
∫∞
−∞Cu1u2(F1(u1), F2(s+ k − u1))f1(u1)f2(s+ k − u1)du1 ≥ 0 for all s.

(3)
∫∞
−∞Cu1u2(F1(u1), F2(s+ k − u1))f1(u1)f2(s+ k − u1)du1 → 0 as k → ±∞.

(4) Cu1u2(F1(u1), F2(s+ k − u1))f1(u1)f2(s+ k − u1)→ 0 as u1 → ±∞.
Property (1) is simply the definition of a PDF, and Property (2) is a direct result of the fact that a

PDF is always positive. Properties 3 and 4 are required, under Lemma 2.1, by the convergence of
the integral in Property (1) and by the convergence of the sum.

From Properties (3) and (4) and the definition of convergence we obtain the following.

Lemma 3.2 (Approximating the PDF). Given U1, . . . , Un continuous random variables modeled
by the copulaC with marginal CDFsF1, . . . , Fn and PDFs f1, . . . , fn, then there exist a1, . . . , an−1,
b1, . . . , bn−1, and c1 and c2 completely dependent on the Fi such that ai < bi for all i and c1 < c2
and
∞∑

k=−∞

∫ ∞
u1=−∞

· · ·
∫ ∞
un−1=−∞

∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1∂u2 · · · ∂un

∣∣∣
u0

du1 · · · dun−1

=

c2∑
k=c1

∫ b1

u1=a1

· · ·
∫ bn−1

un−1=an−1

∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1∂u2 · · · ∂un

∣∣∣
u0

du1 · · · dun−1 + Ea,b,c(s)

(3.5)

where Ea,b,c(s)→ 0 as each ai and c1 go to −∞ and each bi and c2 go to∞. Thus, for any ε > 0,
there exists (for each i) |ai|, |bi|, |c1|, and |c2| large enough such that |Ea,b,c(s)| ≤ ε.
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The proof of this claim can be found in Appendix A.
Because s only ranges from 0 to 1, we can always find a value of s that maximizes Ea,b,c for any

given set of a, b, and c and set this to be the maximum error. Furthermore, since all fi should have
similar tail-end behavior, we do not have to worry about the divergence of one canceling out the
divergence of the other. Thus, for this analysis to work, it is sufficient to understand the tail-end
behavior of only one of the marginals.

In Appendix B, we provide several examples of this method for testing for Benford behavior
computationally with two variables.

4. TESTING FOR BENFORD BEHAVIOR: EXAMPLES

Now that an effective method for testing the Benford behavior of copulas has been established,
we investigate how this behavior varies for specific copulas and marginals. In all χ2 tests, we have
11 degrees of freedom and a significance level of 0.005, so we reject the hypothesis if the value
exceeds 2.6. Our main interest, however, is to observe the how and if these values trend towards
this critical value.

4.1. 2-Copulas with varying dependence parameter. The following figures display the non-
error values of (3.5) at various values of s for three different copulas. The red line in each plot
indicates the constant function y = 1 which will be achieved if the productXY is exactly Benford.
For each copula, we test three different pairings of marginals: (A) X 10N(0,1) and Y 10Exp(1),
(B) X 10Pareto(1) and Y 10N(0,1), and (C) X 10Pareto(1) and Y 10Exp(1). In each case, we vary
the dependence parameter, α and compare the results to the case of independence. Our Pareto
distribution has scale parameter xm = 1 and shape parameter αp = 2. We note that in some cases
the axes must be adjusted to be able to show any change in the Benford behavior.

4.1.1. Ali-Mikhail-Haq Copula: Considering the independence case, α = 0, in Figure 3 we note
that marginal pairings (A) and (B) have an approximately Benford product when independent.
Pairing (C), however, does not. From these plots, it is evident that the Ali-Mikhail-Haq copula
displays notably consistent Benford behavior, as each plot remains very close to the independence
case as α moves over its full range. This is reinforced by the corresponding plots in Figure 4,
which display the χ2 values of each marginal pairing for each value of alpha. We point out that
although each plot indicates a general trend away from Benford behavior (the constant function
1), the values for pairing (A) are all smaller than 10−7, making them effectively 0. Similarly, the
values for pairing (B) appear to increase linearly, but they are all of order of 10−6. The values for
pairing B vary from order 10−2 to order 10−1, suggesting that the behavior is both significantly
less Benford and more variable than the other two pairings.
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FIGURE 3. The Ali-Mikhail-Haq 2-copula (see Definition 2.12) modeled on three
different sets of marginals with varying dependence parameter α ∈ [−1, 1). The
y-axes of these plots represent the approximate values of the copula PDF of
log10XY mod 1 at various values of x ∈ [0, 1], where X and Y are the marginal
distributions. The red line represents the Benford distribution.

FIGURE 4. The χ2 values associated to the the preceding sets of plots for the Ali-
Mihkail-Haq copula. Each shows the comparison to Benford behavior as α in-
creases. We have 11 degrees of freedom and a significance level of 0.005, so we
reject the hypothesis if the value exceeds 2.6. Clearly, only case (C) comes close
to rejecting the hypothesis.

4.1.2. Gumbel-Barnett Copula: These plots suggest that the Gumbel-Barnett copula undergoes
even less change over α than the Ali-Mikhail-Haq copula. For pairings (A) and (B), the range for
the plots must be restricted to [0.9999, 1.0001] and [0.995, 1.010], respectively, in order to show
any change at all. Pairing (C) is not nearly Benford, so its range is expected to vary (recall that the
function described by each plot should integrate to 1 in the continuous case). We note, however,
that the value at s = 0 in pairing (C) appears to vary over a range of 0.1 as α increases. The χ2

plots in Figure 6 reinforce this interpretation, as in each case the values vary over a significantly
small range.
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This lack of variation is likely due to the actual formula of the copula,

C(x, y) = xye−αxy (4.1)

In this case, we have the independence copula, C(x, y) = xy multiplied by a monotonic transfor-
mation of the independence copula, e−axy. Thus, it is possible that one or both of these elements
serves to preserve the Benford properties of the marginals.

FIGURE 5. The Gumbel-Barnett 2-copula (see Definition 2.13) modeled on three
different sets of marginals with varying dependence parameter α ∈ (0, 1]. The
y-axes of these plots represent the approximate values of the copula PDF of
log10XY mod 1 at various values of x ∈ [0, 1], where X and Y are the marginal
distributions. The red line represents the Benford distribution.
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FIGURE 6. The χ2 values associated to the the preceding sets of plots for the
Gumbel-Barnett copula. Each shows the comparison to Benford behavior as α in-
creases. We have 11 degrees of freedom and a significance level of 0.005, so we
reject the hypothesis if the value exceeds 2.6. Despite the apparent variation, none
of these cases approach the critical value.

4.1.3. Clayton Copula: Unlike the previous two examples, the Clayton copula shows notable vari-
ance over α. Although it is not shown here, the independence case for Clayton copulas is α = 0.
For pairings (A) and (B), it appears that the plots diverge farther and farther away from y = 1 as α
moves away from 0. For pairing (C), the plots appear to get more random as α grows, and there is
no suggestion that Benford behavior may develop as we depart from independence. Furthermore,
the plots in Figure 8 show χ2 values that are significantly higher than those seen for the previous
two copulas, suggesting that the dependence imposed by Clayton copula tends to heavily alter any
Benford behavior of the marginals.
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FIGURE 7. The Gumbel-Barnett 2-copula (see Definition 2.13) modeled on three
different sets of marginals with varying dependence parameter α ∈ (0, 1]. The
y-axes of these plots represent the approximate values of the copula PDF of
log10XY mod 1 at various values of x ∈ [0, 1], where X and Y are the marginal
distributions. The red line represents the Benford distribution.

FIGURE 8. The χ2 values associated to the the preceding sets of plots for the Clay-
ton copula. Each shows the comparison to Benford behavior as α increases. We
have 11 degrees of freedom and a significance level of 0.005, so we reject the hy-
pothesis if the value exceeds 2.6. Unlike the previous two copulas, only case (B)
stays below the critical value. However, the behavior of the plot suggests it will
quickly surpass the critical value as α continues to increase.

The results from these three copulas suggest that the preservation of Benford behavior re-
lies more heavily on the underlying structure of the copula than on the Benford behavior of the
marginals. Both the Ali-Mikhail-Haq copula and the Gumbel-Barnett copula formulas contain the
independence copula, C(x, y) = xy. The Clayton copula, however, does not contain the indepen-
dence copula and is also the only copula of the three to show noticeable variation as the dependence
parameter changes.
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4.2. n-Copulas. The previous results suggest that the underlying copula structure has a strong in-
fluence on the Benford behavior of 2-copulas. Thus the logical next step is to investigate whether
this holds true as we increase the number of Marginals. For all χ2 tests, we have 8 degrees of free-
dom and again take a significance level of 0.005. In practice, this means we reject the hypothesis
if the value exceeds 1.3.

We consider the most stable of the three previous copulas, the Gumbel-Barnett copula. We
fix α = 0.1 and set the log, base 10, of all marginals to be identically distributed according to the
Normal distribution with mean 0 and variance 1, our most Benford-like marginal. We then consider
cases where the copula has 2 to 7 marginals. We can see from Figure (9) that the Benford behavior
of the Gumbel-Barnett copula begins to fall apart as marginals are added. This is in direct contrast
to what would be expected from a central-limit type property, which should become increasingly
more uniform as variables are added. This is further reinforced by the χ2 values in Figure 10
and suggests that the dependence structure imposed by the copula prevents any leveling-off from
happening.

FIGURE 9. Gumbel-Barnett copula with two to seven marginals
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FIGURE 10. The χ2 values comparing the behavior of the product to a Benford
PDF as the number of marginals increases. We have 8 degrees of freedom and a
significance level of 0.005, so we reject the hypothesis if the value exceeds 1.3.

5. BENFORD DISTANCE

Now that we know that we can test for Benford behavior of a product, regardless of dependence,
it would be prudent to know how often this behavior is expected to show up. In order to do this,
we investigate if the absorptive property of Benford products is common in dependent random
variables, or if its presence relies on some sort of proximity to independence.

To get an idea of this, let W be the space of all n-tuples of continuous random variables
(X1, X2, . . . , Xn) for which at least one is Benford. Now let us assume that our set of marginals,
(X1, X2, . . . , Xn), form an element in W . Then we know that their product, assuming indepen-
dence, will always be Benford.

From this, we can restrict our Benford distance, (3.4), toW and define it as

εs,W =∣∣∣∣∣
∞∑

k=−∞

∫ ∞
u1=−∞

· · ·
∫ ∞
un−1=−∞

(
1 − ∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1∂u2 · · · ∂un

∣∣∣
u0

du1du2 · · · dun−1
) ∣∣∣∣∣ ,
(5.1)

where u0 is defined as in Lemma 3.1. Therefore, our problem becomes to minimize the value of
εs,W = 0, as a proximity to 0 should indicate proximity to a Benford distribution.

5.1. Cases that are ε away from Benford. Rather than directly calculating the value of εs,W , it
may often be more convenient to provide a bound that depends only on the copula C. Note that if
the value of ∂nC(F1(u1),...,Fn−1(un−1),Fn(un))

∂u1tialu2···∂un is identically 1 for all values of (u1, u2, . . . , un), then the
value of εs,W will be identically 0 and our product will be Benford. Even though this case does not
cover all situations in which our product will be Benford, it suggests that a product’s distance from
Benford may be related to the distance between the function ∂nC(F1(u1),...,Fn−1(un−1),Fn(un))

∂u1∂u2···∂un and the
constant function, 1. This brings us to the main result of this section.

Theorem 5.1. LetX1, X2, . . . , Xn be continuous random variables where (X1, X2, . . . , Xn) ∈ W .
Assume also that they are jointly described by a copula C, where the function N(u1, u2, . . . , un) =

1− ∂nC(F1(u1),...,Fn−1(un−1),Fn(un))
∂u1∂u2···∂un is in L1(Rn). Let Ui = logBXi for each i and some base, B, and
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let Fi be the CDFs of Ui for each i. Then the L1 distance from Benford, defined by∫ 1

0

∣∣∣∣∣
∞∑

k=−∞

∫ ∞
u1=−∞

· · ·
∫ ∞
un−1=−∞

(
1 − ∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1tialu2 · · · ∂un

∣∣∣
u0

)
du1 · · · dun−1

∣∣∣∣∣ ds
(5.2)

is bounded above by the L1 norm of N . In other words∫ 1

0

∣∣∣∣∣
∞∑

k=−∞

∫ ∞
u1=−∞

· · ·
∫ ∞
un−1=−∞

(
1 − ∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1tialu2 · · · ∂un

∣∣∣
u0

)
du1 · · · dun−1

∣∣∣∣∣ ds
≤ ‖1 − ∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1∂u2 · · · ∂un
‖L1 . (5.3)

We prove this for the two-dimensional case, as the results in n-dimensions proceed similarly.
We need the following result (see Appendix A for a proof).

Lemma 5.2. Given Cuv, F (u), and G(v) as defined before, we have

‖1− Cuv(u, v)‖L1 =

∫ ∞
−∞

∫ ∞
−∞

f(u)g(v)|1− Cuv(F (u), G(v))|dudv. (5.4)

Proof of Theorem 5.1. From the positivity of f and g we have∫ 1

0

∣∣∣∣∣
∞∑

k=−∞

∫ ∞
−∞

f(u)g(s+ k − u)(1 − Cuv(F (u), G(s+ k − u)))du

∣∣∣∣∣ ds
≤
∫ 1

0

∞∑
k=−∞

∫ ∞
−∞

f(u)g(s+ k − u)|1 − Cuv(F (u), G(s+ k − u))|du ds. (5.5)

We investigate exactly what region (5.5) covers. The lines shown in Figure 11 are the sets
Ak = {(u, v) : v = s + k − u}. We integrate f(u)g(s + k − u)(1 − Cuv(F (u), G(s + k − u)))
along each of these lines and sum the results over k. The shaded region shows the area covered
when A2 is integrated over s from 0 to 1.

As all of our sums and integrals converge absolutely, by Fubini’s theorem we may switch our
sum and integral in (5.5) and get∫ 1

0

∞∑
k=−∞

∫ ∞
−∞

f(u)g(s+ k − u)|1 − Cuv(F (u), G(s+ k − u))|du ds

=
∞∑

k=−∞

∫ 1

0

∫ ∞
−∞

f(u)g(s+ k − u)|1 − Cuv(F (u), G(s+ k − u))|du ds. (5.6)

From this, we can quickly see that for any k,∫ 1

0

∫ ∞
−∞

f(u)g(s+ k − u)|1 − Cuv(F (u), G(s+ k − u))|du ds (5.7)

is the integral of f(u)g(s + k − u)|1 − Cuv(F (u), G(s + k − u))| over a region in between and
including Ak and Ak+1, just like the shaded region in Figure 11. Therefore, (5.6) is the sum of the
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FIGURE 11. The plane broken up into a few of the sections Ak.

integrals of f(u)g(s + k − u)|1 − Cuv(F (u), G(s + k − u))| over all of these (disjoint) regions
(over all k), which is equivalent to integrating over all of R2, giving us∫ ∞

−∞

∫ ∞
−∞

f(u)g(v)|1 − Cuv(F (u), G(v))|dudv. (5.8)

Finally, we know from Lemma 5.2, we know that this is equal to ‖1− Cuv(u, v)‖L1 . �

5.2. Consequences of an L1 bound in R2. What Theorem 5.1 provides is a way to understand the
behavior of our probabilities. To see this, let S ⊂ [0, 1] be the region over which εs,W > εN . If εs,W
is large on S, then the measure of S must be small in order to conform to (5.3), which requires that
if ‖1 − Cuv(u, v)‖L1 ≤ εN , then

∫ 1

0
εs,Wds ≤ εN as well. In fact, the following corollary proves

that Theorem 5.1 provides useful information regarding how large |S| can be.

Corollary 5.3. Let S ⊂ [0, 1] be the set {s : εs,W ≥ ε}. Then

|S| ≤ ‖1− Cuv(u, v)‖L1

ε
. (5.9)

Proof. This result comes directly from Markov’s Inequality:

|{s : εs,W ≥ ε}| ≤ 1

ε

∫ 1

0

εs,W ≤
‖1− Cuv(u, v)‖L1

ε
. (5.10)

�

6. APPLICATIONS, FUTURE WORK, AND CONCLUSION

6.1. Fitting Copulas. The results of Section 3 allow us to determine the Benford behavior of the
product n distributions jointly modeled by a specific copula. However, we may wish to go in the
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other direction and, instead, find a copula that best fits n correlated data sets. Statisticians have
several methods for testing the goodness-of-fit to find the best choice of copula in these situations
(see [GQR] for some examples and an analysis of several forms of goodness-of-fit tests), but it is
not known whether or not these goodness-of-fit tests take Benford behavior into account. That is
to say, will the prescribed copula mimic the Benford behavior observed in the data?

The results Section 4 have shown us that the product of the same set of marginals will not
display the same Benford behavior when modeled by different copulas. Thus, Benford behavior
is not guaranteed. A natural next step is to investigate how the goodness-of-fit of a copula may or
may not be correlated with how well it preserves the expected Benford behavior of the product of
two or more marginals. A comparison between the L1 norm and well-known goodness of fit tests
would enable us to see whether or not a strong Benford fit corresponds to a well-fit distribution as
a whole. Furthermore, if a stronger Benford fit may be shown to correspond to a smaller L1 bound,
then we may be able to define this bound as a new goodness of fit test for distributions with one or
more Benford marginals.

6.2. Conclusion. In fields such as actuarial sciences and statistics Benford’s law is useful for
fraud detection. Furthermore, copulas are a highly effective tool for modelling systems with de-
pendencies. In Section 3 we demonstrated that Benford behavior for dependent variables modeled
by a copula may be detected and therefore analyzed to investigate the product of the variables.
Thus these results indicate that the Benford’s law methods used by professionals on single-variate,
and/or independent data sets are now at the disposal of individuals who wish to model dependent
data via a copula. We then applied these results in Section 4 where we observed that the preser-
vation of Benford behavior appears to rely more heavily on the structure of the copula than on the
marginals.

Essentially, the results of Section 3 permit analyses like those carried out in [CLM] and [D–] in
which a known distribution, in these cases the Weibull distribution and the inverse-gamma distri-
bution, is analyzed to determine the conditions under which Benford behavior should arise. Once
these conditions are established, any non-Benford data set which is expected to come from such a
distribution may be considered suspicious enough to warrant a fraud investigation. In the case of
copulas, the results of Section 3 allow one to conduct this exact method of analysis on the product
of n random variables jointly modeled by a copula C.

Finally, in Section 5 we encountered a useful consequence of of considering a distribution’s L1

distance from a Benford distribution to determine a useful bound for this Benford distance. We
determined that the Benford distance of a product of n random variables will always be bounded
above by the distance between the copula PDF and the class of copulas whose PDFs are identically
1.

APPENDIX A. PROOFS FOR SUPPORTING LEMMAS AND THEOREMS

Proof of Lemma 3.1.
Given X and Y continuous random variables with joint distribution modeled by the absolutely

continuous copula C, Let U = logBX and V = logB Y , for some base, B, and let the (marginal)
CDFs of U and V be F (u) and G(v), respectively. Also, let f(u) and g(v) be the PDFs of U and
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V , respectively. Then

Prob ((U + V ) mod 1 ≤ s)

=

∫ s

0

(
∞∑

k=−∞

∫ ∞
−∞

Cuv(F (u), G(s+ k − u))f(u)g(s+ k − u)du

)
. (A.1)

Therefore, the PDF of (U + V ) mod 1 is given by
∞∑

k=−∞

∫ ∞
−∞

Cuv(F (u), G(s+ k − u))f(u)g(s+ k − u)du. (A.2)

Proof. By the invariance of copulas under monotonically increasing functions (Theorem 2.9), we
know that the joint CDF of U and V is given by the same copula as X and Y . Thus, the joint CDF
of U and V is given by

C(F (U), G(V )). (A.3)

Then, by definition, the joint PDF of U and V is given by the mixed partial derivative.

∂

∂v

∂

∂u
C(F (u), G(v)) = Cuv(F (u), G(v))f(u)g(v) + Cu(F (u), G(v))

∂

∂v
f(u)

= Cuv(F (u), G(v))f(u)g(v). (A.4)

Note that we assume that du
dv

= 0 since all dependence between U and V is modeled by C.
Note, also, that Prob (XY ≤ 10s) = Prob ((U + V ) ≤ s). Thus we have

Prob ((U + V ) mod 1 ≤ s)

=
∞∑

k=−∞

∫ ∞
u=−∞

∫ s+k−u

v=k−u
Cuv(F (u), G(v))f(u)g(v)dvdu. (A.5)

If XY is Benford, then (A.5) will equal s for all s. It is, however, easier to test the PDF then the
CDF. So we differentiate with respect to s. LetC1(u, v) be the antiderivative ofCuv(F (u), G(v))f(u)g(v)
with respect to v. Then

∂

∂s

∞∑
k=−∞

∫ ∞
u=−∞

∫ s+k−u

v=k−u
Cuv(F (u), G(v))f(u)g(v)dvdu

=
∂

∂s

∞∑
k=−∞

(

∫ ∞
u=−∞

(C1(u, s+ k − u)− C1(u, k − u))du

=
∞∑

k=−∞

∫ ∞
−∞

Cuv(F (u), G(s+ k − u))f(u)g(s+ k − u)du. (A.6)

�

Proof of Lemma 3.2.
Given U and V , continuous random variables modeled by the copula C with marginals F and

G, respectively, there exist a1, a2, b1, and b2 completely dependent on F or G such that a1 < a2
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and b1 < b2, and
∞∑

k=−∞

∫ ∞
−∞

Cuv(F (u), G(s+ k − u))f(u)g(s+ k − u)du

=

b2∑
k=b1

∫ a2

a1

Cuv(F (u), G(s+ k − u))f(u)g(s+ k − u)du + Ea,b(s) (A.7)

where Ea,b(s) → 0 as a1, b1 → −∞ and a2, b2 → ∞. Thus, for any ε > 0, there exists |a1|, |a2|,
|b1|, and |b2| large enough such that |Ea,b(s)| ≤ ε.

Proof. Since both the sum and the integral are convergent, the proof for a1, a2 and b1, b2 are nearly
identical, so we only provide the work here for a1 and a2. The same steps may be used in the proof
for b1 and b2. We also know that Cuv(F (u), G(s+ k−u))f(u)g(s+ k−u) must go to 0 as u goes
to ±∞ because of this convergence. Thus we choose to prove the case where f and/or g converge
faster than Cuv. If Cuv were to converge faster, the results derived here would still suffice. We
prove that for any ε > 0 we can find a1 and a2 such that, for all u ≤ a1 and all u ≥ a2, we have

|Cuv(F (u), G(s+ k − u))f(u)g(s+ k − u)| ≤ ε.

Let ε > 0, set s and k to be constant, and assume Cuv is nonzero everywhere. If Cuv is zero
at any point, then we have a trivial case. Because F and G are CDFs, we know that f → 0 as
u → ±∞ and g → 0 as −u → ±∞, thus, we may choose af1, af2, ag1, and ag2 such that, for all
u ≤ af1 and all u ≥ af2, we have

f(u) ≤
√

ε

Cuv(F (u)G(s+ k − u))
. (A.8)

The same can be done for g such that, for all u ≥ ag1 and all u ≤ ag2, we have

g(s+ k − u) ≤
√

ε

Cuv(F (u)G(s+ k − u))
. (A.9)

Thus, we let a1 = min{af1, ag1} and a2 = max{af2, ag2}. then we have, for all u ≤ a1 and all
u ≥ a2, we have

|Cuv(F (u), G(s+ k − u))f(u)g(s+ k − u)| ≤ ε.

�

Proof of Lemma 5.2.
Given Cuv, F (u), and G(v) as defined in Theorem 5.1, we have

‖1− Cuv(u, v)‖L1 =

∫ ∞
−∞

∫ ∞
−∞

f(u)g(v)|1− Cuv(F (u), G(v))|dudv. (A.10)

Proof. We know that u and v are defined on [0, 1]. Thus,

‖1− Cuv(u, v)‖L1 =

∫ 1

0

∫ 1

0

|1− Cuv(u, v)|dudv. (A.11)
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However, by a simple change of variables u → F (u), v → G(v) (defended as CDFs, just like
before, so their derivatives are f(u) and g(v), both of which are greater than or equal to 0), we get

‖1− Cuv(u, v)‖L1 =

∫ ∞
−∞

∫ ∞
−∞

f(u)g(v)|1− Cuv(F (u), G(v))|dudv. (A.12)

�

APPENDIX B. COMPUTATIONALLY TESTING FOR BENFORD BEHAVIOR: EXAMPLES

In this section, we use Clayton copulas (see Definition 2.11) to determine the Benford behavior
of different combinations of marginals. We specifically look at marginals of the form X = 10U

and Y = 10V , where U and V are N[0, 1] or Exp[1]. In all analyses, we let α = 2 and B = 10. We
also provide the independence case for each set of marginals to allow for comparison.

Case 1: U and V ∼ N [0, 1].
Given our definition of X and Y , (3.3) we first determine acceptable values for a1, b1, a2. and

b2 by using an error analysis to test whether or not −10 and 10 should be acceptable values for a1
and a2.

We generated a list of the error caused by truncating the integral at these values for various
values of s. The first value of each triple in the list is s. The second is the lower error and the
third is the upper error. To determine the error caused by truncating the integral, we used the
approximation method detailed in Section 3. As the list shows, the error is on the order of 10−22

or smaller, indicating that our selections for a1 and a2 are good bounds. We took the sum from
k = −20 to k = 20 because we know this will be sufficient, as indicated by the convergence in
Figure (12) below.
In[262]:= errorsb =
Table[{N[Log[10, s]], ea[Log[10, s]], eb[Log[10, s]]}, {s, 1, 9}]

Out[262]= {{0., 6.86784*10^-22, 1.28213*10^-22}, {0.30103,
9.38169*10^-24, 1.28257*10^-22}, {0.477121, 3.03058*10^-25,
1.28274*10^-22}, {0.60206, 2.74232*10^-26,
1.28266*10^-22}, {0.69897, 4.3443*10^-27,
1.28249*10^-22}, {0.778151, 9.77379*10^-28,
1.28234*10^-22}, {0.845098, 2.79567*10^-28,
1.28223*10^-22}, {0.90309, 9.52164*10^-29,
1.28216*10^-22}, {0.954243, 3.70245*10^-29, 1.28213*10^-22}}

We now plot in Figure (12) the value of our truncated form of our PDF for different values of s.
The line y = 1 is included to demonstrate how close to 1 our PDF is for all values of s, suggesting
that the product of X and Y , with joint PDF modeled by a Clayton copula with α = 2 should
display Benford behavior.
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FIGURE 12. U ∼ N[0, 1], V ∼ N[0, 1]

Case 2: U ∼ N [0, 1] and V ∼ Exp[1].
A similar analysis as before was conducted on this new set of variables. Through an identical

analysis, we defined the bounds for our integral to be a = −5 and b = 10, and provide the
accumulated errors in the code below where the first term in each pair is s and the second and third
are the lower and upper errors, respectively. As we can see, the errors are still very very small.
In[419]:= Table[{N[Log[10, s]], ea2[Log[10, s]], eb2[Log[10, s]]},

{s, 1, 9}]

Out[419]= {{0., 3.30411*10^-21, 1.23628*10^-22}, {0.30103,
2.43577*10^-21, 1.27151*10^-22}, {0.477121, 2.03887*10^-21,
1.31758*10^-22}, {0.60206, 1.79746*10^-21,
1.32924*10^-22}, {0.69897, 1.63021*10^-21,
1.32387*10^-22}, {0.778151, 1.50526*10^-21,
1.31045*10^-22}, {0.845098, 1.40717*10^-21,
1.2933*10^-22}, {0.90309, 1.32741*10^-21,
1.27456*10^-22}, {0.954243, 1.26084*10^-21, 1.25536*10^-22}}

We now plot in Figure (13) the value of our truncated form of our PDF for various s. We again
note how close the PDF remains to 1 for all values of s, suggesting that the product of X and Y ,
with joint PDF modeled by a Clayton copula with α = 2 should display Benford behavior.
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FIGURE 13. U ∼ N [0, 1], V ∼ Exp[1]

As before, this is backed up by the following simulation.
Simulation 2

Case 3: U ∼ Exp[, 1] and V ∼ Exp[1].
Finally, we conduct our analysis on the case of two exponentials. Our error terms for a = 25 are

generated in the code below (By inspection, we can tell that Cuv(F (u), G(s + k − u))f(u)g(s +
k− u) will be zero for negative values of u). Again we choose k from 0 to 50, and the first term in
each pair is s.
In[363]:= Table[{N[Log[10, s]], N[eb1[Log[10, s]]]}, {s, 1, 9}]

Out[363]= {{0., 5.57839*10^-11}, {0.30103, 5.73736*10^-11}, {0.477121,
5.94524*10^-11}, {0.60206, 5.99786*10^-11}, {0.69897,
5.97362*10^-11}, {0.778151, 5.91306*10^-11}, {0.845098,
5.83566*10^-11}, {0.90309, 5.75112*10^-11}, {0.954243,
5.66447*10^-11}}

Now that we know a = 25 provides a small enough error, we plot, once again, the PDF for
various values of s, as shown in Figure (14). We quickly see that the PDF does not converge to 1
and actually changes for each value of s. Even though we only take our sum out to k = ±50, this
is enough to suggest that Benford behavior is unlikely.
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FIGURE 14. U and V ∼ Exp[1]

Checking the Marginals
To understand why this might be the case, we took a look at the marginal distributions. We note

thatX = 10U where U ∼ N [0, 1] is a closely Benford distribution with χ2 ≈ 0.9918, but Y = 10V

where V ∼ Exp[1] is not, with χ2 ≈ 0.7084. Thus, in the independent case we would expect that
two variables modeled like X , or any product with X , should yield a Benford distribution. The
product of two variables modeled like Y , however, should not be Benford.
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