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Abstract. Benford’s law is a statement about the frequency that each digit arises as the leading
digit of numbers in a dataset. It is satisfied by various common integer sequences, such as the
Fibonacci numbers, the factorials, and the powers of most integers. In this paper, we prove that
integer sequences resulting from a random integral decomposition process (which we model as
discrete “stick breaking”) subject to a certain congruence stopping condition approaches Benford
distribution asymptotically. We also show that our requirement on the number of congruence
classes defining the congruence stopping condition is necessary for Benford behavior to occur and
is a critical point; deviation from that would result in drastically different behavior.
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1. Introduction

1.1. Background. Benford’s Law, named after the physicist and mathematician Frank Benford
who observed it in 1938, describes the non-uniform distribution of first digits in many real-world
datasets. According to this law (which we define precisely below), the digit 1 arises as the leading
digit approximately 30% of the time, 2 approximately 17% of the time, and so on, with larger digits
occurring less frequently. This counterintuitive pattern emerges due to the logarithmic nature of
the distribution. It can be observed in a wide range of naturally occurring datasets, such as
financial reports, census data, scientific constants, and even seemingly unrelated fields like social
media statistics. Today, there are numerous applications of Benford’s law including in voting fraud
detection [Nig], economics [Töd,V-BFJ], geology [NM1], signal processing [PHA], and the physical
sciences [BMP,Eli,MSPZ,NWR,PTTV,SM1,SM2]. See [BH2,Mil1] for more on the general theory
and fields where it is observed.

Some commonly seen integer sequences can be proven to satisfy Benford’s law exactly, when con-
sidering the asymptotic limit as more and more terms of the sequence are included. Some examples
include the Fibonacci numbers [Dun,Wa], the factorials [Sar], the powers of 2 [Rai], and the powers
of almost any other number [Rai].

Some continuous processes also satisfy Benford’s law exactly (in the asymptotic limit as the process
continues through time). One is an exponential growth or decay process: If a quantity is expo-
nentially increasing or decreasing in time, then the percentage of time that it has each first digit
satisfies Benford’s law asymptotically (i.e. increasing accuracy as the process continues through
time).

Given its ubiquity and many applications, it is therefore of interest to study which mathematical
processes lead to Benford behavior. In general, it is often true that arithmetic operations (such as
sums or products) of random variables yield a random variable that is closer to satisfying Benford’s
Law [Adh,AS,Bha,JKKKM,Lév1,Lév2,MN1,Rob,Sak,Sch1,Sch2,Sch3,ST]. However, this is not
always the case (see for example [BH1]). In certain cases, a central limit theorem law is attainable,
where Benfordness follows from the convergence of the distribution of mantissas (see Section 2) to
the uniform distribution.

In this paper, we focus on the Benfordness of sequences of integers resulting from random integer
decomposition processes with stopping conditions defined by congruence relations. Such sequences
are naturally of number theoretic interest, as they arise from a process that is defined by congruence
conditions.

1.2. Random Integer Decomposition. A random integer decomposition process is defined as
follows. Start with some positive integer L. First, choose a random integer X in {1, . . . , L − 1}
uniformly and decompose L into two components: X and (L − X). This state is called the first
level. Then repeat the procedure on both components, resulting in 4 components - this is the
second level, and so on. Whenever a component reaches 1, it stops decomposing further, and the
procedure continues on all existing components that are larger than 1.

Clearly, the above process will eventually result in a sequence of 1’s, which is uninteresting. How-
ever, the resulting sequence of components becomes more interesting when extra conditions are
imposed. For example, Becker et al. [B+] studied the decomposition process in which one of the
two components (say the first one X) always stops decomposing further, so it becomes an element
in the resulting sequence, while the other component (namely L−X) continues to decompose until
the remaining alive component reaches 1. In other words, it is a one-sided decomposition process.
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The authors showed that for such a process, as L → ∞, the resulting collection of components
approaches Benford behavior (Definition 2.3).

It is natural to ask what other interesting conditions we can impose on the decomposition process
so that it also yields a sequence that satisfies Benford’s law, and we found that stopping conditions
defined by congruence classes modulo an integer are good candidates, since the observation by
Becker et al. provides strong indication that a process starting with L odd and stopping at even
components should also result in Benford behavior. Indeed, that is the case (Theorem 1.1). Before
stating the result precisely, let us define some terminology.

A stopping condition is a subset S ⊂ Z+ containing the element 1. A random integer decomposition
process with stopping condition S is defined as a random integer decomposition process in which
a component stops decomposing further (and becomes part of the final sequence) as soon as it
falls inside the set S. For example, the random integer decomposition process (without stopping
condition) that we described at the beginning can be seen as one with the trivial stopping condition
S = {1}. At the end of such a process, the resulting components are all in S, and we investigate
the behavior of this collection of components (for example, in the trivial case, they would just be
L copies of 1’s; in general, it would be a multi-set with elements in S).

Theorem 1.1. Start with an odd integer L > 0. Let the stopping set be S = {1} ∪ {2m :

m ∈ Z+}. Then the multi-set of ending components {X(L)
i }1≤i≤mL resulting from the random

integer decomposition process with stopping condition S converges to strong Benford behavior (cf.
Definition 2.3) as L→∞.

In particular, due to Remark 2.4, this means that for any s ∈ [1, B), the proportion of ending
components with significand at most s converges to logB(s) in probability as L→∞.

This is a special case of our Main Theorem below, which asserts the conclusion for stopping condi-
tions defined by residue classes of a general modulus.

Theorem 1.2. Fix an even modulus n ≥ 2 and a subset S ⊂ {0, . . . , n−1} of size n/2 representing
the residue classes. Let the stopping set be

S := {1} ∪ {m ∈ Z+ : m = qn+ r, r ∈ S, q ∈ Z}. (1.2.1)

Consider the collection {X(L,R)
i }1≤i≤mL,R of all components resulting from R random decomposition

processes each starting from L > 0 subject to stopping condition S. This collection converges to
strong Benford behavior (cf. Definition 2.3) given that R > (logL)3 as L→∞.

In particular, for all s ∈ [1, B), and for any choice of RL > (logL)3 for each L, we have that

the proportion of elements in {X(L,R)
i }1≤i≤mL,R with significand at most s approaches logB(s) in

probability.

Remark 1.3. Note that we need to consider the combined collection of many random processes
in the case of a general modulus (Theorem 1.2), but did not have to do so in the special case of
modulus equal to 2 (Theorem 1.1) because the latter process is guaranteed to continue until the
remaining alive component hits 1. When we have a general modulus, the process might stop in one
(or very few) steps with positive probability regardless of L, which is clearly non-Benford. Taking
the combined collection eliminates this issue.
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1.3. Stick Breaking Model. We find it convenient to formulate the problem as the physical
process of breaking an integer-length stick at integral points, and studying the final collection of
stick lengths. More precisely, the process described earlier corresponds to starting with a stick of
length L, breaking it into two pieces of lengths X and L − X (this is called the first level), and
continuing the process subject to the stopping condition S. Each round of breaking all existing
sticks not already in the stopping set S once is called a level. For convenience, we say that a stick
dies or becomes dead when its length falls into the stopping set, and alive otherwise. Then our
main results are formulated equivalently as follows.

Proposition 1.4. Start with a stick of odd integer length L. Let the stopping set be S = {1}∪{2m :

m ∈ Z+}. Namely, a stick dies whenever its length is 1 or even. Then the collection {X(L)
i }1≤i≤mL

of lengths of all dead sticks (including those of length 1) converges to strong Benford behavior as
L→∞.

Proposition 1.5. Fix an even modulus n ≥ 2 and a subset S ⊂ {0, . . . , n − 1} of size n/2 repre-
senting the residue classes. Let the stopping set be

S := {1} ∪ {m ∈ Z+ : m = qn+ r, r ∈ S, q ∈ Z}. (1.3.1)

If we start with R identical sticks of positive integer length L /∈ S, then the collection of ending

stick lengths {X(L,R)
i }1≤i≤mL,R converges to strong Benford behavior given that R > (logL)3 as

L→∞.

Keeping in mind the obvious correspondence of the two setups, we will from now on adopt the
language of the stick breaking process and aim to prove Proposition 1.5 which readily implies our
Main Theorem.

1.4. Plan of Proof. Our strategy to prove Proposition 1.5 is to consider a continuous approxima-
tion of the discrete stick breaking process. The congruence stopping conditions will be approximated
by “probabilistic stopping” in the continuous case, where each stick stops breaking with a fixed
probability given by the proportion of congruence classes present in the stopping set, namely |S|/n.
We first prove, using tools from probability theory and analysis, that the continuous analogue con-
verges to Benford behavior; this is done in Section 3. Then, in Section 4, we show that the discrete
and continuous processes are sufficiently “close” in a precise sense, which allows us to deduce that
the discrete fragmentation also results in Benford behavior. The necessity of the particular type of
congruence stopping condition leading to strong Benford behavior is shown in Section 5.

Acknowledgements. The authors are supported by NSF Grant DMS2241623, NSF Grant DMS1947438,
Williams College, and University of Michigan. We would like to thank the referee for helpful sug-
gestions.

2. Benford’s Law and Strong Benford Behavior

In this section, we give a precise definition of what it means for a sequence of random collections of
positive real numbers to converge to strong Benford behavior, made rigorous from what is commonly
known as Benford’s law.

Fix a base B > 0. Any x > 0 can be written as

x = SB(x) ·BkB(x) (2.0.1)

where SB(x) ∈ [1, B) is the significand of x base B and kB(x) = blogB(x)c is the exponent. The
mantissa of x is defined to be

MB(x) = logB(x)− kB(x),
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namely, the fractional part of logB(x).

We have the following standard definition (see for example [MN1]).

Definition 2.1 (Benford’s law for a deterministic sequence of numbers). A sequence of positive
real numbers (ai)i∈N is said to be Benford base B if

lim
N→∞

#{i ≤ N : 1 ≤ SB(ai) ≤ s}
N

= logB s (2.0.2)

for all s ∈ [1, B].

The notion of Benford behavior for a positive real random variable supported on (0,∞) is defined
as follows.

Definition 2.2. A probability distribution D, supported on (0,∞), is said to be Benford base B if
for X ∼ D, MB(X) follows the uniform distribution on [0, 1]. This is equivalent to saying that

P(1 ≤ SB(X) ≤ s) = logB s (2.0.3)

for all s ∈ [1, B].

This is sometimes referred to as strong Benford, as opposed to weak Benford, which only concerns
the leading digits of a sequence of numbers. Since we are interested in the limiting behavior of
a random sequence of finite collections of stick lengths, we give the following precise definition of
“convergence to Benford”.

For a random process whose realizations are given by a sequence of finite collections of positive real

numbers ({X(n)
i : 1 ≤ i ≤ mn})n, we may define for each state n the empirical distribution function

of the significands

Pn(s) :=
1

mn

∣∣∣{i : SB

(
X

(n)
i

)
≤ s
}∣∣∣ , for all s ∈ [1, B].

In other words, Pn is a random function giving the proportion of elements in the multi-set

{X(n)
i : 1 ≤ i ≤ mn}

whose significand is at most s.

Definition 2.3 (Convergence to strong Benford behavior, [B+]). A random sequence of finite

collections of positive real numbers ({X(n)
i : 1 ≤ i ≤ mn})n is said to converge to strong Benford

behavior (base B) if 1

(1)
lim
n→∞

E[Pn(s)] = logB(s) (2.0.4)

and

(2)
lim
n→∞

Var[Pn(s)] = 0. (2.0.5)

Remark 2.4. By Chebyshev’s inequality, the above condition implies that Pn(s) → logB(s) in
probability as n→∞.

1For each n, mn is a positive integer-valued random variable, and each X
(n)
i is a positive real-valued random

variable. Moreover, recall that a collection is a multi-set, so there may be repetitions in {X(n)
i : 1 ≤ i ≤ mn}.
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In our stick breaking model, the multi-set {X(n)
i : 1 ≤ i ≤ mn} is the collection of ending stick

lengths from a given stick breaking process, with index n being either the total number of levels N
(cf. Section 1.3), the starting stick length L, and/or the number of starting sticks R (sometimes
the sequence is doubly-indexed by both L and R); these quantities go to infinity in the limit. For
simplicity this collection may be abbreviated as {Xi}, but the limit will be explicitly stated in
terms of the indexing parameter.

We recall some notations from [B+] for later use in the proofs. For s ∈ [1, B), we define the
indicator function of “significand at most s” by

ϕs(x) :=

{
1, if the significand of x is at most s

0, otherwise.
(2.0.6)

We can then denote the proportion of elements in a set {Xi} whose significand is at most s by

P (s) :=

∑
i ϕs(Xi)

#{Xi}
. (2.0.7)

3. Continuous Stick Fragmentation

We now investigate the continuous stick breaking process that serves as an approximation to the
discrete process with congruence stopping condition that we are interested in. For simplicity, in the
continuous breaking problem we always assume the initial length is 1, since scaling of stick lengths
does not affect Benfordness. The continuous process is as follows.

Start from R sticks of length L > 0. Fix a positive integer k ≥ 2. We call a stick alive if it continues
to break in the next level and dead otherwise. All initial sticks are assumed to be alive and each
breaks into k pieces in the first level with the (k − 1) breaking points being the coordinates of a
random variable chosen from some good probability distribution D on [0, 1]k−1 (this is a continuity
condition defined in (3.2.5); roughly, we require D to be sufficiently continuous (see Example 3.5)).
The breaking of each living stick is independent from others. After each level, each new stick
obtained continues to be alive with probability r and dead with probability 1− r. If r = 1/2, this
is exactly the continuous analogue of the setting in Proposition 1.5 where we stop at exactly half
of the residue classes.

The main result in this section is the following. Throughout, we adopt the convention that log x
stands for the natural logarithm of x, although the base usually does not play a role unless we
explicitly state it.

Theorem 3.1. In the above setting, when r = 1/k, the collection of stick lengths after N ≥ logR
levels almost surely converges to strong Benford behavior as R→∞.

Intuitively, the condition r = 1/k implies that the number of living sticks at each level should stay
constant, so the resulting distribution is nice. When r is away from this critical threshold, the
limiting distribution becomes non-Benford. See Section 5 for more details in that case.

To present our proof of Theorem 3.1, we will first recall the basic stick breaking model (Section 3.1)
that our continuous process generalizes, and the Mellin transform condition (Section 3.2) which is
the main analytical tool to prove convergence to Benford in our model. We also prove a new
theoretical result (Theorem 3.4) that gives a large family of examples of good distributions.
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3.1. The basic model. We recall the following basic stick decomposition model studied in [B+].
Start with a stick of length L (this stick is indexed by 1) and fix a continuous probability distribution
D with density function supported on [0, 1]. Choose p1 ∈ [0, 1] according to D and break L into
p1L and (1− p1)L. This is the first level. Now for each subsequent level, for each existing stick of
length ` obtained in the previous level indexed by i (namely, the i-th stick obtained in the process),
sample independently a new ratio pi ∈ [0, 1] according to D and break it into two pieces of length
`pi and `(1− pi) respectively. Repeat the same process on every new stick obtained in the previous
level, where each breaking involves sampling a new ratio pi ∈ [0, 1] according to D. Then at the
end of the N -th level, we obtain 2N sticks of lengths

X1 = Lp1p2p4 . . . p2N−2p2N−1

X2 = Lp1p2p4 . . . p2N−2(1− p2N−1)

...

X2N−1 = L(1− p1)(1− p3)(1− p7) . . . (1− p2N−1−1)p2N−1

X2N = L(1− p1)(1− p3)(1− p7) . . . (1− p2N−1−1)(1− p2N−1)

Note that we choose each the pi’s independently from each other according to D. Becker et al.
proved the following.

Theorem 3.2 ( [B+]). The above basic stick decomposition process {X(N)
i : 1 ≤ i ≤ 2N}N converges

to strong Benford behavior in the limit N →∞ if D satisfies the Mellin transform condition (3.2.2).

We discuss the Mellin transform condition in more detail next.

3.2. Mellin transform condition. For a continuous real-valued function f : [0,∞)→ R, letMf
denote its Mellin transform defined by

Mf(s) =

∫ ∞
0

f(x)xs−1dx. (3.2.1)

Let F = {Dj}j∈I be a family of probability distributions with associated density functions fj
supported on [0,∞) and p : Z+ → I. We say that F satisfies the Mellin transform condition if the
following holds and the convergence is uniform over all choices of p:

lim
n→∞

∞∑
`=−∞
6̀=0

n∏
m=1

MfDp(m)

(
1− 2πi`

logB

)
= 0. (3.2.2)

This condition was proposed by Jang et al. in [JKKKM, Theorem 1.1]. The following corollary
of [JKKKM, Theorem 1.1 & Lemma 1.2] relating the Mellin transform property to Benford behavior
will be used repeatedly in our proofs of Benfordness results, so we restate it here for ease of
reference.

Theorem 3.3 ( [JKKKM, Theorem 1.1]). Let F = {Dj}j∈I be a family of probability distributions
with associated density functions fj supported on [0,∞) satisfying the Mellin transform property
and p : Z+ → I. Let X1 ∼ Dp(1). For all i ≥ 2, let Xi be a random variable with probability density
function given by

θ−1fDp(i)(x/θ) (3.2.3)
7



where θ is the value of the previous random variable Xi−1. Then if Yn = logBXn, we have

|P(Yn mod 1 ∈ [a, b])− (b− a)|

≤ (b− a) ·

∣∣∣∣∣∣∣∣ lim
n→∞

∞∑
`=−∞
6̀=0

n∏
m=1

MfDp(m)

(
1− 2πi`

logB

)∣∣∣∣∣∣∣∣ .
(3.2.4)

In particular, the limiting distribution as n→∞ of Xn is Benford base B.

The product random variable of i independent random variables, each with distribution given by
Dp(m) for 1 ≤ m ≤ i, has probability density given by (3.2.3); thus, the sequence of such product
random variables, denoted by (Xn), converges to a base B Benford random variable according to
Theorem 3.3.

We prove the following new result that gives a sufficient condition on F for it to satisfy the Mellin
transform condition. A weaker version of the result is briefly discussed in [JKKKM]. We include
the proof in Appendix A.

Theorem 3.4. F satisfies the Mellin transform condition if it is finite and each fj ∈ F are αj-
Hölder continuous (for some 0 < αj ≤ 1) and supported only on [0, 1]. In particular, for such an
F , a sequence of products of random variables distributed according to some sequence (fj) ⊂ F
approaches Benford behavior, and the rate of this convergence is uniform over all such sequences.

Consider a probability distribution D on Rm that is supported on [0, 1]m with cumulative distri-
bution function F . Think of this as giving the m cut points on a stick, not necessarily ordered.
For X ∼ D, Let rki(X) denote its ith smallest coordinate, where 1 ≤ i ≤ m. Let rk0(X) = 0 and
rkm+1(X) = 1. Then, we say that D is good if

Yi = rki+1(X)− rki(X) (3.2.5)

has Hölder continuous density for all 0 ≤ i ≤ m. In other words, if X represents the cut points of
a stick, then we require the distances between adjacent ones to have Hölder continuous densities.
This definition is necessary for exploring stick breaking, in which we must choose multiple breaking
points of a stick from a distribution and then consider distributions of ratios between the lengths
of children and their parents. That is, if such a distribution is good, then Theorem 3.4 applies.
In fact, many distributions of interest are good. For instance, we have the following family of
examples.

Example 3.5. Suppose that D is the product of m independent 1-dimensional distributions Di with
densities fi and cumulative densities Fi. If the fi are Hölder continuous, then D is good.

Proof. Let Yi = rki+1(X)− rki(X) for some X ∼ D. Assume that 1 ≤ i < m. Then

1− FYi(c) =

m∑
j=1

∑
S⊆[m]\{j}
|S|=i−1

∫ 1

0
fj(x)

∏
l∈S

Fl(x)
∏

l 6∈S, l 6=j
(1− Fl(x+ c)) dx (3.2.6)

where j denotes the index of the coordinate of X that corresponds to rki(X) and S denotes the
set of indices of the coordinates of X that are less than Xj . By continuity of the fi’s, we can
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differentiate with respect to c and move the differentiation inside of the integral to obtain

fYi(c) =
m∑
j=1

∑
S⊆[m]\{j}
|S|=i−1

∫ 1

0
fj(x)

∏
l∈S

Fl(x)
∑

l′ 6∈S, l′ 6=j
(−fl(x+ c))

∏
l 6∈S, l 6=j,l′

(1− Fl(x+ c)) dx. (3.2.7)

Now, the Fi are continuously differentiable, so they are also Hölder continuous. We can then take
the minimal exponent α among the the fi to obtain that fYi is α-Hölder continuous since sums,
products and integrals of α-Hölder continuous functions are α-Hölder continuous. We can similarly
show that fYi is α-Hölder continuous when i = 0,m. �

From now on, we assume all distributions from which breaking points are sampled are good.

3.3. Proof of Theorem 3.1 Assuming Independence. To prove Theorem 3.1, we first state
and prove a version with the extra assumption that the alive/dead status of the sticks are indepen-
dent.

Theorem 3.6. When r = 1/k and the alive/dead status of each stick is independent, the process
ends in finitely many levels with probability 1, and the collection of ending stick lengths almost
surely converges to strong Benford behavior as R→∞.

We first show that the process starting from a single stick terminates in finitely many levels.

Proof of finite termination. Let p be the probability that it does not terminate. In such a case, one
of the live children of the initial stick initiates a breaking that does not terminate. Thus, we have,
if A is the number of live children of the original stick,

p =
k∑
a=1

P(A = a)P(at least one of the a live children initiates infinite breaking)

=
k∑
a=1

(
k

a

)
1

ka

(
1− 1

k

)k−a
(1− (1− p)a)

=

k∑
a=1

(
k

a

)
1

ka

(
1− 1

k

)k−a
−

k∑
a=1

(
k

a

)(
1− p
k

)a(
1− 1

k

)k−a
=

[
1−

(
1− 1

k

)k]
−

[(
1− p

k

)k
−
(

1− 1

k

)k]

= 1−
(

1− p

k

)k
. (3.3.1)

Now, we have that, by Bernoulli’s inequality,(
1− p

k

)k
≥ 1− p (3.3.2)

with equality if and only if p = 0. But we do have equality, so p = 0, as desired. �

Now, consider the process where all R sticks are being broken simultaneously. The above result
implies that for any given R, this process also ends in finitely many levels with probability 1. Now
we show the second part of Theorem 3.6.

Let ni be the number of live sticks present at the ith level so that n0 = R. Then, we have the
following:
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Lemma 3.7. For i ≥ 0,

P (|nj −R| ≤ t ∀ 0 ≤ j ≤ i) ≥ 1− 2i3R(k − 1)

t2k
(3.3.3)

if 0 < t < R.

Proof. The result is trivial for i = 0. We proceed with induction on i. Assume the result for i; we
show it for i+ 1. We have that

P (|nj −R| ≤ t ∀ 0 ≤ j ≤ i+ 1) ≥ P
(
|nj −R| ≤

i

i+ 1
t ∀ j ≤ i, |ni+1 − ni| ≤

1

i+ 1
t

)
≥ P

(
|nj −R| ≤

i

i+ 1
t ∀j ≤ i

)
− P

(
|ni+1 − ni| >

1

i+ 1
t, ni < 2R

)
. (3.3.4)

Now, note that the conditional law of ni+1 conditioned on ni = m is a binomial distribution with mk
trials with probability 1/k of success. Thus, conditioning on ni, it has expectation ni and variance
ni(1 − 1/k) (since E[ni+1|ni = m] = mk(1/k) = m and Var(ni+1|ni = m) = m(1 − 1/k)). So, by
Chebyshev’s inequality, for all integers 0 ≤ m < 2R (such that ni = m with positive probability),

P
(
|ni+1 − ni| >

1

i+ 1
t
∣∣∣ ni = m

)
<

m(1− 1/k)
1

(i+1)2
t2

≤ 2(i+ 1)2R(k − 1)

t2k
. (3.3.5)

It follows that (taking the term in the sum below to be 0 if ni = m has probability 0)

P
(
|ni+1 − ni| >

1

i+ 1
t, ni < 2R

)
=

2R−1∑
m=0

P
(
|ni+1 − ni| >

1

i+ 1
t
∣∣∣ ni = m

)
P (ni = m)

≤ 2(i+ 1)2R(k − 1)

t2k

2R−1∑
m=0

P (ni = m)

≤ 2(i+ 1)2R(k − 1)

t2k
(3.3.6)

and we have that, from (3.3.4) and the inductive hypothesis,

P (|nj −R| ≤ t ∀ 0 ≤ j ≤ i+ 1) ≥ 1− 2i3R(k − 1)
i2

(i+1)2
t2k

− 2(i+ 1)2R(k − 1)

t2k

≥ 1− 2(i+ 1)3R(k − 1)

t2k
. (3.3.7)

�

For any R and N , define

PR(s) :=

∑
i ϕs(Xi)

#{Xi}
(3.3.8)

where the sum runs over the set of resulting sticks in a process starting with R sticks (which is
finite with probability 1). We show E[PR(s)]→ logB(s) and Var(PR(s))→ 0 as R→∞.

Proposition 3.8. E[PR(s)]→ logB(s) as R→∞.
10



Proof. We first show the existence of a function h(R) → ∞ as R → ∞ such that the expectation
of the average of ϕs(Xi) over sticks Xi that die within the first h(R) levels goes to logB(s) as
R→∞. Later we will argue that the collection of sticks that die after h(R) levels make negligible
contribution to E[PR(s)], so this is sufficient. Define

PnR(s) :=

∑
Xi in first n levels ϕs(Xi)

#{Xi|Xi in first n levels}
. (3.3.9)

Given a realization A of the alive or dead status of each stick that occurs in the entire decomposition
process (without fixing the realization of its length), for any stick Xi belonging to level n coming
from a living ancestor in level n− 1,

|E[ϕs(Xi)|A]− logB(s)| ≤ f(n) (3.3.10)

where f satisfies f(n)→ 0 as n→∞ by Theorem 3.4. We now show that in each of the first h(R)

levels, a roughly equal number of sticks become dead. We may take h(R) = bR1/10c and t = R2/3

and apply Lemma 3.7. Then we obtain that,

P(R−R2/3 < ni < R+R2/3 ∀ i ≤ h(R)) ≥ 1− 2R3/10R(k − 1)

R4/3k
≥ 1− 2R−1/30 → 1 (3.3.11)

as R → ∞. Let ni be the number of sticks that become dead at level i, so that ni = kni−1 − ni.
Then we have, with probability going to 1,

(k − 1)R− (k + 1)R2/3 < ni < (k − 1)R+ (k + 1)R2/3, (3.3.12)

for all i ≤ h(R), which implies, when R is sufficiently large,(
k − 3

2

)
R < ni <

(
k − 1

2

)
R. (3.3.13)

Now assume that A is a realization for which the above is true, so that conditioning on A the ni
are constants. Then, letting P ′R(s) = P

h(R)
R (s),

|E(P ′R(s)|A)− logB(s)| ≤ 1∑h(R)
i=1 ni

h(R)∑
i=1

f(i)ni

≤ 1

(k − 3
2)Rh(R)

h(R)∑
i=1

f(i)(k − 1

2
)R

≤ 3
1

h(R)

h(R)∑
i=1

f(i) =: δ(R) → 0 (3.3.14)

as R→∞. Let A be the (countable) collection of realizations for the alive/dead-ness of the sticks
that terminate finitely such that (3.3.13) is true for all i ≤ h(R). Let E =

(⋃
A∈AA

)c
and observe

that we have shown above that P(E) → 0 as R → ∞. Then, since the events in A are pairwise
disjoint,

|E(P ′R(s))− logB(s)| ≤ |E(P ′R(s)|E)− logB(s)|P(E) +
∑
A∈A
|E(P ′R(s)|A)− logB(s)|P(A)

≤ P(E) + δ(R)
∑
A∈A

P(A) (3.3.15)

11



which approaches 0 as R → ∞. We have used the fact that P ′R(s) is bounded by 0 and 1. This
implies E[P ′R(s)]→ logB(s). Now, for the sticks after level h(R), simply note that

|E[ϕs(Xi)|A]− logB(s)| ≤ f(h(R)) ≤ sup
n≥h(R)

f(n) (3.3.16)

which tends to 0 as R→∞. PR(s) is a weighted average of these ϕs(Xi) and P ′R(s), so |E(PR(s))−
logB(s)| → 0, as desired. More precisely, let P ′′R(s) be the proportion of sticks Xi that die after
level h(R) such that ϕs(Xi) = 1 (or logB(s) if no such sticks exist) and note that the above implies
that |E[P ′′R(s)|A]− logB(s)| ≤ f(h(R)). The conditioning on A can be removed (via the triangle
inequality and law of total expectation) and the result follows after noting that PR(s) is a linear
combination of P ′′R(s) and P ′R(s) (with nonnegative coefficients). �

Proposition 3.9. Var(PR(s))→ 0 as R→∞.

Proof. Now we analyze the variance. Let A be a choice of dead and alive sticks for all levels in
which the process ends after a finite number of levels. Let (Xi, Xj) be a pair of final sticks and
suppose both die after at least log(R) levels and they die at least log(log(R)) levels apart (i.e., they
have enough independence). Let X be their most recent common ancestor so that Xi = XYi and
Xj = XYj where Yi and Yj are each products of at least log(log(R)) random variables. Then,

E[ϕs(Xi)ϕs(Xj)|A] =

∫
x
E[ϕs(xYi)ϕs(xYj)|X = x,A]dµX(x)

=

∫
x
E[ϕs(xYi)|A]E[ϕs(xYj)|A]dµX(x) (3.3.17)

by independence, so∣∣E[ϕs(Xi)ϕs(Xj)|A]− log2
B(s)

∣∣ ≤ ∫
x

∣∣E[ϕs(xYi)|A]E[ϕs(xYj)|A]− log2
B(s)

∣∣ dµX(x)

≤
∫
x
|E[ϕs(xYi)|A]− logB(s)|dµX(x)

+

∫
x
|E[ϕs(xYj)|A]− logB(s)|dµX(x)

≤ 2f(dlog(log(R))e) (3.3.18)

where we have used Theorem 3.4 and Theorem 3.3 in the last step. Thus, it suffices to show that
the proportion of pairs of the following two types among all pairs of dead sticks goes to 0 as R→∞,
with high probability:

(1) at least one of Xi,Xj dies before log(R) levels, or

(2) Xi, Xj have a common ancestor less than log(log(R)) levels before they both die.

Let M be the total number of dead sticks ever.

To show (1) occurs with low probability, we first show that the number of sticks that die within
the first log(R) levels is small compared to M with probability going to 1. Keep our choice of h(R)
and t earlier. Therefore when R is sufficiently large, using the upper bound from (3.3.13), we get
that as number of sticks that die within the first log(R) levels is upper bounded by(

k − 1

2

)
log(R)R (3.3.19)
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with probability going to 1. Now again using (3.3.13), we can lower bound M by lower bounding
the total number of sticks that die within the first h(R) levels. This gives

M ≥ h(R)

(
k − 3

2

)
R =

(
k − 3

2

)
R11/10 (3.3.20)

with probability going to 1. Since

(k − 1
2) log(R)R

(k − 3
2)R11/10

→ 0 (3.3.21)

as R → ∞, we have shown that the proportion of sticks that die in the first log(R) levels among
all goes to 0 as R → ∞ with probability going to 1. This then implies that the number of pairs
that involve a stick of this type also takes up a diminishing proportion of all pairs of final sticks as
R→∞.

Now we show (2) is rare, namely, that the number of pairs Xi, Xj having a common ancestor at
most log(logR) levels before they both die is o(M2) with high probability. Fix some Xi. Then, the
number of sticks, dead or alive, that share the α ancestor of Xi and is α− β levels away is at most
kβ. Thus, the number of Xj that satisfying (2) when paired with Xi is bounded above by

blog(logR)c∑
α=1

blog(logR)c∑
β=0

kβ ≤ log(logR)
klog(logR) − 1

k − 1
≤ log(logR)(logR)log k. (3.3.22)

Hence, the number of such pairs is bounded above by M(logR)1+log k = o(M2) by (3.3.20). Let E
be the event that all of the above inequalities hold. Then, (3.3.18) implies that

|E[ϕs(Xi)ϕs(Xj)|E]− log2
B(s)| ≤ 2f(dlog(log(R))e) (3.3.23)

and since P(E) → 1 as R → ∞ it follows that E[ϕs(Xi)ϕs(Xj)] → log2
B(s) as well, implying that

Var[PR(s)]→ 0. �

3.4. Proof of Theorem 3.1. Now we explain how to build on the proof above to prove Theorem
3.1 without additional assumption. Without assuming independence on the alive/dead status of
the sticks, we have the following weaker version of Lemma 3.7.

Lemma 3.10. For i ≥ 0,

P(|nj −R| ≤ t ∀ j ≤ i) ≥ 1− 2i3Rk2

t2
(3.4.1)

if t < R.

Proof. As in the proof of Lemma 3.7, we proceed with induction on i, noting that the result is
trivial for i = 0. By the same calculation, (3.3.4) holds, That is,

P(|nj−R| ≤ t ∀ j ≤ i+1) ≥ P
(
|nj −R| ≤

i

i+ 1
t ∀ j ≤ i

)
−P

(
|ni+1 − ni| >

1

i+ 1
t, ni < 2R

)
.

(3.4.2)
We have that ni+1 is the sum of ni independent random variables with mean 1 and variance bounded
by k2. Thus, conditioning on ni = m, it has expectation m and variance at most mk2. Chebyshev’s
inequality implies

P
(
|ni+1 − ni| >

1

i+ 1
t
∣∣∣ ni = m

)
<

mk2

1
(i+1)2

t2
≤ 2(i+ 1)2Rk2

t2
. (3.4.3)

13



for m < 2R such that P(ni = m) > 0. It follows that

P
(
|ni+1 − ni| >

1

i+ 1
t, ni < 2R

)
=

2R−1∑
m=0

P
(
|ni+1 − ni| >

1

i+ 1
t
∣∣∣ ni = m

)
P (ni = m)

≤ 2(i+ 1)2Rk2

t2

2R−1∑
m=0

P (ni = m)

≤ 2(i+ 1)2Rk2

t2
. (3.4.4)

We then have that

P(|nj −R| ≤ t ∀ j ≤ i+ 1) ≥ 1− 2i3Rk2

i2

(i+1)2
t2k
− 2(i+ 1)2Rk2

t2k
≥ 1− 2(i+ 1)3Rk2

t2
(3.4.5)

which completes the induction. �

Theorem 3.1 follows from essentially the same arguments as in proof of Theorem 3.6 using Lemma 3.10.
We highlight the necessary changes below.

For any R and N , define

PR,N (s) :=

∑
i ϕs(Xi)

#{Xi}
(3.4.6)

where the sum runs over the set of resulting sticks in the first N levels of a process starting with
R sticks. We prove E[PR,N (s)]→ logB(s) and Var(PR,N (s))→ 0 if N ≥ log(R) and R→∞. Keep

the choices of h(R) = R1/10 and t = R2/3 in the proof of Theorem 3.6. For sticks that die after
h(R) levels, we know that

|E[ϕs(Xi)]− logB(s)| ≤ f(h(R)) (3.4.7)

where the right-hand-side goes to 0 in R. Therefore it again suffices to estimate the errors

|E[ϕs(Xi)]− logB(s)| (3.4.8)

for Xi that dies within the first h(R) levels. Now the exact same argument applies simply after
replacing Lemma 3.7 with Lemma 3.10.

For variance, let M now denote the number of resulting sticks after N levels. By the same
logic,

E[ϕs(Xi)ϕs(Xj)] → log2
B(s) (3.4.9)

uniformly given that Xi and Xj have a most recent common ancestor more than log(logR) levels
away from Xi and both Xi, Xj die after at least log(R) levels. It therefore suffices to show that
such pairs Xi, Xj make up a proportion of all pairs of dead sticks that tends to 1. This is done in
the same way as in the proof of Theorem 3.6.

4. Discrete Stick Fragmentation

In this section, we return to the setting of discrete stick fragmentation with congruence stopping
condition and present the proofs of Proposition 1.4 and Proposition 1.5. The overall strategy,
adopted from that in §3 of [B+], is to approximate the discrete process with an appropriate con-
tinuous analogue, and by showing that the two processes are “close” in a precise sense, deduce the
desired result from the corresponding continuous result.

14



4.1. Proof of Theorem 1.4. In order to carry out the approximation strategy outlined above, we
define a continuous process and a discrete process based on the same sequence of random ratios, so
that the latter is the process we are interested in and the former known to be Benford. Our goal
is to show that their end results are “close” enough so that the Benfordness of the former implies
that of the latter. The two processes are defined as follows. Let (ci)i≥0 be a sequence of random
numbers chosen from (0, 1) with respect to the uniform distribution.

• Let Q denote the continuous process. In this process, we start with a stick of length
h0 = L. For each i ≥ 1, break off a fragment of length Yi = ci−1hi−1 at the i-th level, which
becomes dead, namely, stops breaking further. The other stick of length hi = hi−1 − Yi =
(1− ci−1)hi−1 stays alive and continues to break in the next step.

• Let P denote the discrete process. In this process, we start with a stick of length `0 = L.

For each i ≥ 1, break off a fragment of length Xi = 2d ci−1(`i−1−1)
2 e at the i-th level,

which becomes dead. Note that by construction, Xi is an even integer taking values in
[2, `i−1 − 1].The remaining stick of length `i = `i−1 −Xi (which is always an odd integer)
stays alive and continues to break in the next step.

• Moreover, a stick in P also becomes dead if it has length 1. In that case, the corresponding
stick in Q also dies.

We first derive the following lemma that bounds the length of a stick Xk in P with the length of
the corresponding stick Yk in Q.

Lemma 4.1. Given that `k, hk > 2, we have,

Yk

k−1∏
i=1

(
1− 2

`i − 2

)
− 2 ≤ Xk ≤ Yk

k−1∏
i=1

(
1 +

2

`i − 2

)
+ 2

k−1∏
i=1

`i
`i − 4

. (4.1.1)

Proof. Let dk be the rounded version of ck used in P, i.e., dk = Xk+1/`k. Then, note that

(`k − 1)ck ≤ Xk+1 ≤ (`k − 1)ck + 2 (4.1.2)

so that (
1− 1

`k

)
ck ≤ dk ≤

(
1− 1

`k

)
ck +

2

`k
=⇒ |dk − ck| ≤

2

`k
. (4.1.3)

It follows that

`k = L

k−1∏
i=0

(1− di) ≤ L

k−1∏
i=0

(
1− ci +

2

`i

)
≤ L

k−1∏
i=0

(1− ci)
k−1∏
i=0

(
1 +

2

`i(1− ci)

)
. (4.1.4)

We have that

`i(1− ci) ≥ `i(1− di)− 2 = `i+1 − 2, (4.1.5)

so

`k ≤ L
k−1∏
i=0

(1− ci)
k−1∏
i=0

(
1 +

2

`i+1 − 2

)
≤ hk

k∏
i=1

(
1 +

2

`i − 2

)
. (4.1.6)

Equation (4.1.5) also implies that 1− ci − 2
`i
≥ 1− ci

(
1− 2

`i+1−2

)
, so that

`k ≥ L

k−1∏
i=0

(
1− ci −

2

`i

)
≥ L

k−1∏
i=0

[
(1− ci)

(
1− 2

`i+1 − 2

)]
≥ hk

k∏
i=1

(
1− 2

`i − 2

)
. (4.1.7)
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We can then multiply (4.1.6) by dk to get

Xk+1 ≤ hkdk

k−1∏
i=1

(
1 +

2

`i+1 − 2

)
≤
(
Yk+1 +

2hk
`k

) k−1∏
i=1

(
1 +

2

`i+1 − 2

)
(4.1.8)

and then use (4.1.7) to obtain

Xk+1 ≤ Yk+1

k∏
i=1

(
1 +

2

`i − 2

)
+ 2

k∏
i=1

(
1 +

2

`i − 2

)(
1− 2

`i − 2

)−1

≤ Yk+1

k∏
i=1

(
1 +

2

`i − 2

)
+ 2

k∏
i=1

`i
`i − 4

. (4.1.9)

We can reason similarly by multiplying (4.1.7) with dk to obtain

Xk+1 ≥ Yk+1

k∏
i=1

(
1− 2

`i − 2

)
− 2. (4.1.10)

�

Let g(x) be a function that goes to infinity as x → ∞ with g(x) = o(
√

log(x)). Let h(x) be a
function that goes to infinity as x→∞. The following corollary of Lemma 4.1 essentially says that
Xk and Yk are very close given that k is not too large and `k−1, Yk are large enough.

Corollary 4.2. For all k < g(L) logL such that `k−1 > log2(L) + 2 and Yk > h(L), we have

Yk(1− o(1)) ≤ Xk ≤ Yk(1 + o(1)). (4.1.11)

Proof. By Lemma 4.1, we have

Xk ≤ Yk

k−1∏
i=1

(
1 +

2

`i − 2

)
+ 2

k−1∏
i=1

`i
`i − 4

≤ Yk

(
1 +

2

log2(L)

)k−1

+ 2

(
log2(L)

log2(L)− 4

)k−1

≤ Yk

(
1 +

2

log2(L)

)g(L) logL

+ 2

(
1 +

8

log2(L)

)g(L) logL

≤ Yk exp

(
2g(L)

logL

)
+ 2 exp

(
8g(L)

logL

)
. (4.1.12)

As L → ∞, g(L)
exp(L) → 0, so exp

(
2g(L)
logL

)
→ 1 and 2 exp

(
8g(L)
logL

)
= O(1). Now by our assumption

Yk →∞, we get asymptotically that

Xk ≤ Yk(1 + o(1)). (4.1.13)
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For the other inequality, apply Lemma 4.1 again to get

Xk ≥ Yk

k−1∏
i=1

(
1− 2

`i − 2

)
− 2

≥ Yk

(
1 +

2

log2(L)

)k−1

− 2

≥ Yk

(
1− 2

log2(L)

)g(L) logL

− 2

≥ Yk(2e)
− 2g(L)

logL − 2. (4.1.14)

Again (2e)
− 2g(L)

logL → 1 as L→∞, and since Yk →∞, we get asymptotically that

Xk ≥ Yk(1− o(1)). (4.1.15)

. �

The following lemma then helps us translate Benfordness of Q to that of P given that they are
close enough in the sense above. This is essentially [B+, Lemma 3.3], but we give a different proof
here. Let {Zi}L = {Z1, . . . , ZkL} denote a finite sequence of random variables whose length kL
depends on L.

Lemma 4.3. Suppose
{
Y

(L)
i

}
L

=
{
Y

(L)
1 , Y

(L)
2 , . . . , Y

(L)
kL

}
is strong Benford as L → ∞. Then if{

X
(L)
i

}
L

=
{
X

(L)
1 , X

(L)
2 , . . . , X

(L)
kL

}
is such that

Y
(L)
i (1− oL(1)) ≤ X

(L)
i ≤ Y

(L)
i (1 + oL(1)) (4.1.16)

as L→∞,
{
X

(L)
i

}
L

is strong Benford as L→∞.

Proof. Let

PXL (s) :=
#{i : 1 ≤ i ≤ kL, SB(X

(L)
i ) ≤ s}

kL
(4.1.17)

and similarly for P YL (s). The above definition clearly works for 1 ≤ s < B, but we also let it
hold for s < 1, simply noting that the quantity is 0, and s ≥ B, simply noting that the quantity

becomes 1. Now, observe that, from the condition, SB(Y
(L)
i )(1 − oL(1)) ≤ X

(L)
i /BblogB(Y

(L)
i )c ≤

SB(Y
(L)
i )(1 + oL(1)). For L large enough such that 1 − oL(1) > 1/B and 1 + oL(1) < B, we have

1/B <
X

(L)
i

Y
(L)
i

< B. Since significands are bounded by B, it follows that SB(Y
(L)
i ) − c(L)/B <

SB(X
(L)
i )b < SB(Y

(L)
i ) + c(L)/B for some b ∈ {1/B, 1, B} and c(L) that approaches 0 as L→∞.

It follows that SB(X
(L)
i ) ≤ s implies that SB(Y

(L)
i ) < s + c(L) or SB(Y

(L)
i ) > B − c(L). Also,

SB(X
(L)
i ) ≤ s if 1 + c(L) < SB(Y

(L)
i ) ≤ s− c(L). Thus,

P YL (s− c(L))− P YL (1 + c(L)) ≤ PXL (s) ≤ P YL (s+ c(L)) + 1− P YL (B − c(L)) (4.1.18)

It is then easy to see that E[PXL (s)]→ logB(s) as L→∞ for 1 ≤ s ≤ B by strong Benfordness of

{Y (L)
i }L and monotonicity of P YL (s) (as a function of s). Now, observe that

PXL (s)2 ≥ P YL (s−c(L))2−2P YL (s−c(L))P YL (1+c(L)) ≥ P YL (s−c(L))2−2P YL (1+c(L)) (4.1.19)
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and

PXL (s)2 ≤ P YL (s+ c(L))2 + 2P YL (s+ c(L))(1− P YL (B − c(L))) + (1− P YL (B − c(L)))2

≤ P YL (s+ c(L))2 + 3(1− P YL (B − c(L))) (4.1.20)

so that, using the fact that E[P YL (s)2]→ logB(s)2, we obtain that E[PXL (s)2]→ logB(s)2 as well. �

By [B+, Theorem 1.9], the process Q is Benford. Given the lemma above, it now suffices to show
that the premises of Corollary 4.2 are satisfied for almost all k. The following lemma shows that
the process ends within g(L) logL levels with probability going to 1, so the first condition that k
is not too large is almost always true.

Lemma 4.4. Let FL be the number of fragments generated by a stick of length L. As L→∞,

P[(log logL)2 < FL < g(L) logL] = 1− o(1). (4.1.21)

Proof. We first show the upper bound using Markov’s inequality. We prove by induction that

E[F`] = 1 + 2
∑

0<j<`
j even

1

j
. (4.1.22)

It is clear that E[F1] = 1. We have the recurrence

E[FL] =
2

L− 1

∑
`<L
` odd

(1 + E[F`]) (4.1.23)

since there is a 2
L−1 probability of breaking off a piece of length ` in the first break for 1 ≤ ` ≤ L−1

and ` odd. By the induction hypothesis, we have

E[FL] =
2

L− 1

∑
`<L
` odd

1 +

1 + 2
∑

0<j<`
j even

1

j




=
2

L− 1
· L− 1

2
+

2

L− 1

∑
`<L
` odd

1 + 2
∑

0<j<`
j even

1

j



= 1 +
2

L− 1

L− 1

2
+ 2

∑
0<j<L−2
j even

L−j−1
2

j

 (4.1.24)

= 1 +
2

L− 1

1 +
∑

0<j<L−2
j even

(
1 +

L− j − 1

j

)
= 1 +

2

L− 1
+

2

L− 1

∑
0<j<L−2
j even

L− 1

j
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= 1 + 2
∑

0<j<L
j even

2

j
,

where (4.1.24) follows from the previous step by observing that each 1
j is counted

#{l odd : j < ` < L} =
L− j − 1

2
(4.1.25)

many times. This completes the induction step, so we have shown (4.1.22). Now since∑
0<j<L
j even

1

j
∼ 1

2
log(L/2), (4.1.26)

we have

E[FL] ∼ logL+O(1). (4.1.27)

By Markov’s inequality,

P(FL > g(L) logL) ≤ logL+O(1)

g(L) logL
= O

(
1

g(L)

)
. (4.1.28)

The proof of the lower bound follows the exact same reasoning as the proof of Lemma 3.4 in
[B+]. �

Corollary 4.5. Let kL be the total number of sticks when the process P ends. Let

k′L = |{k : `k ≥ log3(L)}|. (4.1.29)

Then with probability going to 1,

lim
L→∞

k′L
kL

= 1. (4.1.30)

Moreover, for all k such that `k ≥ log3(L), we have Yk+1 →∞ as L→∞ uniformly with probability
going to 1.

Proof. The following argument is essentially the same as the one given in the proof of [B+, Corollary
3.5]. We include it here for completeness. Note that kL−k′L is the number of sticks generated after

`k first becomes smaller than log3(L), and is thus upper bounded by log(log3(L))g(log3(L)) with
probability going to 1 by Lemma 4.4. On the other hand, kL > (log logL)2 with probability going

to 1. Therefore as g(L) = o(
√

log(L)),

lim
L→∞

k′L
kL

= 1− lim
L→∞

kL − k′L
kL

> 1− log(log3(L))g(log3(L))

(log log(L))2
= 1 (4.1.31)

with probability going to 1. To prove the second part of the Corollary, note that, for k such that
`k ≥ log3(L),

ck ≥
1

g(L) log2(L)
=⇒ Xk+1 ≥

logL

g(L)
(4.1.32)

which approaches infinity. The probability of the former occurring for all such k is(
1− 1

g(L) log2(L)

)g(L) logL

= (1− o(1))e
− 1

logL → 1. (4.1.33)

Thus we immediately deduce the same holds for Yk+1 in view of Lemma 4.1. This completes the
proof. �
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We have verified that all conditions required in Corollary 4.2 are satisfied with probability going
to 1, so we are done via the following lemma.

Lemma 4.6. Given that k′L = (1+oL(1))kL with probability 1−oL(1), XL =
{
X

(L)
1 , X

(L)
2 , . . . , X

(L)
kL

}
approaches strong Benford behavior if and only if X ′L =

{
(X ′1)(L), (X ′2)(L), . . . , (X ′k′L

)(L)
}

does.

Proof. Without loss of generality, assume k′L ≤ kL. Let

PL(s) =
#{1 ≤ i ≤ kL : SB(X

(L)
i ) ≤ s}

kL
,

and

P ′L(s) =
#{1 ≤ i ≤ k′L : SB((X ′i)

(L)) ≤ s}
k′L

.

Then

|PL(s)− P ′L(s)| ≤
kL − k′L
k′L

= oL(1)

with probability 1− oL(1). So

E[|PL(s)− P ′L(s)|] ≤ (1− oL(1)) · oL(1) + oL(1) · 1 = oL(1).

Therefore
lim
L→∞

E[PL(s)] = logB(s) ⇐⇒ lim
L→∞

E[P ′L(s)] = logB(s).

Moreover,
PL(s)− oL(s) ≤ P ′L(s) ≤ PL(s) + oL(s)

=⇒ (PL(s)− oL(s))2 ≤ P ′L(s)2 ≤ (PL(s) + oL(s))2

=⇒ |PL(s)2 − P ′L(s)2| = oL(s).

Therefore
lim
L→∞

Var[PL(s)] = 0 ⇐⇒ lim
L→∞

Var[P ′L(s)] = 0.

�

4.2. Proof of Theorem 1.5. For any integer ` > 1, r ∈ {0, . . . , n− 1}, let

pr(`) =
|(nZ + r) ∩ [1, . . . , `− 1]|

`− 1
. (4.2.1)

In other words, pr(`) is the proportion of integers between 1 and `− 1 falling into the residue class
r modulo n. Note that

1

n
− 1

`− 1
≤ pr(`) ≤

1

n
+

1

`− 1
(4.2.2)

for all r. Define a discrete distribution D` on {0, . . . , n− 1} by

P(X` = r) = pr(`). (4.2.3)

Fix starting stick length L ∈ Z+\S. We define a discrete process P, and a continuous process Q
that depends on P as follows.

• In both processes, we start with a stick of the same integer length L > 1. Both starting
sticks are assumed to be alive. (Since we are defining the process recursively, assume that
at the start of each level, every living stick in Q uniquely corresponds to a living stick in
P and vice versa. This is clearly true in the first level. We will see from our construction
that this property is always preserved.)
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• At each level, for each living stick in P of length `, choose a random ratio p ∈ (0, 1)
uniformly and a residue class r ∈ {0, . . . , n−1} with respect to the distribution D`. Suppose
m = |(nZ+ r)∩ [1, . . . , `− 1]|. Let X be the (bmpc+ 1)-th smallest integer in [1, . . . , `− 1]
with residue r modulo n.

• Cut the stick in P into pieces of lengths X and `−X, and cut the corresponding stick (of
length h) in Q into pieces of lengths ph and (1− p)h.

• Now, in process P, any new stick generated becomes dead if its length is in S, and in this
case the corresponding stick in Q dies, too.

• Continue to the next level until all sticks die.

By choosing the ratio p and the residue class r of X independently, we ensure that dead/alive
status of a new stick in either process is independent of the ratio p used to generate its length. In
particular, in the continuous process, the probability that a new stick dies is always close to 1/2
with an error of at most n+4

2(`−1) (sum over n/2 residues and then an error of 2
`−1 to account for

stopping at length 1).

We want to argue the following:

(1) The continuous process Q thus constructed is “close” to the process in Theorem 3.1, and
thus results in strong Benford behavior.

(2) For almost all pairs of corresponding ending sticks Xk, Yk in P, Q respectively, we have

Yk(1− o(1)) ≤ Xk ≤ Yk(1 + o(1)) (4.2.4)

as L→∞, so that we can apply Lemma 4.3 to argue that P is Benford.

4.2.1. Proof of First Item.

Lemma 4.7. Let Ti be the number of living sticks at level i of length at least L
(logL)i

. Given that

L > (n+ 5)(logL)j, logL > 10j, and R > 2(logL)2, we have that

P
(
Ti ≥ R

(
1− 5i

logL

)
∀ 0 ≤ i ≤ j

)
≥
(

1− 2(logL)2

R

)j
≥ 1− 2j(logL)2

R
. (4.2.5)

Proof. We proceed with induction on j. The result is clearly true for j = 0 since T0 = R. We show
the result for j implies that for j + 1. From now on we condition on the history up to the j-th
level. Consider a stick at level j of length at least L

(logL)j
. For each of its children, the probability

of being shorter than L
(logL)j+1 is at most 1

logL and the probability of being alive is at least

1

2
− n+ 4

2
(

L
(logL)j

− 1
) ≥ 1

2
− n+ 4

2(n+ 4) logL
=

1

2
− 1

2 logL
. (4.2.6)

So the probability that the child is both of length at least L
(logL)j+1 and alive is bounded below by

P(alive)− P
(

length ≤ L

(logL)j+1

)
≥ 1

2
− 1

2 logL
− 1

logL
=

1

2
− 3

2 logL
. (4.2.7)

Let T ′j+1 be the number of live sticks at level j + 1 of length at least L
(logL)j+1 whose parent is of

length at least L
(logL)j

. Since there are Tj such parents generating 2Tj children in total, summing
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the above probability over each child, we have that

E(T ′j+1|Tj) ≥ 2Tj

(
1

2
− 3

2 logL

)
≥ Tj

(
1− 3

logL

)
. (4.2.8)

Moreover, for each parent, the variance of the number of its alive children that are of length at least
L

(logL)j+1 is at most 22 = 4 since it has at most 2 children in total. Also, each sub-process starting

from one of these parents is independent from another, so the total variance Var(T ′j+1) ≤ 4Tj .
Then, conditioning on the history of the process up to the j-th level, by Chebyshev’s inequality,

P
(
Tj+1 < Tj

(
1− 5

logL

))
≤ P

(
|T ′j+1 − E(T ′j+1)| > Tj

2

logL

)
<

4Tj
4T 2
j

(logL)2

<
2(logL)2

R
,

(4.2.9)

where the last inequality is true with probability
(

1− 2(logL)2

R

)j
by the induction hypothesis. This

implies

P
(
Tj+1 ≥ Tj

(
1− 5

logL

))
≥ 1− 2(logL)2

R
. (4.2.10)

Notice that (
1− 5j

logL

)(
1− 5

logL

)
> 1− 5(j + 1)

logL
, (4.2.11)

so that

Tj+1 ≥ Tj

(
1− 5

logL

)
=⇒ Tj+1 ≥ R

(
1− 5(j + 1)

logL

)
(4.2.12)

given that Tj ≥ R(1− 5j
logL). Thus we have

P
(
Tj+1 ≥ R

(
1− 5(j + 1)

logL

))
≥ 1− 2(logL)2

R
(4.2.13)

given that Tj ≥ R(1− 5j
logL). This completes the induction step. �

Corollary 4.8. For sufficiently large L and R > (logL)3, the number of live sticks ever is bounded
below by

R
√

logL (4.2.14)

with probability at least

1− 4(logL)5/2

R
. (4.2.15)

This is also a lower bound for the number of dead sticks ever, with the same probability.

Proof. Let ni be the number of alive sticks at level i. First, note that the number of dead sticks
generated at level i is 2ni−1−ni, and summing this from i = 1 to infinity yields 2n0 +n1 +n2 + · · ·
which is bounded below by the total number of live sticks in all levels. Now our lower bound follows
from Lemma 4.7 by taking j = b2

√
logLc and L large enough so that all assumptions there hold

and that
5 · b2

√
logLc

logL
<

1

2
. (4.2.16)

�
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Let M be the total number of dead sticks. We have that, with probability going to 1, M ≥ R
√

logL.
Now, we wish to show that E[PR,L(s)] → logB(s). It suffices to show that E[ϕs(Xi)] → logB(s)

uniformly for a proportion of Xi going to 1. We first show that almost all sticks die after 1
2 log logL

levels. First, note that there are at most R2i alive sticks at level i and thus at most R2i−1 ·2 = R2i

new dead sticks are generated at level i. Thus, the number of dead sticks generated at or before

level j is
∑j

i=1R2i ≤ R2j+1. Thus, the number of sticks before level 1
2 log logL is at most

2R · 2(log logL)/2 = 2R(logL)(log 2)/2 = o(R
√

logL). (4.2.17)

That is, the proportion of sticks before level 1
2 log logL goes to 0. Thus, we may assume that Xi dies

at a later level. However, it is a product of independent random variables, each chosen from some
finite set. Moreover, the length of this product is increasing in L, so by Theorem 3.4, E[ϕs(Xi)]
approaches logB(s) uniformly, and the conclusion follows.

We now wish to show that Var[PR,L(s)] → 0. The same strategy as in the proof of Theorem 3.6
works with slight modifications that we highlight below. Recall that the goal is to show that

1

M2

∑
i,j

E[ϕs(XiXj)] → logB(s)2, (4.2.18)

where Xi, Xj denote a pair of dead sticks. Based on our observation above, we may restrict our
attention to the collection of pairs of sticks only involving those that die after at least 1

2 log logL
levels. Note that running the exact same argument as in the proof of Theorem 3.6 with k = 2,
we obtain that the number of pairs with high dependency (as described in (2) in that proof) is
bounded above by M(logR)1+log 2 = o(M2), so we are done.

4.2.2. Proof of Second Item.

Lemma 4.9. At each level of P, given that a stick of length ` breaks into sticks of lengths X and
`−X, with ratio p in process Q, we have∣∣∣∣X` − p

∣∣∣∣ ≤ n+ 1

`
. (4.2.19)

This also implies that ∣∣∣∣`−X` − (1− p)
∣∣∣∣ ≤ n+ 1

`
, (4.2.20)

so we have the same bound for the error between the corresponding ratios in P and Q regardless of
which child we look at.

Proof. We prove this for r 6= 0. Since m =
⌊
`−1−r
n

⌋
+ 1, we have

`− 1− r
n

≤ m ≤ `− 1− r
n

+ 1.

Now X = bpmcn + r whenever r 6= 0. (Note that here if r = 0, we have m = b `−1
n c and

X = bpmcn+ n instead.) So

p(`− 1− r)− n+ r ≤ X ≤ p(`− 1− r) + pn+ r

=⇒ p− p+ pr + n− r
`

≤ X

`
≤ p+

pn+ r − p− pr
`

. (4.2.21)

Notice that
|p+ pr + n− r| = |n+ p− (1− p)r| ≤ n+ 1 (4.2.22)

and
|pn+ r − p− pr| = |p(n− 1) + (1− p)r| ≤ n, (4.2.23)
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so we have the desired. One easily verifies the result for r = 0 following a similar calculation. �

Corollary 4.10. Consider a pair of sticks (`j , hj) at level j ≥ 1, where `j is in process P and hj
is the corresponding one in process Q. Denote their ancestors as (`i, hi) for 0 ≤ i ≤ j − 1, with
`0 = h0 = L. Suppose hi+1 = pihi for all 0 ≤ i ≤ j − 1. Then we have

hj

j−1∏
i=0

(
1− n+ 1

pi`i

)
≤ `j ≤ hj

j−1∏
i=0

(
1 +

n+ 1

pi`i

)
. (4.2.24)

Proof. By Lemma 4.9, we have for all 1 ≤ i ≤ j,

pi−1

(
1− n+ 1

pi−1`i−1

)
≤ `i

`i−1
≤ pi−1

(
1 +

n+ 1

pi−1`i−1

)
, (4.2.25)

and the corollary follows by taking the product over all such i. �

Corollary 4.11.

hj

j∏
i=1

(
1− n+ 1

`i − n− 1

)
≤ `j ≤ hj

j∏
i=1

(
1 +

n+ 1

`i − n− 1

)
. (4.2.26)

Proof. This follows from Corollary 4.10 using the lower bound

pi−1`i−1 ≥ `i − n− 1 (4.2.27)

which follows from Lemma 4.9. �

Lemma 4.12. Let f(L), g(L), h(L) be some functions in L that go to infinity as L → ∞ with
g(L) = o(f(L)). Then for any dead stick `j with j < g(L), if `j > f(L)+n+1 and the corresponding
sticks hj > h(L), we have

hj(1− o(1)) ≤ `j ≤ hj(1 + o(1)). (4.2.28)

Proof. From Corollary 4.2, we have

`j ≥ hj

(
1−

j∑
i=1

n+ 1

`i − n− 1

)
≥ hj

(
1− g(L)

n+ 1

f(L)− n− 1

)
= hj(1− o(1)). (4.2.29)

For the upper bound, we have that

`j ≤ hj

j∏
i=1

(
1 +

n+ 1

`i − n− 1

)
≤ hj

(
1 +

n+ 1

f(L)− n− 1

)g(L)

. (4.2.30)

As L→∞, the expression above multiplying hj approaches

lim
L→∞

exp

(
g(L)

n+ 1

f(L)− n− 1

)
= 1 (4.2.31)

so `j ≤ hj(1 + o(1)), as desired. �
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Now the goal is to determine f and g so that

P(A stick dies within g(L) levels) = 1− o(1) (4.2.32)

and

lim
L→∞

#dead sticks with length larger than f(L) + n+ 1

#all dead sticks
= 1. (4.2.33)

The intuition is that we want to show most sticks die within the first g(L) levels, and that most
sticks that ever occur are long, i.e., larger than f(L).

Lemma 4.13. Let M be the number of dead sticks ever in a process starting with R sticks of length
L. Then

P(M < R(logL)ν(L)) → 1 (4.2.34)

as L→∞, where ν(L) is any function that goes to infinity as L→∞.

Proof. Let ML be the number of dead sticks resulting from the process of breaking a single stick of
length L. We have that ML = 1 whenever L ∈ S. We prove by induction on L that when L /∈ S

E[ML] ≤ 6n2 logL. (4.2.35)

(Here log(x) is short-hand for loge(x).) When 1 < L ≤ 3n2 this is clear since

6n2 logL ≥ 3n2 · 2 log(2) ≥ 3n2 ≥ L (4.2.36)

and ML ≤ L for all L.

When L > 3n2 and L /∈ S, we have

E[ML] =
1

L− 1

∑
1≤`≤L−1

(E[M`] + E[ML−`])

=
2

L− 1

∑
1≤`≤L−1

E[M`]

≤

 2

L− 1

∑
1≤`≤L−1

`∈S

1

+

 2

L− 1

∑
1≤`≤L−1

`/∈S

6n2 log(`)



≤ 2

L− 1

(
L− 1

2
+
n

2
+ 1

)
+

12n2

L− 1
log

 ∏
1≤`≤L−1

`/∈S

`



≤ 1 +
n+ 2

L− 1
+ 6n2 log


 ∏

1≤`≤L−1
`/∈S

`


2

L−1


≤ 1 + 6n2 logL. (4.2.37)

Note that we used the fact that

|[1, L− 1] ∩S| ≤
(⌊

L− 1

n

⌋
+ 1

)
· n

2
+ 1 ≤ L− 1

2
+
n

2
+ 1. (4.2.38)
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To see the last inequality,

1 +
n+ 2

L− 1
+ 6n2 log


 ∏

1≤`≤L−1
`/∈S

`


2

L−1

 ≤ 1 + 6n2 logL

⇐⇒ n+ 2

6n2
+ log


 ∏

1≤`≤L−1
`/∈S

`


2 ≤ (L− 1) logL

⇐⇒ e(n+2)/(6n2) ≤ LL−1(∏
1≤`≤L−1

`/∈S

`

)2

⇐= e1/(3n)nn ≤ LL−1(∏
n+1≤`≤L−1

`/∈S

`

)2 . (4.2.39)

Note that on the RHS, the product has at most L−1
2 terms and the first n/2 terms are at most 2n,

so we have

LL−1(∏
n<`≤L−1

`/∈S

`

)2 ≥
Ln

(2n)n
· LL−n−1(∏

2n<`≤L−1
`/∈S

`

)2 ≥ (3n)n ≥ e1/(3n)nn. (4.2.40)

Thus the induction step is complete. By Markov’s inequality,

P(M > R(logL)ν(L)) ≤ RE[ML]

R(logL)ν(L)
≤ 6n2R logL

R(logL)ν(L)
= O

(
1

ν(L)

)
→ 0 (4.2.41)

as L→∞. �

Since at each level before the process ends, the number of sticks increase by at least 1, we have
that the total number of levels at most R(logL)ν(L) with probability going to 1 as L→∞. Thus
we can take

g(L) = R(logL)ν(L). (4.2.42)

Lemma 4.14. Let M`,k denote the number of dead sticks with length smaller than k coming from
a process starting with a stick of length `. Let c = 24n2. Then for any k ≥ 2n, ` > 1, we have

E[M`,k] ≤ c log(k). (4.2.43)

In particular,
E[ML,log2(L)] ≤ 2c log logL. (4.2.44)

Proof. When ` ≤ k, we have trivially

E[M`,k] = E[M`] ≤
c

4
log(`) ≤ c

4
log(k) (4.2.45)

by (4.2.35). When ` > k and ` ∈ S, we have

E[M`,k] = 0. (4.2.46)
26



For a fixed k, we prove the result by induction on `.

E[M`,k] =
1

`− 1

∑
1≤x≤`−1

(E[Mx,k] + E[M`−x,k])

=
2

`− 1

∑
1≤x≤`−1

E[Mx,k]

=
2

`− 1

 ∑
1≤x≤k

E[Mx,k] +
∑
x/∈S

k<x≤`−1

E[Mx,k]


≤ 2

`− 1

(
k · c

4
log(k) +

`− k − 1 + n

2
· c log(k)

)
= c log(k)

1
2k + (`− k − 1 + n)

`− 1
≤ c log(k), (4.2.47)

where the last step uses k
2 ≥ n. �

Corollary 4.15. Let `i denote a stick occurring at level i in process P.

#{`i > log2(L) : i ≤ g(L)}
#{`i : i ≤ g(L)}

→ 1 (4.2.48)

as L→∞ with probability going to 1.

Proof. We have from Lemma 4.14 that

E[#{`i ≤ log2(L) : i ≤ g(L)}] ≤ R · 2c log logL. (4.2.49)

By Markov’s inequality,

P(#{`i ≤ log2(L) : i ≤ g(L)} > R(logL)1/3) ≤ R · 2c log logL

R(logL)1/3
→ 0 (4.2.50)

as L→∞. In other words,

#{`i > log2(L) : i ≤ g(L)} < R(logL)1/3 (4.2.51)

with probability going to 1. On the other hand, by Corollary 4.8, we have as long as R > (logL)3,

#{`i : i ≤ g(L)} ≥ R(logL)1/2 (4.2.52)

with probability going to 1. Since

R(logL)1/3

R(logL)1/2
→ 0 (4.2.53)

as L→∞, we have the desired. �

Now to see that item (2) is true, it suffices to show that the premises of Lemma 4.12 are satisfied
for most dead sticks. By Lemma 4.13, almost all sticks die within the first g(L) = R(logL)ν(L)
levels, where ν(L) is any function that blows up as L → ∞. By Corollary 4.15, almost all dead
sticks are at least f(L) = log2(L) in length. We can choose ν such that g(L) = o(f(L)). This
completes the proof of Proposition 1.5. �
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5. Non-Benfordness Results

In this section, we prove non-Benfordness of the decomposition processes when the stopping con-
dition deviates from the required ones, namely “|S| = n/2” in Theorem 1.2 and “r = 1/k” in
Theorem 3.1, thus showing that the conditions we impose in those theorems are necessary.

5.1. Continuous Case: When r 6= 1/k. Recall the continuous stick breaking process described
in Section 3 and the notation there. We claimed that when r 6= 1/k, the limiting distribution
of the stick lengths is non-Benford. We now prove precise statements of what happens in those
cases.

Theorem 5.1. When r > 1/k, there is positive probability that the process with R = 1 does not
end in finitely many levels.

Proof. Let A be some integer that is sufficiently large (we can determine what this means later).
There then exists some fixed j such that nj > A with positive probability p∗. Now, consider i ≥ j.
Conditioning on the event ni = m, we have that ni+1 is a random variable with mean mrk and
variance mr(1− r). Thus, by Chebyshev’s inequality, we have that

P
(
ni+1 > ni

(
1 +

rk − 1

2

) ∣∣∣ ni) ≥ 1− P
(
|ni+1 − nirk| ≥ ni

rk − 1

2

∣∣∣ ni) ≥ 1− nir(1− r)
n2
i

(
rk−1

2

)2 .
(5.1.1)

We can then let a = r(1−r)
A( rk−1

2 )
2 and c = 1 + rk−1

2 . Then the above inequality can be written as

P(ni+1 > cni | ni) ≥ 1− aA

ni
. (5.1.2)

It follows that

P(ni+1 > Aci−j+1
∣∣ ni > Aci−j) ≥ P(ni+1 > cni

∣∣ ni > Aci−j)

≥ inf
ni>Aci−j

(
1− aA

ni

)
≥ 1− acj−i. (5.1.3)

Hence, the probability that ni > Aci−j for all i ≥ j given that nj > A is at least

p′ = (1− a)(1− ac−1)(1− ac−2) · · · . (5.1.4)

Now, since limx→0 log(1 − x)/x = −1, we may set A large enough so that a is sufficiently small
such that log(1− act) > −2act for t ≤ 0. We then have

log(p′) =

∞∑
t=0

log(1− ac−t) >

∞∑
t=0

−2ac−t = − 2a

1− 1
c

. (5.1.5)

In particular, p′ ≥ e−2a/(1−1/c) > 0. Thus the probability that ni > Aci−j for all i ≥ j is at least
p∗p′ which is positive. Hence, not only is the process infinite with positive probability, but also the
number of alive sticks at each level blows up with positive probability.

�

Theorem 5.2. When r < 1/k and the alive/dead status of the children of the same stick are
possibly dependent on one another, the collection of stick lengths does not converge to strong Benford
behavior for sufficiently large bases B.

Proof.
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Lemma 5.3. We have that

E[MR] = R
k − kr
1− kr

(5.1.6)

Proof. Let pi be the probability that exactly i of the children of the first stick are alive. Then,

E[M1] =

k∑
i=0

pi(E[Mi] + k − i) =

k∑
i=0

pi(iE[M1] + k − i)

= k + (E[M1]− 1)
k∑
i=0

ipi = k − kr + krE[M1]

(5.1.7)

so that

E[M1] =
k − kr
1− kr

. (5.1.8)

Linearity of expectation then implies the result. �

Corollary 5.4. We have that

MR ≤ 2R
k − kr
1− kr

(5.1.9)

with probability at least 1/2.

Proof. This follows directly from Lemma 5.3 and Markov’s inequality. �

Lemma 5.5. Let a > 1 be some real number and let ba be the expected number of child sticks that
are of length at least L/a starting from a stick of length L. With probability at least

1− 4k2

b2a(1− r)2R
(5.1.10)

the number of dead sticks of length at least L/a in the first level is at least ba(1− r)R/2.

Proof. Denote this quantity by MR
L,a(1). Then, the probability of a child with length at least L/a

being dead is 1− r. Thus,
E[MR

L,a(1)] = Rba(1− r). (5.1.11)

Note that MR
L,a(1) is a sum of independent random variables distributed identically to M1

L,a(1),

and Var[M1
L,a(1)] ≤ k2, so

Var[MR
L,a(1)] ≤ Rk2. (5.1.12)

Chebyshev’s inequality then implies

P
(
MR
L,a(1) ≤ ba

2
(1− r)R

)
≤ Rk2

(Rba(1− r)/2)2
=

4k2

b2a(1− r)2R
. (5.1.13)

�

By Lemma 5.5 and Corollary 5.4, the proportion of sticks with length at least L/a is at least

ba
2

(1− r)R
(

2R
k − kr
1− kr

)−1

=
ba
4

(1− r) 1− kr
k − kr

=
ba(1− kr)

4k
(5.1.14)

with probability at least
1

2
− 4k2

b2a(1− r)2R
. (5.1.15)
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Now, choose a = k. Then, we have that, with some probability approaching 1/2, at least a
proportion of bk(1 − kr)/(4k) of the sticks are of length at least L/k. Moreover, bk > 0 so this
proportion is positive. Let

B > k
4k

bk(1−kr) . (5.1.16)

Then, these sticks occupy an interval of length

logB(k) <
bk(1− kr)

4k
<

1

4
(5.1.17)

in the distribution of the normalized mantissas. It follows that the mantissas of the stick lengths
do not almost surely approach a uniform distribution as R→∞. That is, the stick lengths do not
approach Benford behavior. More precisely, this contradicts the first condition for strong Benford
behavior. �

5.2. Discrete Case: When |S| 6= n/2. Now we turn to the setting of the discrete stick fragmenta-
tion as in our main theorem (Proposition 1.5) and prove a result showing that when |S| < n/2, the
final stick lengths are non-Benford. Moreover, we state a conjecture on the behavior of the limiting
distribution when |S| 6= n/2. Simulation results are also presented to support our conjecture.

Theorem 5.6. If |S| < n/2, then as R → ∞ and L → ∞, the collection of mantissas of ending
stick lengths does not converge to strong Benford behavior.

Theorem 5.7. If |S| > n/2, then as R → ∞ and L → ∞ with the condition R = ω(L2), the
collection of mantissas of ending stick lengths does not converge to the uniform distribution on

[0, 1] provided that the base B is greater than 36n3/|S|.

5.2.1. Proof of Theorem 5.6.

Lemma 5.8. Let

ML,m := #dead sticks generated by a stick of length L that are of length less than m. (5.2.1)

Then for all L /∈ S, there exists constants m, c only depending on k and n such that

E(ML,m) ≥ cE(ML) + 1. (5.2.2)

Proof. Let

c =
1

2n+ 1
, m = 2n2.

For L ≤ m, the result is clear since E(ML,m) = E(ML) ≥ 2. We now proceed with induction and
assume the result is true for positive integers less than L > m. We have,

E(ML,m) =
2

L− 1

L−1∑
`=1

E(M`,m)

=
2

L− 1

∑
1≤`≤L−1
`6∈S

E(M`,m)

≥ 2

L− 1

∑
1≤`≤L−1
`6∈S

cE(M`) +
2

L− 1
|[L− 1] \S|. (5.2.3)
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We now show that

|[L− 1] \S| ≥ L− 1

2
+ c|[L− 1] ∩S|. (5.2.4)

Note that

|[L− 1] \S| ≥ (n− |S|)
(
L− n− 1

n

)
≥ (n+ 1)(L− n− 1)

2n
(5.2.5)

and

|[L− 1] ∩S| ≤ |S|
(
L+ n− 1

n

)
≤ (n− 1)(L+ n− 1)

2n
(5.2.6)

so it suffices to show that

(n+ 1)(L− n− 1)

2n
≥ L− 1

2
+ c

(n− 1)(L+ n− 1)

2n

⇐⇒ c ≤ (n+ 1)(L− n− 1)− n(L− 1)

(n− 1)(L+ n− 1)
. (5.2.7)

We have

(n+ 1)(L− n− 1)− n(L− 1)

(n− 1)(L+ n− 1)
≥ L− 1− n2 − n

(n− 1)(L− 1 + n)

≥ (2n2 − n2 − n
(n− 1)(2n2 + n− 1)

≥ n

2n2 + n− 1

≥ 1

2n+ 1
= c. (5.2.8)

Hence, (5.2.4) is true, and can be plugged into (5.2.3) to obtain

E(ML.m) ≥ 2

L− 1

∑
1≤`≤L−1
`6∈S

cE(M`) +
2c

L− 1
|[L− 1] ∩S|+ 1

≥ 1 +
2

L− 1

L−1∑
`=1

cE(M`)

≥ cE(ML) + 1. (5.2.9)

The induction is complete. �

Lemma 5.9. Let MR
L be the total number of dead sticks coming from a process of breaking R

identical sticks of length L, and MR
L,m be the number of those shorter than m. Then for m and c

satisfying the conclusion of Lemma 5.8, we have as R→∞,

P

(
MR
L,m

MR
L

≤ c

3

)
→ 0. (5.2.10)

Proof. By Chernoff’s inequality, we have

P
(
MR
L,m ≤

1

2
RE(ML,m)

)
≤ e−RE(ML,m)/8 (5.2.11)

and

P
(
MR
L ≥

3

2
RE(ML)

)
≤ e−RE(ML)/10. (5.2.12)
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So

P
(
MR
L,m ≥

1

2
RE(ML,m) and MR

L ≤
3

2
RE(ML)

)
≥ 1− e−RE(ML,m)/8 − e−RE(ML)/10. (5.2.13)

In that case,

MR
L,m

MR
L

≥
1
2RE(ML,m)

3
2RE(ML)

=
E(ML,m)

3E(ML)
≥ c/3. (5.2.14)

Therefore it suffices to show that

1− e−RE(ML,m)/8 − e−RE(ML)/10 → 0 (5.2.15)

as R → ∞. To do this, it again suffices to show that E(ML,m) > 0 and E(ML) > 0. Clearly,
E(ML) ≥ 1, so it follows from Lemma 5.8 that E(ML,m) ≥ c+ 1 > 0. �

Now to conclude the proof of (2), note that if the process is strong Benford, by Definition 2.2, the
collection of mantissas MB(X) of dead sticks (in some sense) converges to the uniform distribution
on [0, 1], which is continuous. More precisely, for any s ∈ [1, B) and ε > 0,

P[MB(X) = logB(s)] ≤ E[ϕs(X)− ϕs−ε(X)]→ logB(s)− logB(s− ε) (5.2.16)

thus P[MB(X) = logB(s)]→ 0 as L→∞. So we must have that

MR
L,m

MR
L

=
#{X : MB(X) ∈ {MB(1),MB(2), . . . ,MB(m− 1)}}

MR
L

→ 0 (5.2.17)

as L → ∞ with probability going to 1 as R → ∞. This is false by the previous lemma, so the
process does not approach strong Benford behavior. In fact, our argument shows that, in some
imprecise sense, the collection of mantissas of such a process does not converge to any continuous
distribution on [0, 1] as R→∞ and L→∞.

5.2.2. Proof of Theorem 5.7. Let MR
L be the total number of dead sticks obtained starting from R

sticks of length L.

Lemma 5.10. We have that

E[MR
L ] ≤ 2n2R. (5.2.18)

Proof. We show the result when R = 1 via induction on L. Let M1
L = ML. The result is clearly

true for L ≤ 2n2 since ML ≤ L, so assume that L > 2n2 and the result holds for all positive integers
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smaller than L. We have that,

E[ML] =
1

L− 1

L−1∑
`=1

(E[M`] + E[ML−`])

=
2

L− 1

L−1∑
`=1

E[M`]

≤ 2 +
2

L− 1

∑
1≤`≤L−1
` 6∈S

2n2

≤ 2 +
2

L− 1

⌈
L− 1

n

⌉
(n− |S|) · 2n2

≤ 2 +
2

L− 1

(
L+ n− 1

n

)(
n− 1

2

)
2n2

= 2 + 2n(n− 1)
L+ n− 1

L− 1

≤ 2 + 2n(n− 1)
2n2 + n

2n2

= 2n2 − n+ 1 ≤ 2n2. (5.2.19)

The induction is complete. The result for general R follows from linearity of expectation. �

Corollary 5.11. With probability at least

1− L2

n4R
(5.2.20)

we have MR
L ≤ 3n2R.

Proof. First, note that, trivially, Var[ML] ≤ L2 so that Var[MR
L ] ≤ RL2. Then, Chebyshev’s

inequality implies that

P(MR
L > 3n2R) ≤ P(|MR

L − E(MR
L )| > n2R) ≤ RL2

(n2R)2
=

L2

n4R
. (5.2.21)

�

Lemma 5.12. Let a > 2 be some real number and assume L > 2an
a−2 . With probability at least

1− 16n2

|S|2R
(5.2.22)

the number of dead sticks of length at least L/a in the first level is at least |S|R/(2n).

Proof. Denote this quantity by MR
L,a(1). Then, given a stick of length L, the number of ways the

left child can die and be of length at least L/a is bounded below by

|S|
⌊
L− L/a

n

⌋
≥ |S|

(
L

n

(
1− 1

a

)
− 1

)
≥ |S|L

2n
. (5.2.23)
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Thus, the probability of any arbitrary child being of length at least L/a and dead is at least
|S|/(2n). It follows that

E[MR
L,a(1)] ≥ |S|R

n
. (5.2.24)

Furthermore,
Var[MR

L,a(1)] ≤ 4R (5.2.25)

by independence. Thus, we have, by Chebyshev’s inequality,

P
(
MR
L,a(1) ≤ |S|R

2n

)
≤ P

(∣∣MR
L,a(1)− E[MR

L,a(1)]
∣∣ ≥ |S|R

2n

)
≤ 4R(

|S|R
2n

)2 =
16n2

|S|2R
. (5.2.26)

�

Now, set a = 3 and let L > 6n. Note that by Lemma 5.12 and Corollary 5.11, with probability at
least

1− L2

n4R
− 16n2

|S|2R
(5.2.27)

the proportion of dead sticks of length at least L/3 is bounded below by

|S|R
2n

(3n2R)−1 =
|S|
6n3

. (5.2.28)

As L,R → ∞ in a manner such that R grows faster than L2, this probability approaches 1. Now
let,

B > 36n3/|S|. (5.2.29)

We obtain that

logB(3) <
|S|
6n3

(5.2.30)

but at least |S|
6n3 of the dead sticks are in [L/3, L] so that at least the same fraction of normalized

mantissas of dead sticks are in [1− logB(3), 1]. It follows that the distribution of mantissas of dead
sticks cannot approach the uniform distribution as R → ∞ for any L > 6n, nor can such be the
case as L→∞.

6. Further Directions

6.1. General Number of Parts. Given Theorem 3.1, it seems likely that a similar result would
hold for the discrete analogue. Indeed, we make the following conjecture, which is supported by
our simulation results (see, for example, Figure 1).

Conjecture 6.1 (General number of parts). Fix some positive integer k ≥ 2, and consider the
process where we break each stick into k pieces by choosing k − 1 cut points recursively following
the uniform distribution2. Fix a modulus n = tk for some t ≥ 1 and a subset S ⊂ {0, . . . , n− 1} of
size (t− 1)k representing the residue classes. Let the stopping set be

S := {1} ∪ {m ∈ Z+ : m = qn+ r, r ∈ S, q ∈ Z}. (6.1.1)

If we start with R identical sticks of positive integer length L /∈ S, then the collection of ending stick
lengths converges to strong Benford behavior given that R > f(L) as L → ∞, where f(L) is some
function that goes to infinity as L → ∞. Moreover, if the number of residue classes constituting

2This is left intentionally vague. One interpretation is as follows: Choose the first cut point according to the
uniform distribution as usual, and then choose the next cut point on the second fragment according to the uniform
distribution on that fragment, and so on. If at some point the second fragment has length 1, then the breaking stops
- so when the stick is short, it is possible that it only breaks into less than k pieces.
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Figure 1. Break Into 5 Pieces and Stop at 4/5 of the Residue Classes Modulo 40

the stopping set is not equal to (t − 1)k, then the resulting stick lengths do not converge to strong
Benford behavior.

6.2. General Stopping Condition. We suspect that the only property of S that is fundamentally
necessary in Proposition 1.5 is its density in the set of natural numbers. As result, we have the
following conjecture:

Conjecture 6.2. Let S be such that the limit below exists and let

r = lim
n→∞

|{[1, n] ∩S}|
n

. (6.2.1)

Moreover, assume that r > 0. Then, we have that set of dead stick lengths approaches Benford
behavior if and only if r = 1/2.

In other words, we believe that r = 1/2, the critical threshold, is the only thing required for the
process to result in a distribution that approaches Benford behavior; moreover, this threshold is
sharp, meaning that it gives a necessary and sufficient criterion for Benfordness.

6.3. Non-Benfordness for General Base. In the setting of Proposition 1.5, Theorem 5.7 says
that in the case |S| > n/2, as long as the base B is large enough, the final distribution does not
converge to Benford. We conjecture that this is in fact true regardless of the base.

Conjecture 6.3. The final collection of stick lengths does not converge to strong Benford behavior
for any base B if the size of S is not n/2. Specifically, if |S| > n/2, then the limiting distribution
depends on the mantissa of L base B, and the density function of logB(X/L) (mod 1) is skewed
towards 1.

Note that the proof of Theorem 5.7 would already strongly indicate that the above conjecture is
true, although it remains an interesting open question to describe precisely what the distribution
looks like.

We have also obtained strong empirical evidence for the conjecture taking B = 10 (which is smaller
than required in Theorem 5.7). Figure 2 shows a simulation of the process with modulus n = 40
and stopping set

S = {0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 23, 28, 29, 33, 35, 36, 37}
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where |S| = 21. Note that even though the size of the stopping set is just slightly above the
threshold 20, we find that the deviation from uniform distribution is apparent. It is worth noting
that even when we vary the stopping set and the significand of L, the pattern persists, as long as
n/2 < |S| < n.

Figure 2. Stopping at 21 residues modulo 40 with L = 1010000 and R = 100000

A heuristic for this is that when |S| = n, all processes end at the first level, and the resulting stick
lengths follow the uniform distribution on {1, . . . , L− 1}. It is not hard to show that for a random
variable X uniformly distributed, log(X) has smaller mantissa with lower probability and larger
mantissa with higher probability.

Appendix A. Proof of Theorem 3.4

Note that, for fixed j ∈ I,

Mfj

(
1− 2πi`

logB

)
=

∫ ∞
0

fj(x)x
− 2πi`

logB dx

=

∫ ∞
0

fj(e
log x)elog xe

− 2πi`
logB

log xdx

x

=

∫ ∞
−∞

gj(y)e
− 2πi`

logB
y
dy

= ĝj

(
`

logB

)
, (A.0.1)

where gj(y) = fj(e
y)ey. Moreover, ‖gj‖1 = ‖fj‖1 = 1, so the Riemann-Lebesgue lemma applies

and says that

Mfj

(
1− 2πi`

logB

)
→ 0 (A.0.2)

as `→∞. Also, for ` 6= 0, ∣∣∣∣ĝj ( `

logB

)∣∣∣∣ ≤ ‖gj‖1 = 1. (A.0.3)

We do not have equality in the above since it follows from triangle inequality and the integrand
does not always have the same complex argument (since gj is continuous). Thus, if we take

h(`) = max
j

∣∣∣∣Mfj

(
1− 2πi`

logB

)∣∣∣∣ , (A.0.4)
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we have that h(`) < 1 for ` 6= 0 and also h(`) → 0 as ` → ∞. We now investigate the rate of
this convergence. We begin by mimicking the proof of the Riemann-Lebesgue lemma. For any
f : R → C continuous and compactly supported, using the substitution x 7→ x + π

ξ for ξ 6= 0, we

have

f̂(ξ) =

∫
R
f(x)e−ixξdx =

∫
R
f

(
x+

π

ξ

)
e−ixξe−iπdx = −

∫
R
f

(
x+

π

ξ

)
e−ixξdx. (A.0.5)

Taking the average, we get

|f̂(ξ)| ≤ 1

2

∫
R

∣∣∣∣f(x)− f
(
x+

π

ξ

)∣∣∣∣ dx. (A.0.6)

Apply this to f = ĝj and ξ = `
logB ,∣∣∣∣ĝj ( `

logB

)∣∣∣∣ ≤ 1

2

∫
R

∣∣∣∣gj(x)− gj
(
x+

π logB

`

)∣∣∣∣ dx
≤ 1

2

∫
R

∣∣∣fj(ex)ex − fj(ex+π logB
` )ex+π logB

`

∣∣∣ dx
≤ 1

2

∫ 1

0
|fj(u)− cfj(cu)| du

≤ 1

2
sup
[0,1]

(|fj(u)− fj(cu)|+ |fj(cu)− cfj(cu)|), (A.0.7)

where c = e
π logB
` and we used the fact that f is only supported on [0, 1] (this can be easily changed

to any compact interval, but for the purpose of this paper all the distributions we consider satisfy
this condition). From the assumption that fj is αj-Hölder continuous, there exists a constant µ ≥ 0
such that

|fj(u)− fj(cu)| ≤ µ|(1− c)u|α ≤ µ|1− c|α (A.0.8)

and

|fj(cu)− cfj(cu)| ≤ (1− c)|fj(cu)| ≤ |1− c|M (A.0.9)

for all u ∈ [0, 1], where M > 0 is an upper bound for f . Now

c = 1 +
π logB

`
+ o(1/`), (A.0.10)

so

|1− c| =
π logB

`
+ o(1/`). (A.0.11)

We may assume 0 < α ≤ 1, so that |1− c|α dominates. There exists some L large enough so that
the sum

∑
|`|≥L `

−nα → 0 as n → ∞. By the pigeonhole principle, there exist a j ∈ I such that

|p−1({j})| =∞. Then we have

∞∑
`=−∞
6̀=0

n∏
m=1

MfDp(m)

(
1− 2πi`

logB

)
≤

∞∑
`=−∞
6̀=0

n∏
m=1
p(m)=j

Mfj

(
1− 2πi`

logB

)

≤
∞∑

`=−∞
6̀=0

Mfj

(
1− 2πi`

logB

)n
→ 0 (A.0.12)

as n→∞. This proves (3.2.2). To see that the convergence is uniform over all p, note that by the
pigeonhole principle, for any choice of p and any positive integer N there exists a j ∈ I such that
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|p−1({j})∩ {1, . . . , N}| ≥ N/|I|. Therefore for any ε > 0, it suffices to take the maximum among
all the N ’s needed for each j ∈ I so that

∞∑
`=−∞
6̀=0

Mfj

(
1− 2πi`

logB

)N/|I|
< ε. (A.0.13)
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